JP2001244144A - Aluminium electrolytic capacitor - Google Patents

Aluminium electrolytic capacitor

Info

Publication number
JP2001244144A
JP2001244144A JP2000056604A JP2000056604A JP2001244144A JP 2001244144 A JP2001244144 A JP 2001244144A JP 2000056604 A JP2000056604 A JP 2000056604A JP 2000056604 A JP2000056604 A JP 2000056604A JP 2001244144 A JP2001244144 A JP 2001244144A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
cathode
tab terminal
foil
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000056604A
Other languages
Japanese (ja)
Other versions
JP4398561B2 (en
Inventor
Shuji Tezuka
修司 手塚
Takayuki Ueda
隆之 上田
Nobuo Kuroki
伸郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2000056604A priority Critical patent/JP4398561B2/en
Publication of JP2001244144A publication Critical patent/JP2001244144A/en
Application granted granted Critical
Publication of JP4398561B2 publication Critical patent/JP4398561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminium electrolytic capacitor which can significantly raise the charging/discharging resistance performance and ripple current resistance performance of the electrolytic capacitor. SOLUTION: An aluminium electrolytic capacitor formed by impregnating a capacitor element, which is formed by winding or laminating an anode foil connected electrically with an anode tab terminal and a cathode foil connected electrically with a cathode tab terminal via a separator, with an electrolyte for drive is characterized in that a deposited layer is formed by depositing valve metallic particles on the surface, which comes into contact with at least the separator, of the cathode tab terminal, the deposited layer is formed into a sponge shape, the deposit thickness of the deposited layer is set at 2.0 to 10.0 μm and the particle diameter of the metal particles is set at 0.020 to 0.200 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム電解
コンデンサに関し、特にタブ端子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum electrolytic capacitor, and more particularly to a tab terminal.

【0002】[0002]

【従来の技術】アルミニウム電解コンデンサ(以下、電
解コンデンサという。)は、図1および図3に示すよう
に、陽極箔、陰極箔およびセパレータを巻回したコンデ
ンサ素子2と、該コンデンサ素子2を収納した有底筒状
のアルミニウム製のコンデンサケース3と、このコンデ
ンサケース3の開放端側を封止する合成樹脂製の封口体
4とを有している。封口体4の外端面には陽極端子41
および陰極端子42が構成され、これらの端子41、4
2の下端部は、陽極内部端子43および陰極内部端子4
4としてコンデンサ素子2から引き出された陽極タブ端
子21および陰極タブ端子22が電気的に接続されてい
る。ここで、陽極タブ端子21および陰極タブ端子22
は、いずれも200μm程度のアルミニウム箔を裁断し
たものである。これらのタブ端子21、22のうち、陰
極タブ端子22については化成処理が施されていないも
のが使用される一方、陽極タブ端子21については化成
処理が施されたものが使用されるが、いずれのタブ端子
21、22についても、表面加工の施されていないアル
ミニウム箔が用いられている。
2. Description of the Related Art As shown in FIGS. 1 and 3, an aluminum electrolytic capacitor (hereinafter, referred to as an electrolytic capacitor) houses a capacitor element 2 in which an anode foil, a cathode foil and a separator are wound, and the capacitor element 2 is housed. A capacitor case 3 made of aluminum having a bottomed cylindrical shape and a sealing body 4 made of synthetic resin for sealing the open end side of the capacitor case 3 are provided. An anode terminal 41 is provided on the outer end surface of the sealing body 4.
And a cathode terminal 42, and these terminals 41, 4
The lower end of 2 has an anode internal terminal 43 and a cathode internal terminal 4
4, an anode tab terminal 21 and a cathode tab terminal 22 drawn from the capacitor element 2 are electrically connected. Here, the anode tab terminal 21 and the cathode tab terminal 22
In each case, aluminum foil of about 200 μm was cut. Of these tab terminals 21 and 22, the cathode tab terminal 22 that has not been subjected to a chemical conversion treatment is used, while the anode tab terminal 21 that has been subjected to a chemical conversion treatment is used. The tab terminals 21 and 22 are also made of aluminum foil not subjected to surface processing.

