JP2001240854A - Organic luminescent material and organic luminescent element using the same organic luminescent material - Google Patents

Organic luminescent material and organic luminescent element using the same organic luminescent material

Info

Publication number
JP2001240854A
JP2001240854A JP2000054088A JP2000054088A JP2001240854A JP 2001240854 A JP2001240854 A JP 2001240854A JP 2000054088 A JP2000054088 A JP 2000054088A JP 2000054088 A JP2000054088 A JP 2000054088A JP 2001240854 A JP2001240854 A JP 2001240854A
Authority
JP
Japan
Prior art keywords
organic light
light emitting
organic
emitting material
organic luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000054088A
Other languages
Japanese (ja)
Other versions
JP2001240854A5 (en
Inventor
Akihiko Kanemoto
明彦 金本
Okitoshi Kimura
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000054088A priority Critical patent/JP2001240854A/en
Publication of JP2001240854A publication Critical patent/JP2001240854A/en
Publication of JP2001240854A5 publication Critical patent/JP2001240854A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material having a high luminescent quantum yield by reducing non-radiation deactivation form excitation state in an organic luminescent material, to provide a material having a high luminescent quantum yield by reducing non-radiation deactivation from excitation state in an organic luminescent material having a small speed constant of luminescence, to provide a material having a high luminescent quantum yield by reducing non-radiation deactivation from excitation state in an organic luminescent material containing a metal, to provide a material having a high luminescent quantum yield by reducing non-radiation deactivation from excitation state in an organic luminescent material containing a rare earth metal, and to provide a bright luminescent element having a high luminescent quantum yield by using the above luminescent material. SOLUTION: This organic luminescent material is characterized in that the wave number of vibration of molecule contained in the organic luminescent material does not contain >=2,500 intramolecular vibration in the organic luminescent emitting light by imparting energy. This organic luminescent element is obtained by using the above organic luminescent material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機発光材料およ
び該有機発光材料を使用した有機発光素子に関する。
[0001] The present invention relates to an organic light emitting material and an organic light emitting device using the organic light emitting material.

【0002】[0002]

【従来の技術】(1)特開平11−80165 特定の希土類錯体の配位子に水素原子を含まないものを
使う。配位子は水素原子全てをハロゲン置換したもの
や、水素を含まない置換基で置換したもの。 (2)特開平2−247620 N−メトキシメチル−4−ニトロアニリン分子結晶およ
びこれを重水素置換した結晶。非線型光学材料に関する
ものであって、発光材料および発光素子に関する本発明
とは目的が異なる。 (3)Sov.J.Coord.Chem.,18,1
83(1992) ベータジケトン配位子のフッ素置換によって水分子によ
る失活を防止するもの。
2. Description of the Related Art (1) Japanese Patent Application Laid-Open No. H11-80165 The ligand of a specific rare earth complex containing no hydrogen atom is used. The ligands are those in which all of the hydrogen atoms have been halogen-substituted or those which have been substituted with a substituent containing no hydrogen. (2) JP-A-2-247620 N-methoxymethyl-4-nitroaniline molecular crystal and a crystal obtained by substituting this with deuterium. The present invention relates to a non-linear optical material and has a different purpose from the present invention relating to a light emitting material and a light emitting element. (3) Sov. J. Coord. Chem. , 18 , 1
83 (1992) A compound capable of preventing inactivation by water molecules by fluorine substitution of a beta diketone ligand.

【0003】近年、機能性有機材料の発展がめざまし
く、従来無機材料がほとんであった電子的用途にも多く
の有機材料が使われるようになってきた。中でも有機発
光材料が市場にも出されるようになり、従来有機発光材
料の問題であった信頼性、耐久性なども向上が認められ
る。発光材料の中でも、電圧の印加によって発光させる
EL材料を例にとって比較してみると、有機EL材料は
無機EL材料に比較して低い電圧で発光させることが可
能で、携帯用機器に応用する場合、インバータなど効率
の悪い電圧変換素子を用いる必要が無く好ましい。さら
にある種類の有機EL材料では、70ルーメン/Wとい
う従来の発光素子の中でも最高レベルの発光効率が発表
されており、携帯用途だけでなく広く−般照明として用
いた場合には省エネルギーが期待できる。
[0003] In recent years, the development of functional organic materials has been remarkable, and many organic materials have come to be used for electronic applications where inorganic materials have been mostly used. Above all, organic light-emitting materials have come to the market, and improvements in reliability, durability, etc., which have been problems of organic light-emitting materials in the past, are recognized. Among EL materials, EL materials that emit light when voltage is applied are compared. Organic EL materials can emit light at a lower voltage than inorganic EL materials. This is preferable because it is not necessary to use an inefficient voltage conversion element such as an inverter. Further, as a certain kind of organic EL material, the highest level of luminous efficiency among conventional light emitting devices of 70 lumen / W has been announced, and energy saving can be expected when used not only for portable applications but also for general lighting. .

【0004】これら有機発光材料は、電圧印加による電
荷の注入や、紫外線あるいは可視光などの照射によって
発光させることが可能であるが、発光の効率を悪化させ
る根本的でかつ共通の原因としては、発光するべき励起
状態からの無輻射失活があげられる。無機発光材料にお
ける無輻射失活過程は、発光中心である金属原子と格子
振動とのカップリングによるとされている〔L.A.R
iesberg and H.W.Moos,.Ph
y.Rev.,174,429(1968)〕。
[0004] These organic light emitting materials can emit light by injecting electric charge by applying a voltage or irradiating ultraviolet light or visible light, but the fundamental and common causes for deteriorating the light emission efficiency are as follows. Non-radiative deactivation from the excited state to emit light. The non-radiative deactivation process in inorganic light-emitting materials is attributed to the coupling between metal atoms, which are luminescence centers, and lattice vibrations [L. A. R
iesberg and H.S. W. Moos,. Ph
y. Rev .. , 174, 429 (1968)].

