JP2001241863A - Exhaust gas circulating sintering operation method - Google Patents

Exhaust gas circulating sintering operation method

Info

Publication number
JP2001241863A
JP2001241863A JP2000053803A JP2000053803A JP2001241863A JP 2001241863 A JP2001241863 A JP 2001241863A JP 2000053803 A JP2000053803 A JP 2000053803A JP 2000053803 A JP2000053803 A JP 2000053803A JP 2001241863 A JP2001241863 A JP 2001241863A
Authority
JP
Japan
Prior art keywords
exhaust gas
sintering
sintering machine
machine
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000053803A
Other languages
Japanese (ja)
Other versions
JP4054505B2 (en
Inventor
Koji Ano
浩二 阿野
Katsuhiko Shibuta
勝彦 澁田
Goji Maki
剛司 牧
Nobuo Mizogami
信夫 溝上
Kenjiro Miyata
健士朗 宮田
Muneyoshi Sawayama
宗義 沢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000053803A priority Critical patent/JP4054505B2/en
Publication of JP2001241863A publication Critical patent/JP2001241863A/en
Application granted granted Critical
Publication of JP4054505B2 publication Critical patent/JP4054505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas circulating sintering operation method by which the load for processing an exhaust gas by reducing the amount of the gas by increasing the circulating amount a high-moisture exhaust gas without worsening the productivity nor the quality of sintered ore. SOLUTION: In this exhaust gas circulating sintering method in which the wind boxes of a sintering machine 1 are divided into groups 6A-6C in the longitudinal direction of the machine 1 and part of the exhaust gas produced by sintering is circulated during operation, the wind box groups 6A-6C are divided into at least two parts in the longitudinal direction of the machine 1 and the exhaust gas containing moisture of >=10% from the group 6A in the front section of the machine 1 is circulated to the front central section of the machine 1 after an igniting furnace 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス循環方式焼
結機の操業において高水蒸気濃度の排ガス(以下、高水
分排ガスと記す)を循環使用する焼結の操業方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintering method for circulating and using an exhaust gas having a high water vapor concentration (hereinafter referred to as a high moisture exhaust gas) in the operation of an exhaust gas circulation type sintering machine.

【0002】[0002]

【従来の技術】以下の説明において、排ガス中の「水
分」とは、排ガス中の「水蒸気」を意味する。また例え
ば、「水分10%」は「乾ガス基準で水蒸気濃度10容
量%」を、「酸素濃度18%」は「乾ガス基準で酸素濃
度18容量%」を略記したものである。
2. Description of the Related Art In the following description, "moisture" in exhaust gas means "water vapor" in exhaust gas. Further, for example, “water content 10%” is abbreviation of “water vapor concentration 10% by volume on a dry gas basis”, and “oxygen concentration 18%” is abbreviation of “oxygen concentration 18% by volume on a dry gas basis”.

【0003】焼結鉱の原料は、鉄源としての粉鉄鉱石や
集塵ダスト、ミルスケールなどに、媒溶剤としての石灰
石、ドロマイト、燃料としての粉コークス、無煙炭など
である。これらを配合したものはドラムミキサーで水や
バインダーとともに転動造粒され、水分6〜7%で平均
粒径3〜4mmの粒子よりなる焼結原料とされる。この
焼結原料が焼結機に供給され、ドワイトロイド式焼結機
(DL式焼結機)で連続焼結される。DL式焼結機で焼
結鉱を製造する際には、焼結で生じる排ガスの一部を循
環させるのではなく、下向きに吸引する大気(空気)の
みで焼結原料中の粉コークスを燃焼させる大気吸引方式
による焼結操業方法と、排ガスの一部を循環させて操業
を行う排ガス循環方式による焼結操業方法とがある。
[0003] The raw materials for sinter include iron ore fines and dust dust as iron sources, limestone and dolomite as medium solvents, coke breeze as fuel, and anthracite in mill scale. The mixture of these components is tumbled and granulated together with water and a binder by a drum mixer to obtain a sintering raw material composed of particles having a water content of 6 to 7% and an average particle size of 3 to 4 mm. This sintering raw material is supplied to a sintering machine and continuously sintered by a Dwyroid type sintering machine (DL-type sintering machine). When producing sinter using a DL-type sintering machine, instead of circulating a part of the exhaust gas generated by sintering, the coke breeze in the sintering raw material is burned only by the air (air) sucked downward. There is a sintering operation method by an atmospheric suction method to be performed and a sintering operation method by an exhaust gas circulation method in which a part of the exhaust gas is circulated for operation.

【0004】DL式焼結機の大気吸引方式による焼結操
業方法は、エンドレスに移動するパレット上に50〜6
0cm厚さにて焼結原料を装入し、点火炉にてコークス
炉ガス、重油などの燃焼熱によって原料層表面の粉コー
クスに着火し、パレットの下方に連設された風箱群によ
り原料層を上部から下部へ通過する空気によって粉コー
クスを燃焼させ、その燃焼熱によって焼結原料の焼結を
行うものであり、パレット上の原料層が排鉱側へ移動す
る間に原料層の粉コークスの燃焼が上層から下層へと進
み、焼結機排鉱端に達した時点で焼結を完了するように
したものである。
[0004] The sintering operation method by the atmospheric suction method of the DL type sintering machine is such that a sintering operation is carried out on a pallet which moves endlessly.
A sintering raw material is charged at a thickness of 0 cm, and ignites the coke breeze on the surface of the raw material layer by the combustion heat of a coke oven gas, heavy oil, etc. in an ignition furnace, and the raw material is formed by a group of wind boxes provided continuously below the pallet. The coke breeze is burned by air passing from the top to the bottom of the bed, and the sintering material is sintered by the heat of combustion. The sintering is completed when the combustion of the coke proceeds from the upper layer to the lower layer and reaches the end of the sintering machine.

【0005】一方、排ガス循環方式による焼結操業方法
は、前記大気吸引方式による操業での欠点を改善し、環
境保全の点から焼結機の系外に排出する排ガス量やNO
x総量の削減、さらに排ガスの熱回収、生産性の向上な
どを図るようにしたものであり、DL式焼結機の風箱群
を焼結機長手方向に適宜分割し、焼結で生じる排ガスの
一部を焼結機のパレット上へ循環させて一部大気のかわ
りに吸引して操業を行うものである。
On the other hand, the sintering operation method using the exhaust gas circulation method improves the disadvantages in the operation using the atmospheric suction method, and reduces the amount of exhaust gas discharged from the sintering machine and NO from the viewpoint of environmental protection.
x It is intended to reduce the total amount, heat recovery of exhaust gas, improvement of productivity, etc. The wind box group of DL type sintering machine is divided appropriately in the longitudinal direction of the sintering machine, and the exhaust gas generated by sintering Is circulated on a pallet of a sintering machine and a part of the air is sucked in place of the air for operation.

【0006】近年、排ガス循環方式の操業方法が広く採
用されるようになり、その効率を改善するために種々の
提案がなされている。例えば、特開平5−43951号
公報に示されるように、焼結機の点火炉域と後部域のウ
ィンドボックス(風箱)からの排ガスを、それぞれ点火
炉域の排ガスは焼結機の中後部に、また後部域の排ガス
は点火炉後の焼結機の前部に循環するとともに、各循環
される排ガス中の酸素濃度を18%以上とした排ガス循
環方法操業方法、あるいは本発明者らが特願平11−1
44765号明細書等に示したように、焼結機の風箱群
を焼結機前部域と後部域とに2分割し、焼結機前部域の
風箱群からの水分5%以上の排ガスを焼結機後部域に循
環使用することにより熱源である粉コークスの燃焼効率
を向上する排ガス循環操業方法などにより、エネルギー
の節約および排出ガス総量の低減、ならびに焼結鉱品
質、焼結歩留りの向上を図っている。
[0006] In recent years, operating methods of the exhaust gas circulation system have been widely adopted, and various proposals have been made to improve the efficiency. For example, as shown in Japanese Patent Application Laid-Open No. 5-43951, exhaust gas from an ignition furnace area and a wind box (wind box) in a rear area of a sintering machine, In addition, the exhaust gas in the rear area is circulated to the front of the sintering machine after the ignition furnace, and the oxygen gas concentration in each circulated exhaust gas is set to 18% or more. Japanese Patent Application No. 11-1
As shown in the specification of 44765, etc., the wind box group of the sintering machine is divided into a front area and a rear area of the sintering machine, and the water content of the wind box group in the front area of the sintering machine is 5% or more. The exhaust gas is recycled to the rear part of the sintering machine to improve the combustion efficiency of coke breeze, which is the heat source. Improving yield.