【0003】また、陽極タブ端子21および陰極タブ端
子22のいずれにおいても、陽極箔あるいは陰極箔との
電気的な接続は、図2に示すように、陽極箔26および
陰極箔27の表面に陽極タブ端子21および陰極タブ端
子22を重ねた状態での加締め5(あるいは溶接)によ
ってなされている。
[0003] In both the anode tab terminal 21 and the cathode tab terminal 22, the electrical connection with the anode foil or the cathode foil is made, as shown in FIG. This is performed by crimping 5 (or welding) in a state where the tab terminal 21 and the cathode tab terminal 22 are overlapped.

【0004】このような電解コンデンサ1において充放
電が起こるときの挙動は以下のとおりである。電解コン
デンサ1において、陰極箔27については、厚さがたと
えば20μm〜50μmのアルミニウム箔をエッチング
した後、陽極酸化で数ボルト程度の皮膜生成処理を施し
たものを用いる場合と、エッチングのみで強制的な皮膜
生成処理を行わないものを用いる場合とがあるが、強制
的に皮膜生成を行わない場合においてもアルミニウム箔
表面には大気中の水分または電解液中の水分と反応し
1.0V前後の耐圧の皮膜が生成している。このため、
電解コンデンサの静電容量は、耐圧を保持する陽極箔の
静電容量と陰極箔の静電容量との直列接続での合成容量
で成り立っている。
The behavior of the electrolytic capacitor 1 when charging / discharging occurs is as follows. In the electrolytic capacitor 1, the cathode foil 27 is formed by etching a aluminum foil having a thickness of, for example, 20 μm to 50 μm and then performing a film generation process of about several volts by anodic oxidation. In some cases, a film that does not perform a strong film-forming treatment may be used. However, even when a film is not forcibly formed, the surface of the aluminum foil reacts with moisture in the atmosphere or moisture in the electrolytic solution to about 1.0 V. A pressure-resistant film is formed. For this reason,
The capacitance of the electrolytic capacitor is composed of the combined capacitance of the anode foil capacitance and the cathode foil capacitance that maintain the withstand voltage in series connection.

【0005】ここで、陽極箔の単位面積当たりの静電容
量をCa(μF/cm)、陰極箔の単位体積当たりの
静電容量をCc(μF/cm)とし、電解コンデンサ
1が充電された電圧をV、この電圧Vを陽極側および陰
極側で分担する電圧をVa、Vcとし、このとき陰極箔
および陰極箔に蓄積される電荷をQa、Qcとする。充
電された電解コンデンサを放電するとき、陽極箔の静電
容量と陰極側の静電容量は並列接続となる。そのため放
電されず残存する電荷はQa−Qcとなり、放電時に陰
極箔27にかかる電圧Vc′は〔数1〕となる。
Here, the electrostatic capacity per unit area of the anode foil is Ca (μF / cm 2 ), the electrostatic capacity per unit volume of the cathode foil is Cc (μF / cm 2 ), and the electrolytic capacitor 1 is charged. The applied voltage is V, the voltages shared by the anode side and the cathode side are Va and Vc, and the cathode foil and the charges accumulated in the cathode foil at this time are Qa and Qc. When discharging the charged electrolytic capacitor, the capacitance of the anode foil and the capacitance of the cathode side are connected in parallel. Therefore, the remaining charge that is not discharged becomes Qa-Qc, and the voltage Vc 'applied to the cathode foil 27 at the time of discharge becomes [Equation 1].

【0006】[0006]

【数1】 (Equation 1)

【0007】ここで、放電時に陰極箔27にかかる電圧
が高過ぎると、陰極箔27に皮膜が生成してコンデンサ
内でガスが発生するなどといった好ましくない現象が起
こる。従って、放電時に陰極箔27に電圧が印加されて
も陰極箔27に皮膜生成が発生しない電圧をV′とする
と、放電時には〔数2〕を満たす必要がある。
Here, if the voltage applied to the cathode foil 27 at the time of discharging is too high, undesired phenomena occur, such as formation of a film on the cathode foil 27 and generation of gas in the capacitor. Therefore, if a voltage at which no film is formed on the cathode foil 27 even when a voltage is applied to the cathode foil 27 during discharge is V ′, it is necessary to satisfy [Equation 2] during discharge.