【0005】一般に格子振動の振動数(波数ωで代用す
る)は数十〜数百cm−1と小さく、金属の励起状態と
失活先の状態のエネルギー差△Eが数千cm−1と大き
いことから、この無輻射失活の速度kdは小さくなる。
kdの近似式は以下の式(1)となる。
Generally, the frequency of the lattice vibration (substituted by the wave number ω) is as small as several tens to several hundred cm −1, and the energy difference ΔE between the excited state and the deactivated state of the metal is several thousand cm −1 . Since it is large, the rate of nonradiative deactivation kd becomes small.
The approximate expression of kd is the following expression (1).

【数1】 kd=kexp〔−k△E/(hcω)〕 ・・・・・(1) (式中、hはプランク定数、cは光速(cm/秒)、k
とkは格子構造に依存する正の定数である。) 前記kdの実測例では、Euについて500〜10,0
00/秒、Tbについて500〜3,000/秒という
値が報告されている〔J.L.Kropp and
M.W.Windsor,J.Chem.Phys.,
42,1599(1965)〕。ただし、この値は格子
振動とのカップリングだけでなく、その他の全ての失活
過程を含む速さであるが、第一次近似的にはこの失活の
速度と考えられる。
Kd = k 1 exp [−k 2 ΔE / (hcω)] (1) (where h is Planck's constant, c is the speed of light (cm / sec), k
l and k 2 is a positive constant which depends on the lattice structure. In the actual measurement example of kd, Eu is 500 to 10,0.
A value of 500 to 3,000 / sec has been reported for 00 / sec and Tb [J. L. Kropp and
M. W. Windsor, J .; Chem. Phys. ,
42 , 1599 (1965)]. However, this value is a speed that includes not only the coupling with the lattice vibration but also all other deactivation processes, and it can be considered to a first approximation that this deactivation speed.

【0006】[0006]

【発明が解決しようとする課題】1.有機発光材料にお
いて励起状態からの無輻射失活を低減し、発光量子収率
の高い材料の提供。 2.発光の速度定数が小さな有機発光材料においても、
励起状態からの無輻射失活を低減することにより、発光
量子収率の高い材料の提供。 3.金属を含む有機発光材料において励起状態からの無
輻射失活を低減し、発光量子収率の高い材料の提供。 4.希土類金属を含む有機発光材料において励起状態か
らの無輻射失活を低減し、発光量子収率の高い材料の提
供。 5.前記発光材料を用いた発光効率が高くて明るい発光
素子の提供。
[Problems to be Solved by the Invention] Provided is a material that has high emission quantum yield by reducing non-radiative deactivation from an excited state in an organic light emitting material. 2. Even in organic light-emitting materials with a small light emission rate constant,
Providing a material with high emission quantum yield by reducing non-radiative deactivation from an excited state. 3. Provided is a material that has high emission quantum yield by reducing non-radiative deactivation from an excited state in an organic light emitting material containing a metal. 4. Provided is a rare earth metal-containing organic light-emitting material that has high emission quantum yield by reducing non-radiative deactivation from an excited state. 5. Provided is a bright light emitting element having high luminous efficiency using the light emitting material.

【0007】[0007]

【課題を解決するための手段】有機発光材料は、分子内
に大きな振動数(波数)の振動を行う部分を有するもの
は、炭素−水素結合の場合には2900〜3100、ま
た、酸素−水素結合は速い失活の原因となる可能性があ
る。有機分子内の振動の波数が大きいものは、ほとんど
の場合、水素と他の原子との間の伸縮振動であり、例え
ば炭素−水素結合の場合には2900〜3100、ま
た、酸素−水素結合の場合には3000〜3500であ
る。したがって、前記のような振動数(波数)の振動を
行う部分を発光材料が持たないようにすれば、分子内に
大きな振動数(波数)の振動を含まないために、光を発
光するべく励起された状態からの無輻射失活を低減する
ことが可能となり、発光効率の高い材料を得ることがで
きた。すなわち、本発明の第1は、有機発光材料内に前
記のような大きい分子の振動の波数、特に2500cm
−1以上の分子内振動を含まないことを特徴とする無輻
射失活を低減したエネルギーの付与により発光する有機
発光材料にある。
The organic light-emitting material having a portion that vibrates at a large frequency (wave number) in the molecule is 2900 to 3100 in the case of a carbon-hydrogen bond, and oxygen-hydrogen. Binding can cause fast deactivation. In most cases, the wave number of vibration in an organic molecule is a stretching vibration between hydrogen and another atom. For example, in the case of a carbon-hydrogen bond, 2900 to 3100, In this case, it is 3000 to 3500. Therefore, if the light emitting material does not have a portion that vibrates at the frequency (wave number) as described above, the molecule does not include vibration at a high frequency (wave number), so that excitation is performed to emit light. It is possible to reduce the non-radiative deactivation from the state of being performed, and to obtain a material having high luminous efficiency. That is, the first aspect of the present invention is that, in the organic light emitting material, the wave number of vibration of a large molecule as described above, particularly 2500 cm
An organic light-emitting material that emits light by application of energy with reduced radiationless deactivation, characterized in that it does not contain −1 or more intramolecular vibrations.

