JP2001246771A - Thermal print head - Google Patents

Thermal print head

Info

Publication number
JP2001246771A
JP2001246771A JP2000107357A JP2000107357A JP2001246771A JP 2001246771 A JP2001246771 A JP 2001246771A JP 2000107357 A JP2000107357 A JP 2000107357A JP 2000107357 A JP2000107357 A JP 2000107357A JP 2001246771 A JP2001246771 A JP 2001246771A
Authority
JP
Japan
Prior art keywords
heating element
heat
heat storage
temperature
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000107357A
Other languages
Japanese (ja)
Inventor
Heiji Imai
平治 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI KAGAKU CO Ltd
Takao Manufacture Co Ltd
Original Assignee
NIPPON DENKI KAGAKU CO Ltd
Takao Manufacture Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI KAGAKU CO Ltd, Takao Manufacture Co Ltd filed Critical NIPPON DENKI KAGAKU CO Ltd
Priority to JP2000107357A priority Critical patent/JP2001246771A/en
Publication of JP2001246771A publication Critical patent/JP2001246771A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress variation of printing densities by uniformizing thermal accumulation at a portion in the vicinity of a heating element. SOLUTION: A thin glass layer as a circuit substrate 22 having an insulation property is formed on an upper side of a glass substrate as an insulation substrate 21 to form a two-layer structure. A heating element 13 and a wiring electrode 14 are provided to the top face of the circuit substrate 22 and the top of the heating element is covered with a protection film 15 by glass coating. When the heating element 13 is activated by a print signal using the wiring electrode 14, the heating element 13 heats. The heat is transferred to a printing medium through the protection film 15 and to a heat-accumulating body 23 through the circuit substrate 22. The thermal conductivity of the heat- accumulating body 23 is high so that the heat is quickly transferred to the heat-accumulating body 23 even when each heating element has a different time calorific value, thereby uniformizing a temperature of the whole accumulation body. The temperature influence to each of the heating elements is made uniform and the variation in the printing density is eliminated. The power consumption on the heating element is made half.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はサーマルプリントヘ
ッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal print head.

【0002】[0002]

【従来の技術】サーマルプリントヘッドを使用したプリ
ンターは機構が簡単で騒音が無く、また記録素子である
発熱素子を多数有するものが簡単に製造できることか
ら、一度の記録範囲が大きくすることが可能なため、高
速印字を可能とし、業務用に広く用いられている。さら
にプリンターを小型・軽量にすることが可能なため携帯
用にもその用途が広がっている。
2. Description of the Related Art A printer using a thermal print head has a simple mechanism and no noise, and a printer having a large number of heating elements as recording elements can be easily manufactured. Therefore, high-speed printing is made possible and widely used for business use. Further, since the printer can be reduced in size and weight, its use has been expanded to portable use.

【0003】図5は従来のサーマルプリントヘッドの構
造の一例を示す断面図である。このサーマルプリントヘ
ッドはセラミック基板11の上部全面にガラスをグレー
ズして2層構造としたものをサーマルプリントヘッド基
板とし、このガラス層12の上面に発熱素子13と配線
電極14を設けたものである。発熱素子13の一端は共
通端子14aに接続されており、もう一方の端は個別端
子14bに接続されている。
FIG. 5 is a sectional view showing an example of the structure of a conventional thermal print head. The thermal print head has a two-layer structure in which glass is glazed on the entire upper surface of a ceramic substrate 11 to form a thermal print head substrate, and a heating element 13 and a wiring electrode 14 are provided on the upper surface of the glass layer 12. . One end of the heating element 13 is connected to the common terminal 14a, and the other end is connected to the individual terminal 14b.

