JP3514685B2 - Aluminum electrolytic capacitors - Google Patents

Aluminum electrolytic capacitors

Info

Publication number
JP3514685B2
JP3514685B2 JP2000012384A JP2000012384A JP3514685B2 JP 3514685 B2 JP3514685 B2 JP 3514685B2 JP 2000012384 A JP2000012384 A JP 2000012384A JP 2000012384 A JP2000012384 A JP 2000012384A JP 3514685 B2 JP3514685 B2 JP 3514685B2
Authority
JP
Japan
Prior art keywords
cathode
foil
aluminum
lead tab
terminal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000012384A
Other languages
Japanese (ja)
Other versions
JP2001203127A (en
Inventor
孝昭 丸山
善重 池田
伸郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2000012384A priority Critical patent/JP3514685B2/en
Publication of JP2001203127A publication Critical patent/JP2001203127A/en
Application granted granted Critical
Publication of JP3514685B2 publication Critical patent/JP3514685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルミニウム箔を陽
極及び陰極として使用するアルミニウム電解コンデンサ
に関するものである。
TECHNICAL FIELD The present invention relates to an aluminum electrolytic capacitor using an aluminum foil as an anode and a cathode.

【0002】[0002]

【従来の技術】従来のアルミニウム電解コンデンサの多
くは、概略次のような構造を有している。図3に示すよ
うに、表面を粗面化すると共に陽極酸化皮膜を設けたア
ルミニウム陽極箔11に、表面が平滑なアルミニウム薄
板からなる陽極リードタブ12を適所に加締13、1
3、…、または溶接によって取付けた陽極14と、表面
を粗面化したアルミニウム陰極箔21に、表面が平滑な
アルミニウム薄板からなる陰極リードタブ22を適所に
加締23、23、…、または溶接によって取付けた陰極
24とを、相互間にセパレータ1、1を挟んで円筒状に
巻回し、これに駆動用電解液を含浸させて電解コンデン
サ素子2とする。
2. Description of the Related Art Most conventional aluminum electrolytic capacitors have the following structure. As shown in FIG. 3, on an aluminum anode foil 11 having a roughened surface and an anodized film, an anode lead tab 12 made of an aluminum thin plate having a smooth surface is crimped in place 13, 1.
, ..., or the anode 14 attached by welding, and the aluminum cathode foil 21 having a roughened surface, and the cathode lead tab 22 made of an aluminum thin plate having a smooth surface in place by crimping 23, 23 ,. The attached cathode 24 is wound in a cylindrical shape with the separators 1 and 1 sandwiched between them, and impregnated with a driving electrolytic solution to form an electrolytic capacitor element 2.

【0003】図4に示すように、電解コンデンサ素子2
は円筒形アルミニウムケース3に収容され、ケースの開
口は合成樹脂板4及びゴム板5からなる封口体6によっ
て気密に閉鎖されている。封口体6は合成樹脂板4に設
けた開口とゴム板5に設けた薄肉部とからなる防爆弁7
を有すると共に、これを貫通する端子金具10、20を
有し、素子2から伸延する陽極リードタブ12、12、
…、及び陰極リードタブ22、22、…はそれぞれ一括
され、ケース3内において端子金具10、20にそれぞ
れ結合されている。また、素子2の下部は固定材8によ
ってケース3の内面に固定されている。
As shown in FIG. 4, an electrolytic capacitor element 2
Is housed in a cylindrical aluminum case 3, and the opening of the case is hermetically closed by a sealing body 6 made of a synthetic resin plate 4 and a rubber plate 5. The sealing body 6 is an explosion-proof valve 7 composed of an opening provided in the synthetic resin plate 4 and a thin portion provided in the rubber plate 5.
And the terminal metal fittings 10 and 20 penetrating the same, and the anode lead tabs 12 and 12 extending from the element 2.
, And the cathode lead tabs 22, 22, ... Are grouped together and connected to the terminal fittings 10, 20 in the case 3, respectively. The lower part of the element 2 is fixed to the inner surface of the case 3 by a fixing material 8.

【0004】図5(a)に示すように、上述のコンデン
サの陽極14としては、コンデンサ定格電圧を上回る高
い電圧で化成された比較的厚い陽極酸化皮膜31、31
を両面に有するアルミニウム陽極箔11が用いられ、陰
極24としては自然酸化によるか、或いは数V以下の低
い電圧で化成された薄い酸化皮膜32、32を両面に有
するアルミニウム箔21が用いられている。また、陽極
リードタブ12及び陰極リードタブ22としては厚さ2
00μm程度のアルミニウム薄板を用いるが、何れもそ
の表面はエッチングなどによる粗面化加工はされておら
ず、陽極リードタブ12の表面は電気化学的に形成され
た酸化皮膜31、31で覆われ、陰極リードタブ22の
表面は自然酸化による酸化皮膜32、32で覆われてい
る。
As shown in FIG. 5A, as the anode 14 of the above-mentioned capacitor, a relatively thick anodic oxide film 31, 31 formed by a high voltage exceeding the capacitor rated voltage is formed.
The aluminum anode foil 11 having both surfaces is used, and the cathode 24 is the aluminum foil 21 having thin oxide films 32 and 32 formed on the both surfaces by natural oxidation or at a low voltage of several V or less. . The thickness of the anode lead tab 12 and the cathode lead tab 22 is 2
A thin aluminum plate of about 00 μm is used, but the surface of each is not roughened by etching or the like, and the surface of the anode lead tab 12 is covered with an oxide film 31, 31 formed electrochemically. The surface of the lead tab 22 is covered with oxide films 32, 32 formed by natural oxidation.