【0008】発光の収率φは失活速度kdと速度定数k
rで決まり下記式(2)のように表される。失活速度は
振動とのカップリングだけで起こるとは限らないが、化
学反応でも起こらないかぎり良い近似と考えられる。
The luminescence yield φ depends on the deactivation rate kd and the rate constant k
It is determined by r and is represented by the following equation (2). Although the deactivation rate does not always occur only by coupling with vibration, it is considered to be a good approximation unless it occurs even by a chemical reaction.

【数2】 φ=kr/(kd+kr) ・・・・・(2) また、前記速度定数krは下記式(3)のように表さ
れ、従来の有機発光材料は、発光材料が有機化合物であ
る場合、krの範囲は概略10,000,000〜1,
000,000,000/秒であり、金属が発光するタ
イプの有機発光材料である場合、krの範囲は概略10
0〜1,000,000,000/秒である。
[Formula 2] φ = kr / (kd + kr) (2) Further, the rate constant kr is represented by the following equation (3). In some cases, the range of kr is approximately 10,000,000 to 1,
In the case of an organic light emitting material of a type that emits light at a rate of, 000,000,000,000 / sec, the range of kr is approximately 10
0 to 1,000,000,000,000 / sec.

【数3】 kr=φ/τ ・・・・・(3) 〔前式中、φは発光の量子収率、τは発光の寿命をそれ
ぞれ表し、前記φとτは、それぞれ実測できる量であ
る。〕
Kr = φ / τ (3) [where, φ represents the quantum yield of light emission, τ represents the lifetime of light emission, and φ and τ are the amounts that can be actually measured. is there. ]

【0009】前式(2)から理解できるように、発光の
収率φを大きくするためには、無輻射失活を抑制、特に
発光の速度定数krが小さい場合には、無輻射失活を極
力抑制する必要があり、また、発光材料が有機化合物で
ある有機発光材料の方が、金属が発光するタイプの有機
発光材料に比較して、十分に発光収率の大きな有機発光
材料を得ることは容易である。無輻射失活を低減した本
発明の前記第1の有機発光材料においては、発光の速度
定数krが100,000/秒以下であっても十分な発
光収率の有機発光材料を得ることができる。すなわち、
本発明の第2は、発光の速度定数krが100,000
/秒以下である前記第1の有機発光材料にある。
As can be understood from the equation (2), in order to increase the yield φ of light emission, non-radiative deactivation is suppressed. In particular, when the rate constant kr of light emission is small, non-radiative deactivation is suppressed. It is necessary to suppress as much as possible, and an organic light-emitting material in which the light-emitting material is an organic compound is to obtain an organic light-emitting material having a sufficiently high light-emission yield as compared with an organic light-emitting material in which a metal emits light Is easy. In the first organic light-emitting material of the present invention in which non-radiative deactivation is reduced, an organic light-emitting material having a sufficient light emission yield can be obtained even when the light emission rate constant kr is 100,000 / sec or less. . That is,
The second aspect of the present invention is that the light emission rate constant kr is 100,000.
/ Sec or less in the first organic light emitting material.

【0010】無輻射失活を低減した有機発光材料として
は、無輻射失活を低減した金属を含む耐久性と発光効率
の両方に優れた有機発光材料であっても良い。すなわ
ち、本発明の第3は、有機物を構成する成分として、金
属を含むことを特徴とする前記第1〜2の有機発光材料
にある。
The organic light emitting material having reduced non-radiative deactivation may be an organic light emitting material containing a metal having reduced non-radiative deactivation and having both excellent durability and luminous efficiency. That is, the third aspect of the present invention resides in the first and second organic light-emitting materials, wherein a metal is contained as a component constituting an organic substance.

【0011】前記金属を含む有機発光材料で、発光中心
が金属である場合、発光に伴う遷移が禁制遷移であれば
発光の速度定数krは数百程度の場合も多い。特に現在
注目されている希土類金属の禁制遷移では、100/秒
という小さなものもある。この場合には配位した有機分
子の分子内振動とのカップリングが大きい場合には、ほ
とんど発光せずに失活してしまうことになるが、前記第
1の手段を採用して無輻射失活を低減することにより、
十分な発光収率を得ることができる。すなわち、本発明
の第4は、発光中心が金属であり、該金属に有機配位子
が配位した構造であることを特徴とする前記第3の有機
発光材料にある。本発明の第5は、金属が希土類金属で
あることを特徴とする前記第3〜4の有機発光材料にあ
る。
When the emission center is a metal in the organic light-emitting material containing a metal, the rate constant kr of light emission is often about several hundred if the transition accompanying light emission is a forbidden transition. In particular, forbidden transitions of rare earth metals that are currently attracting attention are as small as 100 / sec. In this case, when the coupling between the coordinated organic molecule and the intramolecular vibration is large, the organic molecule is almost completely deactivated without emitting light. By reducing activity,
A sufficient luminescence yield can be obtained. That is, a fourth aspect of the present invention is the third organic luminescent material, wherein the luminescent center is a metal, and the organic ligand is coordinated to the metal. A fifth aspect of the present invention is the third or fourth organic light emitting material, wherein the metal is a rare earth metal.