【0007】[0007]

【発明が解決しようとする課題】DL式焼結機で大気吸
引方式により焼結鉱を製造するに際して生じる排ガスの
温度および水分は、焼結機の長手方向で分布をもつ。す
なわち、焼結機の前部から中部においては、焼結ベッド
の下部はまだ湿った原料(湿潤層)が存在するのでその
湿潤層を通過した排ガスは約50〜60℃に冷却され、
かつ水分を5〜16%と高濃度に含むのに対して、焼結
機の後部においては、焼結ベッドの下部まで焼成が進ん
でいるので排ガスは焼結機の前部に比べて高温(最高約
460℃)で水分も2〜3%と低い。
The temperature and moisture of the exhaust gas generated during the production of sinter by the atmospheric suction method in a DL sintering machine have distributions in the longitudinal direction of the sintering machine. That is, from the front part to the middle part of the sintering machine, since the lower part of the sintering bed still contains a wet material (wet layer), the exhaust gas passing through the wet layer is cooled to about 50 to 60 ° C.
On the other hand, while the moisture is contained at a high concentration of 5 to 16%, in the rear part of the sintering machine, the sintering has progressed to the lower part of the sintering bed. (Up to about 460 ° C) and the water content is as low as 2-3%.

【0008】したがって特開平5−43951号公報に
示された排ガス循環方式焼結操業方法(図7参照)にお
いては、焼結機後部域の排ガスの前部域のパレット上へ
の循環率を高めると、焼結機の系外に排出される排ガス
(以下、排気ガスと記す)に占める焼結機前部寄りの低
温高水分の排ガスの割合が増加するため排気ガスの温度
低下と水分上昇を招き、排気ガス系において排気ガス温
度が酸露点を下回ってしまい結露してダクトあるいは集
塵機の腐食を生じる問題がある。そのため、後部域の排
ガス循環率は最大約20%(焼結機排ガス総量に対し
て;以下同じ)に制限されている。また焼結機前部域の
排ガスの後部域のパレット上への循環率を高めると、も
ともと高水分の排ガスを再循環することになり、循環排
ガス中の水分が約10%を超え、焼結に要する時間が延
びて生産性が悪化し、あるいは焼結鉱の強度が低下して
焼結歩留りが悪化する問題が生じる。そのため、前部域
の排ガスの循環率も最大10%程度に制限されている。
その結果、排気ガス量は、大気吸引方式焼結機の総排ガ
ス量(=排気ガス量)の約70%にまでは低減できる
が、さらに低減することは困難である。また、特願平1
1−144765号明細書等に示した発明においても、
循環できる排ガス中の水分は11%以下に制限されるた
め、上記と同様、排気ガス量の削減効果が制約される問
題が残っている。
Therefore, in the sintering operation method of the exhaust gas circulation type disclosed in Japanese Patent Application Laid-Open No. 5-43951 (see FIG. 7), the circulation rate of the exhaust gas in the rear area of the sintering machine on the pallet in the front area is increased. In addition, the ratio of low-temperature and high-moisture exhaust gas near the front of the sintering machine to the ratio of exhaust gas discharged outside the sintering machine (hereinafter referred to as exhaust gas) increases. As a result, the temperature of the exhaust gas falls below the acid dew point in the exhaust gas system, and there is a problem that the dew forms and the duct or the dust collector is corroded. For this reason, the exhaust gas circulation rate in the rear region is limited to a maximum of about 20% (based on the total amount of exhaust gas from the sintering machine; the same applies hereinafter). Also, if the circulation rate on the pallet in the rear area of the exhaust gas in the front area of the sintering machine is increased, the exhaust gas originally having a high moisture content will be recirculated, and the moisture in the circulated exhaust gas will exceed about 10%. The time required for sintering is prolonged, and the productivity deteriorates, or the strength of the sinter decreases and the sintering yield deteriorates. Therefore, the circulation rate of the exhaust gas in the front region is also limited to a maximum of about 10%.
As a result, the exhaust gas amount can be reduced to about 70% of the total exhaust gas amount (= exhaust gas amount) of the atmospheric suction type sintering machine, but it is difficult to further reduce it. In addition, Japanese Patent Application No. 1
Also in the invention shown in the specification of 1-1144765,
Since the moisture in the exhaust gas that can be circulated is limited to 11% or less, there remains a problem that the effect of reducing the amount of exhaust gas is restricted as described above.

【0009】そこで本発明の目的は、排ガス循環方式に
よる焼結操業方法において、後部域の排ガス循環率を最
大に保ったまま、生産性を阻害したり焼結歩留りを悪化
させることなく、水分10%以上の高水分排ガスを循環
使用することができ、これにより排気ガス量をさらに削
減できる排ガス循環方式焼結操業方法を提供することに
ある。
Accordingly, an object of the present invention is to provide a sintering operation method using an exhaust gas circulation method, while keeping the exhaust gas circulation rate in the rear region at a maximum, without impairing productivity or deteriorating the sintering yield. It is an object of the present invention to provide an exhaust gas circulating sintering operation method in which high-moisture exhaust gas of at least% can be circulated and used, whereby the amount of exhaust gas can be further reduced.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明
は、焼結機の風箱群を焼結機長手方向に3分割し、焼結
機の前部域の風箱群からの排ガスと後部域の風箱群から
の排ガスを混合し、その混合排ガスを点火炉後の焼結機
のパレット上に循環させて行う排ガス循環方式焼結操業
方法において、前記排ガスの混合割合を調整することに
より前記混合排ガス中の水分を9%未満とすることを特
徴とするものである。
According to the first aspect of the present invention, a group of wind boxes of a sintering machine is divided into three in the longitudinal direction of the sintering machine, and exhaust gas from a group of wind boxes in a front region of the sintering machine is provided. The exhaust gas from the wind box group in the rear region is mixed with the exhaust gas, and the mixed exhaust gas is circulated on the pallet of the sintering machine after the ignition furnace. In the exhaust gas circulation sintering operation method, the mixing ratio of the exhaust gas is adjusted. Thus, the mixed exhaust gas has a water content of less than 9%.

【0011】また、請求項2に記載の発明は、請求項1
に記載の排ガス循環方式焼結操業方法において、前記焼
結機の点火炉入口から排鉱端に至る長さを焼結機機長と
すると、前記焼結機後部域は点火炉入口を起点にして焼
結機機長の略80%長さの位置から排鉱端位置に至る焼
結機部分であり、前記焼結機前部域は点火炉入口より焼
結機機長の略30%長さまでの位置であることを特徴と
するものである。
The invention described in claim 2 is the first invention.
In the exhaust gas circulation sintering operation method according to the above, if the length from the ignition furnace inlet of the sintering machine to the exhaust end is the sintering machine length, the rear region of the sintering machine starts from the ignition furnace inlet. A portion of the sintering machine from a position approximately 80% of the length of the sintering machine to the end of the sintering machine, and the front part of the sintering machine is located at a position from the entrance of the ignition furnace to approximately 30% of the length of the sintering machine. It is characterized by being.

