JP2001234229A - Method for reforming slag - Google Patents

Method for reforming slag

Info

Publication number
JP2001234229A
JP2001234229A JP2000040638A JP2000040638A JP2001234229A JP 2001234229 A JP2001234229 A JP 2001234229A JP 2000040638 A JP2000040638 A JP 2000040638A JP 2000040638 A JP2000040638 A JP 2000040638A JP 2001234229 A JP2001234229 A JP 2001234229A
Authority
JP
Japan
Prior art keywords
slag
molten steel
gas
reforming
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000040638A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasai
勝浩 笹井
Hajime Hasegawa
一 長谷川
Eiichi Takeuchi
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000040638A priority Critical patent/JP2001234229A/en
Publication of JP2001234229A publication Critical patent/JP2001234229A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for reforming slag which is capable of surely reducing the MnO and FeO in the slag without the occurrence of slag inclusion and a change in molten steel components. SOLUTION: In the method for reforming the slag which lowers the oxygen concentration of the slag existing on the molten steel in a ladle by a reducing agent, the lower oxide in the slag is reduced by blowing inert gas containing the gas of alkaline earth metals from a lance to the slag surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高清浄鋼を得るた
めのスラグの改質方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slag reforming method for obtaining highly clean steel.

【0002】[0002]

【従来の技術】極低炭素鋼の製造においては、転炉で酸
素を吹き付け0.04%C程度まで脱炭処理した溶鋼
を、さらに真空脱ガス処理して固溶酸素と炭素との反応
によりC濃度を数十PPM程度まで低減する。この脱炭
処理により溶鋼中の酸素濃度は大きく増加するが、脱炭
処理後にAlを添加して溶鋼を脱酸すると共に、真空脱
ガス装置を用いて軽真空度で溶鋼を環流させるため、脱
酸により生成した多数のアルミナ系介在物は除去され
る。
2. Description of the Related Art In the production of ultra-low carbon steel, molten steel that has been decarburized to about 0.04% C by blowing oxygen in a converter is further subjected to vacuum degassing to react with dissolved oxygen and carbon. The C concentration is reduced to about several tens of PPM. Although the oxygen concentration in the molten steel is greatly increased by the decarburization treatment, Al is added after the decarburization treatment to deoxidize the molten steel, and the molten steel is refluxed at a light vacuum using a vacuum degassing apparatus. Many alumina-based inclusions generated by the acid are removed.

【0003】しかしながら、転炉での脱炭処理に伴いス
ラグ中の酸素濃度(MnO、FeO等の低級酸化物の濃
度)も増加するため、Al脱酸後にスラグ中の酸素が溶
鋼中のAlと下記(1)式および(2)式で表される再
酸化反応を起こし、溶鋼の清浄性を大きく低下させる。
この再酸化反応は、C濃度を低下させるために多量の酸
素を吹き付け、スラグ中の酸素濃度が高い極低炭素鋼で
激しく、その対策は重要な課題となっている。 3MnO+2Al=Al2 3 +3Mn …………(1) 3FeO+2Al=Al2 3 +3Fe …………(2)
[0003] However, the oxygen concentration in the slag (the concentration of lower oxides such as MnO and FeO) also increases with the decarburization treatment in the converter, so that oxygen in the slag is reduced to Al in the molten steel after Al deoxidation. The reoxidation reaction represented by the following formulas (1) and (2) occurs, and the cleanliness of the molten steel is greatly reduced.
This reoxidation reaction is carried out by spraying a large amount of oxygen in order to lower the C concentration, and is extremely violent in ultra-low carbon steel having a high oxygen concentration in the slag. 3MnO + 2Al = Al 2 O 3 + 3Mn (1) 3FeO + 2Al = Al 2 O 3 + 3Fe (2)