【0004】共通端子14aには直流電圧が供給されて
おり、印字信号に基づき個別端子14bがアース電位に
接続されると、発熱素子13に電流が流れジュール熱が
発生する。この発生した熱は保護膜15を通して、印字
媒体に伝導され印字される。また、ガラス層12に残っ
た熱はセラミック基板11に伝導され、ガラス層12に
残った熱が次の印字に影響することを軽減している。セ
ラミック基板に伝導した熱はさらに外部の金属板に放熱
される。このように、サーマルプリントヘッドは熱印字
を行いつつ、発熱体付近の余剰熱の放散を図っている。
[0004] A DC voltage is supplied to the common terminal 14a. When the individual terminal 14b is connected to the ground potential based on a print signal, a current flows through the heating element 13 to generate Joule heat. The generated heat is transmitted to the print medium through the protective film 15 and printed. Further, the heat remaining in the glass layer 12 is conducted to the ceramic substrate 11, thereby reducing the influence of the heat remaining in the glass layer 12 on the next printing. The heat conducted to the ceramic substrate is further radiated to an external metal plate. As described above, the thermal print head performs the thermal printing while dissipating excess heat near the heating element.

【0005】[0005]

【発明が解決しようとする課題】近年、デジタルプリン
ターの導入が進むにつれ印字品質の向上が要求されてき
ている。高印字品質のサーマルプリントヘッドでは高密
度に多数の発熱素子を有するため、印字を続けるに従っ
て発熱体近傍に余剰熱が蓄積されてゆく。このとき、各
発熱素子の印字履歴の違いによって発熱体近傍に蓄熱に
よる温度分布が生じる。この蓄熱による温度分布が各発
熱素子の発熱温度に影響するため、印字媒体への印字濃
度に分布を生じる。このため印字濃度のばらつきとな
り、印字品質低下の原因となっている。
In recent years, with the introduction of digital printers, improvement in printing quality has been required. Since a thermal print head of high printing quality has a large number of heating elements at high density, excess heat is accumulated near the heating element as printing continues. At this time, a temperature distribution due to heat storage occurs near the heating element due to a difference in the printing history of each heating element. Since the temperature distribution due to this heat storage affects the heat generation temperature of each heating element, a distribution occurs in the print density on the print medium. For this reason, the print density varies, which causes a decrease in print quality.

【0006】この解決策として、発熱素子が形成されて
いる基板に温度センサーを設けて基板の温度を検出し、
温度信号により発熱素子への印加電圧の制御を行う方法
が開発されているが、熱的な時定数が印字周期の数ミリ
秒に対し数秒と長いため、印字濃度のばらつきを補正す
るまでに時間がかかるという問題があった。
As a solution to this, a temperature sensor is provided on a substrate on which a heating element is formed to detect the temperature of the substrate.
A method has been developed to control the voltage applied to the heating element by using a temperature signal.However, since the thermal time constant is as long as several seconds to several milliseconds of the printing cycle, it takes time to correct the variation in printing density. There was a problem that it took.

【0007】また、各発熱素子の近傍に各々の蓄熱温度
を検知するため発熱素子と同数の温度センサーを配設し
て、各発熱素子毎に印可電圧を補正する方法も提案され
ているが、回路構成が複雑になりサーマルプリントヘッ
ドの小型化、低コスト化の要求に反するため実用化に至
ってはいない。各発熱素子に温度センサーを備える代わ
りに、各発熱素子の直前までの印字履歴を参照して算出
された蓄熱温度データを基に、次の印加電圧を適正な値
に補正する方法も提案されているが、正確に補正しよう
とすると長時間の印字履歴を参照しなければならず、正
確な温度制御を行うためにはCPUによるデータ計算が
必要となり回路構成がさらに複雑となるので実用化され
ていない。
A method has also been proposed in which the same number of temperature sensors as the number of heating elements are provided in the vicinity of each heating element to detect the heat storage temperature, and the applied voltage is corrected for each heating element. The circuit configuration has become complicated, and it has not been put to practical use because it contradicts the demand for downsizing and cost reduction of the thermal print head. Instead of equipping each heating element with a temperature sensor, a method of correcting the next applied voltage to an appropriate value based on heat storage temperature data calculated with reference to a print history immediately before each heating element has also been proposed. However, accurate correction requires reference to a long-time print history, and data calculation by the CPU is required to perform accurate temperature control, which further complicates the circuit configuration. Absent.