【0012】さらに、請求項3に記載の発明は、焼結機
の風箱群を焼結機長手方向に分割し、焼結で生じる排ガ
スの一部を循環させて操業を行う排ガス循環方式焼結操
業方法において、焼結機の風箱群を焼結機長手方向に少
なくとも2分割し、焼結機の前部域の風箱群からの水分
を10%以上含有する排ガスを点火炉後の焼結機の前中
部域のパレット上に循環させることを特徴とするもので
ある。
Further, according to the third aspect of the present invention, there is provided an exhaust gas circulation type sintering system in which a group of wind boxes of a sintering machine is divided in a longitudinal direction of the sintering machine and a part of exhaust gas generated by sintering is circulated for operation. In the sintering method, the wind box group of the sintering machine is divided into at least two in the longitudinal direction of the sintering machine, and the exhaust gas containing at least 10% of water from the wind box group in the front area of the sintering machine is discharged after the ignition furnace. It is characterized in that it is circulated on a pallet in the middle front area of the sintering machine.

【0013】[0013]

【作用】以下、本発明の作用効果について詳細に説明す
る。
The operation and effect of the present invention will be described below in detail.

【0014】まず、本発明の作用効果を確認するため、
いわゆる焼結鍋試験装置を用いて、吸引ガス中の水分が
焼結鉱強度に及ぼす影響を調査した。
First, in order to confirm the operation and effect of the present invention,
Using a so-called sinter pot tester, the effect of moisture in the suction gas on the strength of the sinter was investigated.

【0015】焼結鍋試験は、内径320mmの焼結鍋
に、表1に示した化学組成の鉄鉱石を表2の配合率で混
錬して作製した焼結原料をベッド層厚550mmに装入
し、COGバーナーで点火後、吸引圧15700Paで
循環排ガスを想定して調整したO2 濃度、水分および温
度のガスを吸引して行った。なお、循環排ガスを想定し
た吸引ガスは、空気にN2 ガスを添加することによりO
2 濃度を18%に調整し、さらに所定量の水蒸気を添加
して目標の水分とした後、電気ヒーターにより200℃
に加熱して作製した。
In the sintering pot test, a sintering raw material produced by kneading iron ore having a chemical composition shown in Table 1 at a mixing ratio shown in Table 2 into a sintering pot having an inner diameter of 320 mm was placed in a bed layer thickness of 550 mm. After igniting with a COG burner, a gas having an O 2 concentration, moisture and temperature adjusted assuming circulating exhaust gas was suctioned at a suction pressure of 15700 Pa. In addition, the suction gas assuming the circulating exhaust gas is obtained by adding N 2 gas to the air.
2 Adjust the concentration to 18%, add a predetermined amount of water vapor to obtain the target moisture, and then use an electric heater to 200 ° C.
To produce the product.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施した焼結鍋試験の試験条件および各試
験条件で焼成された焼結鉱の落下強度を表3に示す。な
お、焼結鉱の落下強度はJIS M8711の冷間強度
試験方法に基づいて測定した。一般に、同一の焼結原料
を用いて同一のガス吸引条件で焼成しても焼結鍋試験装
置の熱損失が大きいため、焼結鍋試験で焼成された焼結
鉱(鍋試験焼結鉱)の落下強度は、実機焼結機で製造さ
れた焼結鉱(実機焼結鉱)の落下強度に比べて大幅に低
くなることが知られている。本焼結鍋試験の場合には、
鍋試験焼結鉱の落下強度は実機焼結鉱の落下強度より約
40ポイント低くなる(例えば、鍋試験焼結鉱の落下強
度35%は、実機焼結鉱の落下強度約75%に相当す
る)ことを注記しておく。
Table 3 shows the test conditions of the sinter pot test and the drop strength of the sintered ore fired under each test condition. The drop strength of the sintered ore was measured based on the cold strength test method of JIS M8711. Generally, even when firing is performed under the same gas suction conditions using the same sintering raw material, the heat loss of the sintering pot test device is large, so the sinter ore fired in the sintering pot test (pot test sinter). It is known that the drop strength of the sinter ore manufactured by the actual sintering machine (actual sinter) becomes significantly lower than the drop strength of the sinter. In the case of this sinter pot test,
The drop strength of the pot test sinter is about 40 points lower than the drop strength of the actual sinter (for example, 35% drop strength of the pot test sinter corresponds to about 75% of the drop strength of the actual sinter. Note that:

【0019】[0019]

【表3】 [Table 3]

【0020】試験No.1〜4より、点火から火落ち
(焼結完了)までの全焼結時間にわたって上記の循環排
ガス想定ガスを吸引ガスとした場合における、吸引ガス
中の水分と焼結鍋試験で焼成された焼結鉱の落下強度と
の関係をみると、吸引ガス中の水分が9%以上となると
焼結鉱の落下強度が急激に低下することを確認した。
Test No. According to 1-4, the sintering fired in the sintering pot test and the moisture in the suction gas when the above assumed gas for circulating exhaust gas was used as the suction gas over the entire sintering time from ignition to burnout (completion of sintering) Looking at the relationship with the drop strength of the ore, it was confirmed that the drop strength of the sinter dropped sharply when the moisture in the suction gas became 9% or more.

【0021】これは、吸引ガス中の水分上昇により燃焼
部(ヒートフロント近傍)で以下の2つの反応式で示さ
れる水性ガス化反応および水性ガス変成反応が起こり、
燃焼部付近でH2 を生成し、このH2が原料中のヘマタ
イト(Fe23 )またはマグネタイト(Fe34
の還元を促進してウスタイト(FeO)含有量を増加さ
せ(図3参照)、このウスタイトが原料鉱石中の脈石成
分のSiO2 等と化合して低融点化合物を作って溶融
し、5mm径程度のマクロな空隙を形成したため、焼結
鉱の強度が低下したものと考えられる。
The water gasification reaction and the water gas conversion reaction represented by the following two reaction formulas occur in the combustion part (near the heat front) due to the rise in the moisture in the suction gas.
H 2 is generated in the vicinity of the combustion part, and this H 2 is used as hematite (Fe 2 O 3 ) or magnetite (Fe 3 O 4 ) in the raw material.
Reduction increases the wustite (FeO) content to promote (see FIG. 3), the wustite is combines with SiO 2 or the like of the gangue component in the raw material ore to melt and create a low-melting compound, 5 mm diameter It is considered that the strength of the sinter decreased due to the formation of macroscopic voids of a degree.

【0022】 C+H2 O→CO+H2 (水性ガス化反応) CO+H2 O→CO2 +H2 (水性ガス変成反応) 一方、排ガス循環方式の実機焼結機において、風箱群を
焼結機長手方向に3分割し、前部域の風箱群を点火炉入
口から焼結機機長(点火炉入口から排鉱端に至る長さ)
の略30%長さの位置までの風箱群とし、後部域の風箱
群を点火炉入口を起点にして焼結機機長の略80%長さ
の位置から排鉱端に至る焼結機部分の風箱群とすると、
それぞれ前部域の風箱群からの排ガスは16〜18%、
後部域の風箱群からの排ガスは2〜3%の水分を含むこ
とを確認した。なお、後部域の風箱群の分割位置を焼結
機機長の略80%としたのは、前述したように、排気ガ
ス温度の低下による排気ガス系への水分凝縮が起こらな
い範囲で最大の排ガス循環率約20%が得られる位置と
して定めたものである。
C + H 2 O → CO + H 2 (Water gasification reaction) CO + H 2 O → CO 2 + H 2 (Water gas shift reaction) On the other hand, in an actual exhaust gas circulation type sintering machine, a group of wind boxes is moved in the longitudinal direction of the sintering machine. And sintering machine length (length from ignition furnace inlet to exhaust end)
Of the sintering machine from the position of approximately 80% of the sintering machine length to the ore end from the sintering machine starting from the entrance of the ignition furnace. If it is a group of wind boxes,
16-18% of exhaust gas from the wind box group in the front area,
It was confirmed that the exhaust gas from the group of wind boxes in the rear area contained 2 to 3% of water. The reason why the division position of the wind box group in the rear region is set to approximately 80% of the machine length of the sintering machine is that, as described above, the maximum water condensation in the exhaust gas system due to a decrease in exhaust gas temperature does not occur. This is determined as a position where an exhaust gas circulation rate of about 20% can be obtained.