【0008】[0008]

【数2】 (Equation 2)

【0009】ここで、Va=V−Vcであるから、〔数
2〕から〔数3〕が導かれる。
Here, since Va = V−Vc, [Equation 3] is derived from [Equation 2].

【0010】[0010]

【数3】 (Equation 3)

【0011】この〔数3〕を満たせば、放電時に陰極箔
に電圧がかかっても陰極箔27に皮膜が生成しない。
If this [Equation 3] is satisfied, no film is formed on the cathode foil 27 even if a voltage is applied to the cathode foil during discharge.

【0012】よって、従来は、〔数3〕を満たすよう
に、陰極箔27として、静電容量の大きなもの、あるい
は充放電電流によって陰極箔27に生成するであろう酸
化皮膜の耐圧分をあらかじめ皮膜生成していたものを用
いるなど、電解コンデンサ1の耐リプル性能、耐充放電
性能を向上するにあたっては、陰極箔27あるいは陽極
箔26、電解液、セパレータなどの材料の開発または改
良を主体とした対応がなされてきた。
Conventionally, a cathode foil having a large capacitance or an oxide film that would be generated on the cathode foil 27 by charging / discharging current is determined in advance so as to satisfy [Equation 3]. In order to improve the ripple resistance and charge / discharge performance of the electrolytic capacitor 1 by using a film that has been formed, the development or improvement of materials such as the cathode foil 27 or the anode foil 26, the electrolyte, and the separator is mainly performed. Has been done.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、このよ
うな基本材料の開発によって電解コンデンサ1の耐リプ
ル性能、耐充放電性能を向上するにも限界がある。すな
わち、本願発明者が繰り返し行った実験において、耐リ
プル試験、耐充放電試験を行った電解コンデンサ1を調
査、解析したところ、単時間のうちに許容リプルを遙か
に越えるリプル電流が周期的に印加される回路や電圧差
が大きく周期の短い充放電回路に用いる電解コンデンサ
1には、いくら陰極箔27として理想に近いものを用い
ても、陰極タブ端子22およびその周辺の陰極箔27上
に皮膜生成反応が起こるため、コンデンサ内でガスが発
生し、内圧上昇に起因する防爆弁作動などといった不具
合が発生するという新たな知見を得た。
However, there is a limit in improving the ripple resistance and the charge / discharge resistance of the electrolytic capacitor 1 due to the development of such basic materials. That is, in the experiment repeatedly performed by the inventor of the present application, the electrolytic capacitor 1 subjected to the ripple resistance test and the charge / discharge test was investigated and analyzed. No matter how close the cathode foil 27 is to the electrolytic capacitor 1 used in the circuit applied to the battery and the charge / discharge circuit having a large voltage difference and a short cycle, the cathode tab terminal 22 and the surrounding cathode foil 27 can be used. It has been newly found that since a film-forming reaction takes place, gas is generated in the capacitor, causing problems such as explosion-proof valve operation caused by an increase in internal pressure.

【0014】そこで、本発明の課題は、放電時に陰極側
に皮膜生成が起こるのを防止することにより、耐充放電
性能および耐リプル電流性能を大幅に向上させることの
できる電解コンデンサを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolytic capacitor capable of greatly improving charge / discharge resistance and ripple current resistance by preventing the formation of a film on the cathode side during discharge. It is in.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
本願発明者は、繰り返し行った実験から、単時間でかつ
周期的に許容リプルを遙かに越えるリプル電流が電解コ
ンデンサに印加される回路や、電圧差が大きく周期の短
い充放電回路に使われる電解コンデンサにおいて陰極タ
ブ端子周辺の陰極箔上に皮膜生成反応が起こる理由は、
従来の陰極タブ端子では単位面積当りの容量が低いた
め、放電電流が陰極タブ端子に流れた際に陰極タブ端子
およびその周囲には高い電圧がかかるためであるという
結論に到達した。
In order to solve the above-mentioned problems, the present inventor has found from a repeated experiment that a circuit in which a ripple current exceeding a permissible ripple is applied to an electrolytic capacitor in a single time and periodically is provided. Also, the reason why the film formation reaction occurs on the cathode foil around the cathode tab terminal in the electrolytic capacitor used in the charge and discharge circuit with a large voltage difference and a short cycle is as follows:
It has been concluded that the conventional cathode tab terminal has a low capacity per unit area, so that when a discharge current flows through the cathode tab terminal, a high voltage is applied to the cathode tab terminal and its surroundings.