【0004】このため、例えば特開昭59−70710
号公報や特開平2−250915号公報では、転炉出鋼
後の取鍋スラグにAl又はAl含有フラックスを添加
し、また特開平6−122917号公報では、Al又は
Al合金を含む複数本の棒状材料をスラグ中に浸漬さ
せ、スラグ中のMnOやFeOの低級酸化物を還元する
スラグ改質方法が実施され、スラグによる溶鋼再酸化の
防止が図られている。
For this reason, for example, Japanese Patent Application Laid-Open No. Sho 59-70710
In Japanese Unexamined Patent Publication No. Hei. 2-250915, Al or an Al-containing flux is added to a ladle slag after tapping from a converter, and in Japanese Unexamined Patent Publication No. Hei 6-122917, a plurality of launders containing Al or an Al alloy are added. A slag reforming method of immersing a rod-shaped material in slag to reduce lower oxides of MnO and FeO in the slag has been carried out to prevent reoxidation of molten steel by the slag.

【0005】[0005]

【発明が解決しようとする課題】従来のスラグ改質方法
では、スラグ表面にAlを添加する際に、取鍋底のポー
ラスプラグからArガス等の不活性ガスを吹き込み、ス
ラグを攪拌することにより、スラグ中のMnO、FeO
を十分に還元しようとしている。このため、スラグがバ
ブリングの攪拌により不必要に巻き込まれ、スラグ起因
の介在物欠陥の原因となっていた。
In the conventional slag reforming method, when adding Al to the slag surface, an inert gas such as Ar gas is blown from a porous plug at the bottom of the ladle to stir the slag. MnO, FeO in slag
Is trying to reduce enough. For this reason, the slag is unnecessarily entrained by the stirring of the bubbling, which has caused inclusion defects caused by the slag.

【0006】さらに、従来の方法では必ずしもスラグ全
体に均一にAlを添加できていなかったため、スラグが
部分的に未還元状態となり、スラグによる溶鋼の再酸化
を十分に防止できなかった。また、スラグに添加したA
lの一部は、溶鋼中に溶け込みAl濃度が必要以上に高
くなるため、溶鋼中Alの再酸化速度が速くなり、溶鋼
の清浄性が低下するといった問題もあった。
Furthermore, in the conventional method, Al cannot always be added uniformly to the entire slag, so that the slag is partially unreduced, and the reoxidation of molten steel by the slag cannot be sufficiently prevented. Also, A added to the slag
Since a part of l melts into the molten steel and the Al concentration becomes unnecessarily high, there is also a problem that the reoxidation rate of Al in the molten steel is increased and the cleanliness of the molten steel is reduced.

【0007】このような問題に鑑み、本発明は、スラグ
の巻き込みや溶鋼成分の変化を生じることなく、スラグ
中のMnOやFeOを確実に還元できるスラグの改質方
法を提供することを課題とする。
In view of such a problem, an object of the present invention is to provide a method for reforming slag which can surely reduce MnO and FeO in slag without involving slag and changing molten steel components. I do.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下の構成を要旨とする。即ち、(1)取
鍋内の溶鋼上にあるスラグの酸素濃度を還元剤により低
減するスラグ改質法において、ランスからアルカリ土類
金属のガスを含有する不活性ガスをスラグ表面に吹き付
けて、スラグ中の低級酸化物を還元することを特徴とす
るスラグの改質方法である。また、(2)アルカリ土類
金属の総ガス濃度を10%以上含有する不活性ガスをス
ラグ表面に吹き付けて、スラグ中の低級酸化物を還元す
ることを特徴とする請求項1記載のスラグの改質方法で
ある。
Means for Solving the Problems In order to solve the above problems, the present invention has the following features. That is, (1) In a slag reforming method in which the oxygen concentration of slag on molten steel in a ladle is reduced by a reducing agent, an inert gas containing an alkaline earth metal gas is blown from a lance onto the slag surface, A slag reforming method characterized in that lower oxides in slag are reduced. The slag according to claim 1, wherein (2) an inert gas containing a total gas concentration of alkaline earth metal of 10% or more is sprayed on the slag surface to reduce lower oxides in the slag. It is a reforming method.