【0023】したがって、前部域の風箱群からの高水分
排ガスの量を適量にして、その高水分排ガスに後部域の
風箱群からの低水分排ガス全量を混合し、その混合排ガ
スの水分を9%未満にすることにより、焼結鉱の落下強
度を悪化させずに高い排ガス循環率(高い排気ガス削減
率)での焼結機操業が可能となるものである。
Therefore, the amount of the high-moisture exhaust gas from the wind box group in the front region is adjusted to an appropriate amount, and the high-moisture exhaust gas is mixed with the entire amount of the low-moisture exhaust gas from the rear box wind box group. Is less than 9%, the sintering machine can be operated at a high exhaust gas circulation rate (high exhaust gas reduction rate) without deteriorating the drop strength of the sinter.

【0024】また図4は、後部域の風箱群の分割位置を
上述の焼結機機長の略80%に固定したまま、前部域の
風箱群の分割位置を焼結機機長の点火炉入口から0〜3
5%の間で変更したときの、前部域の風箱群からの排ガ
スと後部域の風箱群の排ガスを混合した混合排ガスの水
分の変化を示したものである。図4より明らかなよう
に、後部域の風箱群の分割位置を焼結機機長の略80%
とし、前部域の風箱群の分割位置を焼結機機長の略30
%までとすることにより、混合排ガスの水分を9%未満
とすることができ、上記効果を得ることができるもので
ある。
FIG. 4 shows that the division position of the wind box group in the front region is set to the point of the length of the sinter machine while the division position of the wind box group in the rear region is fixed to approximately 80% of the machine length of the sintering machine. 0-3 from the furnace entrance
FIG. 9 shows a change in the water content of the mixed exhaust gas obtained by mixing the exhaust gas from the wind box group in the front region and the exhaust gas from the wind box group in the rear region when the ratio is changed between 5%. As is clear from FIG. 4, the dividing position of the wind box group in the rear area is set to approximately 80% of the machine length of the sintering machine.
And the division position of the wind box group in the front area is set to approximately 30
%, The water content of the mixed exhaust gas can be reduced to less than 9%, and the above effect can be obtained.

【0025】次に、表3の試験No.5および6は、前
部域の風箱からの高水分ガスを後部域の風箱からの低水
分ガスと混合することなくそのまま焼結機に循環できる
可能性について調査したものである。全焼結時間の前半
分の時間だけ水分15%の排ガスを吸引し、後半分の時
間は常温の空気を吸引した場合(試験No.5)、その
焼結鉱の落下強度は、全焼結時間にわたって水分6%の
排ガスを吸引した場合(試験No.2)とほぼ同等の高
い値が得られるのに対して、試験No.5とは逆に全焼
結時間の前半分の時間は常温の空気を吸引し、後半分の
時間だけ水分15%の排ガスを吸引した場合(試験N
o.6)には、その焼結鉱の落下強度は、全焼結時間に
わたって水分15%の排ガスを吸引した場合(試験N
o.4)と同程度の低い値となった。
Next, the test Nos. Nos. 5 and 6 investigated the possibility of circulating the high moisture gas from the wind box in the front area to the sintering machine without mixing with the low moisture gas from the wind box in the rear area. When the exhaust gas having a water content of 15% is sucked for the first half of the total sintering time and the air at room temperature is sucked for the latter half of the time (test No. 5), the drop strength of the sinter is over the entire sintering time. While a high value almost equivalent to that obtained when the exhaust gas having a water content of 6% was sucked (test No. 2) was obtained, the test no. Contrary to 5, the air at normal temperature was sucked in the first half of the total sintering time, and the exhaust gas with a moisture content of 15% was sucked in the second half of the time (test N).
o. 6), the drop strength of the sinter was determined when exhaust gas with a moisture content of 15% was sucked over the entire sintering time (test N).
o. The value was as low as 4).

【0026】このように、高水分ガスを焼結の前半で吸
引した場合には焼結鉱の落下強度の低下はほとんどな
く、後半で吸引した場合には落下強度が著しく低下する
理由は以下のように考えられる。
As described above, when the high moisture gas is sucked in the first half of sintering, the drop strength of the sinter hardly decreases, and when it is sucked in the second half, the drop strength drops significantly. It is thought to be.

【0027】焼結ベッド内の高温保持時間(加熱時に1
100℃に到達した時点から冷却時に1100℃に到達
した時点までの時間)は、大気吸引式、排ガス循環式に
かかわらず焼結ベッドの上部では短く、下部に行くほど
長くなり、また最高到達温度も焼結ベッドの上部は下部
に比べて低いため、焼結ベッドの上部は下部に比べて強
度が低いことが知られている。高水分ガスを焼結反応の
後半でベッドに吸引した場合には、前述した水性ガス化
反応等を原因とする強度低下が焼結ベッド下部において
起こり、焼成後の焼結ケーキ全体の平均強度を著しく引
き下げたものと想定される。一方、逆に高水分ガスを焼
結の前半で吸引した場合、もともと焼結ベッド上部の最
高到達温度は低いので前述の水性ガス化反応等の反応速
度は小さく生成H2量も少ないためFeOへの還元量は
少なく、これを原因とする強度低下の可能性は低い。逆
に、水性ガス化反応等により生成したH2の伝熱係数が
空気の約3倍と高いことから、これが伝熱促進に寄与し
て焼結ベッド上部の最高温度を上昇させた(材料とプロ
セス、’85−S810、p.30参照)ことにより焼
結ベッド上部の強度を上昇させ、焼結ケーキ全体の平均
強度を引き上げたものと考えられる。
High temperature holding time in the sintering bed (1
The time from when the temperature reaches 100 ° C. to the time when the temperature reaches 1100 ° C. during cooling) is short at the upper part of the sintering bed regardless of the atmospheric suction type and the exhaust gas circulation type, becomes longer toward the lower part, and reaches the maximum temperature. Also, since the upper part of the sintering bed is lower than the lower part, it is known that the strength of the upper part of the sintering bed is lower than that of the lower part. When the high-moisture gas is sucked into the bed in the latter half of the sintering reaction, a decrease in strength occurs due to the water gasification reaction described above at the lower portion of the sintering bed, and the average strength of the entire sintered cake after sintering is reduced. It is assumed that the price has been significantly reduced. On the other hand, when a high moisture gas is sucked in the first half of the sintering, the highest temperature of the upper part of the sintering bed is originally low, so that the above-mentioned reaction rate of the water gasification reaction and the like is small and the amount of generated H 2 is small, so that FeO is used. Is small, and the possibility of strength reduction due to this is low. Conversely, since the heat transfer coefficient of H 2 generated by the water gasification reaction and the like is about three times higher than that of air, this contributes to the promotion of heat transfer and raises the maximum temperature of the upper part of the sintering bed (material and It is considered that the strength of the upper part of the sintering bed was increased by the process, '85 -S810, p.30), and the average strength of the entire sintered cake was increased.