【0012】前記各有機発光材料において、有機発光材
料内に2500cm−1以上の分子内振動を含まないよ
うにし、無輻射失活を低減する手段としては、有機発光
材料の水素原子を重水素置換する手段が挙げられる。従
来の一般的有機材料では、該材料中に水素原子を含まな
いようにすることは困難であるが、本発明においては、
前記第1〜5の有機発光材料の水素原子を重水素置換す
ることにより、有機発光材料内に2500cm−1以上
の分子内振動を含まないようにすることができる。すな
わち、本発明の第6は、前記第1〜5の有機発光材料の
水素原子を重水素置換した有機発光素子にある。
In each of the organic light-emitting materials, means for preventing intramolecular vibration of 2500 cm −1 or more from being contained in the organic light-emitting material and reducing non-radiative deactivation include replacing hydrogen atoms of the organic light-emitting material with deuterium. Means. In conventional general organic materials, it is difficult to avoid hydrogen atoms in the material, but in the present invention,
By substituting the hydrogen atoms of the first to fifth organic light emitting materials with deuterium, it is possible to prevent the organic light emitting material from having an intramolecular vibration of 2500 cm −1 or more. That is, the sixth aspect of the present invention resides in an organic light emitting device in which hydrogen atoms of the first to fifth organic light emitting materials are replaced with deuterium.

【0013】前記公知例の特開平11−80165に
は、特定の希土類金属錯体の配位子の水素原子を全てハ
ロゲン原子で置換した化学構造の基を用いるという開示
があるが、配位子の水素原子を全てハロゲン原子で置換
した場合、配位子の化学的性質は置換する前の配位子と
は全く異なった性質になるのが普通であり、水素原子を
持った普通の材料を合成してからハロゲン原子で置換す
る場合には、材料の性質を予測するのが難しくなる。更
に全ての水素原子をハロゲン原子で置換した場合には、
配位子の金属に対する配位力が大きく変化するため、発
光波長の変化が大きかったり、発光の速度定数krが大
きく変化したりするので、これもまた特性の予測が困難
となる。これに対して、本発明のように水素を重水素原
子で置換した場合には、有機発光材料の配位子の化学的
性質は実質的に変化せず、また、重水素置換した後の有
機発光材料の特性を予測することも簡単である。
Japanese Patent Application Laid-Open No. H11-80165 discloses the use of a group having a chemical structure in which all of the hydrogen atoms of a ligand of a specific rare earth metal complex are replaced with halogen atoms. When all of the hydrogen atoms are replaced with halogen atoms, the chemical properties of the ligand are usually completely different from those of the ligand before replacement, and ordinary materials with hydrogen atoms are synthesized. Substitution with a halogen atom after that makes it difficult to predict the properties of the material. Further, when all hydrogen atoms are replaced with halogen atoms,
Since the coordination force of the ligand to the metal greatly changes, the emission wavelength greatly changes, and the emission rate constant kr also changes greatly, which also makes it difficult to predict the characteristics. On the other hand, when hydrogen is replaced by a deuterium atom as in the present invention, the chemical properties of the ligand of the organic light emitting material do not substantially change, and the organic substance after the deuterium replacement is not used. It is also easy to predict the properties of the light emitting material.

【0014】有機発光材料の水素を重水素置換する場
合、有機発光材料の水素を必ずしも全部を置換する必要
はなく、目的とする発光収率が得られれば部分的な置換
であっても良い。発光中心が金属原子である場合、該金
属原子周辺あるいは近接した部分の水素原子は全て重水
素置換される必要がある。重水素としては、二重水素、
三重水素の双方が使用できる。
When hydrogen in the organic light emitting material is replaced with deuterium, it is not always necessary to completely replace hydrogen in the organic light emitting material, and partial replacement may be performed as long as a desired emission yield is obtained. When the luminescence center is a metal atom, all hydrogen atoms around or adjacent to the metal atom need to be deuterated. As deuterium, double hydrogen,
Both tritium can be used.

【0015】本発明の有機発光材料は、外部からいろい
ろなエネルギーを与えることにより発光する。エネルギ
ーとしては、たとえば、電流、熱、光、電子線の照射等
が挙げられる。
The organic light emitting material of the present invention emits light when various energy is externally applied. Examples of the energy include current, heat, light, and irradiation of an electron beam.

【0016】[0016]

【実施例】実施例1 従来の材料を用い、電圧印加で発光するような有機発光
素子を作製した。透明電極付きガラス基板の上に正孔輸
送層であるN,N′−ジフェニル−N,N′−ビス(3
メチルフェニル)−1,1′−ビフェニル−4,4′−
ジアミン(以下TPDと略す)を60nm蒸着した。つ
ぎに発光材料としてジシアノメチレンピラン系化合物
(以下CMPと略す)とクマリン系化合物を50nm共
蒸着した。CMPとクマリン系化合物の重量比は1:8
であった。次に電子輸送層としてアルミニウムキノレー
ト(以下Alqと略す)を25nm蒸着し、その上に銀
とマグネシウムを150nm共蒸着した。このようにし
て作製した発光素子は赤い光を発し、1cmあたり3
0mAの電流を流したときの発光の外部量子収率は0.
010であった。次に重水素置換したCMPとクマリン
系化合物を用いて同様の発光素子を作製して、同じ電流
を流したときの発光の外部量子収率は0.015であっ
た。重水素置換した発光材料と置換していない発光材料
を、上記と同様の蒸着法で弗化カルシウム上に多量に作
製し、これの赤外吸収スペクトルを測定したところ、重
水素置換したほうのサンプルには2500cm−1以上
の波数の吸収は見られなかった。
Example 1 An organic light-emitting device which emits light by applying a voltage was manufactured using a conventional material. On a glass substrate with a transparent electrode, a hole transport layer, N, N'-diphenyl-N, N'-bis (3
Methylphenyl) -1,1'-biphenyl-4,4'-
Diamine (hereinafter abbreviated as TPD) was deposited to a thickness of 60 nm. Next, a dicyanomethylenepyran-based compound (hereinafter abbreviated as CMP) and a coumarin-based compound were co-evaporated as a light-emitting material to a thickness of 50 nm. The weight ratio of CMP to coumarin compound is 1: 8.
Met. Next, aluminum quinolate (hereinafter abbreviated as Alq) was deposited to a thickness of 25 nm as an electron transport layer, and silver and magnesium were co-deposited thereon to a thickness of 150 nm. The light emitting device thus manufactured emits red light and emits 3 light per 1 cm 2.
When a current of 0 mA flows, the external quantum yield of light emission is 0.1.
010. Next, a similar light-emitting element was manufactured using deuterated CMP and a coumarin-based compound, and the external quantum yield of light emission when the same current was applied was 0.015. A large amount of the light-emitting material that had been replaced with deuterium and the light-emitting material that had not been replaced were prepared on calcium fluoride by the same vapor deposition method as above, and the infrared absorption spectrum of the material was measured. Did not show absorption at a wave number of 2500 cm -1 or more.

