JP2001236962A - Lead battery - Google Patents

Lead battery

Info

Publication number
JP2001236962A
JP2001236962A JP2000046557A JP2000046557A JP2001236962A JP 2001236962 A JP2001236962 A JP 2001236962A JP 2000046557 A JP2000046557 A JP 2000046557A JP 2000046557 A JP2000046557 A JP 2000046557A JP 2001236962 A JP2001236962 A JP 2001236962A
Authority
JP
Japan
Prior art keywords
lead
tin
calcium
indium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000046557A
Other languages
Japanese (ja)
Inventor
Yuko Oka
優子 岡
Yoshiaki Yamaguchi
義彰 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000046557A priority Critical patent/JP2001236962A/en
Publication of JP2001236962A publication Critical patent/JP2001236962A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a long-life lead battery controlling a local corrosion of a grill and for preventing both damage to the grating body and capacity reduction. SOLUTION: A positive electrode grill consisting of an alloy of lead, calcium, and tin contains indium. The alloy preferably contains 0.01 to 0.1 wt.% of calcium, 1.0 to 2.5 wt.% of tin, and a 0.01 to 0.5 wt.% of indium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池の改良、特
に正極格子体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved lead-acid battery, and more particularly to a positive electrode grid.

【0002】[0002]

【従来の技術】従来、鉛蓄電池の正極格子体には鉛―カ
ルシウム―錫合金が用いられている。前記合金はメンテ
ナンスフリーという課題を解決する特徴を持つ一方、カ
ルシウム含有量の増加と共に腐食速度が増大する欠点を
有しているため、現在0.1wt%をカルシウム含有量
の上限としている。また、カルシウムは合金の抗張力や
硬度等の強度を増加させ、作業性を良くするため、0.
01wt%以上加えることが望ましい。
2. Description of the Related Art Conventionally, a lead-calcium-tin alloy has been used for a positive electrode grid of a lead storage battery. The alloy has a feature of solving the problem of maintenance-free, but has a disadvantage that the corrosion rate increases with an increase in the calcium content. Therefore, the upper limit of the calcium content is currently 0.1 wt%. Calcium increases the strength of the alloy, such as tensile strength and hardness, and improves workability.
It is desirable to add at least 01 wt%.

【0003】上記のようなカルシウムの欠点を解消する
ために、格子体中の錫含有量を増加させることが提案さ
れている。これは鉛―カルシウム―錫合金において錫含
有量を増加させることにより腐食速度が減少するという
作用を利用するものである。
[0003] In order to solve the above-mentioned disadvantages of calcium, it has been proposed to increase the tin content in the lattice. This utilizes the effect that increasing the tin content in a lead-calcium-tin alloy reduces the corrosion rate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、鉛―カ
ルシウム―錫合金の場合、結晶の粒界に沿って選択的に
腐食が進行する性質を有している。特に錫は含有量の増
加に伴い、結晶粒が粗大化した組織を形成する。このた
め格子体の全面腐食は抑制されるが、選択的な粒界腐食
の傾向が強くなり、その結果、局部腐食による電池容量
の低下や寿命の低下を引き起こす問題があった。
However, the lead-calcium-tin alloy has the property that corrosion proceeds selectively along the crystal grain boundaries. In particular, tin forms a structure in which the crystal grains are coarsened as the content increases. For this reason, the overall corrosion of the lattice body is suppressed, but the tendency of selective intergranular corrosion becomes strong, and as a result, there is a problem that the local capacity corrodes to lower the battery capacity and the life.

【0005】したがって、局部腐食を生じにくい格子体
の製造が待ち望まれていた。
[0005] Therefore, there has been a long-awaited demand for the production of a lattice body which does not easily cause local corrosion.

【0006】本発明の目的は、格子体の局部腐食を抑制
し、格子体の破断を防ぐと共に、容量の低下を防いだ長
寿命の鉛蓄電池を提供することにある。
An object of the present invention is to provide a long-life lead-acid battery that suppresses local corrosion of a grid body, prevents breakage of the grid body, and prevents a decrease in capacity.

【0007】[0007]

【課題を解決するための手段】本発明の鉛蓄電池は、上
記課題を解決するため、鉛―カルシウムー錫合金からな
る正極格子体にインジウムを含むことを特徴とする。そ
して、カルシウムの量は、0.01〜0.1wt%であ
り、錫の量は、1.0〜2.5wt%である。インジウ
ムは、その量を特に限定しないが0.01〜0.5wt
%であれば効果が優れる。
The lead storage battery of the present invention is characterized in that, in order to solve the above-mentioned problems, a positive electrode grid made of a lead-calcium-tin alloy contains indium. And the amount of calcium is 0.01-0.1 wt%, and the amount of tin is 1.0-2.5 wt%. The amount of indium is not particularly limited, but is 0.01 to 0.5 wt.
%, The effect is excellent.