【0016】そこで、本発明では、上記陰極タブ端子に
弁金属粒子を蒸着し、さらにスポンジ状にすることで、
陰極タブ端子の単位面積当りの静電容量を増大すること
ができる。よって、単時間のうちに許容リプルを遙かに
越えるリプル電流が周期的に電解コンデンサに印加され
ても、また、電圧差が大きく周期の短い充放電回路に用
いる電解コンデンサにおいても、陰極タブ端子およびそ
の周囲には高い電圧がかからない。それ故、陰極タブ端
子およびその周囲に皮膜が生成しないので、コンデンサ
内でのガス発生を防止できる。
Therefore, in the present invention, valve metal particles are vapor-deposited on the above-mentioned cathode tab terminal, and further formed into a sponge shape.
The capacitance per unit area of the cathode tab terminal can be increased. Therefore, even if a ripple current far exceeding the permissible ripple is applied to the electrolytic capacitor in a single time period, or in an electrolytic capacitor used in a charge / discharge circuit having a large voltage difference and a short period, the cathode tab terminal And there is no high voltage around it. Therefore, no film is formed on and around the cathode tab terminal, so that gas generation in the capacitor can be prevented.

【0017】すなわち、陽極タブ端子が電気的に接続さ
れた陽極箔と、陰極タブ端子が電気的に接続された陰極
箔とをセパレータを介して巻回または積層したコンデン
サ素子に駆動用電解液を含浸してなるアルミニウム電解
コンデンサにおいて、上記陰極タブ端子の少なくともセ
パレータと接する面に弁金属粒子を蒸着してなることを
特徴とするアルミニウム電解コンデンサである。
That is, the driving electrolyte is applied to a capacitor element in which an anode foil to which an anode tab terminal is electrically connected and a cathode foil to which a cathode tab terminal is electrically connected are wound or laminated via a separator. An aluminum electrolytic capacitor obtained by impregnating an aluminum electrolytic capacitor, wherein valve metal particles are vapor-deposited on at least a surface of the cathode tab terminal in contact with the separator.

【0018】上記弁金属粒子がスポンジ状に蒸着されて
いることを特徴とするアルミニウム電解コンデンサであ
る。
An aluminum electrolytic capacitor characterized in that the valve metal particles are sponge-deposited.

【0019】上記弁金属粒子の蒸着厚みが、2.0〜1
0.0μmであることを特徴とするアルミニウム電解コ
ンデンサである。
The vapor deposition thickness of the valve metal particles is 2.0 to 1
An aluminum electrolytic capacitor having a thickness of 0.0 μm.

【0020】上記弁金属粒子の粒子径が、0.020〜
0.200μmであることを特徴とするアルミニウム電
解コンデンサである。
The particle diameter of the valve metal particles is 0.020 to
An aluminum electrolytic capacitor having a thickness of 0.200 μm.

【0021】[0021]

【発明の実施の形態】図面を参照して、本発明の実施の
形態を説明する。図1は、電解コンデンサの構造を模式
的に示す断面である。図2は本形態に係る電解コンデン
サに用いたコンデンサ素子の構造を示す説明図である。
なお、本形態の電解コンデンサも、従来の電解コンデン
サと基本的な構造が共通するので、対応する部分には同
一の符号を付してある。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross section schematically showing the structure of the electrolytic capacitor. FIG. 2 is an explanatory diagram showing the structure of the capacitor element used for the electrolytic capacitor according to the present embodiment.
Note that the electrolytic capacitor of the present embodiment also has the same basic structure as the conventional electrolytic capacitor, and corresponding parts are denoted by the same reference numerals.