【0028】したがって、焼結機前部域の風箱群からの
水分10%以上の高水分排ガスを焼結機の後部域ではな
く、点火炉後の焼結機の前中部域のパレット上に選択的
に循環させることにより、焼結鉱の強度を改善しつつ、
高い排ガス循環率(高い排気ガス削減率)での焼結操業
が可能となるものである。
Therefore, the high-moisture exhaust gas having a water content of 10% or more from the wind box group in the front area of the sintering machine is not placed on the rear area of the sintering machine but on the pallet in the front middle area of the sintering machine after the ignition furnace. By selectively circulating, while improving the strength of the sintered ore,
This enables sintering operation with a high exhaust gas circulation rate (high exhaust gas reduction rate).

【0029】[0029]

【実施例】(実施例1)図1は本発明(請求項1〜2)
による排ガス循環方式焼結操業方法の実施に使用される
焼結機の概略説明図である。焼結機1は、駆動機によっ
てエンドレスに移動する移動パレット2、焼結原料を移
動パレット2上に積み付けるための原料供給装置3、積
み付けられた焼結原料4の原料層表面の粉コークスに着
火するための点火炉5、移動パレット2の下方に焼結機
機長にわたって連設され、下向きの吸気によってパレッ
ト2上の原料層4の粉コークスを燃焼させるための風箱
群6A、6B、6Cおよび循環ガスを移動パレット2の
上方へ供給するための循環ガスフード7を備えている。
(Embodiment 1) FIG. 1 shows the present invention (claims 1 and 2).
FIG. 1 is a schematic explanatory view of a sintering machine used for performing an exhaust gas circulation type sintering operation method according to the present invention. The sintering machine 1 includes a moving pallet 2 that is moved endlessly by a driving machine, a raw material supply device 3 for stacking the sintering raw material on the moving pallet 2, and powder coke on the surface of the raw material layer of the stacked sintering raw material 4. Group of wind boxes 6A and 6B, which are provided continuously below the moving pallet 2 over the length of the sintering machine, for burning the coke breeze of the raw material layer 4 on the pallet 2 by downward suction. A circulating gas hood 7 for supplying 6C and circulating gas above the moving pallet 2 is provided.

【0030】前記風箱群は、焼結機前部域の風箱群とし
ての第1風箱群6A、焼結機中部域の風箱群としての第
2風箱群、および焼結機後部域の風箱群としての第3風
箱群の3つに分割されている。高水分の排ガスを循環供
給するための第1風箱群6Aは、焼結機1の点火炉入口
5aから排鉱端Eに至る長さを焼結機機長とすると、点
火炉入口5aより焼結機機長の略30%長さの位置まで
の焼結機部分に配設されたものである(風箱No.1〜
No.7)。また、低水分ガスを循環供給するための第
3風箱群6Cは、点火炉入口5aを起点にして焼結機機
長の80%長さの位置から排鉱端Eに至る焼結機部分に
配設されたものである(風箱No.23〜No.2
7)。一方、排気を行うための第2風箱群6Bは、前記
焼結機機長の略30%の位置から略80%の位置に至る
焼結機部分(すなわち第1風箱群と第3風箱群との間)
に配設されたものである(風箱No.8〜No.2
2)。
The wind box group includes a first wind box group 6A as a wind box group in the front area of the sintering machine, a second wind box group as a wind box group in the middle area of the sintering machine, and a rear wind box group. It is divided into three of the third wind box group as the wind box group of the area. The first group of wind boxes 6A for circulating and supplying high-moisture exhaust gas, when the length from the ignition furnace inlet 5a of the sintering machine 1 to the exhaust end E is the length of the sintering machine, is used for firing from the ignition furnace inlet 5a. It is arranged in the sintering machine portion up to a position approximately 30% of the length of the machine (wind box No. 1 to No. 1).
No. 7). A third group of wind boxes 6C for circulating and supplying the low moisture gas is provided at the sintering machine portion from the position 80% of the sintering machine length to the exhaust end E starting from the ignition furnace inlet 5a. (Wind box No. 23 to No. 2)
7). On the other hand, the second wind box group 6B for exhausting includes a sintering machine part (ie, the first wind box group and the third wind box group) from a position of about 30% to a position of about 80% of the sintering machine length. Between groups)
(Wind boxes No. 8 to No. 2)
2).

【0031】循環ガスフード7は、排ガスを移動パレッ
ト2上の原料層4へ導くためのものであり、点火炉入口
5aを起点にして焼結機機長の略10%の位置から略8
0%の位置に至る焼結機部分における移動パレット2の
上方に配設されている(風箱では、風箱No.3〜N
o.22に相当する)。したがって、第1風箱群6Aに
ついては、点火炉排ガスを吸引する風箱群と循環ガスフ
ード7からの循環ガスを吸引する風箱群とに分かれてお
り、8は第1風箱群6Aからの低温の高水分ガスを循環
ガスダクト11Aを介して循環ガスフード7に循環する
ための低温ガス循環用排風機である。また、第3風箱群
6Cについては、空気を吸引する風箱群のみで構成され
ており、9は第3風箱群6Cからの高温の低水分ガスを
循環ガスダクト11Bを介して循環ガスフード7に循環
するための高温ガス循環用排風機である。なお、循環ガ
スダクト11Aと11Bは途中で結合された後、さらに
複数の小さいダクトに分けられて循環ガスフード7全体
に接続されており、前記低温の高水分ガスと前記高温の
低水分ガスを混合して循環ガスフード7全体へほぼ均一
に導入する。10は第2風箱群からのガスを集塵機12
で清浄化した後、煙突13で大気へ放出するための主排
風機である。
The circulating gas hood 7 is for guiding the exhaust gas to the raw material layer 4 on the moving pallet 2. The circulating gas hood 7 starts from the ignition furnace inlet 5a and starts at about 10% of the length of the sintering machine.
0% of the sintering machine is disposed above the movable pallet 2 in the sintering machine portion.
o. 22). Therefore, the first wind box group 6A is divided into a wind box group for sucking the ignition furnace exhaust gas and a wind box group for sucking the circulating gas from the circulating gas hood 7, and 8 represents the first wind box group 6A. Is a low-temperature gas circulation exhaust fan for circulating low-temperature high-moisture gas to the circulation gas hood 7 through the circulation gas duct 11A. Further, the third wind box group 6C is constituted only by a wind box group for sucking air, and 9 is a circulating gas hood through which the high-temperature low-moisture gas from the third wind box group 6C is passed through the circulating gas duct 11B. 7 is an exhaust fan for circulating high-temperature gas for circulation. After the circulating gas ducts 11A and 11B are combined on the way, they are further divided into a plurality of small ducts and connected to the entire circulating gas hood 7, and the low-temperature high-moisture gas and the high-temperature low-moisture gas are mixed. Then, it is almost uniformly introduced into the entire circulating gas hood 7. 10 is a dust collector which collects gas from the second wind box group.
This is a main exhaust fan for discharging the air to the atmosphere through the chimney 13 after the cleaning.

【0032】焼結原料は、前述の焼結鍋試験に用いたも
のと同じ鉱石(表1参照)を表2と近似の配合率で配合
し、ドラムミキサーで水やバインダーとともに転動造粒
して水分6〜7質量%(外数)で平均粒径3〜4mmの
粒子としたものを用いた。
As the sintering raw material, the same ore (see Table 1) as that used in the above-mentioned sinter pot test was blended at a blending ratio similar to that of Table 2, and was tumbled and granulated with water and a binder by a drum mixer. The particles used had a water content of 6 to 7% by mass (external number) and an average particle size of 3 to 4 mm.