【0009】[0009]

【発明の実施の形態】図1に本発明の実施形態を示す。
図において、事前に加熱生成させたMgガス1を耐火物
製のランス2を通して、取鍋3内溶鋼上4のスラグ5に
吹き付ける。Mgガス1はスラグ5に衝突した後、スラ
グ5に沿って円周状に広がると共に、スラグ5中のMn
OやFeOを下記(3)式および(4)式により還元す
る。 MnO+Mg=MgO+Mn ……………(3) FeO+Mg=MgO+Fe ……………(4)
FIG. 1 shows an embodiment of the present invention.
In the figure, a Mg gas 1 previously generated by heating is sprayed through a lance 2 made of a refractory onto a slag 5 on molten steel 4 in a ladle 3. After colliding with the slag 5, the Mg gas 1 spreads circumferentially along the slag 5 and the Mn in the slag 5
O and FeO are reduced by the following equations (3) and (4). MnO + Mg = MgO + Mn (3) FeO + Mg = MgO + Fe (4)

【0010】MgはAlよりも還元力が強いため、スラ
グの還元はAlに比べて速やかに進行する。このため不
必要にスラグを攪拌する必要がなく、スラグの巻き込み
による介在物欠陥の発生を防止できる。また、本発明で
はMgを金属としてスラグに添加するのではなく、Mg
ガスとしてスラグ表面に吹き付けるため、スラグ全面に
Mgガスが供給され、スラグ全体に渡って均一に還元反
応が進行する。さらに、Mgガスはスラグと気相界面で
接触して還元反応が進行するため、Mgガスが溶鋼中に
溶け込むことはなく、溶鋼成分の変化もない。
[0010] Since Mg has a stronger reducing power than Al, the reduction of slag proceeds more rapidly than that of Al. Therefore, it is not necessary to agitate the slag unnecessarily, and it is possible to prevent inclusion defects from occurring due to slag entrainment. In the present invention, Mg is not added to the slag as a metal, but Mg is added to the slag.
Since the gas is sprayed on the slag surface as a gas, Mg gas is supplied to the entire slag, and the reduction reaction proceeds uniformly over the entire slag. Further, since the Mg gas comes into contact with the slag at the gas phase interface and the reduction reaction proceeds, the Mg gas does not melt into the molten steel, and there is no change in the molten steel component.

【0011】Mgの沸点は1097℃であるため、11
00℃以上で金属Mgを加熱してガス化する方法、加熱
したArガスを金属Mgと接触させてMg−Ar混合ガ
スとする方法、さらにMgOをAl等で還元してMgガ
スを発生させる方法等により、ランス内およびランスよ
り上流側でMgガスを生成させ、これをランスからスラ
グ表面に吹き付ければ良い。Mgは非常に強い還元材で
あるため、吹き込みガス中のMgガス濃度を10%以上
にすれば、スラグ中のMnOやFeOを容易に還元でき
る。但し、Mgガスを希釈するガスはArガスが好まし
いが、溶鋼の汚染が生じない他の不活性ガスでもかまわ
ない。
Since the boiling point of Mg is 1097 ° C.,
A method of heating and gasifying metallic Mg at a temperature of 00 ° C. or higher, a method of bringing a heated Ar gas into contact with metallic Mg to form an Mg-Ar mixed gas, and a method of generating a Mg gas by reducing MgO with Al or the like. For example, Mg gas may be generated in the lance and on the upstream side of the lance, and may be sprayed from the lance onto the slag surface. Since Mg is a very strong reducing agent, MnO and FeO in slag can be easily reduced if the concentration of Mg gas in the blown gas is 10% or more. However, the gas for diluting the Mg gas is preferably Ar gas, but may be another inert gas which does not cause contamination of the molten steel.

【0012】本発明に関する上記説明はMgガスを例に
して行ったが、本発明はMgガスに限られるものではな
く、沸点が溶鋼温度に比べて比較的低く、且つ強い還元
力を有するものであれば良く、Mg、Ca、Sr等のア
ルカリ土類金属がそれに当たる。
Although the above description of the present invention has been made by taking Mg gas as an example, the present invention is not limited to Mg gas, but has a boiling point relatively lower than the temperature of molten steel and a strong reducing power. Alkaline earth metals such as Mg, Ca, and Sr may be used.

【0013】本発明は、スラグからの再酸化が激しい極
低炭素鋼でその効果が大きいが、必ずしもこれに限られ
るものではなく、その原理から考えて低炭素鋼でも十分
適用できる。特に、Al合金を脱酸材として使用しない
か、或いは使用しても僅かであるTi添加低酸素鋼等で
は、スラグ改質によるAlの混入を防止できる点で、本
発明のスラグ改質法は優れた効果を有している。
The present invention has a great effect in an extremely low carbon steel in which re-oxidation from slag is intense, but is not necessarily limited to this. In view of its principle, the present invention can be sufficiently applied to a low carbon steel. In particular, in a Ti-added low-oxygen steel or the like in which an Al alloy is not used as a deoxidizer, or even if it is used in a small amount, the slag reforming method of the present invention can prevent Al from being mixed by slag reforming. It has excellent effects.

【0014】[0014]

【実施例】以下に、実施例及び比較例を挙げて、本発明
について説明する。 (実施例1)転炉で脱炭処理した溶鋼280tを取鍋内
に出鋼し、スラグ改質場所まで移動させた。スラグ改質
場所で取鍋スラグ1000kgに対しランスから100
%Mgガスを270Nm3 /hで5分間吹き付けた。こ
れによりスラグ中のトータルFeは全体的に10%から
3%まで低下した。この溶鋼を真空脱ガス処理して脱酸
した後、成分調整し、成分C:30ppm、Si:0.
015%、Mn:0.25%、P:0.02%、S:
0.01%(いずれも質量%)の溶鋼を溶製した。その
後、鋳造速度1.6m/minで鋳造した。得られた鋳
片のAl濃度は0.04%、全酸素濃度(T.O)は1
5ppm以下となり高清浄鋼が得られた。
The present invention will be described below with reference to examples and comparative examples. (Example 1) 280 t of molten steel decarburized in a converter was tapped in a ladle and moved to a slag reforming site. 100kg from lance for 1000kg ladle slag at slag reforming site
% Mg gas was blown at 270 Nm 3 / h for 5 minutes. Thereby, the total Fe in the slag was reduced from 10% to 3% as a whole. After degassing the molten steel by vacuum degassing, the components are adjusted, and the components C: 30 ppm, Si: 0.
015%, Mn: 0.25%, P: 0.02%, S:
0.01% (all by mass%) of molten steel was produced. Thereafter, casting was performed at a casting speed of 1.6 m / min. The obtained cast slab has an Al concentration of 0.04% and a total oxygen concentration (TO) of 1
The content became 5 ppm or less, and a highly clean steel was obtained.

【0015】(実施例2)転炉で脱炭処理した溶鋼28
0tを取鍋内に出鋼し、スラグ改質場所まで移動させ
た。スラグ改質場所で取鍋スラグ1000kgに対しラ
ンスから50%Mg−Arガスを400Nm3 /hで5
分間吹き付けた。これによりスラグ中のトータルFeは
全体的に7%から2%まで低下した。この溶鋼を真空脱
ガス処理して脱酸した後、成分調整し、成分C:30p
pm、Si:0.015%、Mn:0.25%、P:
0.02%、S:0.01%(いずれも質量%)の溶鋼
を溶製した。その後、鋳造速度1.6m/minで鋳造
した。得られた鋳片のAl濃度は0.04%、全酸素濃
度(T.O)は14ppm以下となり高清浄鋼が得られ
た。
(Example 2) Molten steel 28 decarburized in a converter
0t was tapped into a ladle and moved to a slag reforming site. At a slag reforming site, a 50% Mg-Ar gas is supplied from a lance at 400 Nm 3 / h for 1000 kg of ladle slag at a rate of 5 Nm 3 / h.
Sprayed for minutes. Thereby, the total Fe in the slag was reduced from 7% to 2% as a whole. After deoxidizing the molten steel by vacuum degassing, the components are adjusted, and component C: 30 p
pm, Si: 0.015%, Mn: 0.25%, P:
0.02%, S: 0.01% (all by mass%) molten steel was produced. Thereafter, casting was performed at a casting speed of 1.6 m / min. The resulting cast slab had an Al concentration of 0.04% and a total oxygen concentration (TO) of 14 ppm or less, and a highly clean steel was obtained.

【0016】(比較例1)転炉で脱炭処理した溶鋼28
0tを取鍋内に出鋼した。この溶鋼はスラグ改質せず
に、真空脱ガス処理して成分調整し、成分C:30pp
m、Si:0.015%、Mn:0.25%、P:0.
02%、S:0.01%(いずれも質量%)の溶鋼を溶
製した。取鍋内のスラグ中トータルFeは10%であっ
た。その後、鋳造速度1.6m/minで鋳造した。得
られた鋳片のAl濃度は0.035%、(T.O)は3
0ppm以上となり高清浄鋼が得られなかった。
Comparative Example 1 Molten steel 28 decarburized in a converter
0t was tapped in the ladle. This molten steel was subjected to a vacuum degassing process to adjust the components without modifying the slag, and the components C: 30 pp
m, Si: 0.015%, Mn: 0.25%, P: 0.
02%, S: 0.01% (all by mass%) molten steel was produced. The total Fe in the slag in the ladle was 10%. Thereafter, casting was performed at a casting speed of 1.6 m / min. The obtained slab had an Al concentration of 0.035% and (TO) of 3
It became 0 ppm or more, and a high clean steel was not obtained.

【0017】(比較例2)転炉で脱炭処理した溶鋼28
0tを取鍋内に出鋼し、スラグ改質場所まで移動させ
た。スラグ改質場所で取鍋スラグ1000kgに対し金
属Alを100kg添加して、スラグ改質した。スラグ
中のトータルFeは測定位置によるバラツキが大きく、
改質後もトータルFeで8%程度と高い値を示す場所も
あった。この溶鋼を真空脱ガス処理して脱酸・成分調整
し、成分C:30ppm、Si:0.015%、Mn:
0.25%、P:0.02%、S:0.01%(いずれ
も質量%)の溶鋼を溶製した。その後、鋳造速度1.6
m/minで鋳造した。得られた鋳片のAl濃度は0.
055%、全酸素濃度(T.O)は30ppm以上とな
り高清浄鋼が得られなかった。
Comparative Example 2 Molten steel 28 decarburized in a converter
0t was tapped into a ladle and moved to a slag reforming site. At the slag reforming site, 100 kg of metal Al was added to 1000 kg of ladle slag to reform the slag. The total Fe in the slag varies greatly depending on the measurement position,
In some places, the total Fe showed a high value of about 8% even after the modification. The molten steel is subjected to vacuum degassing to deoxidize and adjust the components. Component C: 30 ppm, Si: 0.015%, Mn:
Molten steel of 0.25%, P: 0.02%, and S: 0.01% (all by mass%) was smelted. Thereafter, the casting speed was 1.6
It was cast at m / min. The Al concentration of the obtained slab is 0.1.
055%, the total oxygen concentration (TO) was 30 ppm or more, and no highly clean steel was obtained.

【0018】[0018]

【発明の効果】以上の如く、本発明のスラグ改質方法を
適用することにより、スラグの巻き込みや溶鋼成分の変
化を生じることなく、スラグ中の酸素を確実に還元でき
るため、鋳片の品質は向上し、歩留まりは格段に向上す
る。また、清浄性が向上して浸漬ノズルの閉塞も抑制さ
れるため、非定常作業を省略することができ、操業性も
大きく改善される。
As described above, by applying the slag reforming method of the present invention, the oxygen in the slag can be reliably reduced without causing slag entrainment or changes in the molten steel component, and thus the quality of the slab is improved. Is improved, and the yield is significantly improved. In addition, since the cleanliness is improved and the clogging of the immersion nozzle is suppressed, the unsteady work can be omitted, and the operability is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:Mgガス 2:耐火物製のランス 3:取鍋 4:溶鋼 5:スラグ 1: Mg gas 2: Refractory lance 3: Ladle 4: Molten steel 5: Slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 栄一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4K013 BA08 CB04 CC04 CF02 CF13 EA24 EA25 FA05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Eiichi Takeuchi 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F term (reference) 4K013 BA08 CB04 CC04 CF02 CF13 EA24 EA25 FA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 取鍋内の溶鋼上にあるスラグの酸素濃度
を還元剤により低減するスラグ改質法において、ランス
からアルカリ土類金属のガスを含有する不活性ガスをス
ラグ表面に吹き付けて、スラグ中の低級酸化物を還元す
ることを特徴とするスラグの改質方法。
In a slag reforming method for reducing the oxygen concentration of slag on molten steel in a ladle with a reducing agent, an inert gas containing an alkaline earth metal gas is blown from a lance onto the slag surface, A method for reforming slag, comprising reducing a lower oxide in slag.
【請求項2】 アルカリ土類金属の総ガス濃度を10%
以上含有する不活性ガスをスラグ表面に吹き付けて、ス
ラグ中の低級酸化物を還元することを特徴とする請求項
1記載のスラグの改質方法。
2. The total gas concentration of alkaline earth metals is 10%.
The slag reforming method according to claim 1, wherein the inert gas contained above is blown onto the slag surface to reduce lower oxides in the slag.
JP2000040638A 2000-02-18 2000-02-18 Method for reforming slag Withdrawn JP2001234229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040638A JP2001234229A (en) 2000-02-18 2000-02-18 Method for reforming slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040638A JP2001234229A (en) 2000-02-18 2000-02-18 Method for reforming slag

Publications (1)

Publication Number Publication Date
JP2001234229A true JP2001234229A (en) 2001-08-28

Family

ID=18563988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040638A Withdrawn JP2001234229A (en) 2000-02-18 2000-02-18 Method for reforming slag

Country Status (1)

Country Link
JP (1) JP2001234229A (en)

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
US3169058A (en) Decarburization, deoxidation, and alloy addition
JPS6159376B2 (en)
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH0510406B2 (en)
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JPH10298631A (en) Method for melting clean steel
JP2001234229A (en) Method for reforming slag
JP3214730B2 (en) Refining method of high purity steel using reflux type vacuum degasser
JP4555512B2 (en) Slag reforming method
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JPS63262412A (en) Method for cleaning molten steel
JP3496545B2 (en) Hot metal desulfurization method
JP7480751B2 (en) METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL
JP3300014B2 (en) Refining method of molten steel by vacuum degassing
JP2773525B2 (en) Melting method for grain-oriented electrical steel sheets
JP3253138B2 (en) Melting method of high cleanness ultra low carbon steel
JPH01294817A (en) Method for cleaning molten metal
JPH0225966B2 (en)
JP2864961B2 (en) Decarburization refining method for high Mn steel
JP2855333B2 (en) Modification method of molten steel slag
SU1092187A1 (en) Method for decarbonizing high-carbon ferrochrome or ferromanganese
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
JPH0356614A (en) Production of low-oxygen dead-soft carbon steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501