【0017】前記結果は以下のようにして理解できる。
CMPとクマリン系化合物に含まれる炭素−水素結合の
伸縮振動の波数は、2500〜3000cm−1程度と
なるが、このような大きな波数の振動は発光部の無輻射
失活の原因となる。水素原子は最も軽い元素であるため
に、このように大きな波数の伸縮振動となる。しかしな
がら炭素−水素結合を持たない有機物はほとんど存在し
ないので、これを防止するのは困難であるが、水素原子
を重水素置換すればこの振動の波数は大きく低下する。
重水素置換によってこの伸縮振動の波数は70%に低下
し、1700〜2100cm−1になった。重水素置換
を行っても一般に化合物の化学的性質は変化しないの
で、最初から高価な重水素置換した材料で合成を行わな
くても、できた発光材料の化学的性質を確認することに
より、置換した場合の性質を予測することが可能であ
る。
The above results can be understood as follows.
The wave number of the stretching vibration of the carbon-hydrogen bond contained in CMP and the coumarin-based compound is about 2500 to 3000 cm −1, and such a large wave number vibration causes non-radiative deactivation of the light emitting part. Since the hydrogen atom is the lightest element, the stretching vibration has such a large wave number. However, since there is almost no organic substance having no carbon-hydrogen bond, it is difficult to prevent this. However, if hydrogen atoms are replaced with deuterium, the wave number of this vibration is greatly reduced.
By the deuterium substitution, the wave number of this stretching vibration was reduced to 70%, and became 1700 to 2100 cm −1 . Even when deuterium substitution is performed, the chemical properties of the compound generally do not change.Therefore, even if synthesis is not performed using expensive deuterium-substituted materials from the beginning, by confirming the chemical properties of the resulting luminescent material, substitution can be performed. It is possible to predict the nature of the case.

【0018】実施例2 発光材料としてTb(III)正イオンに臭化ピラゾリル
負イオンを3配位させ、カウンターイオンとしてCF
SO を使った材料を用意した。正孔移動層材料およ
び電子移動材料としては各々ポリビニルカルバゾールと
2−(4−ビフェニリル)−5−(5−ターシャリブチ
ルベンゼン)−1,3,4−オキサジアゾール(以下B
BOと略す)を用意し、これらを乾燥窒素雰囲気下でT
HFに溶解した。発光材料、正孔移動材料、電子移動材
料の重量比は1:4:4であった。ここで用いている発
光材料に含まれるTbは希土類金属であり、発光中心が
配位した有機化合物ではなく、金属原子であることが知
られている。Alなどと有機化合物の錯体では、有機化
合物のみの発光材料よりも発光効率や耐久性が高いもの
が多いが、特に希土類金属を用いたものでは効率と耐久
性の両方が優れている。
Example 2 Pyrazolyl bromide negative ion is coordinated with Tb (III) positive ion as a light emitting material, and CF 3 is used as a counter ion.
A material using SO 3 was prepared. Polyvinylcarbazole and 2- (4-biphenylyl) -5- (5-tert-butylbenzene) -1,3,4-oxadiazole (hereinafter B)
BO) and prepare them under dry nitrogen atmosphere.
Dissolved in HF. The weight ratio of the light emitting material, the hole transfer material, and the electron transfer material was 1: 4: 4. Tb contained in the light emitting material used here is a rare earth metal, and it is known that the light emitting center is not an organic compound coordinated but a metal atom. In many cases, a complex of Al and an organic compound has a higher luminous efficiency and durability than a light-emitting material containing only an organic compound. In particular, a complex using a rare-earth metal is superior in both efficiency and durability.

【0019】金属に配位した有機化合物が励起され、こ
のエネルギーが金属に移動して金属が発光する場合、原
理的には励起エネルギーは全て発光される可能性がある
が、有機分子が発光する場合には励起されたエネルギー
の1/4しか発光できない。これは励起された有機分子
が生成する場合、最低励起一重項と最低励起三重項が
1:3の割合になり、発光する可能性があるのは最低励
起一重項のみであるからである。次にこの混合溶液を、
透明電極つきガラスの上にスピンコート、乾燥し、Mg
とAlをこの順番で蒸着した。このようにして構成した
発光素子に電流を流したところ、緑色の発光が認められ
た。発光の内部量子収率は0.4、発光の速度定数は2
00/秒であった。発光材料のピラゾリル環に直接結合
している水素、およびピラゾリル環に結合している置換
基の全ての水素を重水素置換して同様の発光素子を構成
したところ、発光の内部量子収率は0.6に向上した。
発光の速度定数は測定誤差内で変化はなかった。発光の
速度定数が変化しなくても発光の内部量子収率が向上し
たのは、式(3)において失活の速度定数kdが重水素
置換によって小さくなったためである。
When an organic compound coordinated to a metal is excited, and this energy is transferred to the metal, the metal emits light. In principle, all of the excitation energy may be emitted, but the organic molecule emits light. In this case, only 1 / of the excited energy can be emitted. This is because when excited organic molecules are generated, the lowest excited singlet and the lowest excited triplet have a ratio of 1: 3, and only the lowest excited singlet can emit light. Next, this mixed solution is
Spin coat on glass with transparent electrode, dry,
And Al were deposited in this order. When a current was applied to the light-emitting element thus configured, green light was emitted. The internal quantum yield of light emission is 0.4 and the rate constant of light emission is 2
00 / sec. When a hydrogen atom directly bonded to the pyrazolyl ring of the light-emitting material and all the hydrogen atoms of the substituents bonded to the pyrazolyl ring were replaced with deuterium, a similar light-emitting element was constructed. .6.
The luminescence rate constant did not change within the measurement error. The reason why the internal quantum yield of light emission is improved even when the light emission rate constant does not change is that the deactivation rate constant kd in Equation (3) is reduced by deuterium substitution.

【0020】実施例3 発光材料の金属イオンをCeに変え、実施例2と同様の
発光素子を作製した。正孔輸送材料、電子移動材料、お
よび電極材料は同じものを用いた。素子に電流を流した
ところ、青色の発光が認められた。発光の内部量子収率
は0.9、発光の速度定数は1,800,000/秒で
あった。次にピラゾリル環に直接結合している水素、お
よびピラゾリル環に結合している置換基の全ての水素を
重水素置換して同様の発光素子を作製し発光させて測定
したところ、発光の内部量子収率と発光の速度定数には
変化が見られなかった。この場合、発光の速度定数が非
常に大きいために、配位した有機化合物の振動の影響か
ら起こる無輻射失活の寄与が、重水素置換する前でも既
に充分小さいためとして理解できる。Ceイオンの発光
遷移は許容遷移であるためにこのように発光の速度定数
が大きくなっているが、Tbイオンではスピン禁制でか
つパリティ禁制であるためにその値は200/秒程度の
小さな値となる。スピンまたはパリティ禁制則の片側だ
けがなりたつ場合の発光の速度定数の大きさは100,
000/秒であるが、この程度の発光速度定数の場合ま
で重水素置換の効果が期待できる。
Example 3 A light-emitting device similar to that of Example 2 was manufactured by changing the metal ion of the light-emitting material to Ce. The same hole transport material, electron transfer material, and electrode material were used. When a current was applied to the device, blue light emission was observed. The internal quantum yield of light emission was 0.9, and the rate constant of light emission was 1,800,000 / sec. Next, hydrogen was directly bonded to the pyrazolyl ring, and all the hydrogens of the substituents bonded to the pyrazolyl ring were replaced with deuterium. No change was observed in the yield and the rate constant of the luminescence. In this case, it can be understood that the contribution of nonradiative deactivation caused by the influence of vibration of the coordinated organic compound is already sufficiently small even before the deuterium substitution, because the emission rate constant is very large. Since the emission transition of Ce ion is an allowable transition, the emission rate constant is large as described above. However, since the Tb ion is spin-forbidden and parity-forbidden, its value is as small as about 200 / sec. Become. When only one side of the spin or parity forbidden rule exists, the magnitude of the emission rate constant is 100,
Although it is 000 / sec, the effect of the deuterium substitution can be expected up to the case of such a light emission rate constant.

【0021】実施例4 実施例2において、発光材料のみをTHFに溶解し、酸
素や水を含まないままの状態で紫外線照射した場合の発
光量子収率と発光の速度定数の比較を行った。
Example 4 In Example 2, only the luminescent material was dissolved in THF, and the luminescence quantum yield and the luminescence rate constant were compared when irradiating ultraviolet rays without containing oxygen or water.

【0022】[0022]

【表1】 重水素置換した場合に量子効率が向上しており、紫外線
照射による発光収率に対しても、重水素置換の効果を確
認することができた。
[Table 1] The quantum efficiency was improved when deuterium substitution was performed, and the effect of deuterium substitution could be confirmed also on the luminescence yield by ultraviolet irradiation.