【0008】本発明は、このような従来の問題点に鑑み
てなされたもので、小型サーマルプリントヘッドであっ
て、高密度な多素子発熱体を有するものにおいても、発
熱体付近の蓄熱を均一にして印字濃度のばらつきを抑え
ることにより、印字品質の良いサーマルプリントヘッド
を提供することを技術的課題とする。
The present invention has been made in view of such a conventional problem, and even in a small-sized thermal print head having a high-density multi-element heating element, the heat storage near the heating element can be made uniform. Accordingly, it is an object of the present invention to provide a thermal print head having good print quality by suppressing variations in print density.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明のサーマルプリントヘッドの基板は、電気絶
縁性の回路基材と低熱伝導基材とからなる2層構造の薄
板とし、上側の層の回路基材には上面に発熱体と配線電
極を設け、下側の層の低熱伝導基材には回路基材に接し
かつ発熱体の下方に位置する部位に凹部を設け、その凹
部に蓄熱体を充填する手段を講じたものである。さら
に、蓄熱体に近接して温度センサーを配設するととも
に、温度センサーで検知した蓄熱温度信号によって発熱
体に流す電流を制御して印字濃度を一定に保つために、
基本印可時間設定器と室温補正器と蓄熱温度検出部と電
圧制御発振器と印字周期発生器と駆動パルス発生器と発
熱体駆動部とからなる熱制御回路を備える手段を講じた
ものである。
In order to solve the above-mentioned problems, the substrate of the thermal print head of the present invention is a thin plate having a two-layer structure composed of an electrically insulating circuit substrate and a low heat conductive substrate. A heating element and a wiring electrode are provided on the upper surface of the circuit substrate of the layer, and a concave portion is provided on a lower heat conductive substrate of the lower layer in a portion which is in contact with the circuit substrate and is located below the heating element. In this case, means for filling the heat storage body is taken. In addition, a temperature sensor is provided close to the heat storage element, and in order to maintain a constant print density by controlling the current flowing through the heat generation element based on the heat storage temperature signal detected by the temperature sensor,
A means for providing a heat control circuit including a basic application time setting device, a room temperature compensator, a heat storage temperature detector, a voltage control oscillator, a printing cycle generator, a drive pulse generator, and a heating element driver is provided.

【0010】[0010]

【発明の実施の形態】本発明のサーマルプリントヘッド
は、低熱伝導率の基材を基板のベースとしているので、
発熱素子から発生した熱は印字媒体以外にはサーマルプ
リントヘッドの外部へ放熱し難い構造としている。さら
に、低熱伝導基材の回路基材に接しかつ発熱体の近傍部
に蓄熱体を配設したことにより、発熱体から発生し回路
基材を伝わって印字媒体とは反対側に伝導した熱の大部
分がサーマルプリントヘッド基板内部の蓄熱体に蓄えら
れることとなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thermal print head of the present invention uses a substrate having a low thermal conductivity as a base of a substrate.
The heat generated from the heating element is hardly radiated to the outside of the thermal print head other than the print medium. Furthermore, by providing a heat storage element in contact with the circuit substrate of the low heat conductive base material and in the vicinity of the heating element, heat generated from the heating element, transmitted through the circuit base material, and conducted to the opposite side of the print medium can be reduced. Most will be stored in the thermal storage inside the thermal printhead substrate.

【0011】本発明のサーマルプリントヘッドにより印
字を行う場合、まず印字信号に応じて各発熱素子が発熱
する。発熱素子が発生した熱の大部分は印字媒体へ伝導
して印字に供されるが、発生した熱の一部は回路基材を
伝わって蓄熱体に蓄えられる。蓄熱体は熱伝導率の高い
材質を用いているので、ごく短時間で蓄熱体全体に熱が
伝導して蓄熱体全体がほぼ同温度になり温度分布を生じ
ない。発熱体全体と蓄熱体は回路基材を挟んで、熱的に
結合状態にあるため、各発熱素子に対する蓄熱体からの
温度影響は同一であるため、発熱素子間での印字濃度の
ばらつきは生じないよう作用する。
When printing is performed by the thermal print head of the present invention, first, each heating element generates heat in accordance with a print signal. Most of the heat generated by the heat generating element is conducted to the print medium and used for printing, but a part of the generated heat is transmitted to the circuit base material and stored in the heat storage body. Since the heat storage body is made of a material having a high thermal conductivity, heat is transferred to the entire heat storage body in a very short time, so that the entire heat storage body has substantially the same temperature and no temperature distribution occurs. Since the entire heating element and the heat storage element are in a thermally coupled state with the circuit base material in between, the temperature effect from the heat storage element on each heating element is the same, and the print density varies between the heating elements. Acts like no.