【0022】図1および図2に示すように、電解コンデ
ンサ1では、エッチング箔に陽極酸化(化成処理)を施
した陽極箔26、陽極酸化皮膜を形成していないエッチ
ング箔あるいは薄い陽極酸化皮膜を形成したエッチング
箔からなる陰極箔27、およびセパレータ28を巻回し
たコンデンサ素子2と、該コンデンサ素子2を収納した
有底筒状のアルミニウム製のコンデンサケース3と、こ
のコンデンサケース3の開放端側を封止する合成樹脂製
の封口体4と、コンデンサケース3にコンデンサ素子2
を固定する素子固定材30とを有している。コンデンサ
素子2には駆動用電解液が含浸されている。封口体4の
外端面には陽極端子41および陰極端子42が構成さ
れ、これらの端子41、42の下端部は、陽極内部端子
43および陰極内部端子44としてコンデンサ素子2か
ら引き出された複数枚の陽極タブ端子21および複数枚
の陰極タブ端子22がそれぞれ電気的に接続されてい
る。ここで、陽極タブ端子21および陰極タブ端子22
は、いずれも200μm程度の厚手のアルミニウム箔か
ら裁断したものである。これらのタブ端子21、22の
うち、陰極タブ端子22については化成処理が施されて
いないものが使用される一方、陽極タブ端子21につい
ては化成処理が施されたものが使用されているが、いず
れのタブ端子21、22においても、化成処理を施した
ものを用いてもよい。
As shown in FIGS. 1 and 2, in the electrolytic capacitor 1, an anode foil 26 obtained by subjecting an etching foil to anodic oxidation (chemical conversion treatment), an etching foil having no anodic oxide film formed thereon, or a thin anodic oxide film is used. A capacitor element 2 having a cathode foil 27 formed of an etched foil and a separator 28 wound thereon; a bottomed cylindrical aluminum capacitor case 3 containing the capacitor element 2; and an open end side of the capacitor case 3 And a sealing element 4 made of synthetic resin for sealing the
And an element fixing member 30 for fixing the element. The capacitor element 2 is impregnated with a driving electrolyte. An anode terminal 41 and a cathode terminal 42 are formed on the outer end surface of the sealing body 4, and the lower ends of these terminals 41 and 42 serve as an anode internal terminal 43 and a cathode internal terminal 44. The anode tab terminal 21 and the plurality of cathode tab terminals 22 are electrically connected to each other. Here, the anode tab terminal 21 and the cathode tab terminal 22
Are cut from a thick aluminum foil of about 200 μm. Of these tab terminals 21 and 22, the cathode tab terminal 22 is not subjected to a chemical conversion treatment, while the anode tab terminal 21 is subjected to a chemical treatment. Any of the tab terminals 21 and 22 may be subjected to a chemical conversion treatment.

【0023】本形態においては、陽極タブ端子21と陽
極箔26との電気的な接続は、従来と同様、陽極箔26
の表面に陽極タブ端子21を重ねた状態で加締め5(あ
るいは溶接)などを行うことによってなされている。但
し、陰極タブ端子22には、粒子径0.02〜0.20
μmの弁金属粒子を蒸着により少なくともセパレータ接
触面に2〜5μm厚みでスポンジ状に形成したタブ端子
を用いている。
In this embodiment, the electrical connection between the anode tab terminal 21 and the anode foil 26 is made in the same manner as in the prior art.
The crimping 5 (or welding) or the like is performed in a state where the anode tab terminal 21 is superimposed on the surface. However, the cathode tab terminal 22 has a particle diameter of 0.02 to 0.20.
A tab terminal is used in which valve metal particles of μm are formed in a sponge shape with a thickness of 2 to 5 μm on at least the contact surface of the separator by vapor deposition.