【0033】本実施例では、上述の設備構成において、
低温ガス循環用排風機8のダンパー開度を100%から
20%まで段階的に小さくして低温高水分排ガスの循環
量を減らしていくことにより循環ガスフード7に導かれ
る前記混合排ガス中の水分を下げていき、焼結鉱の落下
強度に及ぼす影響をみた。低温ガス循環用排風機8のダ
ンパー開度100%の場合、低温高水分排ガスの水分は
16〜18%であり、循環ガスフード内で測定した混合
排ガスの水分は約9%となった。このときの焼結鉱の落
下強度は72〜73%であった。ダンパー開度を小さく
していくと図5に示したように混合排ガスの水分は低下
し、それにともなって焼結鉱の落下強度は上昇し、ダン
パー開度20%のとき混合排ガスの水分は約6.5%に
低下し、焼結鉱の落下強度は75〜76%に上昇した。
In this embodiment, in the above-described equipment configuration,
Moisture in the mixed exhaust gas guided to the circulating gas hood 7 by reducing the amount of low-temperature high-moisture exhaust gas circulation by gradually decreasing the damper opening of the low-temperature gas exhaust fan 8 from 100% to 20% The effect of sinter on drop strength was examined. When the opening degree of the damper of the low-temperature gas circulation exhaust fan 8 is 100%, the moisture of the low-temperature high-moisture exhaust gas is 16 to 18%, and the moisture of the mixed exhaust gas measured in the circulation gas hood is about 9%. At this time, the drop strength of the sintered ore was 72 to 73%. As the damper opening is reduced, the water content of the mixed exhaust gas decreases as shown in FIG. 5, and the drop strength of the sinter increases accordingly. When the damper opening is 20%, the water content of the mixed exhaust gas becomes approximately It dropped to 6.5% and the drop strength of the sinter increased to 75-76%.

【0034】なお、使用する原料鉱石の種類、粒度、配
合などが異なれば適正な造粒水分量は異なり、また吸引
する大気の湿度も季節、天候により変化するので、循環
排ガス中の水分も変化する。したがって本実施例では、
第1風箱群の分割位置を焼結機長の略30%の位置とし
たが、これに限るものではなく、循環排ガス中の水分に
応じて適宜その分割位置を変更しうるものである。
The appropriate amount of granulated water differs depending on the type, particle size, composition, etc. of the raw ore used, and the moisture in the circulating exhaust gas also changes because the humidity of the sucked air changes depending on the season and weather. I do. Therefore, in this embodiment,
Although the division position of the first wind box group is set to a position of about 30% of the sintering machine length, the division position is not limited to this, and the division position can be appropriately changed according to the moisture in the circulating exhaust gas.

【0035】以上のとおり、高水分排ガスを低水分排ガ
スと混合し一定の水分値以下として循環することによ
り、焼結鉱強度を低下させることなく排ガス循環量を増
加でき、排気ガス量を低減することが可能となった。
As described above, by mixing the high-moisture exhaust gas with the low-moisture exhaust gas and circulating it at a certain water value or less, the amount of exhaust gas circulation can be increased without lowering the strength of the sinter, and the amount of exhaust gas is reduced. It became possible.

【0036】(実施例2)図2は本発明(請求項4)に
よる排ガス循環方式焼結操業方法の実施に使用される焼
結機の概略説明図である。実施例1の設備構成のうち、
循環ガスダクトの構成のみを変更した。すなわち、循環
ガスダクト11Aと11Bは途中で結合されることな
く、それぞれ、循環ガスダクト11Aは複数の小さいダ
クトに分けられた後、循環ガスフード7の前半分(点火
炉入口を起点にして焼結機機長の略10%から略50%
までの部分)のみに接続され、循環ガスダクト11Bは
複数の小さいダクトに分けられた後、循環ガスフード7
の後半分(点火炉入口を起点にして焼結機機長の略50
%から略90%までの部分)のみに接続されている。こ
れにより、低温ガス循環用排風機からの低温の高水分ガ
スは焼結機の前半部のみに循環され、高温ガス循環用排
風機からの高温の低水分ガスは焼結機の後半部に循環さ
れる。
(Embodiment 2) FIG. 2 is a schematic explanatory view of a sintering machine used for carrying out an exhaust gas circulation type sintering operation method according to the present invention (claim 4). Of the equipment configuration of the first embodiment,
Only the configuration of the circulation gas duct was changed. That is, the circulating gas ducts 11A and 11B are not connected on the way, and the circulating gas duct 11A is divided into a plurality of small ducts. About 10% to about 50% of the captain
Circulating gas duct 11B is divided into a plurality of small ducts,
The second half of the sintering machine (approximately 50
% To approximately 90%). As a result, the low-temperature high-moisture gas from the low-temperature gas circulation exhaust fan is circulated only to the first half of the sintering machine, and the high-temperature low-moisture gas from the high-temperature gas circulation exhaust fan is circulated to the second half of the sintering machine. Is done.

【0037】本実施例では、上述の設備構成において、
低温ガス循環用排風機8のダンパー開度を100%とし
て操業を実施したところ、図6に示すように、実施例1
の低温ガス循環用排風機8のダンパー開度を100%と
して操業した期間(低温の高水分排ガスと高温の低水分
排ガスとを混合して循環ガスフード全体に吹き込んだ場
合)に比べて、焼結鉱の落下強度は72〜73%から7
4〜76%へと上昇した。したがって、低温ガス循環量
を減少させることなく(すなわち生産性を低下させるこ
となく)焼結鉱強度を改善できることを確認した。ま
た、図6の実施例1および実施例2の期間を通じて、排
気ガス量は、特開平5−43951号公報記載の従来法
よりさらに低減できることを確認した。
In this embodiment, in the above-described equipment configuration,
When the operation was performed with the damper opening of the low-temperature gas circulation exhaust 8 set to 100%, as shown in FIG.
Of the low-temperature gas circulation exhaust fan 8 with the damper opening being set to 100% (when low-temperature high-moisture exhaust gas and high-temperature low-moisture exhaust gas are mixed and blown into the entire circulating gas hood). Concentration drop strength from 72-73% to 7
It rose to 4-76%. Therefore, it was confirmed that the sinter strength could be improved without reducing the low-temperature gas circulation amount (that is, without lowering the productivity). Further, it was confirmed that the exhaust gas amount can be further reduced as compared with the conventional method described in Japanese Patent Application Laid-Open No. 5-43951 through the periods of Example 1 and Example 2 in FIG.

【0038】なお本実施例では、高水分排ガスを焼結機
機長の略50%までの前半部に、低水分排ガスを残りの
後半部に分けて吹き込んだが、これに限るものではな
く、前述した循環排ガス中の水分の変化や焼結機全体の
ガス量のバランスを考慮しながら適宜吹込み範囲を変更
しうるものである。例えば、高水分排ガスを焼結機機長
の略40%までの前部域に、低水分排ガスを残りの中後
部域に分けて吹き込んでもよい。あるいは高水分排ガス
を焼結機機長の略80%までの前中部域に吹込み、低水
分排ガスを残りの後部域のみでなく、循環ガスフード全
体に吹き込んでもよい。要するに、高水分ガスを焼結反
応の後期に吹き込まないようにすることにより、前述の
効果を得ることができるものである。
In this embodiment, the high-moisture exhaust gas is blown into the first half of the sintering machine up to about 50% of the length of the sintering machine, and the low-moisture exhaust gas is blown into the remaining second half of the sintering machine. However, the present invention is not limited to this. The blowing range can be appropriately changed in consideration of the change of the moisture in the circulating exhaust gas and the balance of the gas amount of the entire sintering machine. For example, high-moisture exhaust gas may be blown into the front region up to approximately 40% of the sintering machine length, and low-moisture exhaust gas may be blown into the remaining middle and rear regions. Alternatively, high-moisture exhaust gas may be blown into the front middle region up to about 80% of the length of the sintering machine, and low-moisture exhaust gas may be blown not only into the remaining rear region but also into the entire circulation gas hood. In short, the above-mentioned effect can be obtained by preventing the high-moisture gas from being blown into the latter stage of the sintering reaction.