【0012】また、この蓄熱体に近接して温度センサー
を配置したことにより、蓄熱体の温度を正確に測定する
ことができ、蓄熱体の温度に応じて発熱素子に加えるエ
ネルギーを制御することにより発熱素子の発熱温度を適
切に補正し、印字濃度を一定に保つよう作用する。
Further, by disposing the temperature sensor close to the heat storage element, the temperature of the heat storage element can be accurately measured, and by controlling the energy applied to the heating element according to the temperature of the heat storage element. It functions to appropriately correct the heat generation temperature of the heat generation element and keep the print density constant.

【0013】[0013]

【実施例】本発明の代表的な実施例について、図面を参
照して説明する。図1は蓄熱体を備えたサーマルプリン
トヘッドの構造を示す断面図である。図1において、低
熱伝導基材21としてはガラス基板を用い、ガラス基板
の上側に電気絶縁性の回路基材22として薄いガラス層
を形成した2層構造としている。回路基材22の上面に
は発熱体13と配線電極14が薄膜技術又は厚膜技術に
より配設され、さらに発熱体の上部を薄膜技術又は厚膜
技術によってガラスコーティング等による保護膜15で
覆っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of a thermal print head provided with a thermal storage. In FIG. 1, a glass substrate is used as the low thermal conductive base material 21 and has a two-layer structure in which a thin glass layer is formed as an electrically insulating circuit base material 22 on the upper side of the glass substrate. The heating element 13 and the wiring electrode 14 are disposed on the upper surface of the circuit substrate 22 by a thin film technique or a thick film technique, and the upper part of the heating element is covered with a protective film 15 made of glass coating or the like by the thin film technique or the thick film technique. I have.

【0014】配線電極14は共通端子14aと個別端子
14bから成り、共通端子14aは電源に接続され、印
字信号によって個別端子14bがアースに接続される
と、発熱体13の発熱素子に電流が流れて発熱する。こ
の熱は保護膜15を通して印字媒体に伝導され印字を行
う。また、発熱体の発熱は回路基材22を通して蓄熱体
23にも伝導する。
The wiring electrode 14 includes a common terminal 14a and an individual terminal 14b. When the common terminal 14a is connected to a power source and the individual terminal 14b is connected to the ground by a print signal, a current flows through the heating element of the heating element 13. Fever. This heat is conducted to the print medium through the protective film 15 to perform printing. Further, heat generated by the heating element is also transmitted to the heat storage element 23 through the circuit substrate 22.

【0015】蓄熱体23の周囲はガラス基板(低熱伝導
基材21)であるため、従来のセラミック基板に比較し
て外部への熱放散は小さくなり、発熱体13が発生した
熱は印字媒体に消費され、回路基材22へ伝導した熱の
大部分は蓄熱体23に蓄熱される。蓄熱体23は熱伝導
率の高い銅などの材質を用いるため、各発熱素子の時間
発熱量に差があっても蓄熱体に素早く伝導され蓄熱体全
体の温度を均一化させる。従って、蓄熱体全体の温度分
布が均一であるため、各発熱素子に対する温度影響も均
一となり、印字濃度にばらつきを生じないこととなる。
Since the periphery of the heat storage body 23 is a glass substrate (low heat conductive base material 21), the heat dissipation to the outside is smaller than that of a conventional ceramic substrate, and the heat generated by the heating body 13 is transferred to the printing medium. Most of the heat consumed and conducted to the circuit board 22 is stored in the heat storage unit 23. Since the heat storage body 23 is made of a material such as copper having a high thermal conductivity, even if there is a difference in the amount of heat generated by each heating element over time, the heat storage body 23 is quickly conducted to the heat storage body and makes the temperature of the entire heat storage body uniform. Therefore, since the temperature distribution of the entire heat storage body is uniform, the temperature influence on each heating element is also uniform, and the print density does not vary.

【0016】図2は蓄熱体に接して温度センサーを設け
たサーマルプリントヘッドの構造を示す断面図である。
図2において、蓄熱体23の表面に温度センサー31が
備えられており、サーマルプリンターの作動時は常に蓄
熱体の蓄熱温度を測定し、この温度信号を参照して発熱
素子に流す電流を制御することにより各発熱素子の発熱
温度を一定に保ち、印字濃度の最適化を図ることができ
る。
FIG. 2 is a cross-sectional view showing the structure of a thermal print head provided with a temperature sensor in contact with a heat storage element.
In FIG. 2, a temperature sensor 31 is provided on the surface of the heat storage unit 23. When the thermal printer operates, the heat storage temperature of the heat storage unit is always measured, and the current flowing through the heating element is controlled with reference to the temperature signal. Thus, the heating temperature of each heating element can be kept constant, and the printing density can be optimized.

【0017】図3は、温度センサー31からの蓄熱温度
信号を基に、発熱素子に印加する電気エネルギーを適正
に制御する熱制御回路の一例を示すブロック図である。
図3において、各発熱素子に対する基本的な印字時間を
設定する基本印加時間設定部42からの出力電圧tb
と、温度センサー31を経て蓄熱温度検出部43から出
力された蓄熱温度電圧taと、室温補正部49からの室
温電圧trを加算器44にて加算した出力電圧to=t
b+ta+trにより、電圧制御発振器45の出力信号
の周波数Fが決定される。ここで、基本印加時間設定部
42は標準室温(例えば15℃)における発熱素子への
電流駆動時間を設定するものであり、室温補正部49は
実際の室温に対して最適な電流駆動時間に補正するもの
である。電圧制御発振器45の出力信号は印加パルス発
生器46に入力され、印字周期発生部41の発するトリ
ガー信号Ti毎に周波数Fに反比例した発熱素子駆動時
間信号Tcを出力する。発熱体駆動部47は発熱素子駆
動時間信号TcがLoレベルである時間だけ発熱素子に
電流を流すドライバーであって、印字データ信号48に
応じて各発熱素子を選択し電流駆動する。各発熱素子へ
は発熱体駆動部47から印字データ信号48に応じた発
熱素子駆動信号Tpが出力される。
FIG. 3 is a block diagram showing an example of a heat control circuit for appropriately controlling the electric energy applied to the heating element based on the heat storage temperature signal from the temperature sensor 31.
In FIG. 3, an output voltage tb from a basic application time setting unit 42 for setting a basic printing time for each heating element.
The output voltage to = t obtained by adding the storage temperature voltage ta output from the storage temperature detecting unit 43 via the temperature sensor 31 and the room temperature voltage tr from the room temperature correcting unit 49 by the adder 44 to = t = t
The frequency F of the output signal of the voltage controlled oscillator 45 is determined by b + ta + tr. Here, the basic application time setting section 42 sets the current drive time for the heating element at a standard room temperature (for example, 15 ° C.), and the room temperature correction section 49 corrects the current drive time to the optimum current drive time for the actual room temperature. Is what you do. The output signal of the voltage control oscillator 45 is input to the application pulse generator 46, and outputs a heating element driving time signal Tc that is inversely proportional to the frequency F for each trigger signal Ti generated by the print cycle generation unit 41. The heating element driving unit 47 is a driver that supplies current to the heating elements only when the heating element driving time signal Tc is at the Lo level, and selects each of the heating elements according to the print data signal 48 to drive the current. A heating element driving signal Tp corresponding to the print data signal 48 is output from the heating element driving section 47 to each heating element.

【0018】図4は、図3の各ブロックの電気信号の波
形を示すタイムチャートである。図4において、印字前
は蓄熱体23の温度は室温であるが印字によって上昇
し、蓄熱温度電圧taと加算器44の出力電圧to=t
b+ta+trは時間経過とともに上昇している。加算
器の出力電圧toにより電圧制御発振器45の矩形波出
力の周波数Fが蓄熱体の温度上昇とともに変化し、印加
パルス発生器46に入力されると周波数Fに反比例した
時間の単パルスが発熱素子駆動時間信号Tcとして、印
字周期発生部41からのトリガーパルスTiに同期して
出力される。この発熱素子駆動時間信号TcがLoレベ
ルの間、発熱素子には電流が流れ、発熱素子が発熱して
印字する。印字が進むとともに、蓄熱体23の蓄熱温度
が除々に上昇し、温度センサーからの蓄熱温度電圧ta
および加算器44の出力電圧toも上昇するため、電圧
制御発振器の出力周波数Fが上がる。そうすると印加パ
ルス発生器46の出力Tcのパルス幅が小さくなり発熱
体が発する熱量は下がるが、蓄熱体に蓄熱された熱量が
発熱体に加わるため一定の印字熱量が維持される。この
ようにして蓄熱された熱量分を差し引いたエネルギーが
発熱素子に印加されるように制御されるため、常に適正
なエネルギーが発熱素子に印加される。
FIG. 4 is a time chart showing a waveform of an electric signal of each block in FIG. In FIG. 4, the temperature of the heat storage unit 23 is room temperature before printing, but rises by printing, and the heat storage temperature voltage ta and the output voltage to = t = t of the adder 44.
b + ta + tr increases with time. The output voltage to of the adder changes the frequency F of the rectangular wave output of the voltage controlled oscillator 45 as the temperature of the heat accumulator rises. The drive time signal Tc is output in synchronization with the trigger pulse Ti from the print cycle generation unit 41. While the heating element drive time signal Tc is at the Lo level, a current flows through the heating element, and the heating element generates heat and prints. As the printing proceeds, the heat storage temperature of the heat storage body 23 gradually increases, and the heat storage temperature voltage ta from the temperature sensor.
Since the output voltage to of the adder 44 also increases, the output frequency F of the voltage controlled oscillator increases. Then, the pulse width of the output Tc of the application pulse generator 46 becomes smaller and the amount of heat generated by the heating element decreases, but the amount of heat stored in the heat storage element is added to the heating element, so that a constant amount of printing heat is maintained. Since the energy obtained by subtracting the amount of heat stored in this manner is controlled so as to be applied to the heating element, appropriate energy is always applied to the heating element.

【0019】図4の各信号波形は印字開始から連続的に
印字する場合を示しているが、途中印字がストップする
と蓄熱温度は下がり、温度センサーからの蓄熱温度電圧
taおよび加算器44の出力電圧toも下降するため、
電圧制御発振器の出力周波数Fが下がることとなる。そ
うすると印加パルス発生器46の出力Tcのパルス幅が
大きくなり発熱素子への電流駆動時間が長くなって、発
熱素子の発する熱量が上がり、一定の印字熱量を保持す
るよう制御される。本発明のサーマルプリントヘッドに
おいては、蓄熱体全体の温度分布がほぼ均一であり、か
つ蓄熱体から各発熱素子への温度影響もほぼ均一あるこ
とから、温度センサー及び熱制御回路は一回路で実現可
能である。
Each signal waveform in FIG. 4 shows a case in which printing is continuously performed from the start of printing. However, when printing is stopped halfway, the heat storage temperature decreases, and the heat storage temperature voltage ta from the temperature sensor and the output voltage of the adder 44 are output. Because to also descends,
The output frequency F of the voltage controlled oscillator will decrease. Then, the pulse width of the output Tc of the application pulse generator 46 is increased, the current driving time for the heating element is increased, the heat generated by the heating element is increased, and control is performed so as to maintain a constant printing heat. In the thermal print head of the present invention, since the temperature distribution of the entire heat storage body is substantially uniform, and the temperature influence from the heat storage body to each heating element is also substantially uniform, the temperature sensor and the heat control circuit are realized by one circuit. It is possible.

【0020】[0020]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0021】本発明のサーマルプリントヘッドによれ
ば、各発熱素子個々の印字履歴による蓄熱温度の差が無
くなり、発熱素子近傍の温度分布を均一化できるので、
印字濃度のばらつきを解消することができ、高印字品質
を得ることができる。
According to the thermal print head of the present invention, there is no difference in the heat storage temperature due to the printing history of each heating element, and the temperature distribution near the heating element can be made uniform.
Variations in print density can be eliminated, and high print quality can be obtained.

【0022】また、蓄熱体の周囲をガラスで覆う構造に
より熱の放散が少なくなり、従来のサーマルプリントヘ
ッドに比べて消費電力を1/2以下に抑えることができ
た。
Further, the structure in which the periphery of the heat storage body is covered with glass reduces heat dissipation, so that power consumption can be reduced to half or less as compared with a conventional thermal print head.