【0005】上述の電解コンデンサの充放電時の動作は
次の通りである。図5(a)に示すように電解コンデン
サの静電容量は、陽極箔11と電解液を含浸させたセパ
レータ1との間で酸化皮膜31の両側に生ずる容量と、
陰極箔21と電解液を含浸させたセパレータ1との間で
酸化皮膜32の両側に生ずる容量とが直列に接続された
ものと見ることができる。本来なら、酸化皮膜32は酸
化皮膜31に較べて著しく薄いので酸化皮膜32による
静電容量が酸化皮膜31による静電容量よりも格段に大
きい筈であるが、酸化皮膜32は非常に漏れ電流が大き
いために、陽極箔11と陰極箔21との間に図5(a)
に示すように電圧Vを与えた場合、酸化皮膜31が分担
する電圧Vaは酸化皮膜32が分担する電圧Vcよりも
大きくなる。これらの見掛け上の容量を単位面積当りそ
れぞれCa(μF/cm)及びCc(μF/cm
とし、これらの容量による蓄積電荷をそれぞれQa及び
Qcとする。
The operation of charging and discharging the above-mentioned electrolytic capacitor is as follows. As shown in FIG. 5 (a), the capacitance of the electrolytic capacitor is the capacitance generated on both sides of the oxide film 31 between the anode foil 11 and the separator 1 impregnated with the electrolytic solution,
It can be considered that the cathode foil 21 and the separator 1 impregnated with the electrolytic solution are connected in series with the capacitance generated on both sides of the oxide film 32. Originally, since the oxide film 32 is significantly thinner than the oxide film 31, the capacitance due to the oxide film 32 should be remarkably larger than the capacitance due to the oxide film 31, but the oxide film 32 has a very large leakage current. Due to its large size, the space between the anode foil 11 and the cathode foil 21 is shown in FIG.
When the voltage V is applied as shown in FIG. 5, the voltage Va shared by the oxide film 31 becomes larger than the voltage Vc shared by the oxide film 32. The apparent capacitances of these are Ca (μF / cm 2 ) and Cc (μF / cm 2 ) per unit area, respectively.
And the accumulated charges due to these capacitances are Qa and Qc, respectively.

【0006】上述の電圧Vで充電されている電解コンデ
ンサの両端子間を短絡すると、図5(b)に示すように
2個の容量Ca、Ccは並列に接続された形になり、そ
の両端間の電圧は放電によりVc’になる。この放電は
小さい方の容量Ccによる電荷Qcだけが行われ、電荷
Qa−Qcが放電しないで残留する。残留電圧Vc’は
総合容量がCa+Ccであり、蓄積されている電荷がQ
a−Qcであるところから、〔数1〕に示す値になる。
When both terminals of the electrolytic capacitor charged with the above voltage V are short-circuited, the two capacitors Ca and Cc are connected in parallel as shown in FIG. 5B, and both ends thereof are connected. The voltage between them becomes Vc 'due to discharge. This discharge is performed only by the charge Qc by the smaller capacity Cc, and the charges Qa-Qc remain without being discharged. The residual voltage Vc ′ has a total capacitance of Ca + Cc, and the accumulated charge is Q.
From a-Qc, the value becomes as shown in [Equation 1].

【0007】[0007]

【数1】 [Equation 1]

【0008】ここで、放電時に陰極酸化皮膜32にかか
る電圧が高すぎると、陰極箔21上で皮膜生成反応が起
こり、コンデンサ内部でガス発生などの好ましくない現
象が起こる。従って放電時に陰極酸化皮膜32に電圧が
加わっても皮膜が生成されない電圧をV’とすると、放
電時に〔数2〕に示す条件が充たされることが必要であ
る。
If the voltage applied to the cathode oxide film 32 during discharge is too high, a film forming reaction occurs on the cathode foil 21 and an undesirable phenomenon such as gas generation inside the capacitor occurs. Therefore, if the voltage at which a film is not formed even when a voltage is applied to the cathodic oxide film 32 during discharge is V ′, it is necessary to satisfy the condition shown in [Equation 2] during discharge.

【0009】[0009]

【数2】 [Equation 2]

【0010】ここで、Va=V−Vcであるから、上式
から〔数3〕が導かれる。
Here, since Va = V-Vc, [Equation 3] is derived from the above equation.