【0024】[0024]

【実施例】表1記載の陰極タブ端子を用いて、定格40
0V/1500μF、サイズφ63×60mmLの電解
コンデンサを各10個作製した。電解コンデンサのta
nδを測定した後、400V、1秒間充電、1秒放電を
1000万回繰り返す充放電試験を行った。その結果を
表1に示す。
EXAMPLE Using a cathode tab terminal shown in Table 1, a rating of 40 was used.
Ten electrolytic capacitors each having 0 V / 1500 μF and a size of φ63 × 60 mmL were produced. Ta of electrolytic capacitor
After measuring nδ, a charge / discharge test in which charging at 400 V, charging for 1 second, and discharging for 1 second was repeated 10 million times was performed. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、実施例1〜7は
製品tanδが良好で、充放電試験でも不合格品は発生
しなかったが、従来例や、静電容量が低い比較例では充
放電試験で弁作動による不合格品が発生した。この結果
より、弁金属粒子を蒸着したタブ端子容量は、陰極箔の
静電容量の0.3倍以上が望ましいことが判明した。
As is evident from Table 1, Examples 1 to 7 had good products tan δ and no rejects occurred in the charge / discharge test. However, in Examples 1 to 7 and Comparative Examples having a low capacitance, the results were satisfactory. In the discharge test, some products failed due to valve operation. From this result, it was found that the tab terminal capacity on which the valve metal particles were deposited was desirably 0.3 times or more the capacitance of the cathode foil.

【0027】次に、弁金属粒子の蒸着厚みについて試験
した。蒸着厚みと製品tanδおよび充放電試験での故
障率との特性図を図4に示す。図4より蒸着厚みは、
2.0〜10.0μmが望ましいことが判明した。蒸着
厚み2.0μm未満では充放電試験に耐える効果が低
く、蒸着厚みが10.0μmを超えると製品tanδが
高くなり問題がある。
Next, the deposition thickness of the valve metal particles was tested. FIG. 4 is a characteristic diagram of the deposition thickness, the product tan δ, and the failure rate in the charge / discharge test. According to FIG.
It turned out that 2.0-10.0 micrometers is desirable. When the vapor deposition thickness is less than 2.0 μm, the effect of withstanding the charge / discharge test is low, and when the vapor deposition thickness exceeds 10.0 μm, the product tan δ becomes high, which is problematic.

【0028】さらに、蒸着する弁金属粒子の粒子径につ
いて試験した。粒子径と製品tanδおよびタブ端子容
量/陰極箔容量倍率との特性図を図5に示す。図5よ
り、0.02μm未満では粒子径が細かすぎて必要容量
が得られず、0.200μmを超えると粒子径が大きす
ぎ必要容量まで蒸着すると蒸着厚みが厚くなり製品ta
nδが高くなり問題である。よって、粒子径は、0.0
20〜0.200μmが望ましいことが判明した。
Further, the particle diameter of the valve metal particles to be deposited was examined. FIG. 5 shows a characteristic diagram of the particle diameter, product tan δ, and tab terminal capacity / cathode foil capacity magnification. From FIG. 5, if the particle diameter is less than 0.02 μm, the required capacity cannot be obtained because the particle diameter is too small.
This is a problem because nδ becomes high. Therefore, the particle size is 0.0
It turned out that 20 to 0.200 μm is desirable.

【0029】実施例では蒸着する弁金属にアルミニウム
とチタンを用いたが、他にタンタル、ニオブ、ハフニウ
ム等を使用しても実施例と同等の効果が得られた。ま
た、蒸着方法は真空蒸着法だけでなく、アルゴン等の不
活性ガス中、窒素等の希ガス中、微量の酸素雰囲気中で
蒸着しても良い。
In the embodiment, aluminum and titanium are used as the valve metals to be deposited. However, the same effect as in the embodiment can be obtained by using tantalum, niobium, hafnium or the like. Further, the vapor deposition method is not limited to the vacuum vapor deposition method, and the vapor deposition may be performed in an inert gas such as argon, a rare gas such as nitrogen, or a slight oxygen atmosphere.

【0030】また、弁金属粒子を蒸着するアルミニウム
箔は、粗面化されたエッチング箔、粗面化されていない
プレン箔のいずれを用いてもよい。
As the aluminum foil on which the valve metal particles are deposited, any of a roughened etching foil and a non-roughened plain foil may be used.