【0039】以上より、高水分排ガスを焼結機の前中部
域に選択的に循環することにより、生産性を下げること
なく焼結鉱の強度を向上できるので、さらに高水分排ガ
スの循環ガス量を増加でき、排気ガス量をさらに低減し
て排気ガス処理の負荷を軽減できる。
As described above, the strength of the sintered ore can be improved without lowering the productivity by selectively circulating the high-moisture exhaust gas to the front middle region of the sintering machine. Can be increased, and the amount of exhaust gas can be further reduced to reduce the load of exhaust gas processing.

【0040】[0040]

【発明の効果】以上述べたように、本発明による排ガス
循環式焼結機操業方法によると、焼結の前半で生じる高
水分の排ガスを後半の低水分の排ガスと混合して一定の
水分値以下とすることにより、焼結鉱強度を低下させる
ことなく高水分排ガスの循環量を増加でき、その結果、
大気への排出ガス量が低減し、排ガス処理設備のコンパ
クト化など排ガス処理の負荷の軽減が可能となる。
As described above, according to the exhaust gas circulation type sintering machine operating method of the present invention, the high-moisture exhaust gas generated in the first half of sintering is mixed with the low-moisture exhaust gas in the second half to obtain a constant moisture value. By doing the following, it is possible to increase the circulation amount of the high-moisture exhaust gas without reducing the sinter strength, and as a result,
The amount of exhaust gas to the atmosphere is reduced, and it is possible to reduce the load of exhaust gas treatment such as downsizing of exhaust gas treatment equipment.

【0041】また、前記高水分の排ガスを焼結機の前中
部域に選択的に循環することにより、生産性を低下する
ことなく焼結鉱強度を上昇できるので、さらに高水分排
ガスの循環量を増加でき、より効率的に上記の効果を得
ることができる。
Further, by selectively circulating the high-moisture exhaust gas to the front middle region of the sintering machine, the sinter strength can be increased without lowering the productivity. Can be increased, and the above effect can be obtained more efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(請求項1〜2)による排ガス循環方式
焼結操業方法の実施に使用されるDL式焼結機の概略説
明図である。
FIG. 1 is a schematic explanatory view of a DL type sintering machine used for carrying out an exhaust gas circulation type sintering operation method according to the present invention (claims 1 and 2).

【図2】本発明(請求項3)による排ガス循環方式焼結
操業方法の実施に使用されるDL式焼結機の概略説明図
である。
FIG. 2 is a schematic explanatory view of a DL type sintering machine used for carrying out an exhaust gas circulation type sintering operation method according to the present invention (claim 3).

【図3】高水分ガス吸引時における燃焼部近傍の焼結鉱
中FeO含有量の分布を示す図である。
FIG. 3 is a diagram showing a distribution of FeO content in a sintered ore near a combustion part at the time of suction of high moisture gas.

【図4】前部域の風箱群の分割位置と前部域および後部
域の風箱群からの排ガスを混合した混合排ガスの水分と
の関係を示す図である。
FIG. 4 is a diagram illustrating a relationship between a division position of a wind box group in a front region and moisture of mixed exhaust gas obtained by mixing exhaust gas from a wind box group in a front region and a rear region.

【図5】低温ガス循環用排風機のダンパー開度と混合排
ガス水分および焼結鉱の落下強度との関係を示す図であ
る。
FIG. 5 is a diagram showing the relationship between the opening degree of a damper of the exhaust fan for low-temperature gas circulation, the moisture content of mixed exhaust gas, and the drop strength of sinter.

【図6】本発明例により操業を行った期間における焼結
鉱の落下強度を示す図である。
FIG. 6 is a graph showing the drop strength of a sintered ore during a period when the operation is performed according to the example of the present invention.

【図7】従来法による排ガス循環方式焼結操業方法の実
施に使用されるDL式焼結機の概略説明図である。
FIG. 7 is a schematic explanatory view of a DL-type sintering machine used for carrying out a conventional exhaust gas circulation type sintering operation method.

【符号の説明】[Explanation of symbols]

1…焼結機 2…移動パレット 3…原料供給装置 4
…焼結原料 5…点火炉 6A…第1風箱群 6B…第2風箱群 6
C…第3風箱群 7…循環ガスフード 8…低温ガス循環用排風機 9…高温ガス循環用排風機 10…主排風機 11A、11B…循環ガスダクト 12…集塵機 13
…煙突 14…焼結機の前部 15…焼結機の中後部 16…後
部域
DESCRIPTION OF SYMBOLS 1 ... Sintering machine 2 ... Moving pallet 3 ... Raw material supply device 4
... Sintering raw material 5 ... Ignition furnace 6A ... First wind box group 6B ... Second wind box group 6
C: third wind box group 7: circulating gas hood 8: exhaust fan for low-temperature gas circulation 9 ... exhaust fan for high-temperature gas circulation 10: main exhaust fan 11A, 11B: circulating gas duct 12: dust collector 13
... chimney 14 ... front of sintering machine 15 ... middle and rear of sintering machine 16 ... rear area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧 剛司 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 溝上 信夫 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 宮田 健士朗 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 沢山 宗義 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4K001 AA10 BA02 BA14 BA15 CA44 GA10 GB09 HA01 4K056 AA11 BA02 CA07 DB01 FA08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Maki 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Inside Kakogawa Steel Works Kakogawa Works (72) Inventor Nobuo Mizogami 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Corporation Inside the Steel Works Kakogawa Works (72) Inventor Kenshiro Miyata 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Inside Kobe Steel Works Kakogawa Works (72) Inventor Muneyoshi Sawayama 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Steel Co., Ltd. F-term in the Kakogawa Works (reference) 4K001 AA10 BA02 BA14 BA15 CA44 GA10 GB09 HA01 4K056 AA11 BA02 CA07 DB01 FA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焼結機の風箱群を焼結機長手方向に3分
割し、焼結機の前部域の風箱群からの排ガスと後部域の
風箱群からの排ガスを混合し、その混合排ガスを点火炉
後の焼結機のパレット上に循環させて行う排ガス循環方
式焼結操業方法において、前記排ガスの混合割合を調整
することにより前記混合排ガス中の水蒸気濃度を9容量
%(乾ガス基準)未満とすることを特徴とする排ガス循
環方式焼結操業方法。
1. A wind box group of a sintering machine is divided into three in the longitudinal direction of the sintering machine, and exhaust gas from a wind box group in a front area of the sintering machine and exhaust gas from a wind box group in a rear area of the sintering machine are mixed. In an exhaust gas circulation sintering operation method in which the mixed exhaust gas is circulated on a pallet of a sintering machine after the ignition furnace, the concentration of the exhaust gas is adjusted to 9% by volume by adjusting the mixing ratio of the exhaust gas. An exhaust gas circulation system sintering operation method characterized by being less than (dry gas standard).
【請求項2】 前記焼結機の点火炉入口から排鉱端に至
る長さを焼結機機長とすると、前記焼結機後部域は点火
炉入口を起点にして焼結機機長の略80%長さの位置か
ら排鉱端位置に至る焼結機部分であり、前記焼結機前部
域は点火炉入口より焼結機機長の略30%長さまでの位
置である請求項1に記載の排ガス循環方式焼結操業方
法。
2. Assuming that the length from the ignition furnace inlet of the sintering machine to the exhaust end is the sintering machine length, the rear area of the sintering machine starts at the ignition furnace inlet and has a length of approximately 80% of the sintering machine length. 2. A sintering machine part extending from the position of the sintering machine to the position of the end of the sintering machine, and the front part of the sintering machine is located at about 30% of the sintering machine length from the ignition furnace inlet. Exhaust gas circulation system sintering operation method.
【請求項3】 焼結機の風箱群を焼結機長手方向に分割
し、焼結で生じる排ガスの一部を循環させて操業を行う
排ガス循環方式焼結操業方法において、焼結機の風箱群
を焼結機長手方向に少なくとも2分割し、焼結機の前部
域の風箱群からの水蒸気を10容量%(乾ガス基準)以
上含有する排ガスを点火炉後の焼結機の前中部域のパレ
ット上に循環させることを特徴とする排ガス循環方式焼
結操業方法。
3. An exhaust gas circulation type sintering operation method in which a group of wind boxes of a sintering machine is divided in a longitudinal direction of the sintering machine and a part of exhaust gas generated by sintering is circulated for operation. The wind box group is divided into at least two in the longitudinal direction of the sintering machine, and the exhaust gas containing at least 10% by volume (on a dry gas basis) of steam from the wind box group in the front area of the sintering machine after the ignition furnace And circulating on a pallet in the front middle region of the method.
JP2000053803A 2000-02-29 2000-02-29 Exhaust gas circulation method sintering operation method Expired - Fee Related JP4054505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053803A JP4054505B2 (en) 2000-02-29 2000-02-29 Exhaust gas circulation method sintering operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053803A JP4054505B2 (en) 2000-02-29 2000-02-29 Exhaust gas circulation method sintering operation method