【0008】[0008]

【発明の実施の形態】以下の実施例により本発明につい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the following examples.

【0009】まず、各合金組成を、カルシウムは 0.
01〜0.1wt%、錫は1〜2.5wt%、インジウ
ムは0.01〜0.5wt%の範囲で変化させ、鋳造格
子体を作製した。
First, the composition of each alloy was set to 0.1% for calcium.
The casting lattice body was manufactured by changing the content of 01 to 0.1 wt%, the content of tin to 1 to 2.5 wt%, and the content of indium to 0.01 to 0.5 wt%.

【0010】次に、このようにして得られた鋳造格子体
を試験温度40℃、比重1.25sp.gr.の硫酸溶
液に浸漬し、電流密度0.5A/cm2、試験期間60
日の条件で腐食試験を実施した。その結果を図1に示
す。
[0010] Next, the cast grid body thus obtained was tested at a test temperature of 40 ° C and a specific gravity of 1.25 sp. gr. Immersed in a sulfuric acid solution at a current density of 0.5 A / cm 2 ,
The corrosion test was performed on the condition of day. The result is shown in FIG.

【0011】図1は、鉛―カルシウム―錫合金の錫含有
量と粒界腐食数の関係を、インジウムを含有しないもの
と0.1wt%インジウムを含有したものについて比較
した図である。ここで粒界腐食数とは格子体厚さの半分
以上粒界腐食が進行した数を言う。なお、カルシウム含
有量の変化は、硬度に寄与するものであり、粒界腐食に
影響を及ぼさなかったため、0.09wt%で一定とし
た。また、錫含有量は2.5wt%以上に増加させると
製造工程上問題が生じ、電池として不適当となるためこ
れを上限とした。
FIG. 1 is a diagram comparing the relationship between the tin content of a lead-calcium-tin alloy and the number of intergranular corrosion in the alloy containing no indium and the alloy containing 0.1 wt% indium. Here, the number of intergranular corrosion refers to the number at which intergranular corrosion has progressed for at least half of the thickness of the lattice. Since the change in the calcium content contributed to the hardness and did not affect the intergranular corrosion, the change was set at 0.09 wt%. On the other hand, if the tin content is increased to 2.5 wt% or more, a problem occurs in the production process, and the tin becomes unsuitable as a battery.

【0012】図1より錫含有量1wt%以上で粒界腐食
が顕著となり、錫含有量増加とともに増加していく。こ
こでインジウム含有による影響を見ると、錫含有量にか
かわらず粒界腐食を抑制していることがわかる。
FIG. 1 shows that intergranular corrosion becomes remarkable at a tin content of 1 wt% or more, and increases with increasing tin content. Looking at the effect of indium content here, it can be seen that intergranular corrosion is suppressed regardless of the tin content.

【0013】次に、鉛−Ca−Sn−In合金のインジ
ウム含有量を変えて粒界腐食の数を調べた結果を図2に
示す。ここでインジウムを添加する母合金に、図1にお
ける代表的な組成として鉛―0.09wt%カルシウム
―2wt%錫を用いた。図2よりインジウムの含有量が
0.01wt%になるまでは粒界腐食が大幅に減少し、
インジウムの含有量が0.01wt%から0.5wt%
の範囲では徐々に減少し、0.5wt%以上ではそれ以
上の効果は見られなかった。
Next, FIG. 2 shows the result of examining the number of intergranular corrosion by changing the indium content of the lead-Ca-Sn-In alloy. Here, for the master alloy to which indium is added, lead-0.09 wt% calcium-2 wt% tin was used as a typical composition in FIG. From FIG. 2, intergranular corrosion is significantly reduced until the indium content becomes 0.01 wt%,
Indium content from 0.01 wt% to 0.5 wt%
In the range, the effect was gradually decreased, and no more effect was observed at 0.5 wt% or more.

【0014】以上の結果から、インジウムの含有量が
0.01wt%以上で、大幅な粒界腐食防止効果が得ら
れることがわかる。ただし、インジウムの含有量が0.
5wt%を超えても粒界腐食の抑制効果が変化しなくな
ること、また、それを超えて加えると電池の自己放電を
促進するなど悪影響が出ることから、含有量は0.01
から0.5wt%の範囲が適している。
From the above results, it can be seen that a significant intergranular corrosion prevention effect can be obtained when the indium content is 0.01 wt% or more. However, when the content of indium is 0.1.
If the content exceeds 5 wt%, the effect of suppressing intergranular corrosion does not change, and if it exceeds 5 wt%, adverse effects such as promotion of self-discharge of the battery are caused.
To 0.5 wt%.