【0031】[0031]

【発明の効果】以上説明したように、本発明に係るアル
ミニウム電解コンデンサにおいて、少なくともセパレー
タに接する面に弁金属粒子を蒸着、特にスポンジ状に蒸
着した陰極タブ端子を用いることでに単時間のうちに許
容リプルを遙かに越えるリプル電流が周期的に電解コン
デンサに印加されても、また、電圧差が大きく周期の短
い充放電回路に用いられる電解コンデンサにおいても陰
極タブ端子およびその周囲には高い電圧がかからない。
それ故、陰極タブ端子およびその周囲に皮膜生成が抑制
され、信頼性の高い電解コンデンサを実現することがで
きる。
As described above, in the aluminum electrolytic capacitor according to the present invention, valve metal particles are vapor-deposited on at least the surface in contact with the separator. Even if a ripple current far exceeding the allowable ripple is periodically applied to the electrolytic capacitor, and the electrolytic capacitor used in the charge / discharge circuit having a large voltage difference and a short cycle, a high voltage is applied to the cathode tab terminal and its surroundings. No voltage is applied.
Therefore, the formation of a film on the cathode tab terminal and the periphery thereof is suppressed, and a highly reliable electrolytic capacitor can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解コンデンサの構造を模式的に示す断面図。FIG. 1 is a cross-sectional view schematically showing the structure of an electrolytic capacitor.

【図2】本発明を適用した実施例のコンデンサ素子の構
造説明図。
FIG. 2 is a structural explanatory view of a capacitor element according to an embodiment to which the present invention is applied.

【図3】従来のコンデンサ素子の構造説明図。FIG. 3 is a structural explanatory view of a conventional capacitor element.

【図4】弁金属粒子の蒸着厚みと製品tanδおよび充
放電試験での故障率との特性図。
FIG. 4 is a characteristic diagram showing a deposition thickness of valve metal particles, a product tan δ, and a failure rate in a charge / discharge test.

【図5】弁金属粒子の粒子径と製品tanδおよびタブ
端子容量/陰極容量(容量倍率)との特性図。
FIG. 5 is a characteristic diagram of the particle diameter of valve metal particles, product tan δ, and tab terminal capacity / cathode capacity (capacity magnification).

【符号の説明】[Explanation of symbols]

1 電解コンデンサ 2 コンデンサ素子 3 コンデンサケース 4 封口体 5 加締め(あるいは溶接) 21 陽極タブ端子 22 陰極タブ端子 26 陽極箔 27 陰極箔 28 セパレータ 30 素子固定材 41 陽極端子 42 陰極端子 43 陽極内部端子 44 陰極内部端子 DESCRIPTION OF SYMBOLS 1 Electrolytic capacitor 2 Capacitor element 3 Capacitor case 4 Sealing body 5 Caulking (or welding) 21 Anode tab terminal 22 Cathode tab terminal 26 Anode foil 27 Cathode foil 28 Separator 30 Element fixing material 41 Anode terminal 42 Cathode terminal 43 Anode internal terminal 44 Cathode internal terminal