【0023】[0023]

【効果】1.請求項1〜2 分子内に大きな振動数(波数)の振動を含まないため
に、光を発光するべく励起された状態からの無輻射失活
を低減することが可能となり、発光効率の高い材料を得
ることができた。 2.請求項3 発光の速度定数が100,000/秒以下であっても、
有機発光材料の分子内振動の影響による無輻射失活を低
減させることが可能となり、発光効率の高い材料を得る
ことができた。 3.請求項4 金属を含む材料を用いることにより、耐久性と発光効率
の両方に優れた有機発光材料を得ることができた。 4.請求項5 発光中心が金属であるために、励起されたエネルギーを
高効率で利用することが可能となり、発光効率の高い発
光材料を得ることができた。 5.請求項6 金属を含む有機発光材料において、発光中心を希土類金
属とすることにより、励起されたエネルギーを高効率で
利用することが可能となり、発光効率の高い発光材料を
得ることができた。 6.請求項7〜9 分子内振動の波数を低下させ、この振動の影響による無
輻射失活を低減させることによって、発光効率の高い材
料を得ることができた。 7.請求項10〜14 無輻射失活を低減することによって高効率の発光材料を
得て、この材料を用いた発光素子を構成したために、発
光効率が高く、明るい発光素子を得ることができた。
[Effect] 1. Claims 1 and 2 Since a molecule having no large frequency (wave number) is included in a molecule, it is possible to reduce non-radiative deactivation from a state excited to emit light, and a material having high luminous efficiency. Could be obtained. 2. Claim 3 Even if the light emission rate constant is 100,000 / sec or less,
Non-radiative deactivation due to the influence of intramolecular vibration of the organic light emitting material can be reduced, and a material having high luminous efficiency can be obtained. 3. Claim 4 By using a material containing a metal, an organic light emitting material excellent in both durability and luminous efficiency could be obtained. 4. Claim 5 Since the luminescent center is a metal, the excited energy can be used with high efficiency, and a luminescent material with high luminous efficiency can be obtained. 5. Claim 6 In the organic light emitting material containing a metal, by using a rare earth metal as the light emission center, it is possible to use the excited energy with high efficiency, and to obtain a light emitting material with high light emission efficiency. 6. Claims 7 to 9 By reducing the wave number of intramolecular vibration and reducing non-radiative deactivation due to the influence of this vibration, a material having high luminous efficiency could be obtained. 7. Claims 10 to 14 Since a high-efficiency light-emitting material is obtained by reducing non-radiative deactivation, and a light-emitting element using this material is formed, a bright light-emitting element with high luminous efficiency can be obtained.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 エネルギーの付与により発光する有機発
光材料において、有機発光材料に含まれる分子の振動の
波数が2500cm−1以上の分子内振動を含まないこ
とを特徴とする有機発光材料。
1. An organic light-emitting material which emits light by the application of energy, wherein the organic light-emitting material does not include intramolecular vibration in which the number of vibrations of molecules contained in the organic light-emitting material is 2500 cm −1 or more.
【請求項2】 炭素−水素結合および/または酸素−水
素結合を有しないことを特徴とする請求項1記載の有機
発光材料。
2. The organic light emitting material according to claim 1, wherein the material does not have a carbon-hydrogen bond and / or an oxygen-hydrogen bond.
【請求項3】 有機発光材料の発光の速度定数krが1
00,000/秒以下であることを特徴とする請求項1
または2記載の有機発光材料。
3. An organic light emitting material having a light emission rate constant kr of 1
2. The method according to claim 1, wherein the speed is not more than 00,000 / sec.
Or the organic light-emitting material according to 2.
【請求項4】 金属を含むことを特徴とする請求項1〜
3のいずれかに記載の有機発光材料。
4. The method according to claim 1, further comprising a metal.
3. The organic light emitting material according to any one of 3.
【請求項5】 発光中心が金属であり、該金属に有機配
位子が配位した構造であることを特徴とする請求項4記
載の有機発光材料。
5. The organic luminescent material according to claim 4, wherein the luminescent center is a metal and has a structure in which an organic ligand is coordinated with the metal.
【請求項6】 金属が希土類金属であることを特徴とす
る請求項4または5記載の有機発光材料。
6. The organic light emitting material according to claim 4, wherein the metal is a rare earth metal.
【請求項7】 有機発光材料の水素原子が重水素置換さ
れていることを特徴とする請求項1〜6のいずれかに記
載の有機発光材料。
7. The organic light emitting material according to claim 1, wherein a hydrogen atom of the organic light emitting material is substituted with deuterium.
【請求項8】 水素原子が部分的に重水素置換されてい
ることを特徴とする請求項7記載の有機発光材料。
8. The organic light emitting material according to claim 7, wherein a hydrogen atom is partially substituted with deuterium.
【請求項9】 発光中心の金属周辺の全水素原子が、重
水素置換されていることを特徴とする請求項8記載の有
機発光材料。
9. The organic luminescent material according to claim 8, wherein all hydrogen atoms around the metal at the luminescent center are substituted with deuterium.
【請求項10】 請求項1〜9のいずれかに記載の有機
発光材料を用いたことを特徴とする有機発光素子。
10. An organic light emitting device using the organic light emitting material according to claim 1.
【請求項11】 熱により発光することを特徴とする請
求項10記載の有機発光素子。
11. The organic light emitting device according to claim 10, wherein light is emitted by heat.
【請求項12】 光により発光することを特徴とする請
求項10記載の有機発光素子。
12. The organic light emitting device according to claim 10, wherein the organic light emitting device emits light by light.
【請求項13】 電子線により発光することを特徴とす
る請求項10記載の有機発光素子。
13. The organic light emitting device according to claim 10, wherein light is emitted by an electron beam.
【請求項14】 電流により発光することを特徴とする
請求項10記載の有機発光素子。
14. The organic light emitting device according to claim 10, wherein light is emitted by an electric current.
JP2000054088A 2000-02-29 2000-02-29 Organic luminescent material and organic luminescent element using the same organic luminescent material Pending JP2001240854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054088A JP2001240854A (en) 2000-02-29 2000-02-29 Organic luminescent material and organic luminescent element using the same organic luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054088A JP2001240854A (en) 2000-02-29 2000-02-29 Organic luminescent material and organic luminescent element using the same organic luminescent material

Publications (2)

Publication Number Publication Date
JP2001240854A true JP2001240854A (en) 2001-09-04
JP2001240854A5 JP2001240854A5 (en) 2005-07-28

Family

ID=18575388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054088A Pending JP2001240854A (en) 2000-02-29 2000-02-29 Organic luminescent material and organic luminescent element using the same organic luminescent material

Country Status (1)

Country Link
JP (1) JP2001240854A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067632A1 (en) * 2001-02-21 2002-08-29 Matsushita Electric Industrial Co., Ltd. Luminous element and method for preparation thereof
WO2003022857A1 (en) * 2001-09-07 2003-03-20 Kansai Technology Licensing Organization Co., Ltd. Rare-earth complex and photofunctional material and luminescent device each employing the same
WO2005000787A1 (en) * 2003-06-27 2005-01-06 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US7173131B2 (en) 2003-06-27 2007-02-06 Canon Kabushiki Kaisha Anthryl derivative group substituted compound, and organic luminescent device making use of same
US8102116B2 (en) * 2008-12-19 2012-01-24 Canon Kabushiki Kaisha Organic light-emitting device
JP2012513688A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Long-life electronic devices
JP2013216667A (en) * 2010-01-26 2013-10-24 Hodogaya Chem Co Ltd Compound having triphenylamine structure, and organic electroluminescent element
JP2016076700A (en) * 2014-10-06 2016-05-12 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent material and device
KR20210031101A (en) * 2019-09-11 2021-03-19 주식회사 엘지화학 Method for selecting materials for organic light emitting device
JP2021519803A (en) * 2018-07-27 2021-08-12 エルジー・ケム・リミテッド New compounds and organic light emitting devices using them
US11937504B2 (en) 2007-05-18 2024-03-19 Udc Ireland Limited Organic electroluminescent device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083863B2 (en) 2001-02-21 2006-08-01 Matsushita Electric Industrial Co., Ltd. Luminous element and method for preparation thereof
WO2002067632A1 (en) * 2001-02-21 2002-08-29 Matsushita Electric Industrial Co., Ltd. Luminous element and method for preparation thereof
WO2003022857A1 (en) * 2001-09-07 2003-03-20 Kansai Technology Licensing Organization Co., Ltd. Rare-earth complex and photofunctional material and luminescent device each employing the same
WO2005000787A1 (en) * 2003-06-27 2005-01-06 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US7173131B2 (en) 2003-06-27 2007-02-06 Canon Kabushiki Kaisha Anthryl derivative group substituted compound, and organic luminescent device making use of same
US7309533B2 (en) 2003-06-27 2007-12-18 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
US7375250B2 (en) 2003-06-27 2008-05-20 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US11937504B2 (en) 2007-05-18 2024-03-19 Udc Ireland Limited Organic electroluminescent device
US8102116B2 (en) * 2008-12-19 2012-01-24 Canon Kabushiki Kaisha Organic light-emitting device
JP2012513688A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Long-life electronic devices
JP2013216667A (en) * 2010-01-26 2013-10-24 Hodogaya Chem Co Ltd Compound having triphenylamine structure, and organic electroluminescent element
JP2016076700A (en) * 2014-10-06 2016-05-12 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent material and device
JP2021519803A (en) * 2018-07-27 2021-08-12 エルジー・ケム・リミテッド New compounds and organic light emitting devices using them
JP7102679B2 (en) 2018-07-27 2022-07-20 エルジー・ケム・リミテッド New compounds and organic light emitting devices using them
KR20210031101A (en) * 2019-09-11 2021-03-19 주식회사 엘지화학 Method for selecting materials for organic light emitting device
KR102655909B1 (en) 2019-09-11 2024-04-08 주식회사 엘지화학 Method for selecting materials for organic light emitting device

Similar Documents

Publication Publication Date Title
JP6095643B2 (en) Luminescent material and organic light emitting device
EP0786925B1 (en) White light-emitting electroluminescent devices
JP2998268B2 (en) Organic electroluminescent device
JP4203732B2 (en) Organic electroluminescent material, organic electroluminescent element, and heterocyclic iridium complex compound
JP3196230B2 (en) Organic electroluminescent device
JPWO2007063796A1 (en) Organic electroluminescence device
JP2004214180A (en) Organic light-emitting element
TW201443072A (en) Charge-transfer material, host material, thin film and organic light-emitting device
JP4035372B2 (en) Light emitting element
JP2002540210A (en) Organometallic complex molecule and organic electroluminescent device using the same
JP2009094124A (en) Organic electroluminescence element
JP2008147424A (en) Organic electroluminescence element
JP2001240854A (en) Organic luminescent material and organic luminescent element using the same organic luminescent material
JP2005129499A (en) Organic light-emitting element
JPH10308280A (en) Electroluminescent element
JP4218311B2 (en) Organometallic complex compound and organic light emitting device using the same
TWI614240B (en) Indenotriphenylene-based diamine derivative and organic electroluminescence device using the same
JP2006316280A (en) Material for electroluminescent element
JP3651801B2 (en) Electroluminescent device
JP2003313547A (en) Material for organic electroluminescent element, and organic electroluminescent element
JP4028996B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4214482B2 (en) Organic electroluminescence device
JP3082283B2 (en) Organic electroluminescent device
JP3092583B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JPH08148281A (en) Organic thin film electroluminescent element and manufacture thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919