【0015】腐食試験後、各格子体を切断、研磨し、そ
の断面1の腐食状態を観察した。また、鉛−0.09w
t%カルシウム−1wt%錫合金および鉛−0.09w
t%カルシウム−1wt%錫−0.1wt%インジウム
合金の腐食試験後の格子体断面1をそれぞれ図3および
図4に示す。図3において、粒界2の黒色化した部分は
腐食を受けた部分であり、粒界の多くの部分で粒界腐食
が観察された。一方、図4では粒界2は黒色化せず、殆
ど腐食していないことがわかる。すなわち、インジウム
を含有した合金は、含有していない合金と比較して粒界
腐食をほとんど起こしていないことがわかる。これは、
インジウムが鉛に対する溶解度が高く、拡散しやすく、
また、アマルガム化金属であることから合金元素の偏析
を抑え、粒界腐食を含む局部腐食を抑制したためである
と考えられる。
After the corrosion test, each lattice was cut and polished, and the corrosion state of the cross section 1 was observed. In addition, lead -0.09w
t% calcium-1wt% tin alloy and lead -0.09w
FIGS. 3 and 4 show the cross section 1 of the lattice body after the corrosion test of the t% calcium-1 wt% tin-0.1 wt% indium alloy, respectively. In FIG. 3, the blackened portion of the grain boundary 2 is a portion that has undergone corrosion, and grain boundary corrosion was observed in many portions of the grain boundary. On the other hand, in FIG. 4, it can be seen that the grain boundaries 2 are not blackened and are hardly corroded. That is, it can be seen that the alloy containing indium hardly causes intergranular corrosion as compared with the alloy not containing indium. this is,
Indium has high solubility in lead, is easy to diffuse,
Further, it is considered that this is because segregation of alloying elements was suppressed because of the amalgamated metal, and local corrosion including intergranular corrosion was suppressed.

【0016】次に、鉛−0.09wt%カルシウム−2.
0wt%錫、および鉛−0.09wt%カルシウム−2.0
wt%錫−0.5wt%インジウム合金を正極格子体に用
い、負極格子体として通常用いられている鉛−0.1wt
%カルシウム−0.5wt%錫合金を用いた従来の鉛蓄電
池Aと本発明の鉛蓄電池Bを作製した。これら電池を用
いて、試験温度50℃で100日間過充電試験を行っ
た。その結果を図5に示す。
Next, lead-0.09 wt% calcium-2.
0 wt% tin and lead-0.09 wt% calcium-2.0
wt% tin-0.5wt% indium alloy is used for the positive electrode grid, and lead-0.1wt
A conventional lead-acid battery A using a% calcium-0.5 wt% tin alloy and a lead-acid battery B of the present invention were produced. Using these batteries, an overcharge test was performed at a test temperature of 50 ° C. for 100 days. The result is shown in FIG.

【0017】図5より、本発明の電池Aは、従来の電池
Bに比べ試験期間中の容量の低下が少ないことがわか
る。従って、インジウムを加えた正極格子体を用いれば
格子体の局部腐食を押さえ、鉛蓄電池の容量の低下を抑
制するので、寿命性能の優れた鉛蓄電池を提供できる。
FIG. 5 shows that the battery A of the present invention has a smaller decrease in capacity during the test period than the conventional battery B. Therefore, the use of the positive electrode grid body to which indium is added suppresses local corrosion of the grid body and suppresses a decrease in the capacity of the lead storage battery, so that a lead storage battery having excellent life performance can be provided.

【0018】なお、錫の含有量は、1.0wt%未満であ
ると、従来技術で述べた腐食速度を減少させる効果が少
なくなり、2.5wt%を超えると、鉛蓄電池の製造工程
において、格子体表面に錫の酸化皮膜が多く生じ、活物
質と格子体の結合が困難となるため、この範囲とした。
If the content of tin is less than 1.0 wt%, the effect of reducing the corrosion rate described in the prior art is reduced, and if it exceeds 2.5 wt%, in the production process of the lead-acid battery, Since a large amount of tin oxide film is formed on the lattice body surface and it is difficult to bond the active material and the lattice body, the range is set to this range.

【0019】[0019]

【発明の効果】以上のとおり、本発明の請求項1によれ
ば、正極格子体の腐食による目切れや電池容量の低下を
抑制し、長寿命の鉛蓄電池を提供することができる。ま
た、請求項2によれば、請求項1の効果を顕著にでき
る。
As described above, according to the first aspect of the present invention, it is possible to provide a lead-acid battery having a long life by suppressing disconnection and a decrease in battery capacity due to corrosion of the positive electrode grid. According to the second aspect, the effect of the first aspect can be made remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Pb−Ca−Sn合金の格子体とPb−Ca−Sn−In合
金の格子体における錫含有量と粒界腐食数を比較したグ
ラフである。
FIG. 1 is a graph comparing tin content and intergranular corrosion number in a lattice of a Pb—Ca—Sn alloy and a lattice of a Pb—Ca—Sn—In alloy.

【図2】インジウム添加量と粒界腐食数を比較した図で
ある。
FIG. 2 is a diagram comparing the amount of indium added and the number of intergranular corrosion.

【図3】従来品に係る鉛―0.09wt%カルシウム―
1wt%錫合金の腐食試験後の断面を示した図である。
Fig. 3 Lead based on conventional product-0.09 wt% calcium-
It is a figure showing a section after a corrosion test of a 1 wt% tin alloy.

【図4】本発明に係る鉛―0.09wt%カルシウム―
1wt%錫―0.1wt%インジウム合金の腐食試験後
の断面を示した図である。
FIG. 4 Lead according to the present invention—0.09 wt% calcium—
It is a figure showing the section after the corrosion test of 1wt% tin-0.1wt% indium alloy.

【図5】本発明品と従来品の過充電試験の結果を示すグ
ラフである。
FIG. 5 is a graph showing the results of an overcharge test of a product of the present invention and a conventional product.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉛―カルシウム―錫合金からなる正極格子
体を備えた鉛蓄電池において、前記格子体は0.01〜
0.1wt%のカルシウム、1.0〜2.5wt%の錫
およびインジウムを含むことを特徴とする鉛蓄電池。
1. A lead-acid battery provided with a positive electrode grid made of a lead-calcium-tin alloy, wherein the grid is 0.01 to
A lead-acid battery comprising 0.1% by weight of calcium and 1.0 to 2.5% by weight of tin and indium.
【請求項2】前記インジウムは、0.01〜0.5wt
%であることを特徴とする鉛蓄電池。
2. The method according to claim 1, wherein said indium is 0.01 to 0.5 wt.
% Lead-acid battery.
JP2000046557A 2000-02-23 2000-02-23 Lead battery Pending JP2001236962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046557A JP2001236962A (en) 2000-02-23 2000-02-23 Lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046557A JP2001236962A (en) 2000-02-23 2000-02-23 Lead battery

Publications (1)

Publication Number Publication Date
JP2001236962A true JP2001236962A (en) 2001-08-31

Family

ID=18568948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046557A Pending JP2001236962A (en) 2000-02-23 2000-02-23 Lead battery

Country Status (1)

Country Link
JP (1) JP2001236962A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013073420A1 (en) * 2011-11-16 2015-04-02 新神戸電機株式会社 Lead acid battery
WO2015145800A1 (en) * 2014-03-28 2015-10-01 新神戸電機株式会社 Lead storage cell and electrode collector for lead storage cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013073420A1 (en) * 2011-11-16 2015-04-02 新神戸電機株式会社 Lead acid battery
WO2015145800A1 (en) * 2014-03-28 2015-10-01 新神戸電機株式会社 Lead storage cell and electrode collector for lead storage cell
CN106133967A (en) * 2014-03-28 2016-11-16 日立化成株式会社 Lead battery and the electrode collector of lead battery
JP2017073405A (en) * 2014-03-28 2017-04-13 日立化成株式会社 Lead storage battery and electrode current collector for lead storage battery
EP3125341A4 (en) * 2014-03-28 2017-09-20 Hitachi Chemical Co., Ltd. Lead storage cell and electrode collector for lead storage cell
CN106133967B (en) * 2014-03-28 2019-08-23 日立化成株式会社 The electrode collector of lead storage battery and lead storage battery

Similar Documents

Publication Publication Date Title
JP4148175B2 (en) Lead alloy and lead storage battery using the same
CN110777282A (en) Lead alloy, electrode and storage battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
CN101675175A (en) Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries
JPWO2012043331A1 (en) Lead-acid battery and idling stop vehicle equipped with this lead-acid battery
JP3367157B2 (en) Lead storage battery
JP2006066283A (en) Cathode plate for sealed lead-acid battery, and the sealed lead-acid battery using the cathode plate
JP2000077076A (en) Lead base alloy for storage battery
JP2001236962A (en) Lead battery
JP3113895B2 (en) Lead alloy for storage battery
JP6601654B2 (en) Control valve type lead acid battery
JP2000315519A (en) Lead acid storage battery
JP4026259B2 (en) Sealed lead acid battery
JP4896392B2 (en) Lead acid battery
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JP4502346B2 (en) Lead-based alloys for lead-acid batteries
JPH0213425B2 (en)
JP2016105364A (en) Lead acid battery
KR20070069495A (en) Grid alloy for lead-acid battery
JP2007157610A (en) Lead-acid battery
JP3658871B2 (en) Lead acid battery
JP2007173129A (en) Lead-acid battery
JPS61203568A (en) Lead storage battery
JPH07118321B2 (en) Lead acid battery
JP2002329498A (en) Lead-based alloy for lead storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125