【0011】[0011]

【数3】 [Equation 3]

【0012】上記〔数3〕を満たせば、放電時に陰極箔
21に電圧がかかっても陰極箔に皮膜が生成しない。よ
って、従来は〔数3〕を満たすように、陰極箔21とし
て、単位面積当りの静電容量の大きなもの、あるいは充
放電電流によって陰極箔21に生成するであろう酸化皮
膜の耐圧分をあらかじめ皮膜生成していたものを用いる
など、電解コンデンサの耐リプル性能、耐充放電性能を
向上するにあたっては、陰極箔21あるいは陽極箔1
1、電解液、セパレータ1などの材料の開発または改良
を主体とした対応がなされてきた。
When the above [Equation 3] is satisfied, no film is formed on the cathode foil 21 even if a voltage is applied to the cathode foil 21 during discharge. Therefore, conventionally, in order to satisfy [Equation 3], the cathode foil 21 having a large capacitance per unit area, or the withstand voltage of the oxide film which will be generated on the cathode foil 21 by the charging / discharging current has been previously determined. In order to improve the ripple resistance and charge / discharge resistance of the electrolytic capacitor by using the film-forming material, the cathode foil 21 or the anode foil 1
1, the development and improvement of materials such as the electrolytic solution and the separator 1 have been mainly dealt with.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、このよ
うな基本材料の開発によって電解コンデンサの耐リプル
性能、耐充放電性能を向上するにも限界がある。すなわ
ち、本願発明者が繰り返し行った実験において、耐リプ
ル試験、耐充放電試験を行った電解コンデンサを調査、
解析したところ、短時間のうちに許容リプルを遙かに越
えるリプル電流が周期的に印加される回路や電圧差が大
きく周期の短い充放電回路に用いる電解コンデンサに
は、いくら陰極箔21として理想に近いものを用いて
も、陰極リードタブ22及びその周辺の陰極箔21上に
皮膜生成反応がおこるため、コンデンサ内でガスが発生
し、内圧上昇に起因する防爆弁作動などといった不具合
が発生するという新たな知見を得た。
However, there is a limit to the improvement of the ripple resistance and the charge / discharge performance of the electrolytic capacitor by the development of such a basic material. That is, in an experiment repeated by the inventor of the present application, a ripple resistance test, an electrolytic capacitor subjected to a charge and discharge resistance test,
As a result of analysis, it is ideal as a cathode foil 21 for an electrolytic capacitor used in a circuit in which a ripple current far exceeding an allowable ripple is periodically applied in a short time or in a charge / discharge circuit with a large voltage difference and a short cycle. Even if the one close to the above is used, a film forming reaction occurs on the cathode lead tab 22 and the cathode foil 21 around it, so that gas is generated in the capacitor and malfunctions such as the operation of the explosion-proof valve due to the increase in internal pressure occur. I got new knowledge.

【0014】そこで、本発明の課題は、コンデンサ素子
の構造面から放電時に陰極側に皮膜生成が起こるのを防
止することにより、耐充放電性能及び耐リプル電流性能
を大幅に向上させることのできる電解コンデンサを提供
することにある。
Therefore, an object of the present invention is to prevent the formation of a film on the cathode side at the time of discharge from the structural aspect of the capacitor element, thereby significantly improving the charge / discharge resistance and ripple current resistance. It is to provide an electrolytic capacitor.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
本願発明者は、繰り返し行った実験から、短時間でかつ
周期的に許容リプルを遙かに越えるリプル電流が電解コ
ンデンサに印加される回路や、電圧差が大きく周期の短
い充放電回路に使われる電解コンデンサにおいて陰極リ
ードタブ周辺の陰極箔上に皮膜生成反応が起こる理由
は、従来の陰極リードタブでは単位面積当りの見かけ上
の容量が低いので、放電電流が陰極リードタブに流れた
際に陰極リードタブ及びその周囲には高い電圧がかかる
ためであるという結論に到達した。そこで本発明は、陰
極リードタブを覆うように重ねたアルミニウム箔小片の
表面を粗面加工することにより端子部分の単位面積当り
の静電容量を増大させたものである。なお、上記アルミ
ニウム箔小片の表面の粗面加工は、セパレータに接触す
る面に施せば足り、その反対側の面にはかならずしも施
さなくてもよい。
In order to solve the above-mentioned problems, the inventors of the present application have found from repeated experiments that a ripple current far exceeding the allowable ripple is applied to an electrolytic capacitor in a short time and periodically. Also, the reason why the film formation reaction occurs on the cathode foil around the cathode lead tab in an electrolytic capacitor used in a charge / discharge circuit with a large voltage difference and a short cycle is that the conventional cathode lead tab has a low apparent capacity per unit area. It was concluded that a high voltage is applied to the cathode lead tab and its surroundings when the discharge current flows to the cathode lead tab. Therefore, the present invention increases the capacitance per unit area of the terminal portion by roughening the surface of the aluminum foil pieces that are stacked so as to cover the cathode lead tab. The surface of the small piece of aluminum foil may be roughened only on the surface in contact with the separator, and the surface on the opposite side may not be necessarily processed.

