JP2001247397A - Silicon carbide single crystal - Google Patents

Silicon carbide single crystal

Info

Publication number
JP2001247397A
JP2001247397A JP2000060441A JP2000060441A JP2001247397A JP 2001247397 A JP2001247397 A JP 2001247397A JP 2000060441 A JP2000060441 A JP 2000060441A JP 2000060441 A JP2000060441 A JP 2000060441A JP 2001247397 A JP2001247397 A JP 2001247397A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
screw
dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000060441A
Other languages
Japanese (ja)
Other versions
JP4329211B2 (en
Inventor
Naohiro Sugiyama
尚宏 杉山
Atsuhito Okamoto
篤人 岡本
Toshihiko Tani
俊彦 谷
Yoshiki Senoo
与志木 妹尾
Masami Naito
正美 内藤
Hiroyuki Kondo
宏行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2000060441A priority Critical patent/JP4329211B2/en
Publication of JP2001247397A publication Critical patent/JP2001247397A/en
Application granted granted Critical
Publication of JP4329211B2 publication Critical patent/JP4329211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon carbide single crystal excellent in device characteristics and having a slight electrical anisotropy due to stacking faults. SOLUTION: This silicon carbide single crystal 1 comprises an assembly 2 of screw dislocations, the stacking faults 3 and edge dislocations 4 and is obtained by dividing the assembly 2 of the screw dislocations into sections in the direction of the axis (extending the dislocation lines) of the screw dislocations with the stacking faults 3 or the edge dislocations 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
作製に好適な炭化珪素(SiC)単結晶に関する。
The present invention relates to a silicon carbide (SiC) single crystal suitable for producing a semiconductor device.

【0002】[0002]

【従来の技術】(0001)面を成長面として昇華法に
より作製されるSiC結晶には、図5(a)に示すよう
に、マイクロパイプ欠陥102やらせん転位103が多
数存在する。これらの欠陥は、このSiC結晶で構成し
た基板101上にダイオードを作製したときに、逆方向
リーク電流の原因となる。
2. Description of the Related Art As shown in FIG. 5A, a SiC crystal produced by a sublimation method using a (0001) plane as a growth plane has a large number of micropipe defects 102 and screw dislocations 103. These defects cause a reverse leakage current when a diode is manufactured on the substrate 101 made of the SiC crystal.

【0003】図5(b)に示すように、n型不純物をド
ーピングした4H−SiC結晶からなる基板101上に
-型エピタキシャル層104を成膜したのち、マイク
ロパイプ欠陥102やらせん転位103が形成された領
域にp+型領域105を形成すると共に、p+型領域10
5に接続される電極106と基板101に接続される電
極107とを形成することによってPNダイオード10
8を作製し、基板101に存在するマイクロパイプ欠陥
102やらせん転位103がデバイス特性に及ぼす影響
を調査した。その結果、マイクロパイプ欠陥102は
デバイス特性に致命的な影響を与えること、らせん転
位103はI−Vの降伏特性をソフトにすると共に、耐
圧を5〜35%低下させることが明らかになった。
(P.G.Neudeck他(NASA Lewis
Research Center他) Mat.Re
s.Soc.Symp.Proc.Vol.512(1
998)107〜112参照) 一方、特開平5−262599号公報では、(000
1)面に垂直な面、例えば(1−100)面や(11−
20)面を成長面として用いることにより、マイクロパ
イプ欠陥やらせん転位のないSiC単結晶を成長させる
ことが提案されている。
As shown in FIG. 5B, after forming an n -type epitaxial layer 104 on a substrate 101 made of 4H—SiC crystal doped with an n-type impurity, a micropipe defect 102 and a screw dislocation 103 are formed. The p + -type region 105 is formed in the formed region, and the p + -type region 10 is formed.
5 and the electrode 107 connected to the substrate 101 are formed.
8 was fabricated, and the influence of micropipe defects 102 and screw dislocations 103 existing on the substrate 101 on device characteristics was investigated. As a result, it was found that the micropipe defect 102 has a fatal effect on device characteristics, and that the screw dislocation 103 softens the breakdown characteristics of the IV and lowers the breakdown voltage by 5 to 35%.
(PG Neudeck et al. (NASA Lewis)
Research Center et al.) Mat. Re
s. Soc. Symp. Proc. Vol. 512 (1
998) 107-112) On the other hand, in JP-A-5-262599, (000)
1) A plane perpendicular to the plane, for example, (1-100) plane or (11-
It has been proposed to grow a SiC single crystal free of micropipe defects and screw dislocations by using the 20) plane as a growth plane.

【0004】しかしながら、このように成長させたSi
C単結晶には全領域に渡って積層欠陥が広く形成され、
この積層欠陥を電流が横切る時、大きな抵抗となるた
め、積層欠陥を横切る方向と積層欠陥と平行な方向とで
大きな電気的な異方性を生じ、デバイス作製時に大きな
問題となる。
However, the thus grown Si
Stacking faults are widely formed in the C single crystal over the entire area.
When a current crosses the stacking fault, a large resistance is generated. Therefore, a large electric anisotropy occurs in a direction crossing the stacking fault and in a direction parallel to the stacking fault, which causes a serious problem in device fabrication.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記点に鑑み
て、逆方向リーク電流が少なくでき、積層欠陥による電
気的な異方性が少なくできる炭化珪素単結晶を提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide a silicon carbide single crystal capable of reducing reverse leakage current and reducing electrical anisotropy caused by stacking faults. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明では、炭化珪素単結晶にらせ
ん転位の集合体(2)が含まれていることを特徴として
いる。好適ならせん転位の集合体としては、最近接した
転位線との距離が1μm以下の複数のらせん転位の束で
ある。
Means for Solving the Problems To achieve the above object, the invention according to claim 1 is characterized in that the silicon carbide single crystal contains an aggregate (2) of screw dislocations. A preferred set of screw dislocations is a bundle of a plurality of screw dislocations whose distance to the nearest dislocation line is 1 μm or less.

【0007】このように、マイクロパイプ欠陥やらせん
転位が単独で存在するのではなく、らせん転位の集合体
となった炭化珪素単結晶ではらせん転位が相互作用を及
ぼすことによって、逆方向リーク電流が少なくでき、積
層欠陥による電気的な異方性が少なくなるようにでき
る。その相互作用を及ぼす間隔が約1μmである。
[0007] As described above, a micropipe defect and a screw dislocation are not present alone, but a screw dislocation acts on a silicon carbide single crystal which is an aggregate of the screw dislocation, whereby the reverse leakage current is reduced. The electrical anisotropy due to stacking faults can be reduced. The spacing at which the interaction occurs is about 1 μm.

【0008】請求項2に記載の発明は、らせん転位の集
合体(2)及び積層欠陥(3)が含まれており、らせん
転位の集合体が積層欠陥によって、らせん転位の転位線
の伸長方向に分断されていることを特徴としている。
[0008] The invention according to claim 2 includes an aggregate (2) of screw dislocations and a stacking fault (3), and the aggregate of the screw dislocations is caused by the stacking fault and extends in the dislocation line of the screw dislocation. It is characterized by being divided into

【0009】このような炭化珪素単結晶であれば、請求
項1と同様の効果を得ることができる。
With such a silicon carbide single crystal, the same effect as the first aspect can be obtained.

【0010】請求項3に記載の発明は、らせん転位の集
合体(2)と積層欠陥(3)及び刃状転位(4)が含ま
れており、らせん転位の集合体が積層欠陥若しくは刃状
転位によって、らせん転位の転位線の伸長方向に分断さ
れていることを特徴としている。
According to a third aspect of the present invention, an aggregate of screw dislocations (2), a stacking fault (3) and an edge dislocation (4) are included, and the aggregate of screw dislocations is a stacking fault or an edge-like dislocation. It is characterized in that the dislocation is divided in the direction of extension of the dislocation line of the screw dislocation by dislocation.

【0011】このような炭化珪素単結晶であれば、請求
項1と同様の効果を得ることができる。
With such a silicon carbide single crystal, the same effects as those of the first aspect can be obtained.

【0012】なお、請求項1乃至3に記載の発明は、請
求項4に示すように、マイクロパイプ欠陥及びらせん転
位を含む炭化珪素単結晶基板の表面を被覆材で被覆した
のち、熱処理を施すことによって作製することが可能で
ある。
According to the present invention, the surface of the silicon carbide single crystal substrate containing micropipe defects and screw dislocations is coated with a coating material and then heat-treated. It is possible to produce by.

【0013】また、請求項1乃至4に記載の発明は、請
求項5に示すように、逆方向リーク電流の少ない良質な
炭化珪素単結晶をエピタキシャル成長させるときの基板
とすることができる。
Further, according to the first to fourth aspects of the present invention, as described in the fifth aspect, it is possible to use the substrate for epitaxially growing a high-quality silicon carbide single crystal having a small reverse leakage current.

【0014】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示すも
のである。
The reference numerals in the parentheses of the above means indicate the correspondence with the specific means described in the embodiments described later.

【0015】[0015]

【発明の実施の形態】(第1実施形態)図1に、本発明
の第1実施形態における炭化珪素単結晶の断面図を示
す。
(First Embodiment) FIG. 1 shows a cross-sectional view of a silicon carbide single crystal according to a first embodiment of the present invention.

【0016】図1に示す炭化珪素単結晶1は、4H、6
H、3C若しくは15R−SiCの単結晶基板で構成さ
れている。この炭化珪素単結晶1にはらせん転位の集合
体2、積層欠陥3、及び刃状転位4が含まれており、ら
せん転位の集合体2が積層欠陥3若しくは刃状転位4に
よって、らせん転位の軸(転位線の伸長する)方向に分
断されている。
The silicon carbide single crystal 1 shown in FIG.
It is composed of a single crystal substrate of H, 3C or 15R-SiC. This silicon carbide single crystal 1 includes an aggregate 2 of screw dislocations, a stacking fault 3, and an edge dislocation 4. It is divided in the axis (extending dislocation line) direction.

【0017】このような構造の炭化珪素単結晶1には積
層欠陥3が形成されているが、積層欠陥3が局所的に形
成されているだけであり、炭化珪素単結晶1の全領域に
渡って形成されているものではないため、ほとんど積層
欠陥による電気的な異方性を生じない。
Stacking faults 3 are formed in silicon carbide single crystal 1 having such a structure, but stacking faults 3 are only formed locally, and extend over the entire region of silicon carbide single crystal 1. Since it is not formed by the method, electric anisotropy hardly occurs due to stacking faults.

【0018】このような構造の炭化珪素単結晶1は、マ
イクロパイプ欠陥やらせん転位が含まれた単結晶基板の
表面を被覆材で被覆したのち、熱処理を施すことによっ
て作製される。つまり、単結晶基板を被覆材で被覆した
状態で熱処理を施すことによりマイクロパイプ欠陥が修
復されるが、この修復部に上記らせん転位の集合体2、
積層欠陥3、及び刃状欠陥4が存在するため、図1に示
す構造の炭化珪素単結晶1となる。
The silicon carbide single crystal 1 having such a structure is manufactured by covering the surface of a single crystal substrate containing micropipe defects and screw dislocations with a coating material and then performing a heat treatment. In other words, the micropipe defect is repaired by performing a heat treatment in a state where the single crystal substrate is covered with the coating material, and the screw dislocation aggregate 2,
Since the stacking faults 3 and the edge defects 4 are present, the silicon carbide single crystal 1 has the structure shown in FIG.

【0019】このような構成の炭化珪素単結晶1を基板
として用いて、図2に示すようにPNダイオード5を作
製した。まず、n型不純物をドーピングした炭化珪素単
結晶1の主表面にn-型エピタキシャル層6を成長さ
せ、その後、n-型エピタキシャル層6のうちマイクロ
パイプ欠陥が修復された部分上に配置された領域にイオ
ン注入を行なうことでp+型領域7を形成する。続い
て、p+型領域7と電気的に接続される電極8と、炭化
珪素単結晶1の裏面側に電気的に接続される電極9とを
形成する。これにより、PNダイオード5が作製され
る。
Using the silicon carbide single crystal 1 having such a structure as a substrate, a PN diode 5 was manufactured as shown in FIG. First, the n-type impurity into the main surface of the doped silicon carbide single crystal 1 n - -type epitaxial layer 6 is grown, then, n - micropipe defects of the type epitaxial layer 6 is disposed on the repaired portion By performing ion implantation into the region, ap + type region 7 is formed. Subsequently, electrode 8 electrically connected to p + -type region 7 and electrode 9 electrically connected to the back surface of silicon carbide single crystal 1 are formed. Thereby, the PN diode 5 is manufactured.

【0020】そして、このPNダイオード5の逆方向に
おけるI−V特性を評価したところ、逆方向のリーク電
流が極めて少なく、良好なデバイス特性(降伏特性)を
示した。
When the IV characteristics of the PN diode 5 in the reverse direction were evaluated, the leakage current in the reverse direction was extremely small and good device characteristics (breakdown characteristics) were exhibited.

【0021】このような結果が得られたのは以下の理由
によると推察される。
It is presumed that such a result was obtained for the following reason.

【0022】らせん転位、若しくはマイクロパイプ欠
陥が単独で存在した場合には、その歪によって禁制帯が
狭くなりリーク電流が増加するか、あるいはその歪によ
ってドーピングした不純物が異常拡散し、PN接合不良
やリーク電流の増加を起こす。一方、らせん転位の集合
体2のようにらせん転位が密集した状態では、それぞれ
の歪が干渉し合い、禁制帯が元に戻るか、あるいはドー
ピングした不純物が異常拡散しなくなるため。
When a screw dislocation or a micropipe defect is present alone, the forbidden band becomes narrow due to the strain and the leak current increases, or the doped impurity abnormally diffuses due to the strain, and the PN junction failure or the like occurs. This causes an increase in leakage current. On the other hand, in a state where the screw dislocations are dense as in the aggregate 2 of the screw dislocations, the respective strains interfere with each other, and the forbidden band returns to the original state, or the doped impurity does not diffuse abnormally.

【0023】らせん転位が積層欠陥3と共存した場
合、TEM解析結果からも確認されているように、らせ
ん転位が積層欠陥3を横切る箇所においてスリップし、
らせん転位の転位線が折れ曲がり不連続となることか
ら、らせん転位の転位芯を伝って流れる可能性がある逆
方向リーク電流が積層欠陥3によって阻止されたため。
なお、らせん転位と刃状転位4が交差した場合にも、こ
れと同様の効果が生じていると考えられる。
When the screw dislocation coexists with the stacking fault 3, the slip dislocation slips at a position where the screw dislocation crosses the stacking fault 3, as confirmed from the result of the TEM analysis.
Since the dislocation line of the screw dislocation is bent and discontinuous, the reverse leakage current that may flow along the dislocation core of the screw dislocation is prevented by the stacking fault 3.
In addition, it is considered that the same effect occurs when the screw dislocation and the edge dislocation 4 cross each other.

【0024】積層欠陥を含む結晶のoff面を利用し
てエピタキシャル成長を実施した場合、つまり、炭化珪
素単結晶1のoff面を基板としてn-型エピタキシャ
ル層6を成長させた場合、基板から継承されたらせん転
位がエピタキシャル成長中に積層欠陥3と交差する際に
積層欠陥3によって遮られ、C面内の刃状転位に変換さ
れて、それより上に継承されなくなったため。
When epitaxial growth is carried out using the off plane of a crystal containing stacking faults, that is, when n -type epitaxial layer 6 is grown using the off plane of silicon carbide single crystal 1 as a substrate, the crystal is inherited from the substrate. When the screw dislocation intersects with the stacking fault 3 during epitaxial growth, it is blocked by the stacking fault 3 and converted into an edge dislocation in the C plane, which is no longer inherited.

【0025】これらに示すように、理由については明ら
かではないが、上記構造の炭化珪素単結晶1を用いるこ
とにより、逆リーク電流を少なくすることができた。
As described above, although the reason is not clear, by using the silicon carbide single crystal 1 having the above structure, the reverse leak current could be reduced.

【0026】このように、マイクロパイプ欠陥を修復
し、らせん転位の集合体2、積層欠陥3、及び刃状転位
4が形成された炭化珪素単結晶1とすることにより、逆
方向リーク電流が少なく、積層欠陥による電気的な異方
性が少ない単結晶とすることができる。
As described above, the micropipe defect is repaired, and the silicon carbide single crystal 1 having the screw dislocation aggregate 2, the stacking fault 3, and the edge dislocation 4 is formed, so that the reverse leakage current is reduced. In addition, a single crystal with little electrical anisotropy due to stacking faults can be obtained.

【0027】なお、本実施形態では、らせん転位の集合
体2、積層欠陥3、及び刃状転位4のすべてが形成され
た炭化珪素単結晶1について説明したが、上記した方法
によってマイクロパイプ欠陥を閉塞した場合、図3に示
すようならせん転位の集合体2が含まれた炭化珪素単結
晶11や、図4に示すようならせん転位の集合体2と積
層欠陥3とが含まれ、らせん転位の集合体2が積層欠陥
3によって軸方向に分断されている炭化珪素単結晶21
が形成される場合がある。これらの場合についても上記
実施形態と同様に、PNダイオード5を形成してI−V
特性を評価したところ、上記と同様の効果を得ることが
できた。
In this embodiment, the silicon carbide single crystal 1 in which the aggregate 2, the stacking faults 3, and the edge dislocations 4 of the screw dislocations are formed has been described. In the case of the blockage, the silicon carbide single crystal 11 containing the screw dislocation aggregate 2 as shown in FIG. 3 or the screw dislocation aggregate 2 and the stacking fault 3 as shown in FIG. Carbide single crystal 21 in which aggregate 2 is axially divided by stacking faults 3
May be formed. Also in these cases, the PN diode 5 is formed and the IV
When the characteristics were evaluated, the same effects as described above could be obtained.

【0028】このことから、少なくともマイクロパイプ
欠陥が修復され、らせん転位の集合体2となった炭化珪
素単結晶においては、逆方向リーク電流を少なくでき、
積層欠陥による電気的な異方性を少なくすることができ
ると言える。
From this, at least in the silicon carbide single crystal in which the micropipe defect has been repaired and the screw dislocation aggregate 2 has been formed, the reverse leakage current can be reduced.
It can be said that electrical anisotropy due to stacking faults can be reduced.

【0029】なお、上記実施形態では、マイクロパイプ
欠陥が修復されたことによって、らせん転位の集合体
2、積層欠陥3、及び刃状転位4が形成された場合を示
したが、このような方法以外の方法によってもらせん転
位の集合体2、積層欠陥3や刃状転位4が形成されたも
のであれば、逆方向リーク電流が少なく、デバイスの特
性が良好な炭化珪素単結晶1とすることができる。
In the above-described embodiment, the case where the aggregate 2 of screw dislocations, the stacking fault 3, and the edge dislocations 4 are formed by repairing the micropipe defect has been described. If the aggregate 2 of screw dislocations, the stacking fault 3, and the edge dislocations 4 are formed by a method other than that described above, the silicon carbide single crystal 1 having a small reverse leakage current and excellent device characteristics can be obtained. Can be.

【0030】[0030]

【実施例】(実施例1)マイクロパイプ欠陥を有する炭
化珪素単結晶1の試料として、n型不純物がドーピング
された6H−SiC単結晶基板を用意した。この6H−
SiC単結晶基板は、厚さが1mm程度、マイクロパイ
プ欠陥密度が100/cm2程度であった。
EXAMPLES (Example 1) As a sample of a silicon carbide single crystal 1 having a micropipe defect, a 6H-SiC single crystal substrate doped with an n-type impurity was prepared. This 6H-
The SiC single crystal substrate had a thickness of about 1 mm and a micropipe defect density of about 100 / cm 2 .

【0031】この6H−SiC単結晶基板の(000
1)及び(000−1)表面にCVD法によって厚さ約
20μmの3C−SiCを成膜した。この時の成膜条件
は、基板温度を1500℃、SiH4流量を2〜8SC
CM、C38流量を1〜5sccm、H2流量を11S
LMとし、成膜時間を5時間とした。
The (000) of this 6H—SiC single crystal substrate
A 3C-SiC film having a thickness of about 20 μm was formed on the surfaces 1) and (000-1) by the CVD method. At this time, the film forming conditions were as follows: the substrate temperature was 1500 ° C., and the SiH 4 flow rate was 2 to 8 SC.
CM, C 3 H 8 flow rate 1~5sccm, the H 2 flow rate 11S
LM, and the deposition time was 5 hours.

【0032】ただし、SCCMは「Specific
Cubic cm/min」を意味し、SLMは「Sp
ecific liter/min」を意味する。
However, SCCM is “Specific
Cubic cm / min ”, and the SLM is“ Spic
effective liter / min ".

【0033】この後、試料を図示しない黒鉛製るつぼ内
に炭化珪素粉末中に埋め込んだ状態で収容し、熱処理を
施した。この時の熱処理条件は、熱処理温度を2300
℃とし、Ar雰囲気で圧力を79.8kPa(600T
orr)、加熱時間を24時間とした。
Thereafter, the sample was accommodated in a graphite crucible (not shown) embedded in silicon carbide powder and subjected to a heat treatment. The heat treatment conditions at this time are as follows:
° C and a pressure of 79.8 kPa (600 T) in an Ar atmosphere.
orr), and the heating time was 24 hours.

【0034】熱処理後、黒鉛製るつぼ内から試料を取り
出し、試料の表面から約50μmの厚さ研磨し、試料の
表面を観察した。その結果、熱処理前には、6H−Si
C単結晶基板の表面に開口していたマイクロパイプ欠陥
が閉塞しており、上記工程によってマイクロパイプ欠陥
が修復されたことが明らかになった。
After the heat treatment, the sample was taken out of the graphite crucible, polished from the surface of the sample to a thickness of about 50 μm, and the surface of the sample was observed. As a result, before heat treatment, 6H-Si
The micropipe defect that had been opened on the surface of the C single crystal substrate was closed, and it was revealed that the micropipe defect was repaired by the above process.

【0035】また、c軸と平行に試料を切り出し、マイ
クロパイプ欠陥が存在していた箇所をTEMによって詳
細に解析した。
Further, a sample was cut out in parallel with the c-axis, and a portion where a micropipe defect was present was analyzed in detail by TEM.

【0036】その結果、マイクロパイプ欠陥が存在して
いた領域(若しくはその周辺)には、複数のらせん転位
の集合体2(幅約1μm×厚み約0.05μmの薄片中
に7本程度)が存在していた。
As a result, in the region where the micropipe defect was present (or in the vicinity thereof), an aggregate 2 of a plurality of screw dislocations (about 7 in a slice of about 1 μm in width × about 0.05 μm in thickness) was formed. Existed.

【0037】さらに、らせん転位の集合体2を軸方向に
約0.01〜1μmの間隔で分断するようにC面内に生
成された積層欠陥3が多数存在していた。ただし、この
積層欠陥は、修復部及びその周辺にのみ広がって生成さ
れており、らせん転位の集合体2を中心に半径が約10
μm以下の範囲で広がっていた。
Further, there were a large number of stacking faults 3 generated in the C plane so as to cut the screw dislocation aggregate 2 in the axial direction at intervals of about 0.01 to 1 μm. However, this stacking fault is generated by spreading only at the repaired portion and its periphery, and has a radius of about 10 around the screw dislocation aggregate 2.
It spread in the range of μm or less.

【0038】また、らせん転位の集合体2と積層欠陥3
の交差箇所のいくつかでは、らせん転位の集合体2が積
層欠陥3によってスリップし、不連続となっていること
が確認された。
The screw dislocation aggregate 2 and the stacking fault 3
It was confirmed that at some of the intersections, the aggregate 2 of screw dislocations slipped due to the stacking fault 3 and became discontinuous.

【0039】さらに、C面に平行な刃状転位4も観察さ
れ、積層欠陥3の場合と同様に、らせん転位の集合体2
と刃状転位4との交差箇所でらせん転位の集合体2が不
連続となっていることが確認された。
Further, edge dislocations 4 parallel to the C plane were also observed.
It was confirmed that the aggregate 2 of the screw dislocations was discontinuous at the intersection of the edge dislocations 4 with the edge dislocations 4.

【0040】続いて、このようにマイクロパイプ欠陥が
閉塞された試料から3.5°off−axis基板を作
製し、図2に示すようなPNダイオード5を作製した。
Subsequently, a 3.5 ° off-axis substrate was prepared from the sample in which the micropipe defects were closed as described above, and a PN diode 5 as shown in FIG. 2 was prepared.

【0041】すなわち、基板上にn型不純物濃度が5×
1016/cm3程度の6H−SiCで構成されたn-型エ
ピタキシャル層6を約3μmの厚さ成長させたのち、n
-型エピタキシャル層6にp型不純物濃度が1×1019
/cm3程度となるようにボロン及び炭素を連続的にイ
オン注入してp+型領域7を形成し、さらに、p+型領域
7と電気的に接続される電極8及び炭化珪素単結晶1の
裏面側に電気的に接続される電極9を形成することによ
り、φ130μm程度のPNダイオード5を作製した。
そして、このPNダイオード5の逆方向のI−V特性を
評価した。
That is, the n-type impurity concentration is 5 × on the substrate.
After growing an n -type epitaxial layer 6 made of 6H—SiC of about 10 16 / cm 3 to a thickness of about 3 μm,
The p-type impurity concentration in the type epitaxial layer 6 is 1 × 10 19
/ Cm 3 about to become so boron and carbon are continuously ion-implanted to form a p + -type region 7, further, the p + -type region 7 electrically connected to the electrodes 8 and the silicon carbide single crystal 1 The PN diode 5 having a diameter of about 130 μm was formed by forming the electrode 9 electrically connected to the back side of the PN diode 5.
Then, the IV characteristics of the PN diode 5 in the reverse direction were evaluated.

【0042】その結果、逆方向のリーク電流が1μAに
おける耐圧が450V程度となり、逆方向リーク電流が
極めて低く、耐圧が高いという良好な降伏特性を示し
た。なお、このときの耐圧は、結晶欠陥が形成されてい
ない部分にPNダイオード5を作製して逆方向のI−V
特性を評価した場合と同等であった。
As a result, the breakdown voltage at a reverse leakage current of 1 μA was about 450 V, and the reverse breakdown current was very low and the breakdown voltage was high. Note that the withstand voltage at this time is determined by preparing a PN diode 5 at a portion where no crystal defect is formed and performing IV-direction in the reverse direction.
It was equivalent to the case where the characteristics were evaluated.

【0043】一方、比較のため、図5(a)に示すよう
に,マイクロパイプ欠陥やらせん転位が単独で残存する
結晶を基板として用い、上記と同様にPNダイオードを
作製してI−V特性を評価したが、逆方向のリーク電流
が大きく、リーク電流1μAにおける耐圧が150V程
度と低く、整流特性は良好でなかった。
On the other hand, for comparison, as shown in FIG. 5 (a), a PN diode was fabricated in the same manner as above using a crystal in which micropipe defects and screw dislocations alone remained as a substrate, and the IV characteristics were obtained. The leakage current in the reverse direction was large, the breakdown voltage at a leakage current of 1 μA was as low as about 150 V, and the rectification characteristics were not good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における炭化珪素単結晶
1の断面を示す図である。
FIG. 1 is a view showing a cross section of a silicon carbide single crystal 1 according to a first embodiment of the present invention.

【図2】図1に示す炭化珪素単結晶1を用いて作製した
PNダイオードの断面を示す図である。
FIG. 2 is a diagram showing a cross section of a PN diode manufactured using silicon carbide single crystal 1 shown in FIG.

【図3】第1実施形態の他の例における炭化珪素単結晶
1の断面を示す図である。
FIG. 3 is a diagram showing a cross section of silicon carbide single crystal 1 in another example of the first embodiment.

【図4】第1実施形態の他の例における炭化珪素単結晶
1の断面を示す図である。
FIG. 4 is a diagram showing a cross section of silicon carbide single crystal 1 in another example of the first embodiment.

【図5】(a)はマイクロパイプ欠陥やらせん転位が形
成された基板101を示す図であり、(b)は(a)の
基板101を用いて形成したPNダイオードの断面を示
す図である。
5A is a diagram showing a substrate 101 on which micropipe defects and screw dislocations are formed, and FIG. 5B is a diagram showing a cross section of a PN diode formed using the substrate 101 of FIG. .

【符号の説明】[Explanation of symbols]

1…炭化珪素単結晶、2…らせん転位の集合体、3…積
層欠陥、4…刃状転位、5…PNダイオード、6…n-
型エピタキシャル層、7…p+型領域、8…電極、9…
電極。
1 ... silicon carbide single crystal, 2 ... collection of screw dislocations, 3 ... stacking faults, 4 ... edge dislocations, 5 ... PN diode, 6 ... n -
Type epitaxial layer, 7 ... p + type region, 8 ... electrode, 9 ...
electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 篤人 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 谷 俊彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 妹尾 与志木 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 内藤 正美 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 近藤 宏行 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA02 AA03 AB01 BE08 FE19 HA02 TK01 TK06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsuto Okamoto 41-cho, Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Institute, Inc. 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor, Yoshiki Senoo, 41, Nagakute-cho, Aichi-gun, Aichi Prefecture 1-1-1 Showa-cho, Kariya-shi, Japan Inside DENSO Corporation (72) Inventor Hiroyuki Kondo 1-1-1, Showa-cho, Kariya-shi, Aichi F-term inside DENSO Corporation 4G077 AA02 AA03 AB01 BE08 FE19 HA02 TK01 TK06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 らせん転位の集合体(2)を含んでいる
ことを特徴とする炭化珪素単結晶。
1. A silicon carbide single crystal comprising an aggregate of screw dislocations (2).
【請求項2】 らせん転位の集合体(2)及び積層欠陥
(3)が含まれており、前記らせん転位の集合体(2)
が前記積層欠陥(3)によって、該らせん転位の転位線
の伸長方向に分断されていることを特徴とする炭化珪素
単結晶。
2. An assembly of screw dislocations comprising an aggregate of screw dislocations (2) and a stacking fault (3).
Are separated in the direction of extension of the dislocation line of the screw dislocation by the stacking fault (3).
【請求項3】 らせん転位の集合体(2)と積層欠陥
(3)及び刃状転位(4)が含まれており、前記らせん
転位の集合体(2)が前記積層欠陥(3)若しくは前記
刃状転位(4)によって、該らせん転位の転位線の伸長
方向に分断されていることを特徴とする炭化珪素単結
晶。
3. An assembly (2) of screw dislocations, a stacking fault (3) and an edge dislocation (4) are included, and the assembly (2) of screw dislocations is either the stacking fault (3) or the stacking fault (3). A silicon carbide single crystal characterized in that it is divided by an edge dislocation (4) in a direction in which a dislocation line of the screw dislocation extends.
【請求項4】 マイクロパイプ欠陥及びらせん転位を含
む炭化珪素単結晶基板の表面を被覆材で被覆したのち、
熱処理が施されて作製されていることを特徴とする請求
項1乃至3のいずれか1つに記載の炭化珪素単結晶。
4. After coating the surface of a silicon carbide single crystal substrate containing micropipe defects and screw dislocations with a coating material,
The silicon carbide single crystal according to any one of claims 1 to 3, wherein the silicon carbide single crystal is manufactured by heat treatment.
【請求項5】 請求項1乃至4のいずれか1つに記載の
単結晶を基板としてエピタキシャル成長させた炭化珪素
単結晶。
5. A silicon carbide single crystal grown epitaxially using the single crystal according to claim 1 as a substrate.
JP2000060441A 2000-03-01 2000-03-01 Silicon carbide semiconductor device using silicon carbide single crystal and method for manufacturing the same Expired - Lifetime JP4329211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060441A JP4329211B2 (en) 2000-03-01 2000-03-01 Silicon carbide semiconductor device using silicon carbide single crystal and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060441A JP4329211B2 (en) 2000-03-01 2000-03-01 Silicon carbide semiconductor device using silicon carbide single crystal and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001247397A true JP2001247397A (en) 2001-09-11
JP4329211B2 JP4329211B2 (en) 2009-09-09