【0023】さらに、温度センサーを備えて蓄熱体の温
度を測定することにより、常に印字濃度の均一化を実現
した。また、各発熱素子の発熱制御が1個の温度センサ
ーで実現できるので、プリントヘッドの簡略化、小型
化、低価格化が実現できる。
Further, by providing a temperature sensor and measuring the temperature of the heat storage body, the printing density can be always made uniform. Further, since the heat generation of each heating element can be realized by one temperature sensor, simplification, miniaturization and cost reduction of the print head can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蓄熱体を備えたサーマルプリントヘッドの構造
を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a structure of a thermal print head including a heat storage element.

【図2】蓄熱体と温度センサーを備えたサーマルプリン
トヘッドの構造を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a structure of a thermal print head including a heat storage body and a temperature sensor.

【図3】熱制御回路の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a heat control circuit.

【図4】図3の各ブロックの電気信号の波形を示すタイ
ムチャートである。
FIG. 4 is a time chart showing a waveform of an electric signal of each block in FIG. 3;

【図5】従来のサーマルプリントヘッドの構造を示す断
面図である。
FIG. 5 is a cross-sectional view showing a structure of a conventional thermal print head.

【符号の説明】[Explanation of symbols]

11…セラミック基板 12…ガラス層 13…発熱体 14…配線電極 14a…共通端子 14b…個別端子 15…保護膜 21…低熱伝導基材(ガラス基板) 22…回路基材 23…蓄熱体 31…温度センサー 40…熱制御回路 41…印字周期発生部 42…基本印加時間設定部 43…蓄熱温度検出部 44…加算器 45…電圧制御発振器 46…印加パルス発生器 47…発熱体駆動部 48…印字データ信号 49…室温補正部 DESCRIPTION OF SYMBOLS 11 ... Ceramic substrate 12 ... Glass layer 13 ... Heating body 14 ... Wiring electrode 14a ... Common terminal 14b ... Individual terminal 15 ... Protective film 21 ... Low heat conductive base material (glass substrate) 22 ... Circuit base material 23 ... Heat storage body 31 ... Temperature Sensor 40: Thermal control circuit 41: Printing cycle generating unit 42: Basic application time setting unit 43: Heat storage temperature detecting unit 44: Adder 45: Voltage controlled oscillator 46: Applied pulse generator 47: Heating element driving unit 48: Print data Signal 49: room temperature correction unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低熱伝導基材(21)と電気絶縁性の回
路基材(22)からなる2層構造の薄板状のサーマルプ
リントヘッド基板において、回路基材(22)の表面に
複数の発熱素子からなる発熱体(13)と配線電極(1
4)を設け、かつ、低熱伝導基材(21)の内部に高熱
伝導材による蓄熱体(23)を設けるとともに、蓄熱体
(23)は回路基材(22)の発熱体(13)を設けた
部位に近接して配設したことを特徴とするサーマルプリ
ントヘッド。
1. In a two-layer thin-film thermal printhead substrate comprising a low thermal conductive base material (21) and an electrically insulating circuit base material (22), a plurality of heat sources are formed on the surface of the circuit base material (22). A heating element (13) composed of an element and a wiring electrode (1)
4) and a heat storage body (23) made of a high heat conductive material is provided inside the low heat conductive base material (21), and the heat storage body (23) is provided with a heating element (13) of the circuit base material (22). A thermal printhead, wherein the thermal printhead is disposed in close proximity to a part that has been set.
【請求項2】 蓄熱体(23)に近接して温度センサー
(31)を配設するとともに、温度センサー(31)か
らの蓄熱温度信号によって印字濃度を一定に保つように
発熱体(13)の各発熱素子に流す電流を制御する熱制
御回路(40)を設けたことを特徴とする、請求項1記
載のサーマルプリントヘッド。
2. A temperature sensor (31) is disposed adjacent to the heat storage element (23), and the heat generation element (13) is controlled to keep the printing density constant by a heat storage temperature signal from the temperature sensor (31). The thermal print head according to claim 1, further comprising a heat control circuit (40) for controlling a current flowing through each heating element.
【請求項3】 熱制御回路(40)は、基本印加時間設
定部(42)と蓄熱温度検出部(43)と室温補正部
(49)と電圧制御発振器(45)と印字周期発生部
(41)と印加パルス発生器(46)と発熱体駆動部
(47)とを備えるとともに、基本印加時間設定部(4
2)と蓄熱温度検出部(43)と室温補正部(49)か
らの出力電圧により電圧制御発振器(45)の出力周波
数を制御し、かつ、印加パルス発生器(46)は印字周
期発生部(41)からのトリガーパルスに同期して電圧
制御発振器(45)の出力周波数に反比例した時間長の
単パルスを発熱素子駆動時間信号として出力し、かつ、
発熱体駆動部(47)は前記発熱素子駆動時間信号及び
印字データ信号(48)によって各発熱素子を選択し電
流駆動する、ことを特徴とする請求項2記載のサーマル
プリントヘッド。
3. The heat control circuit (40) comprises a basic application time setting section (42), a heat storage temperature detection section (43), a room temperature correction section (49), a voltage controlled oscillator (45), and a print cycle generation section (41). ), An application pulse generator (46) and a heating element driving section (47), and a basic application time setting section (4).
2) The output frequency of the voltage controlled oscillator (45) is controlled by the output voltages from the heat storage temperature detector (43) and the room temperature corrector (49), and the applied pulse generator (46) is a print cycle generator (46). A single pulse having a time length inversely proportional to the output frequency of the voltage controlled oscillator (45) is output as a heating element driving time signal in synchronization with the trigger pulse from 41), and
3. The thermal printhead according to claim 2, wherein the heating element drive section (47) selects each of the heating elements according to the heating element drive time signal and the print data signal (48) to drive current.
JP2000107357A 2000-03-04 2000-03-04 Thermal print head Pending JP2001246771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107357A JP2001246771A (en) 2000-03-04 2000-03-04 Thermal print head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107357A JP2001246771A (en) 2000-03-04 2000-03-04 Thermal print head