【0016】[0016]

【発明の実施の形態】アルミニウム箔などの表面は、大
気中の水分または電解液中の水分と反応してできた耐圧
1.0V程度の酸化皮膜を有し、この酸化皮膜による静
電容量が存在する。そして、その静電容量は、粗面加工
を施すことによって5〜50倍程度に増大する。従って
粗面加工された陰極箔に平滑な表面を有する陰極リード
タブを重ねると、単位面積当りの容量はリードタブが陰
極箔の0.2〜0.02倍程度にしかならない。
BEST MODE FOR CARRYING OUT THE INVENTION The surface of an aluminum foil or the like has an oxide film with a withstand voltage of about 1.0 V formed by reacting with water in the atmosphere or water in an electrolytic solution. Exists. Then, the capacitance is increased by about 5 to 50 times by applying the rough surface processing. Therefore, when a cathode lead tab having a smooth surface is superposed on a roughened cathode foil, the capacity per unit area of the lead tab is only 0.2 to 0.02 times that of the cathode foil.

【0017】そして、このような陰極箔及び陰極リード
タブを用いて電解コンデンサを作製すると、短時間のう
ちに許容リプルを越えるリプル電流が周期的に印加され
たり、電圧差が大きく周期が短い充放電電流が印加され
たりした場合に、陰極リードタブやこれと隣接する陰極
箔面に高い電圧が加わり、これに酸化皮膜生成反応が起
きてガスが発生する。
When an electrolytic capacitor is manufactured by using such a cathode foil and a cathode lead tab, a ripple current exceeding an allowable ripple is periodically applied in a short time, or a charging / discharging with a large voltage difference and a short cycle. When a current is applied, a high voltage is applied to the cathode lead tab and the surface of the cathode foil adjacent to the tab, and an oxide film forming reaction occurs on this and gas is generated.

【0018】本発明においては、上述のように陰極リー
ドタブまたはこれを覆うように重ねたアルミニウム箔小
片の表面を粗面加工して、その表面に生ずる単位面積当
りの静電容量を高めた結果、その表面や隣接する陰極箔
面に酸化皮膜生成反応が起こるような高い電圧が加わる
のを効果的に防ぐことができる。そして、このような作
用を確実に行わせるためには、単位面積当りの静電容量
が陰極箔の0.3倍以上になる程度に粗面加工をするこ
とが望ましい。
In the present invention, as described above, the surface of the cathode lead tab or the aluminum foil pieces laminated so as to cover the cathode lead tab is roughened to increase the capacitance per unit area generated on the surface. It is possible to effectively prevent application of a high voltage that causes an oxide film forming reaction to the surface or the adjacent cathode foil surface. Then, in order to surely perform such an action, it is desirable to perform the rough surface processing so that the capacitance per unit area becomes 0.3 times or more that of the cathode foil.

【0019】本発明における陰極端子部は、陰極箔に重
ねたリードタブの上に更にこれを完全に覆ってアルミニ
ウム箔小片を重ねる態様である。リードタブ及びアルミ
ニウム箔小片はそれぞれ別個に陰極箔に加締或いは溶接
によって結合するか、または陰極箔と陰極リードタブと
アルミニウム箔小片の三者を重ねて一挙に加締或いは溶
接によって結合する。そして、アルミニウム箔小片のセ
パレータ及び電解液に接する面に予め粗面加工を施して
おく。
The cathode terminal portion in the present invention is a mode in which a small piece of aluminum foil is further laminated on the lead tab laminated on the cathode foil so as to completely cover the lead tab. The lead tab and the aluminum foil piece are separately joined to the cathode foil by crimping or welding, or the cathode foil, the cathode lead tab and the aluminum foil piece are superposed and joined together by crimping or welding. Then, the surface of the small piece of aluminum foil that comes into contact with the separator and the electrolytic solution is roughened in advance.

【0020】陽極箔、陰極箔、陰極リードタブ及びアル
ミニウム箔小片などの表面の粗面加工の方法としては、
ローレット加工やサンドブラストなどの機械的方法、電
気化学的エッチング、真空蒸着などのうちから、希望す
る表面積増大倍率のものを用いることができる。そし
て、これを実施することにより表面積を5〜50倍に増
大させることができ、その表面の酸化皮膜による単位面
積当りの静電容量も、ほぼこれに比例して増加する。
As a method of roughening the surface of the anode foil, cathode foil, cathode lead tab, aluminum foil small piece, etc.,
Among mechanical methods such as knurling and sandblasting, electrochemical etching, vacuum deposition, and the like, a material having a desired surface area increasing ratio can be used. By implementing this, the surface area can be increased by 5 to 50 times, and the electrostatic capacitance per unit area due to the oxide film on the surface also increases almost in proportion to this.

【0021】[0021]

【実施例】〔実施例1〜4〕 図1に示すように、耐電圧520V、単位面積当りの容
量が0.5μF/cmである表面が粗面化された陽極
箔11に、表面が平滑なアルミニウム薄板からなる陽極
リードタブ12を加締13、13、…、によって取付け
た陽極14と、表面の酸化皮膜の耐電圧1.0V、単位
面積当りの容量が50μF/cmである表面が粗面化
された陰極箔21に、表面が粗面化されていないアルミ
ニウム薄板製の陰極リードタブ30を置き、更にその上
に外側面が粗面化されているアルミニウム箔小片26を
重ねて置き、陰極箔21、陰極リードタブ30及びアル
ミニウム箔小片26の三者を一挙に加締27、27、
…、によって合体させた陰極24とを、間に電解紙1を
挟んで巻回し、これに有機酸系電解液を含浸させて電解
コンデンサ素子2を得る。この素子2を図4に示した態
様でアルミニウムケース3内に封入し、定格電圧400
V、容量1500μF、直径50mm、高さ100mm
の電解コンデンサを作製した。
Examples [Examples 1 to 4] As shown in FIG. 1, an anode foil 11 having a roughened surface having a withstand voltage of 520 V and a capacity per unit area of 0.5 μF / cm 2 has a surface of The anode 14 to which the anode lead tab 12 made of a smooth aluminum thin plate is attached by caulking 13, 13, ..., The withstand voltage of the oxide film on the surface is 1.0 V, and the surface having a capacity per unit area of 50 μF / cm 2. A cathode lead tab 30 made of an aluminum thin plate whose surface is not roughened is placed on the roughened cathode foil 21, and an aluminum foil small piece 26 whose outer surface is roughened is further laid on it. Cathode foil 21, cathode lead tab 30, and aluminum foil small piece 26 are swaged together at once 27, 27,
The electrolytic capacitor 1 is wound with the electrolytic paper 1 sandwiched between the cathode 24 and the cathode 24 combined with each other, and the electrolytic acid element is impregnated with the electrolytic paper 1 to obtain the electrolytic capacitor element 2. This element 2 is enclosed in an aluminum case 3 in the manner shown in FIG.
V, capacity 1500μF, diameter 50mm, height 100mm
The electrolytic capacitor of was produced.

【0022】実施例1〜4は、表1に示すようにアルミ
ニウム箔小片26の表面の単位面積当りの容量がそれぞ
れ異なる他は互いに同一であり、その他の構成は実施例
1と同一である。
As shown in Table 1, Examples 1 to 4 are the same as Example 1 except that the capacity per unit area of the surface of the aluminum foil piece 26 is different, and the other structures are the same as Example 1.

【0023】〔実施例5及び6〕 アルミニウム箔小片26の表面の耐電圧と単位面積当り
の容量とは電解化成によって変化する。実施例5及び6
は、実施例3と同程度(単位面積当りの容量が50μF
/cm)に粗面加工されているアルミニウム箔小片2
6に化成処理を実施し、耐電圧及び単位面積当りの容量
を表1に示すように変化させたものである。残余の構成
は実施例1〜4に準ずる。
[Embodiments 5 and 6] The withstand voltage and the capacity per unit area of the surface of the aluminum foil piece 26 are changed by electrolytic formation. Examples 5 and 6
Is about the same as in Example 3 (capacity per unit area is 50 μF).
/ Cm 2 ) aluminum foil piece 2 roughened
6 was subjected to chemical conversion treatment, and the withstand voltage and the capacity per unit area were changed as shown in Table 1. The rest of the configuration is in accordance with the first to fourth embodiments.

【0024】〔実施例7〜12〕 図2に示すように、陰極箔21にアルミニウム薄板製の
陰極リードタブ30を置いてこれを陰極箔21に加締2
8、28、…、によって結合し、更に陰極リードタブ3
0を覆うように表面が粗面化されているアルミニウム箔
小片26を重ねて、これを陰極箔21に加締29、2
9、…、によって結合して、陰極24を得る。残余の構
成はそれぞれ実施例1〜6に準ずる。
Embodiments 7 to 12 As shown in FIG. 2, a cathode lead tab 30 made of an aluminum thin plate is placed on the cathode foil 21 and the cathode foil 21 is crimped onto the cathode foil 21.
, 28, ..., and the cathode lead tab 3
0 pieces of aluminum foil whose surface is roughened so as to cover 0 are overlapped, and this is crimped to the cathode foil 21 by crimping 29, 2
Combined by 9, ..., The cathode 24 is obtained. The rest of the configuration conforms to Examples 1 to 6, respectively.