Family

ID=18580758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060441A Expired - Lifetime JP4329211B2 (en) 2000-03-01 2000-03-01 Silicon carbide semiconductor device using silicon carbide single crystal and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4329211B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508086A (en) * 2001-10-26 2005-03-24 クリー インコーポレイテッド SiC bipolar semiconductor device with minimal degradation
JP2011168453A (en) * 2010-02-19 2011-09-01 Denso Corp Method for producing silicon carbide substrate
JP2014028757A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Silicon carbide single crystal ingot and substrate cut from the same
CN116577340A (en) * 2023-05-28 2023-08-11 兰州大学 Method for distinguishing threading screw dislocation and threading edge dislocation in silicon carbide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508086A (en) * 2001-10-26 2005-03-24 クリー インコーポレイテッド SiC bipolar semiconductor device with minimal degradation
US7880171B2 (en) 2001-10-26 2011-02-01 Cree, Inc. Minimizing degradation of SiC bipolar semiconductor devices
KR101036253B1 (en) * 2001-10-26 2011-05-20 크리 인코포레이티드 Bipolar semiconductor devices with controlled crystal defect growth
JP2011168453A (en) * 2010-02-19 2011-09-01 Denso Corp Method for producing silicon carbide substrate
JP2014028757A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Silicon carbide single crystal ingot and substrate cut from the same
CN116577340A (en) * 2023-05-28 2023-08-11 兰州大学 Method for distinguishing threading screw dislocation and threading edge dislocation in silicon carbide
CN116577340B (en) * 2023-05-28 2024-01-05 兰州大学 Method for distinguishing threading screw dislocation and threading edge dislocation in silicon carbide

Also Published As

Publication number Publication date
JP4329211B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4185215B2 (en) SiC wafer, SiC semiconductor device, and method of manufacturing SiC wafer
JP4597514B2 (en) SiC bipolar semiconductor device with minimal degradation
US8536582B2 (en) Stable power devices on low-angle off-cut silicon carbide crystals
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
JP5285202B2 (en) Bipolar semiconductor device and manufacturing method thereof
US8338833B2 (en) Method of producing silicon carbide semiconductor substrate, silicon carbide semiconductor substrate obtained thereby and silicon carbide semiconductor using the same
CA2761246A1 (en) Insulated gate bipolar transistor
EP2490247A1 (en) Silicon carbide substrate manufacturing method and silicon carbide substrate
US20090242899A1 (en) Epitaxial Growth on Low Degree Off-Axis SiC Substrates and Semiconductor Devices Made Thereby
JP3197803B2 (en) Semiconductor manufacturing method with few dislocation defects
WO2001018872A1 (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP5696543B2 (en) Manufacturing method of semiconductor substrate
KR20070000367A (en) Semiconductor devices and methods of making same
WO2001018286A1 (en) Sic SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
JP4879507B2 (en) Bipolar semiconductor device forward voltage recovery method, stacking fault reduction method, and bipolar semiconductor device
CN104201211B (en) Preparation SiC Ultrafast recovery diode and technique
TW200525053A (en) Process for producing highly doped semiconductor wafers, and dislocation-free, highly doped semiconductor wafers
WO2007032214A1 (en) Process for producing silicon carbide semiconductor device
US20200056302A1 (en) Elimination of Basal Plane Dislocation and Pinning the Conversion Point Below the Epilayer Interface for SiC Power Device Applications
JPH04502536A (en) Fast recovery high temperature rectifier diode formed in silicon carbide
JP2007250693A (en) SiC SUBSTRATE, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
JP2001247397A (en) Silicon carbide single crystal
JP3915252B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP2001110746A (en) Formation method of electrode of silicon carbide and semiconductor element
Matsunami et al. Surface polarity dependence in step-controlled epitaxy: progress in SiC epitaxy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4329211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term