Publications (1)

Publication Number Publication Date
JP2001246771A true JP2001246771A (en) 2001-09-11

Family

ID=18620360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107357A Pending JP2001246771A (en) 2000-03-04 2000-03-04 Thermal print head

Country Status (1)

Country Link
JP (1) JP2001246771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034659A1 (en) * 2012-08-29 2014-03-06 ローム株式会社 Thermal print head and thermal printer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034659A1 (en) * 2012-08-29 2014-03-06 ローム株式会社 Thermal print head and thermal printer
JP2014231216A (en) * 2012-08-29 2014-12-11 ローム株式会社 Thermal print head and thermal printer
US9248663B2 (en) 2012-08-29 2016-02-02 Rohm Co., Ltd. Thermal print head and thermal printer
US9352585B2 (en) 2012-08-29 2016-05-31 Rohm Co., Ltd. Thermal print head and thermal printer

Similar Documents

Publication Publication Date Title
JP2001246771A (en) Thermal print head
JP2007038607A (en) Printer, thermal control method of printer and thermal control program of printer
JPS58201681A (en) Thermal head control device
JPH0373476B2 (en)
JP2005231175A (en) Ink jet recording head
JPS59133078A (en) Heat-sensitive head
JP2893345B2 (en) Thermal recording method
JPH04173152A (en) Temperature control device of ink jet recording device
JPH0131476Y2 (en)
JP2958374B2 (en) Thermal head
JPH0234361A (en) Thermal printing head
JPH02305655A (en) Thermal head
JP2961160B2 (en) Driving method of thermal head
JPH11157113A (en) Thermal transfer printer and thermal head used in the same
JP2001260403A (en) Thermal and manufacturing method
JPH0921707A (en) Temperature detection means, manufacture thereof and heater
JPS5912874A (en) Thermal recorder
JP3821409B2 (en) Thermal printer
JPH04152151A (en) Printing density correction data generating device and thermal recorder using correction data of the device
JPH106543A (en) Thermal head
JPH081947A (en) Device and method for detection of ink temperature of ink jet head
JPH0740571A (en) Thermal head
JP2000135804A (en) Thermal head
JP2811012B2 (en) Gradation control method in thermal recording
JP2010125649A (en) Recording head and recording device equipped with the same