【0025】〔比較例1〕 本発明の実施例と従来のものとを比較するために、図3
に示すように表面が平滑なアルミニウム薄板よりなる陰
極リードタブ22を陰極箔21に加締23、23、…、
によって結合して陰極24を得、これを用いて実施例1
に準じて電解コンデンサを作製した。このコンデンサの
陰極リードタブ22は、自然酸化による酸化膜を有し、
この酸化膜の耐圧は約1V、その両側に生ずる容量は約
3μF/cmである。
Comparative Example 1 In order to compare the example of the present invention with the conventional example, FIG.
, The cathode lead tab 22 made of a thin aluminum plate having a smooth surface is crimped onto the cathode foil 21 by caulking 23, 23, ...
To obtain the cathode 24, which is used in Example 1
An electrolytic capacitor was produced according to The cathode lead tab 22 of this capacitor has an oxide film by natural oxidation,
The breakdown voltage of this oxide film is about 1 V, and the capacitance generated on both sides thereof is about 3 μF / cm 2 .

【0026】〔比較例2〕 比較例1と殆ど同一であるが、陰極リードタブ22の粗
面化の程度が低いものを用いて電解コンデンサを作製し
た。
COMPARATIVE EXAMPLE 2 An electrolytic capacitor was manufactured using a cathode lead tab 22 which is almost the same as that of Comparative Example 1 but has a low degree of roughening.

【0027】〔比較例3及び4〕 実施例1〜4と殆ど同一であるが、陰極リードタブ22
を覆うアルミニウム箔小片として表面の粗面化の程度が
低いものを用いて電解コンデンサを作製した。
Comparative Examples 3 and 4 Almost the same as Examples 1 to 4, but the cathode lead tab 22
An electrolytic capacitor was prepared by using aluminum foil pieces covering the surface of the aluminum foil having a low degree of surface roughening.

【0028】〔試験方法〕 上記各実施例及び比較例各30個について、充電抵抗2
0Ωを通してDC400Vで1秒間充電し、続いて放電
抵抗2kΩを通して1秒間放電する充放電サイクル試験
を1000万回繰り返し、防爆弁が作動する不良品の発
生数を求めた。試験結果を〔表1〕に示す。
[Test Method] For each of the above 30 Examples and Comparative Examples, charging resistance 2
A charge / discharge cycle test of charging at 400 V DC for 1 second through 0Ω and then discharging at 2 kΩ for 1 second was repeated 10 million times to determine the number of defective products in which the explosion-proof valve operated. The test results are shown in [Table 1].

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、実施例のコンデ
ンサは、充放電サイクル試験に全数が耐えることができ
た。これに対し、比較例1の従来品は全数が充放電サイ
クル試験に耐えることができなかった。また、比較例2
に示すように陰極リードタブの表面の粗面化が不十分な
もの、及び比較例3、4に示すように陰極リードタブを
覆うアルミニウム箔小片の粗面化が不十分なものは、充
放電サイクル試験に耐えないものが一部で発生した。
As is clear from Table 1, all the capacitors of the examples could withstand the charge / discharge cycle test. On the other hand, all the conventional products of Comparative Example 1 could not withstand the charge / discharge cycle test. In addition, Comparative Example 2
The charge-discharge cycle test was performed on the cathode lead tabs whose surface was not sufficiently roughened, and as shown in Comparative Examples 3 and 4 where the aluminum foil pieces covering the cathode lead tabs were not sufficiently roughened. Some things that can't stand are generated.

【0031】また、表1より、陰極リードタブを覆うア
ルミニウム箔小片の表面の粗面化は、表面の酸化皮膜に
よって生ずる単位面積当りの容量が陰極箔の0.3倍以
上が望ましいことが判明した。
From Table 1, it was found that it is desirable that the surface of the aluminum foil piece covering the cathode lead tab is roughened so that the capacity per unit area generated by the oxide film on the surface is 0.3 times or more that of the cathode foil. .

【0032】[0032]

【発明の効果】上記諸実施例及び比較例により明らかな
ように、本発明においては陰極リードタブをセパレータ
に接する面が粗面化されているアルミニウム箔小片で覆
うことにより、電圧差が大きな周期的電流が印加されて
も、内部でガス発生を伴う電解現象が起こらず、従って
防爆弁が作動する事故を生じない電解コンデンサを実現
することができる。
As is apparent from the above Examples and Comparative Examples, in the present invention, by covering the cathode lead tab with a small piece of aluminum foil having a roughened surface in contact with the separator, a periodical voltage difference is large. It is possible to realize an electrolytic capacitor in which an electrolysis phenomenon involving gas generation does not occur internally even when a current is applied, and thus an accident in which an explosion-proof valve operates is not caused.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の陰極リードタブを表面が粗面化された
アルミニウム箔小片で覆った実施例の素子の構造説明図
である。
FIG. 1 is a structural explanatory view of an element of an embodiment in which a cathode lead tab of the present invention is covered with a piece of aluminum foil whose surface is roughened.

【図2】本発明の図1と同様な素子の構造説明図である
が、陰極箔、陰極リードタブ及びアルミニウム箔小片の
相互間の結合態様が異なる実施例の素子の構造説明図で
ある。
FIG. 2 is a structural explanatory view of the device similar to that of FIG. 1 of the present invention, but is a structural explanatory view of the device of the embodiment in which the mutual coupling mode of the cathode foil, the cathode lead tab and the aluminum foil piece is different.

【図3】従来の素子の構造説明図である。FIG. 3 is a structural explanatory view of a conventional element.

【図4】図3に示した素子を有する電解コンデンサの断
面図である。
4 is a sectional view of an electrolytic capacitor having the element shown in FIG.

【図5】電解コンデンサの動作の説明図である。FIG. 5 is an explanatory diagram of the operation of the electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電解コンデンサ素子 3 アルミニウムケース 4 合成樹脂板 5 ゴム板 6 封口体 7 防爆弁 8 固定剤 10 端子金具 11 陽極箔 12 陽極リードタブ 13 加締 14 陽極 20 端子金具 21 陰極箔 22 陰極リードタブ 23 加締 24 陰極 26 アルミニウム箔小片 27 加締 28 加締 29 加締 30 陰極リードタブ 31 陽極酸化皮膜 32 酸化皮膜 1 separator 2 Electrolytic capacitor element 3 aluminum case 4 synthetic resin plate 5 rubber plate 6 Sealed body 7 Explosion-proof valve 8 fixative 10 terminal fittings 11 Anode foil 12 Anode lead tab 13 Crimping 14 Anode 20 terminal fittings 21 cathode foil 22 Cathode lead tab 23 Crimping 24 cathode 26 Small pieces of aluminum foil 27 Crimping 28 Crimping 29 Crimping 30 cathode lead tab 31 Anodized film 32 oxide film

フロントページの続き (72)発明者 黒木 伸郎 京都府京都市中京区御池通烏丸東入一筋 目仲保利町191番地の4 上原ビル3階 ニチコン株式会社内 (56)参考文献 特開 平3−80523(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/008 Front page continuation (72) Inventor Shinro Kuroki 4th Uehara Building, 3rd floor, Uehara Bldg., 191, Nakabori-cho, Ichidori, Oike-dori, Nakagyo-ku, Kyoto City, Kyoto Prefecture (56) Reference JP-A-3-80523 (JP) , A) (58) Fields investigated (Int.Cl. 7 , DB name) H01G 9/008

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム箔の表面に粗面加工を施す
と共に陽極酸化皮膜を形成し、その表面の適所に陽極端
子部を設けた陽極と、アルミニウム箔の表面に粗面加工
を施すと共にその表面の適所に陰極端子部を設けた陰極
とを、相互間にセパレーターを挟んで巻回または積層
し、駆動用電解液を含浸してなり、上記陰極箔の適所に
はアルミニウム薄板からなる陰極リードタブとこれを覆
うアルミニウム箔の小片とが重ねられてそれぞれ上記陰
極箔に電気的及び機械的に結合されており、上記陰極端
子部は上記陰極リードタブの上記陰極箔に重なる部分と
上記アルミニウム箔小片とからなり、上記陰極端子部の
少なくとも上記セパレーターに接触する面には粗面加工
が施されていることを特徴とするアルミニウム電解コン
デンサ。
1. An anode having a surface of an aluminum foil roughened and an anodic oxide film formed, and an anode terminal portion provided at an appropriate position on the surface, and a surface of the aluminum foil roughened and its surface A cathode provided with a cathode terminal portion in place, wound or laminated with a separator sandwiched between them, impregnated with a driving electrolyte solution, in place of the cathode foil and a cathode lead tab made of an aluminum thin plate A small piece of aluminum foil covering this is overlapped and electrically and mechanically coupled to the cathode foil, respectively, and the cathode terminal portion is a portion overlapping the cathode foil of the cathode lead tab and the aluminum foil piece. The aluminum electrolytic capacitor is characterized in that at least the surface of the cathode terminal portion that comes into contact with the separator is roughened.
【請求項2】 上記陰極端子部の上記セパレーターに接
触する面は、粗面加工に加えて、比較的薄い酸化皮膜が
自然酸化または電気化学的手法により形成されているこ
とを特徴とする請求項1記載のアルミニウム電解コンデ
ンサ。
2. The surface of the cathode terminal portion in contact with the separator is characterized in that, in addition to roughening, a relatively thin oxide film is formed by natural oxidation or an electrochemical method. 1. The aluminum electrolytic capacitor as described in 1.
【請求項3】 上記陰極端子部は、自然酸化または電気
化学的手法によって形成された酸化皮膜を有し、この酸
化皮膜によって生ずる単位面積当りの静電容量が上記陰
極箔の表面に自然酸化または電気化学的手法によって形
成された酸化皮膜によって生ずる単位面積当りの静電容
量の0.3倍以上であることを特徴とする請求項1記載
のアルミニウム電解コンデンサ。
3. The cathode terminal portion has an oxide film formed by natural oxidation or an electrochemical method, and the capacitance per unit area generated by the oxide film is naturally oxidized or formed on the surface of the cathode foil. The aluminum electrolytic capacitor according to claim 1, which has a capacitance per unit area of 0.3 times or more generated by an oxide film formed by an electrochemical method.
【請求項4】 上記陰極端子部は、上記陰極箔の適所に
加締または溶接によって取付けられたアルミニウム薄板
からなる陰極リードタブと、この陰極リードタブを覆っ
て上記陰極箔に加締または溶接によって取付けられたア
ルミニウム箔小片とで構成されていることを特徴とする
請求項1記載のアルミニウム電解コンデンサ。
4. The cathode terminal portion is a cathode lead tab made of an aluminum thin plate attached to the cathode foil at a proper position by crimping or welding, and the cathode lead tab is attached to the cathode foil by crimping or welding. The aluminum electrolytic capacitor according to claim 1, which is composed of a small piece of aluminum foil.
【請求項5】 上記陰極端子部は、上記陰極箔の適所に
配置されたアルミニウム薄板からなる陰極リードタブ
と、この陰極リードタブを覆ってその上に重ねたアルミ
ニウム小片とを同等に陰極箔に加締または溶接によって
結合されたものであることを特徴とする請求項1記載の
アルミニウム電解コンデンサ。
5. The cathode terminal portion comprises a cathode lead tab made of an aluminum thin plate placed at a proper position on the cathode foil, and an aluminum piece covering the cathode lead tab and superposed on the cathode lead tab. The aluminum electrolytic capacitor according to claim 1, wherein the aluminum electrolytic capacitors are joined by welding.
JP2000012384A 2000-01-21 2000-01-21 Aluminum electrolytic capacitors Expired - Lifetime JP3514685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012384A JP3514685B2 (en) 2000-01-21 2000-01-21 Aluminum electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012384A JP3514685B2 (en) 2000-01-21 2000-01-21 Aluminum electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2001203127A JP2001203127A (en) 2001-07-27
JP3514685B2 true JP3514685B2 (en) 2004-03-31

Family

ID=18540108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012384A Expired - Lifetime JP3514685B2 (en) 2000-01-21 2000-01-21 Aluminum electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3514685B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152643B2 (en) * 2005-11-15 2013-02-27 日本ケミコン株式会社 Electrolytic capacitor
JP5073947B2 (en) * 2006-01-12 2012-11-14 ニチコン株式会社 Winding capacitor and method of manufacturing the same
CN101499375B (en) * 2008-01-30 2011-03-02 至美电器股份有限公司 Coaxial multi-pin aluminum electrolytic capacitor
JP5268591B2 (en) * 2008-11-27 2013-08-21 日立エーアイシー株式会社 Electrolytic capacitor
JP5311207B2 (en) * 2008-12-05 2013-10-09 学校法人千葉工業大学 Metal foil connection method and capacitor
CN113186587B (en) * 2021-04-02 2023-06-13 广西日凯电子科技有限公司 Automatic regulation and control equipment and method for cathode foil formation voltage of aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP2001203127A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
US6307733B1 (en) Aluminum electrolytic capacitor
US7663864B2 (en) Electrolytic capacitor
US7227737B2 (en) Electrode design
JP2001244155A (en) Electric double-layered capacitor
US20100020472A1 (en) Electrolytic capacitor and method of making the same
JP3514685B2 (en) Aluminum electrolytic capacitors
US20030112581A1 (en) Electric double layer capacitor and method of fabricating the same
JPH10275751A (en) Electric double layer capacitor and its manufacture
KR20180021952A (en) Electrochemical energy storage device comprising external connecting terminal
JP3406247B2 (en) Aluminum electrolytic capacitor
US7404829B1 (en) Electrode-separator combination for improved assembly of layered electrolytic capacitors
JP4398561B2 (en) Aluminum electrolytic capacitor
KR20050104368A (en) Solid electrolytic capacitor
JP3457222B2 (en) Aluminum electrolytic capacitors
JP3406245B2 (en) Aluminum electrolytic capacitor
JP2003173930A (en) Electrolytic capacitor
US11121399B2 (en) Battery cell and method of manufacturing a battery cell
JPH1154380A (en) Solid electrolytic capacitor
JP3465877B2 (en) Aluminum electrolytic capacitor and method of manufacturing capacitor element
JPH07307250A (en) Electric double-layer capacitor
US11764000B2 (en) Capacitor seals
US10163577B2 (en) Aluminum electrolytic capacitor and assembly thereof
JP4560875B2 (en) Manufacturing method of solid electrolytic capacitor
JP3851128B2 (en) Electrolytic capacitor
JPH07272986A (en) Electric double-layer capacitor element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R150 Certificate of patent or registration of utility model

Ref document number: 3514685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term