フロントページの続き (72)発明者 黒木 伸郎 京都府京都市中京区御池通烏丸東入一筋目 仲保利町191番地の4 上原ビル3階 ニ チコン株式会社内Continuing on the front page (72) Inventor Nobuo Kuroki, Nichicon Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽極タブ端子が電気的に接続された陽極
箔と、陰極タブ端子が電気的に接続された陰極箔とをセ
パレータを介して巻回または積層したコンデンサ素子に
駆動用電解液を含浸してなるアルミニウム電解コンデン
サにおいて、 上記陰極タブ端子の少なくともセパレータと接する面に
弁金属粒子を蒸着してなることを特徴とするアルミニウ
ム電解コンデンサ。
An electrolytic solution for driving is applied to a capacitor element in which an anode foil to which an anode tab terminal is electrically connected and a cathode foil to which a cathode tab terminal is electrically connected are wound or laminated via a separator. An aluminum electrolytic capacitor obtained by impregnating an aluminum electrolytic capacitor, wherein valve metal particles are vapor-deposited on at least a surface of the cathode tab terminal which is in contact with the separator.
【請求項2】 請求項1記載の弁金属粒子がスポンジ状
に蒸着されていることを特徴とするアルミニウム電解コ
ンデンサ。
2. An aluminum electrolytic capacitor, wherein the valve metal particles according to claim 1 are deposited in a sponge shape.
【請求項3】 上記弁金属粒子の蒸着厚みが、2.0〜
10.0μmであることを特徴とする請求項1または2
記載のアルミニウム電解コンデンサ。
3. The deposition thickness of the valve metal particles is 2.0 to 2.0.
3. The method according to claim 1, wherein the thickness is 10.0 μm.
The aluminum electrolytic capacitor as described.
【請求項4】 上記弁金属粒子の粒子径が、0.020
〜0.200μmであることを特徴とする請求項1〜3
記載のアルミニウム電解コンデンサ。
4. The valve metal particles having a particle diameter of 0.020.
4 to 0.200 μm.
The aluminum electrolytic capacitor as described.
JP2000056604A 2000-03-02 2000-03-02 Aluminum electrolytic capacitor Expired - Fee Related JP4398561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056604A JP4398561B2 (en) 2000-03-02 2000-03-02 Aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056604A JP4398561B2 (en) 2000-03-02 2000-03-02 Aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001244144A true JP2001244144A (en) 2001-09-07
JP4398561B2 JP4398561B2 (en) 2010-01-13

Family

ID=18577517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056604A Expired - Fee Related JP4398561B2 (en) 2000-03-02 2000-03-02 Aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4398561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273912A (en) * 2006-03-31 2007-10-18 Nippon Chemicon Corp Electrolytic capacitor
CN110168684A (en) * 2016-12-27 2019-08-23 Tdk电子股份有限公司 The method of mixed polymer aluminium electrolutic capacitor and manufacture capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273912A (en) * 2006-03-31 2007-10-18 Nippon Chemicon Corp Electrolytic capacitor
CN110168684A (en) * 2016-12-27 2019-08-23 Tdk电子股份有限公司 The method of mixed polymer aluminium electrolutic capacitor and manufacture capacitor
US11158464B2 (en) 2016-12-27 2021-10-26 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor
US11823847B2 (en) 2016-12-27 2023-11-21 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor
US11935707B2 (en) 2016-12-27 2024-03-19 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor
US11942280B2 (en) 2016-12-27 2024-03-26 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor

Also Published As

Publication number Publication date
JP4398561B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4587996B2 (en) Electrolytic capacitor
US6307733B1 (en) Aluminum electrolytic capacitor
US20100165544A1 (en) Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor
TW525197B (en) Aluminum electrolytic capacitor
JP4592792B2 (en) Electrolytic capacitor
US20060028787A1 (en) Wet electrolytic capacitor
JP2003133183A (en) Solid electrolytic capacitor and method of manufacturing the same
US7846218B2 (en) Method of manufacturing electrolytic capacitor
US20040027782A1 (en) Electrical double-layer capacitor
US20030174461A1 (en) Solid electrolytic capacitor and a fabrication method therefor
JP4398561B2 (en) Aluminum electrolytic capacitor
JP3514685B2 (en) Aluminum electrolytic capacitors
JP5799196B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3406247B2 (en) Aluminum electrolytic capacitor
US7885054B2 (en) Solid electrolytic capacitor
JP3406245B2 (en) Aluminum electrolytic capacitor
JP3457222B2 (en) Aluminum electrolytic capacitors
JP5104008B2 (en) Electrolytic capacitor
JPH09186054A (en) Aluminum negative foil for electrostatic capacitor
JP3465877B2 (en) Aluminum electrolytic capacitor and method of manufacturing capacitor element
CN100521012C (en) Solid electrolytic capacitor
JPH1154380A (en) Solid electrolytic capacitor
JP2003173930A (en) Electrolytic capacitor
JP5440290B2 (en) Electrode foil and capacitor
JP5423454B2 (en) Capacitor electrode foil and capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees