JP2001244261A - Formation method for dielectric thin film - Google Patents

Formation method for dielectric thin film

Info

Publication number
JP2001244261A
JP2001244261A JP2000053293A JP2000053293A JP2001244261A JP 2001244261 A JP2001244261 A JP 2001244261A JP 2000053293 A JP2000053293 A JP 2000053293A JP 2000053293 A JP2000053293 A JP 2000053293A JP 2001244261 A JP2001244261 A JP 2001244261A
Authority
JP
Japan
Prior art keywords
layer
sio
forming
thin film
dielectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000053293A
Other languages
Japanese (ja)
Inventor
Takayuki Izeki
隆之 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2000053293A priority Critical patent/JP2001244261A/en
Publication of JP2001244261A publication Critical patent/JP2001244261A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a dielectric thin film which enhances a residual dielectric polarization. SOLUTION: In the formation method for the dielectric thin film which is formed on a substrate layer 4 after the substrate layer 4 is laminated on an SiO2 layer 2, the SiO2 layer 2 is formed by using a mixed gas of tetraethoxysilane and O2 by a plasma CVD method and by setting a gas pressure at 0.4 Torr or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体薄膜の形成
方法に関し、特にPZT系の誘電体薄膜の形成方法に関
する。
The present invention relates to a method of forming a dielectric thin film, and more particularly to a method of forming a PZT-based dielectric thin film.

【0002】[0002]

【従来の技術】強誘電体メモリやMEMS(Micro
Electro Mechanical Syste
m)マイクロアクチュエータ等の材料して、PZT(P
bZr 1-xTix3、0≦X≦1)系の誘電体薄膜が注
目されている。PZTは、誘電率が大きい、自発分極が
大きい、圧電効果が大きいといった特長を有する。この
ため、メモリ用としては、不揮発性メモリのキャパシタ
材料として、アクチュエータ用としては、大きな駆動力
を得る材料として期待できる。また、ぺロブスカイト構
造と呼ばれる結晶構造の時に誘電体及び圧電体して作用
し、その結晶軸が[111]方向に最大分極する。
2. Description of the Related Art Ferroelectric memories and MEMS (Micro)
 Electro Mechanical System
m) PZT (P
bZr 1-xTixOThree, 0 ≦ X ≦ 1) dielectric thin film
Eyed. PZT has a large dielectric constant and spontaneous polarization.
It has the features of being large and having a large piezoelectric effect. this
Therefore, for memory, capacitors for nonvolatile memory
Large driving force for materials and actuators
Can be expected as a material for obtaining Also, the perovskite structure
Acts as a dielectric and a piezoelectric when the crystal structure is called
Then, the crystal axis is maximally polarized in the [111] direction.

【0003】この誘電体薄膜を形成する方法としては、
例えば、特開平9−239891号公報に開示されてい
る方法がある。特開平9−239891号公報によれ
ば、スパッタ法により、Si基板の表面を熱酸化して形
成されたSiO2層上にTi層を形成し、引き続いて結
晶粒径が50nmになるようにしたPt層を形成し、次
に、ゾルゲル法によりPZT層を形成すると、PZT層
の柱状晶が[111]方向に配向して、残留分極値が向上
することが開示されている。
[0003] As a method of forming this dielectric thin film,
For example, there is a method disclosed in JP-A-9-239891. According to Japanese Patent Application Laid-Open No. 9-239891, a Ti layer is formed on a SiO 2 layer formed by thermally oxidizing the surface of a Si substrate by a sputtering method, and the crystal grain size is subsequently reduced to 50 nm. It is disclosed that when a Pt layer is formed and then a PZT layer is formed by a sol-gel method, the columnar crystals of the PZT layer are oriented in the [111] direction and the remanent polarization value is improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、強誘電
体メモリやMEMS(Micro Electro M
echanical System)マイクロアクチュ
エータ等のデバイスの性能向上を目指す場合には、大幅
な残留分極値を向上させる必要があり、特開平9−23
9891号公報に開示されている形成方法で作製された
ものよりも [111]方向の強いPZT層が必要とされ
ていた。
However, a ferroelectric memory and a MEMS (Micro Electro M
In order to improve the performance of a device such as a micro-actuator, it is necessary to greatly improve the remanent polarization value.
There is a need for a PZT layer that is stronger in the [111] direction than that produced by the formation method disclosed in JP-A-9891.

【0005】そこで、本発明は、上記のような問題点を
解消するためになされたもので、残留分極値を向上させ
た誘電体薄膜の形成方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method of forming a dielectric thin film having an improved residual polarization value.

【0006】[0006]

【課題を解決するための手段】本発明の誘電体薄膜の形
成方法は、SiO2層上に下地層を積層した後、この下
地層上に形成する誘電体薄膜の形成方法において、前記
SiO2層をプラズマCVD法により、テトラエトキシ
シランとO2との混合ガスを用い、ガス圧を0.4To
rr以下にして形成することを特徴とする。
Method of forming a dielectric thin film of the present invention SUMMARY OF], after laminating an underlayer on the SiO 2 layer, the method of forming a dielectric thin film formed on the underlying layer, said SiO 2 The layer is formed by a plasma CVD method using a mixed gas of tetraethoxysilane and O 2 and a gas pressure of 0.4 To
rr or less.

【0007】[0007]

【発明の実施の形態】本発明の実施形態の誘電体薄膜の
形成方法について図面を用いて以下に説明する。本発明
の実施形態の誘電薄膜の形成方法は、従来の誘電体薄膜
の形成方法においてはSiO2層がSi基板の表面を熱
酸化した熱酸化膜であったが、このSiO2層をプラズ
マCVD法により、Si(OC254(テトラエトキ
シシラン):O2=1:25のガスを用い、このガス圧
を0.4Torr以下にして形成したことが異なり、そ
の他は同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for forming a dielectric thin film according to an embodiment of the present invention will be described below with reference to the drawings. Method of forming a dielectric thin film embodiment of the present invention is in the conventional method of forming a dielectric thin film was thermally oxidized film SiO 2 layer are thermally oxidizing the surface of the Si substrate, a plasma CVD the SiO 2 layer The method is different in that a gas of Si (OC 2 H 5 ) 4 (tetraethoxysilane): O 2 = 1: 25 is used and the gas pressure is set to 0.4 Torr or less by the method.

【0008】以下に、本発明の誘電体薄膜の形成方法に
ついて詳細に図1を用いて説明する。図1は、本発明の
誘電体薄膜の形成方法を示す断面図であり、(A)は、
プラズマCVDでSiO2層を形成する工程、(B)
は、Ti層及びPt層を形成する工程、(C)は、PZ
T層を形成する工程である。図1(A)に示すように、
プラズマCVD法により、Si基板1の温度を225
℃、RFパワーが100W、成膜速度が200〜300
nm/minにし、所定ガス圧のSi(OC25
4(テトラエトキシシラン):O2=1:25のガスを用
いて、前記したSi基板1上にSiO2層2を形成す
る。引き続いて、図1(B)に示すように、スパッタ法
により、Ti層3、Pt層4を順次形成する。この際、
このTi層3及びPt層4の形成条件は、Ti及びPt
ターゲットを用いて、RFパワーが100W、成膜速度
が10nm/min、Si基板1の温度が室温、ガス圧
が2mTorrである。この条件下では、Pt層4は、
(111)面に配向する。
Hereinafter, a method for forming a dielectric thin film of the present invention will be described in detail with reference to FIG. FIG. 1 is a cross-sectional view showing a method for forming a dielectric thin film according to the present invention.
Forming an SiO 2 layer by plasma CVD, (B)
Is a step of forming a Ti layer and a Pt layer, and FIG.
This is a step of forming a T layer. As shown in FIG.
The temperature of the Si substrate 1 is set to 225 by the plasma CVD method.
° C, RF power is 100W, film formation speed is 200 ~ 300
nm / min, and a predetermined gas pressure of Si (OC 2 H 5 )
4 (Tetraethoxysilane): An SiO 2 layer 2 is formed on the Si substrate 1 using a gas of O 2 = 1: 25. Subsequently, as shown in FIG. 1B, a Ti layer 3 and a Pt layer 4 are sequentially formed by a sputtering method. On this occasion,
The conditions for forming the Ti layer 3 and the Pt layer 4 are Ti and Pt.
Using a target, the RF power is 100 W, the deposition rate is 10 nm / min, the temperature of the Si substrate 1 is room temperature, and the gas pressure is 2 mTorr. Under these conditions, the Pt layer 4
Orient to the (111) plane.

【0009】次に、図1(C)に示すように、ゾルゲル
法により、Pt層4上にPZTゾルゲル先駆体溶液をス
ピンコートした後、このPZTゾルゲル先駆体溶液を1
20℃、15分間の熱処理を行って、PZTゾルゲル先
駆体溶液中の水分溶媒を蒸発させた後、480℃、30
分間の焼成を行って焼結させ、引き続いて、660℃、
30分間の熱処理を行ってペロブスカイト構造の厚さ4
50nmのPZT層5を形成する。なお、Ti層3は、
SiO2層2とPt層4との間の密着性を向上させるも
ので、SiO2層2とPt層4との間の密着性が良好で
ある場合には、不要である。
Next, as shown in FIG. 1 (C), a PZT sol-gel precursor solution is spin-coated on the Pt layer 4 by a sol-gel method, and
After heat treatment at 20 ° C. for 15 minutes to evaporate the water solvent in the PZT sol-gel precursor solution,
Sintering for 焼 成 minutes, followed by 660 ° C.
Heat treatment for 30 minutes to give a perovskite structure thickness 4
A PZT layer 5 having a thickness of 50 nm is formed. Note that the Ti layer 3 is
And it improves the adhesion between the SiO 2 layer 2 and the Pt layer 4, when the adhesion between the SiO 2 layer 2 and the Pt layer 4 is good, it is not necessary.

【0010】ここで、本発明の実施形態において、Si
2層2を形成する際のプラズマCVDのガス圧を0.
15Torr、0.2Torr、0.3Torr、0.
4Torr、0.6Torrと変化させた5種類の試料
を作製し、この5種類の試料のPt層4及びPZT層5
のX線回折を行なって、(111)面のX線ピ−ク強度
について調べた。この際、従来の誘電体薄膜の形成方法
と同様に、SiO2層2にSi基板1の表面を熱酸化し
て形成された熱酸化膜を用いた試料も作製し、これを比
較例として用いた。
Here, in the embodiment of the present invention, Si
The gas pressure of the plasma CVD for forming the O 2 layer 2 is set to 0.
15 Torr, 0.2 Torr, 0.3 Torr, 0.
Five kinds of samples were prepared by changing 4 Torr and 0.6 Torr, and the Pt layer 4 and the PZT layer 5 of the five kinds of samples were prepared.
X-ray diffraction was performed to examine the X-ray peak intensity on the (111) plane. At this time, similarly to the conventional method of forming a dielectric thin film, a sample using a thermal oxide film formed by thermally oxidizing the surface of the Si substrate 1 on the SiO 2 layer 2 was also prepared and used as a comparative example. Was.

【0011】その結果を図2及び図3に示す。図2は、
各試料におけるPZT層及びPt層のX線強度を示す図
である。図2中、は、0.3Torrの場合の試料、
は、0.2Torrの場合の試料、は、0.15T
orrの場合の試料、は、SiO2層が熱酸化膜の場
合(従来の形成方法と同じ)の試料であり、0.6To
rr及び0.4Torrの場合の試料については煩雑さ
を避けるために図示を省略してある。また、横軸は、回
折角2θ(°)、縦軸は、X線強度(cps)である。
The results are shown in FIG. 2 and FIG. FIG.
It is a figure which shows the X-ray intensity of a PZT layer and a Pt layer in each sample. In FIG. 2, a sample at 0.3 Torr is shown.
Is the sample at 0.2 Torr, and 0.15 T
The sample in the case of orr is a sample in the case where the SiO 2 layer is a thermal oxide film (same as the conventional formation method), and is 0.6 To
The samples for rr and 0.4 Torr are not shown in order to avoid complexity. The horizontal axis indicates the diffraction angle 2θ (°), and the vertical axis indicates the X-ray intensity (cps).

【0012】図3は、SiO2層形成時のプラズマCV
Dのガス圧に対するPZT層及びPt層の(111)面
のX線ピーク強度との関係を示す図である。図3中、●
はPtの(111)面のX線ピーク強度、黒塗り四角は
PZTの(111)面のX線ピーク強度を示し、横軸
は、SiO2層形成時のプラズマCVDのガス圧(To
rr)、縦軸は、(111)面のX線ピーク強度(cp
s)である。また、SiO2層形成時のプラズマCVD
のガス圧が0.3Torr、0.2Torr、0.15
Torrの場合が図2に示した試料、、である。
FIG. 3 shows a plasma CV at the time of forming the SiO 2 layer.
FIG. 3 is a diagram showing a relationship between a gas pressure of D and an X-ray peak intensity of a (111) plane of a PZT layer and a Pt layer. In FIG. 3, ●
Indicates the X-ray peak intensity of the (111) plane of Pt, the black square indicates the X-ray peak intensity of the (111) plane of PZT, and the horizontal axis indicates the gas pressure (To) of plasma CVD during the formation of the SiO 2 layer.
rr), the vertical axis represents the X-ray peak intensity (cp) of the (111) plane.
s). Also, plasma CVD for forming a SiO 2 layer
Gas pressure of 0.3 Torr, 0.2 Torr, 0.15
The case of Torr is the sample shown in FIG.

【0013】図2に示すように、回折角2θが31°近
傍にPZT層6の(101)面、38°近傍にPZT層
6の(111)面、40°近傍にPt層5の(111)
面のX線ピークが現れ、試料、、のX線ピーク強
度は、試料よりも強くなっている。また、0.4To
rrの場合の試料のX線ピーク強度は、いずれも試料
とほぼ同じであり、0.6Torrの場合の試料のX線
ピーク強度は、試料よりも低くかった。また、図3に
示すように、SiO2層2形成時のプラズマガス圧が
0.15〜0.3Torrの範囲では、PZT層5のX
線ピーク強度は、Pt層4と共にほぼ横ばいであるが、
0.3Torr以上では低下する傾向を示すことがわか
る。
As shown in FIG. 2, the (101) plane of the PZT layer 6 near the diffraction angle 2θ of 31 °, the (111) plane of the PZT layer 6 near the 38 °, and the (111) plane of the PtT layer 5 near the 40 °. )
An X-ray peak on the surface appears, and the X-ray peak intensity of the sample is higher than that of the sample. Also, 0.4 To
The X-ray peak intensities of the samples in the case of rr were almost the same as those of the samples, and the X-ray peak intensity of the sample in the case of 0.6 Torr was lower than that of the sample. As shown in FIG. 3, when the plasma gas pressure during the formation of the SiO 2 layer 2 is in the range of 0.15 to 0.3 Torr, the X
Although the line peak intensity is almost flat with the Pt layer 4,
It can be seen that there is a tendency to decrease at 0.3 Torr or more.

【0014】このように、PZT層5をプラズマCVD
のガス圧が0.4Torr以下で形成されたSiO2
2上に形成すれば、従来のようにSi基板1の表面を酸
化した熱酸化膜上に形成する場合よりも(111)面の
強いX線ピーク強度を有するPZT層5が得られる。こ
のため、従来の形成方法に比較して、大きな残留分極値
を有するPZT層5が得られる。
As described above, the PZT layer 5 is formed by plasma CVD.
Is formed on the SiO 2 layer 2 formed at a gas pressure of 0.4 Torr or less, the (111) plane is stronger than in the conventional case where the surface of the Si substrate 1 is formed on a thermally oxidized film. A PZT layer 5 having an X-ray peak intensity is obtained. Therefore, a PZT layer 5 having a large remanent polarization value is obtained as compared with the conventional formation method.

【0015】次に、本発明の実施形態において、SiO
2層2の形成をスパッタ法により行ない、この時のガス
圧を変化させた試料を作製し、この試料のX線ピーク強
度について調べた。SiO2層2形成時のガス圧は、3
mTorr、10mTorrと変化させた。その他の条
件は、RFパワー700W、成膜レート25nm、Si
基板温度80℃である。その結果を図4に示す。図4
は、SiO2層形成時のスパッタのガス圧に対するPt
層及びPZT層のX線ピーク強度を示す図である。図4
中、は、ガス圧が3mTorrの場合の試料、は、
10mTorrの場合の試料、は、SiO2層2にS
i基板1の表面を熱酸化して形成された熱酸化膜を用い
た場合(従来の形成方法と同じ)の試料である。
Next, in the embodiment of the present invention, SiO 2
The two layers 2 were formed by a sputtering method, a sample was prepared in which the gas pressure was changed at this time, and the X-ray peak intensity of this sample was examined. The gas pressure when forming the SiO 2 layer 2 is 3
mTorr and 10 mTorr were changed. Other conditions are RF power 700 W, film formation rate 25 nm, Si
The substrate temperature is 80 ° C. FIG. 4 shows the results. FIG.
Is Pt with respect to the gas pressure of sputtering at the time of forming the SiO 2 layer.
FIG. 4 is a diagram showing X-ray peak intensities of a PZT layer and a PZT layer. FIG.
The sample in the case where the gas pressure is 3 mTorr is
Samples in the case of 10 mTorr, will, S the SiO 2 layer 2
This is a sample in the case of using a thermal oxide film formed by thermally oxidizing the surface of the i-substrate 1 (same as the conventional formation method).

【0016】図4の横軸のスパッタのガス圧(mTor
r)、縦軸は、X線ピーク強度(cps)である。図4
中、●は、Ptの(111)面のピーク強度、黒塗り四
角は、PZTの(111)面のピーク強度を示してい
る。図4に示すように、試料、のX線ピーク強度は
従来の形成方法で作製された試料よりも低かった。
The sputtering gas pressure (mTorr) on the horizontal axis of FIG.
r), the vertical axis is the X-ray peak intensity (cps). FIG.
In the figure, ● indicates the peak intensity of the (111) plane of Pt, and the black square indicates the peak intensity of the (111) plane of PZT. As shown in FIG. 4, the X-ray peak intensity of the sample was lower than that of the sample manufactured by the conventional forming method.

【0017】以上のように、本発明の実施形態によれ
ば、プラズマCVD法により、テトラエトキシシラン:
2=1:25のガスを用いて、ガス圧を0.4Tor
r以下にして、SiO2層2を形成した後、このSiO2
層2上にPt層4を形成し、次に、ゾルゲル法によりP
ZT層5を形成するので、従来よりも残留分極値を大幅
に向上させることができる。なお、本発明の実施形態で
は、PZT層をゾルゲル法により形成したが、スパッタ
法、MOCVD法等で形成しても同様な効果が得られ
る。
As described above, according to the embodiment of the present invention, tetraethoxysilane:
Using a gas of O 2 = 1: 25, the gas pressure was set to 0.4 Torr.
in the r below, after forming the SiO 2 layer 2, the SiO 2
A Pt layer 4 is formed on the layer 2, and then a Pt layer is formed by a sol-gel method.
Since the ZT layer 5 is formed, the remanent polarization value can be greatly improved as compared with the related art. Although the PZT layer is formed by the sol-gel method in the embodiment of the present invention, the same effect can be obtained by forming the PZT layer by the sputtering method, the MOCVD method, or the like.

【0018】[0018]

【発明の効果】本発明によれば、SiO2層上に下地層
を積層した後、この下地層上に形成する誘電体薄膜の形
成方法において、前記SiO2層をプラズマCVD法に
より、テトラエトキシシランとO2との混合ガスを用
い、ガス圧を0.4Torr以下にして形成するので、
従来よりも残留分極値を大幅に向上させることができ
る。
According to the present invention, after laminating an underlayer on the SiO 2 layer, the method of forming a dielectric thin film formed on the underlying layer by a plasma CVD method the SiO 2 layer, tetraethoxy Since it is formed by using a mixed gas of silane and O 2 at a gas pressure of 0.4 Torr or less,
The remanent polarization value can be greatly improved as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体薄膜の形成方法を示す断面図で
あり、(A)は、プラズマCVDでSiO2層を形成す
る工程、(B)は、Ti層及びPt層を形成する工程、
(C)は、PZT層を形成する工程である。
1A and 1B are cross-sectional views illustrating a method of forming a dielectric thin film according to the present invention. FIG. 1A is a step of forming an SiO 2 layer by plasma CVD, and FIG. 1B is a step of forming a Ti layer and a Pt layer. ,
(C) is a step of forming a PZT layer.

【図2】各試料におけるPZT層及びPt層のX線強度
を示す図である。
FIG. 2 is a diagram showing X-ray intensities of a PZT layer and a Pt layer in each sample.

【図3】SiO2層形成時のプラズマCVDのガス圧に
対するPZT層及びPt層の(111)面のX線ピーク
強度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the gas pressure of plasma CVD at the time of forming an SiO 2 layer and the X-ray peak intensity of the (111) plane of the PZT layer and the Pt layer.

【図4】SiO2層形成時のスパッタのガス圧に対する
Pt層及びPZT層のX線ピーク強度を示す図である。
FIG. 4 is a diagram showing the X-ray peak intensities of a Pt layer and a PZT layer with respect to the gas pressure of sputtering when forming a SiO 2 layer.

【符号の説明】[Explanation of symbols]

1…Si基板、2…SiO2層、3…Ti層、4…Pt
層(下地層)、5…PZT層
1 ... Si substrate, 2 ... SiO 2 layer, 3 ... Ti layer, 4 ... Pt
Layer (underlayer), 5 ... PZT layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/108 H01L 27/10 651 21/8242 41/18 101Z 41/18 41/22 A 41/24 Fターム(参考) 4K030 AA06 AA09 AA14 BA44 CA04 FA01 HA03 JA09 LA11 LA15 5F058 BA11 BC02 BC03 BC20 BF06 BF07 BF12 BF25 BF29 BF36 BF37 BF46 BH01 BJ01 5F083 AD21 FR01 GA30 JA15 JA38 JA39 PR21 PR22 PR23 PR33 5G303 AA10 AB20 BA03 CA01 CB25 CB30 CB35 CB39 DA01 DA06──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 27/108 H01L 27/10 651 21/8242 41/18 101Z 41/18 41/22 A 41 / 24F Terms (Reference) 4K030 AA06 AA09 AA14 BA44 CA04 FA01 HA03 JA09 LA11 LA15 5F058 BA11 BC02 BC03 BC20 BF06 BF07 BF12 BF25 BF29 BF36 BF37 BF46 BH01 BJ01 5F083 AD21 FR01 GA30 JA15 JA38 JA39 PR21 PR22 BA30CB35 5 DA01 DA06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】SiO2層上に下地層を積層した後、この
下地層上に形成する誘電体薄膜の形成方法において、 前記SiO2層をプラズマCVD法により、テトラエト
キシシランとO2との混合ガスを用い、ガス圧を0.4
Torr以下にして形成することを特徴とする誘電体薄
膜の形成方法。
1. A method of forming a dielectric thin film on a SiO 2 layer after laminating an under layer on the SiO 2 layer, the method comprising: forming a dielectric thin film on the SiO 2 layer by mixing the SiO 2 layer with tetraethoxysilane and O 2 by plasma CVD. Using a mixed gas, gas pressure 0.4
A method for forming a dielectric thin film, wherein the method is performed at a pressure of Torr or less.
JP2000053293A 2000-02-29 2000-02-29 Formation method for dielectric thin film Pending JP2001244261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053293A JP2001244261A (en) 2000-02-29 2000-02-29 Formation method for dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053293A JP2001244261A (en) 2000-02-29 2000-02-29 Formation method for dielectric thin film

Publications (1)

Publication Number Publication Date
JP2001244261A true JP2001244261A (en) 2001-09-07

Family

ID=18574695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053293A Pending JP2001244261A (en) 2000-02-29 2000-02-29 Formation method for dielectric thin film

Country Status (1)

Country Link
JP (1) JP2001244261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1535314A2 (en) * 2002-08-09 2005-06-01 Torrex Equipment Corporation High rate deposition at low pressures in a small batch reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1535314A2 (en) * 2002-08-09 2005-06-01 Torrex Equipment Corporation High rate deposition at low pressures in a small batch reactor
EP1535314A4 (en) * 2002-08-09 2008-05-28 Applied Materials Inc High rate deposition at low pressures in a small batch reactor

Similar Documents

Publication Publication Date Title
JP3133922B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3929513B2 (en) Dielectric capacitor and manufacturing method thereof
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JP3480624B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
WO2013021614A1 (en) Piezoelectric element
JP2011155271A (en) Stratified structure with ferroelectric layer and process for producing the same
JP2001007299A (en) Lead germanate ferroelectric structure of multilayer electrode and deposition method thereof
JP2003188433A (en) Piezo-electric device, ink jet head and method for manufacturing them and ink jet recording device
JP2001223403A (en) Ferroelectric substance thin film, its forming method and ferroelectric substance thin film element using the thin film
JP2001244261A (en) Formation method for dielectric thin film
JPH11307736A (en) Manufacture of semiconductor memory element
JP4416055B2 (en) Ferroelectric memory and manufacturing method thereof
JP2006332368A (en) Piezoelectric thin film element and its manufacturing method
TWI755445B (en) Membrane structure and method for producing the same
JPH07246705A (en) Ink jet recording head and its manufacture
JP2003188431A (en) Piezo-electric device, ink jet head and method for manufacturing them and ink jet recording device
JP3170254B2 (en) Capacitor
JP2006108291A (en) Ferroelectric capacitor and its manufacturing method, and ferroelectric memory device
JP3405050B2 (en) Dielectric thin film and method for forming the same
JP2003347618A (en) Piezoelectric element, ink jet head and manufacturing method of the same, and ink jet recording device
JP2001338834A (en) Method of manufacturing dielectric capacitor
KR100485409B1 (en) Stratified structure with a ferroelectric layer and process for producing the same
JP3239852B2 (en) High dielectric constant capacitor and method of manufacturing the same
JP2000164818A (en) Oxide ferroelectric thin film coating substrate and manufacture therefor