Publications (2)

Publication Number Publication Date
JP2001241863A true JP2001241863A (en) 2001-09-07
JP4054505B2 JP4054505B2 (en) 2008-02-27

Family

ID=18575134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053803A Expired - Fee Related JP4054505B2 (en) 2000-02-29 2000-02-29 Exhaust gas circulation method sintering operation method

Country Status (1)

Country Link
JP (1) JP4054505B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270202A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method and equipment for sintering operation by exhaust gas circulation method
JP2009523912A (en) * 2006-01-19 2009-06-25 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ Process for sintering in sintering equipment
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine
CN103884199A (en) * 2014-04-09 2014-06-25 中冶北方(大连)工程技术有限公司 Sintering exhaust gas emission reduction treatment process and system
CN104513897A (en) * 2014-12-19 2015-04-15 中南大学 Iron ore sintering method with ultrahigh-proportion flue gas circulation
CN104567405A (en) * 2014-12-01 2015-04-29 中冶长天国际工程有限责任公司 Method and device for controlling opening of auxiliary doors of bin
CN105063345A (en) * 2015-08-27 2015-11-18 中南大学 Control method of H2O (g) in sintering gas on high-proportion flue gas circulation condition
WO2016155267A1 (en) * 2015-03-27 2016-10-06 中国科学院过程工程研究所 Process and system for waste-heat staged recycling and pollutant emission reduction of sintering flue gases
CN109668444A (en) * 2018-12-26 2019-04-23 中天钢铁集团有限公司 A kind of sintering flue gas round-robin method and device
CN112569759A (en) * 2019-09-27 2021-03-30 江苏集萃冶金技术研究院有限公司 Sintering process based on coupling of flue gas pollutant emission reduction through sintering flue gas quality-divided circulation
CN112569758A (en) * 2019-09-27 2021-03-30 江苏集萃冶金技术研究院有限公司 Online denitration process for sintering flue gas
CN114427793A (en) * 2022-01-11 2022-05-03 北京科技大学 Sintering pollution-reducing and carbon-reducing system with alternating continuous circulation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072662B (en) * 2009-11-25 2013-04-03 东北大学 Integrative method and apparatus for waste heat recovery, flue gas treatment and porous sintering in sintering process
CN102168922B (en) * 2011-03-11 2014-06-04 东北大学 Device and method for efficiently recovering and utilizing waste heat resources in sintering process
CN103375997B (en) * 2012-04-28 2014-10-29 宝山钢铁股份有限公司 Method for regulating and controlling circulating flue-gas temperature and oxygen content
CN104748566B (en) * 2015-03-27 2016-10-05 钢铁研究总院 A kind of method of agglomeration for iron mine energy-saving and emission-reduction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523912A (en) * 2006-01-19 2009-06-25 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ Process for sintering in sintering equipment
JP2007270202A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method and equipment for sintering operation by exhaust gas circulation method
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine
CN103884199A (en) * 2014-04-09 2014-06-25 中冶北方(大连)工程技术有限公司 Sintering exhaust gas emission reduction treatment process and system
CN104567405B (en) * 2014-12-01 2016-10-05 中冶长天国际工程有限责任公司 A kind of feed bin auxiliary door aperture control method and device
CN104567405A (en) * 2014-12-01 2015-04-29 中冶长天国际工程有限责任公司 Method and device for controlling opening of auxiliary doors of bin
CN104513897A (en) * 2014-12-19 2015-04-15 中南大学 Iron ore sintering method with ultrahigh-proportion flue gas circulation
WO2016155267A1 (en) * 2015-03-27 2016-10-06 中国科学院过程工程研究所 Process and system for waste-heat staged recycling and pollutant emission reduction of sintering flue gases
US20170108275A1 (en) * 2015-03-27 2017-04-20 Insttute Of Process Engineering, Chinese Academy Of Sciences Process and system for waste heat grading cyclic utilization and pollutant emission reduction of sintering flue gas
CN105063345A (en) * 2015-08-27 2015-11-18 中南大学 Control method of H2O (g) in sintering gas on high-proportion flue gas circulation condition
CN109668444A (en) * 2018-12-26 2019-04-23 中天钢铁集团有限公司 A kind of sintering flue gas round-robin method and device
CN112569759A (en) * 2019-09-27 2021-03-30 江苏集萃冶金技术研究院有限公司 Sintering process based on coupling of flue gas pollutant emission reduction through sintering flue gas quality-divided circulation
CN112569758A (en) * 2019-09-27 2021-03-30 江苏集萃冶金技术研究院有限公司 Online denitration process for sintering flue gas
CN112569758B (en) * 2019-09-27 2022-08-23 江苏集萃冶金技术研究院有限公司 Online denitration process for sintering flue gas
CN112569759B (en) * 2019-09-27 2022-09-30 江苏集萃冶金技术研究院有限公司 Sintering process based on coupling of flue gas pollutant emission reduction through sintering flue gas quality-divided circulation
CN114427793A (en) * 2022-01-11 2022-05-03 北京科技大学 Sintering pollution-reducing and carbon-reducing system with alternating continuous circulation

Also Published As

Publication number Publication date
JP4054505B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP2001241863A (en) Exhaust gas circulating sintering operation method
CN101370948B (en) Process for sintering on a sintering machine
JP6005897B2 (en) Method for producing sintered ore
JP2001323326A (en) Sintering machine operating method
JP4910640B2 (en) Blast furnace operation method
EP0861908B1 (en) Method of manufacturing sintered ore and sintering machine therefor
CN1048758C (en) Sintered steel manufacturing process
JP2002121620A (en) Waste gas circulation type sintering operation method
JP3879408B2 (en) Method for producing sintered ore and sintered ore
KR101862152B1 (en) Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
JP2000328149A (en) Exhaust gas circulation type sintering method
JP3642027B2 (en) Blast furnace operation method
JPH08260062A (en) Production of sintered ore
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JPH09227958A (en) Operation of endless shifting type sintering machine and high-quality sintered ore
WO2022209013A1 (en) Reduced iron production method and reduced iron production device
KR101705055B1 (en) Processing method for raw material
JPH08100222A (en) Production of sintered ore
JPH07157766A (en) Method for supplying high-temperature carbonization hot gas to vertical type briquetted coke carbonization oven
CN2259246Y (en) External firing coal oxidized pellet ore shaft furnace
JPH11209827A (en) Production of sintered ore
JP5504654B2 (en) Molded coke manufacturing method
JPS6260829A (en) Two-stage-ignition sintering method for raw material for iron manufacture
JPH09209049A (en) Manufacture of sintered ore
SU1475947A1 (en) Method of extarnal heating of sinter cake charge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees