JP2001228198A - Arrester deterioration detector - Google Patents

Arrester deterioration detector

Info

Publication number
JP2001228198A
JP2001228198A JP2000041652A JP2000041652A JP2001228198A JP 2001228198 A JP2001228198 A JP 2001228198A JP 2000041652 A JP2000041652 A JP 2000041652A JP 2000041652 A JP2000041652 A JP 2000041652A JP 2001228198 A JP2001228198 A JP 2001228198A
Authority
JP
Japan
Prior art keywords
phase
current
leakage current
deterioration
arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000041652A
Other languages
Japanese (ja)
Other versions
JP4248720B2 (en
Inventor
Yukio Kasahara
幸夫 笠原
Hitoshi Hoshino
仁 星野
Naohiro Kaneman
直弘 金万
Munechika Saito
宗敬 斉藤
Hideto Oki
秀人 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2000041652A priority Critical patent/JP4248720B2/en
Publication of JP2001228198A publication Critical patent/JP2001228198A/en
Application granted granted Critical
Publication of JP4248720B2 publication Critical patent/JP4248720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arrester deterioration detector capable of accurately detecting deterioration of an element with a simple structure and detecting pollution of an insulator distinctively. SOLUTION: A selector 6 is controlled for measuring leakage current in three-phase arresters 1 so that a current in each phase or a three-phase composite current (zero-phase current) is measured. The measured current is transmitted to the detector via an optical fiber 8. In this way, the electric current measurement accuracy is improved and penetration of noise can be prevented. The detector 9 thermally corrects the measured electric current value. If the zero- phase current is increased above a predetermined control value, algorithm detecting a deterioration phenomenon of the element is used, while algorithm detecting an insulator pollution phenomenon is used when the zero-phase current is lowered below the control value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受変電設備などに
使用する碍子形アレスタ(以下、単に「アレスタ」と言
う。)の素子の劣化と碍子の汚損を検出する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting deterioration of elements of an insulator type arrester (hereinafter, simply referred to as "arrestor") and contamination of the insulator used in a substation facility or the like.

【0002】[0002]

【従来の技術】従来のアレスタ劣化検出装置は、各相ご
とに漏れ電流変流器を用いて漏れ電流を常時測定してい
た。そして、測定した漏れ電流値が所定の管理値(しき
い値)を超えると、アレスタ素子に劣化が生じたと判定
していた。
2. Description of the Related Art A conventional arrester deterioration detecting device always measures a leakage current using a leakage current transformer for each phase. When the measured leakage current value exceeds a predetermined management value (threshold value), it is determined that the arrester element has deteriorated.

【0003】[0003]

【発明が解決しようとする課題】上記従来のアレスタ劣
化検出装置は、以下の問題点を有していた。 1.各相のアレスタの漏れ電流を常時測定するには、漏
れ電流が微小であるため、高価な漏れ電流変流器を用い
て各種ノイズ対策を施す必要があった。このため、シス
テムが複雑となり、また高価なものとなってしまう。
The conventional arrester deterioration detecting device has the following problems. 1. In order to constantly measure the leakage current of each phase arrester, it is necessary to take various noise countermeasures using an expensive leakage current transformer because the leakage current is very small. This makes the system complicated and expensive.

【0004】2.外気温度の変化によりアレスタ素子の
漏れ電流特性が変化するが、アレスタ素子の劣化判定に
は、外気温度の変化による影響はあまり問題とならない
と考えられていたため、これらの影響をアレスタ素子の
劣化の判定値に反映していなかった。しかしながら、碍
子の汚損を同時に検出する場合は、できるだけ温度変化
などの外乱要因を除去する必要がある。
[0004] 2. Although the leakage current characteristics of the arrester element change due to the change in the outside air temperature, the influence of the change in the outside air temperature was not considered to be a significant problem in determining the deterioration of the arrester element. It was not reflected in the judgment value. However, when simultaneously detecting contamination of the insulator, it is necessary to remove disturbance factors such as temperature changes as much as possible.

【0005】3.アレスタの漏れ電流監視は素子劣化の
検出のみに使用しており、碍子汚損については監視でき
ない場合が多い。また、碍子汚損監視をする場合は汚損
による漏れ電流の増大と、素子劣化による漏れ電流の増
大減少を識別する必要があるが、素子劣化と碍子汚損を
同時に検出する場合、素子劣化した相の判定を行う手段
が確立されていない。
[0005] 3. The arrester leakage current monitoring is used only for detecting element deterioration, and in many cases, insulator contamination cannot be monitored. In addition, when monitoring insulator contamination, it is necessary to distinguish between an increase in leakage current due to contamination and an increase / decrease in leakage current due to element deterioration. However, when element deterioration and insulator contamination are detected simultaneously, the phase of element deterioration is determined. Has not been established.

【0006】4.湿度や温度により漏れ電流が変化する
ため、漏れ電流値から素子劣化及び碍子汚損の程度を定
量的に把握できない。 5.素子劣化の管理値を決めるときに、運用を開始して
から漏れ電流を測定し、その値を初期値として入力して
いたため、人手がかかる。 6.漏れ電流測定手段と検出手段との間の信号伝送が、
ワイヤによっているため、サージ、アレスタ放電による
故障、ノイズなどをワイヤが拾うことによりS/N比低
下、感度低下が発生する。
[0006] 4. Since the leakage current changes depending on the humidity and temperature, the degree of element deterioration and insulator contamination cannot be quantitatively grasped from the leakage current value. 5. When determining the management value of the element deterioration, the leakage current is measured after the operation is started, and the value is input as the initial value, which requires labor. 6. The signal transmission between the leakage current measuring means and the detecting means,
Since the wires are used, a failure due to surge, arrester discharge, noise, and the like are picked up by the wires, thereby lowering the S / N ratio and lowering the sensitivity.

【0007】本発明は、素子劣化を簡単な構成で正確に
検出でき、更に、碍子汚損も区別して検出できるアレス
タ劣化検出装置を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an arrester deterioration detecting device capable of accurately detecting element deterioration with a simple configuration and further capable of distinguishing and detecting insulator contamination.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の手段を採用する。 1.漏れ電流用変流器の負荷として発光ダイオードに定
電流バイアスを行った低インピーダンス負荷を接続し、
電気信号を光信号に変換して出力することにより、微小
漏れ電流を安価、かつ、ノイズフリーで測定する。
The present invention employs the following means to achieve the above object. 1. Connect a low-impedance load with constant current bias to the light emitting diode as the load of the leakage current transformer,
By converting an electric signal to an optical signal and outputting the signal, a small leakage current can be measured at low cost and without noise.

【0009】2.外気温度によるアレスタ素子の漏れ電
流変化の補正を行う。 3.碍子の汚損は基本的にはどの相も同時に汚損される
ため、多相の漏れ電流が同様に増大した場合は碍子の汚
損と判定し、1相のみが特異的に変化した場合は素子劣
化と判定する。 4.湿度センサ、温度センサを併用して、湿度、温度の
影響を漏れ電流に補正する。
[0009] 2. The leak current change of the arrester element due to the outside air temperature is corrected. 3. Insulators are basically contaminated in all phases at the same time, so if the multi-phase leakage current increases similarly, it is judged that the insulator is contaminated, and if only one phase changes specifically, the element is deteriorated. judge. 4. By using a humidity sensor and a temperature sensor together, the effects of humidity and temperature are corrected to leakage current.

【0010】5.運用開始時に自動的に設定すべき各種
電流値及び管理値(しきい値)を算出する。具体的には
湿度センサの併用により乾燥時の漏れ電流値は汚損の影
響がないとして、乾燥時の値を平均化し、素子の初期漏
れ電流値を計算し、初期設定値に自動で反映する。 6.測定装置と検出装置との間の信号伝達に光ファイバ
による信号絶縁を採用し、ノイズフリーとする。
[0010] 5. Various current values and management values (thresholds) to be automatically set at the start of operation are calculated. Specifically, assuming that the leakage current value at the time of drying is not affected by contamination by the combined use of the humidity sensor, the values at the time of drying are averaged, the initial leakage current value of the element is calculated, and the value is automatically reflected on the initial setting value. 6. The signal transmission between the measuring device and the detecting device uses signal insulation by an optical fiber to make it noise-free.

【0011】[0011]

【発明の実施の形態】本発明の実施形態について図を用
いて説明する。図1は、アレスタ劣化検出装置の構成を
示す。アレスタ1は、酸化亜鉛からなる素子2を碍子3
内に収納する。多相分のアレスタ1が電力線4とグラン
ド間に接続される。各相のアレスタ1に漏れ電流を検出
する変流器5が設けられる。変流器5の出力は、セレク
タ6を通して電/光変換器7に入力される。電/光変換
器7により電気信号が光信号に変換され、光ファイバ8
により検出装置本体9に伝達される。このように、信号
伝送を光ファイバ8により行うことで、S/N比の低下
が防止できる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of the arrester deterioration detection device. The arrester 1 is composed of an element 2 made of zinc oxide and an insulator 3
Housed inside. An arrester 1 for multiple phases is connected between the power line 4 and the ground. A current transformer 5 for detecting a leakage current is provided in the arrester 1 of each phase. The output of the current transformer 5 is input to the electric / optical converter 7 through the selector 6. The electrical / optical converter 7 converts the electrical signal into an optical signal, and the optical fiber 8
Is transmitted to the detection device main body 9. As described above, by performing the signal transmission through the optical fiber 8, a decrease in the S / N ratio can be prevented.

【0012】検出装置本体9では、光ファイバ8により
伝達された光信号が、光/電変換器11により電気信号
に変換されて検出手段12に入力される。検出手段12
には、更に、外気温を測定する温度測定手段13、湿度
を測定する湿度測定手段14、素子劣化及び碍子汚損の
発生状況を表示する表示部15が接続される。温度測定
手段13と湿度測定手段14は、アレスタ1の周囲の温
度と湿度を検出する場所に配置される。検出手段12
は、CPUにより構成され、以下に説明する各種制御を
実行する。
In the main body 9 of the detecting device, the optical signal transmitted by the optical fiber 8 is converted into an electric signal by the optical / electrical converter 11 and inputted to the detecting means 12. Detecting means 12
Further, a temperature measuring means 13 for measuring the outside air temperature, a humidity measuring means 14 for measuring the humidity, and a display section 15 for displaying the state of occurrence of element deterioration and insulator fouling are connected. The temperature measuring unit 13 and the humidity measuring unit 14 are arranged at a location around the arrester 1 where the temperature and the humidity are detected. Detecting means 12
Is configured by a CPU and executes various controls described below.

【0013】セレクタ6は、検出手段12から送られる
切換制御信号によって漏れ電流測定相の切換え動作を行
う。セレクタ6の3つのスイッチの内の1つのスイッチ
がオンすることで1相の漏れ電流信号が電/光変換器7
へ入力される。セレクタ6の全部のスイッチがオンする
ことで3相合成回路が構成され、零相の漏れ電流信号が
電/光変換器7へ入力される。このように、セレクタ6
を使用することにより、アレスタの相数に関係なく、光
ファイバ8の本数を1本のみとすることができる。
The selector 6 performs a switching operation of a leakage current measuring phase in accordance with a switching control signal sent from the detecting means 12. When one of the three switches of the selector 6 is turned on, a one-phase leakage current signal is generated by the electro-optical converter 7.
Is input to When all the switches of the selector 6 are turned on, a three-phase combining circuit is formed, and a zero-phase leakage current signal is input to the electro-optical converter 7. Thus, the selector 6
Is used, the number of optical fibers 8 can be reduced to only one irrespective of the number of phases of the arrester.

【0014】電/光変換器7では、セレクタ6の出力電
流が発光ダイオード16により光信号に変換される。発
光ダイオード16は微小電流に対して比較的高抵抗を示
すので、発光ダイオード16には予め直流電源17によ
り直流バイアス電流が流されている。これにより、マイ
クロアンペアオーダーの微小漏れ電流が正確に光信号に
変換されることとなり、高精度の漏れ電流検出が可能と
なる。
In the electro-optical converter 7, the output current of the selector 6 is converted by the light emitting diode 16 into an optical signal. Since the light emitting diode 16 has a relatively high resistance to a small current, a DC bias current is applied to the light emitting diode 16 in advance by the DC power supply 17. As a result, a minute leakage current on the order of microamps is accurately converted into an optical signal, and leakage current detection with high accuracy becomes possible.

【0015】図2を用いて、検出手段12の機能を説明
する。第1の機能F1により、温度測定手段13と湿度
測定手段14によりアレスタ1周辺の温度Tと湿度Hを
測定する。第2の機能F2により、漏れ電流を測定す
る。このとき、セレクタ6を切替えることにより、3相
の各相ごとの漏れ電流Iと3相合成の電流(零相電流)
Ioを測定する。なお、この測定値としては実効値を測
定するが、後述のように、必要な場合は波高値も測定す
る。
The function of the detecting means 12 will be described with reference to FIG. The temperature T and the humidity H around the arrester 1 are measured by the temperature measuring means 13 and the humidity measuring means 14 by the first function F1. The leak current is measured by the second function F2. At this time, by switching the selector 6, the leakage current I for each of the three phases and the current of the three phases combined (zero-phase current)
Measure Io. Note that the effective value is measured as the measured value, but the peak value is also measured if necessary, as described later.

【0016】第3の機能F3により、温度測定手段13
で測定した外気温により漏れ電流値を補正する。図3
は、酸化亜鉛素子2の電流密度Jの容量成分と抵抗成分
の一般的な温度変化特性曲線を示す。これから明らかな
ように、漏れ電流Iは素子2の温度特性により変化する
ため、測定した各相の漏れ電流Iを外気温Tにより補正
して測定値の信頼性、精度向上を図る。温度補正した漏
れ電流値をIxで表す。
The third function F3 allows the temperature measuring means 13
The leak current value is corrected based on the outside air temperature measured in the step. FIG.
Shows a general temperature change characteristic curve of the capacitance component and the resistance component of the current density J of the zinc oxide element 2. As is clear from this, since the leakage current I changes depending on the temperature characteristics of the element 2, the measured leakage current I of each phase is corrected by the outside air temperature T to improve the reliability and accuracy of the measured value. The temperature-corrected leakage current value is represented by Ix.

【0017】図2の第4の機能F4で、湿度測定手段1
4で測定した湿度Hが、所定の管理値(湿度管理値)H
nより大であるか否かを判定する。湿度Hが湿度管理値
Hn以下に低下した場合は、碍子3の汚損による漏れ電
流はほとんどゼロになる。このため、湿度Hが湿度管理
値Hn以下の状態では、第5の機能F5で、温度補正し
た漏れ電流値Ixを湿度管理値Hn以下における漏れ電
流値Ixoとして記録する。
The fourth function F4 shown in FIG.
4 is a predetermined management value (humidity management value) H
It is determined whether it is greater than n. When the humidity H falls below the humidity control value Hn, the leakage current due to the contamination of the insulator 3 becomes almost zero. Therefore, when the humidity H is equal to or less than the humidity management value Hn, the fifth function F5 records the temperature-corrected leakage current value Ix as the leakage current value Ixo at or below the humidity management value Hn.

【0018】湿度Hが湿度管理値Hnを超えた場合は、
第6の機能F6で、漏れ電流値をIyとして記憶すると
同時に、管理値を超える直前の漏れ電流値Ixoを記憶
する。図4は、漏れ電流を湿度で管理した結果を示す。
図の横軸は、時間を示し、1目盛りが1日を表す。
(a)は、1か月分の、ある1相の実測値の漏れ電流I
の推移を示す。(b)は、湿度Hが湿度管理値Hn以下
の漏れ電流値Ixoの推移を示す。これから明らかなよ
うに、管理値以下の漏れ電流値Ixoは、湿度に関係な
くなり、素子2に対応した一定の値を示す。
When the humidity H exceeds the humidity control value Hn,
In the sixth function F6, the leakage current value Ixo immediately before exceeding the management value is stored at the same time as storing the leakage current value as Iy. FIG. 4 shows the result of managing the leakage current by humidity.
The horizontal axis of the figure indicates time, and one scale indicates one day.
(A) shows the leakage current I of one month's actual measurement value for one month.
The transition of is shown. (B) shows the transition of the leakage current value Ixo where the humidity H is equal to or less than the humidity management value Hn. As is clear from this, the leakage current value Ixo equal to or smaller than the control value is not related to the humidity and shows a constant value corresponding to the element 2.

【0019】図2の第7の機能F7で、以上の処理で求
めた各電流値を利用して素子劣化及び碍子汚損の検出に
必要な各種電流値及び管理値を求める。アレスタ1の素
子2及び碍子3が健全な時の漏れ電流値として、アレス
タ1の導入当初に、湿度Hが湿度管理値Hn以下にある
ときに漏れ電流を温度補正した電流値、つまり、健全時
の素子電流値Ixoを算出する。この電流値Ixoから
素子劣化検出のための管理値(劣化管理値)Inを次式
により自動的に決定する。
In the seventh function F7 of FIG. 2, various current values and control values necessary for detecting element deterioration and insulator contamination are obtained by using the respective current values obtained in the above processing. The leak current value when the element 2 and the insulator 3 of the arrester 1 are healthy is a current value obtained by temperature-correcting the leak current when the humidity H is equal to or lower than the humidity control value Hn at the beginning of the arrester 1, that is, in the normal condition. Is calculated. From this current value Ixo, a management value (deterioration management value) In for detecting element deterioration is automatically determined by the following equation.

【0020】In=Ixo*n (nは任意の定数) 次に、健全素子2の電流値Ixoから容量成分電流Ic
と抵抗成分電流Irを求める。健全時の素子2における
容量成分電流Icと抵抗成分電流Irの比率A:Bは既
知であるので、この比率を用いて、次式により電流値I
xoから仮定値の容量成分電流Icと仮定値の抵抗成分
電流Irを求める。
In = Ixo * n (n is an arbitrary constant) Next, from the current value Ixo of the healthy element 2, the capacitance component current Ic
And the resistance component current Ir. Since the ratio A: B of the capacitance component current Ic and the resistance component current Ir in the element 2 in a healthy state is known, the current value I is calculated by the following equation using this ratio.
From xo, a capacitance component current Ic of an assumed value and a resistance component current Ir of an assumed value are obtained.

【0021】Ic=Ixo*(A/(A+B)) Ir=(Ixo2 −Ic2 1/2 なお、Irは実際には歪んだ波形であるが、Icに対し
て充分に小さい値であるため、正弦波として近似するこ
とができる。なお、以上の各種電流値としては、アレス
タ導入当初の温度によって、それぞれの素子特性を基準
化し、その後に測定した気温による温度補正式を適用し
ても良い。
Ic = Ixo * (A / (A + B)) Ir = (Ixo 2 −Ic 2 ) 1/2 Although Ir is actually a distorted waveform, it is a value sufficiently smaller than Ic. Therefore, it can be approximated as a sine wave. As the above various current values, the element characteristics may be standardized according to the temperature at the time of arrestor introduction, and a temperature correction formula based on the measured air temperature may be applied thereafter.

【0022】以上説明した各値は、アレスタ1の導入当
初に基準化される。このように、各種電流値及び管理値
を算出することにより、素子劣化検出及び碍子汚損検出
に必要な各種電流値及び管理値が自動的に登録されるこ
ととなる。また、アレスタの導入当初に得た各種電流値
及び管理値は、運用開始後に、過去のデータによって、
移動平均又は代表値手法によって、定期的に更新してい
くことができる。
The values described above are standardized at the beginning of the arrester 1 introduction. By calculating various current values and management values in this manner, various current values and management values required for element deterioration detection and insulator contamination detection are automatically registered. In addition, the various current values and control values obtained at the beginning of the arrester introduction are based on past data
It can be updated periodically by a moving average or representative value method.

【0023】湿度Hが湿度管理値Hnを超えると碍子表
面電流Igが流れる。碍子表面電流Igは、機能F6で
得た漏れ電流の実測値Iyから、次式により算出でき
る。 Ig=((Iy2 −Ic2 1/2 )−Ir また、健全アレスタの素子電流Ixoは容量成分電流I
cがほとんど支配的となることから、素子電流Ixoを
容量成分電流Icと抵抗成分電流Irに分離せずに簡略
化し、その季節に関わる温度特性を温度換算なしに得ら
れる方法で求めても良い。
When the humidity H exceeds the humidity control value Hn, an insulator surface current Ig flows. The insulator surface current Ig can be calculated from the actual measured value Iy of the leakage current obtained by the function F6 according to the following equation. Ig = ((Iy 2 −Ic 2 ) 1/2 ) −Ir Also, the element current Ixo of the healthy arrester is the capacitance component current I
Since c becomes almost dominant, the element current Ixo may be simplified without separating it into the capacitance component current Ic and the resistance component current Ir, and the temperature characteristic relating to the season may be obtained by a method that can be obtained without temperature conversion. .

【0024】Ig=(Iy2 −Imi2 1/2 (Imiは、過去数日間の最小平均値、又は最小代表
値) また、温度補正した漏れ電流値Ixの1日ごとの最小値
を所定日数分記憶しておく。図2の第8の機能F8で、
零相電流Ioが所定の管理値(識別管理値)Nn以上で
あるか否かを判定する。碍子汚損進展時や、湿度上昇時
の汚損による漏れ電流(碍子表面電流Ig)は3相とも
ほぼ同一の変化をし、電圧と同位相の抵抗性の正弦波と
なるため、セレクタ6が3相合成回路を構成した場合
は、碍子の汚損による抵抗成分電流は打ち消されるよう
に作用する。一方、素子劣化時の非線形抵抗分漏れ電流
は3相合成回路によっても打ち消されないため、いずれ
かの相、若しくは各相が同時に劣化した場合でも、零相
電流Ioはいずれもレベル増大する。したがって、3相
合成回路の零相電流Ioをモニタすることにより素子の
劣化と碍子の汚損が識別できる。
Ig = (Iy 2 −Imi 2 ) 1/2 (Imi is the minimum average value or the representative value of the past several days) Further, the minimum value of the temperature-corrected leakage current value Ix for each day is predetermined. Remember for several days. In an eighth function F8 in FIG.
It is determined whether the zero-phase current Io is equal to or greater than a predetermined management value (identification management value) Nn. The leakage current (insulator surface current Ig) due to contamination when the insulator fouls or when the humidity rises changes almost the same in all three phases and becomes a resistive sine wave in the same phase as the voltage. When a synthesis circuit is configured, the resistance component current due to the contamination of the insulator acts to cancel. On the other hand, since the non-linear resistance leakage current at the time of element deterioration is not canceled by the three-phase synthesis circuit, the zero-phase current Io is increased even if any of the phases or each phase is simultaneously deteriorated. Therefore, by monitoring the zero-phase current Io of the three-phase synthesis circuit, deterioration of the element and contamination of the insulator can be distinguished.

【0025】図5〜図11を用いて、機能F8により素
子の劣化と碍子の汚損を識別方法について詳細に説明す
る。図5(a)は、健全なアレスタの内部素子電流と電
圧位相の関係を示した波形である。容量成分電流Icは
電圧Vの位相に対して90°進んだ波形となり、抵抗成
分電流Irは電圧位相のピーク付近で僅かに流れている
程度である。(b)は2つの内部素子電流Ic,Irの
合成電流Iarを示す。(c)は健全アレスタの各相電
圧Va,Vb,Vcと各相電流Ia,Ib,Icの位相
関係を示したものである。(d)は各相電圧と零相電流
Ioの関係を示したものである。各相の容量性電流Ic
は正弦波に近い波形となるため、3相合成によって打ち
消され、零相電流Ioには各相の元々の非線形の抵抗成
分電流Irが僅かにながれる。
A method of identifying deterioration of the element and contamination of the insulator by the function F8 will be described in detail with reference to FIGS. FIG. 5A is a waveform showing the relationship between the internal element current and the voltage phase of a sound arrester. The capacitance component current Ic has a waveform advanced by 90 ° with respect to the phase of the voltage V, and the resistance component current Ir slightly flows near the peak of the voltage phase. (B) shows a combined current Iar of the two internal element currents Ic and Ir. (C) shows the phase relationship between each phase voltage Va, Vb, Vc of the sound arrester and each phase current Ia, Ib, Ic. (D) shows the relationship between each phase voltage and the zero-phase current Io. Capacitive current Ic of each phase
Has a waveform close to a sine wave, is canceled by three-phase synthesis, and the original non-linear resistance component current Ir of each phase slightly flows to the zero-phase current Io.

【0026】図6は、碍子汚損によって碍子表面電流が
流れたときの合成電流を示したものである。碍子表面電
流Igは(a)に示すとおり、歪みの少ない正弦波とな
り、電圧Vとほぼ同位相となる。碍子汚損電流が流れる
ことによって、アレスタの漏れ電流Iは(b)に示すよ
うに内部素子電流Iarと表面電流Igの合成電流とな
る。
FIG. 6 shows a combined current when an insulator surface current flows due to insulator contamination. As shown in (a), the insulator surface current Ig becomes a sine wave with little distortion, and has substantially the same phase as the voltage V. When the insulator fouling current flows, the leakage current I of the arrester becomes a combined current of the internal element current Iar and the surface current Ig as shown in FIG.

【0027】(c)は、碍子汚損による抵抗性電流が流
れたときの各相電圧Va,Vb,Vcと各相電流Ia,
Ib,Icの関係を示したものである。碍子汚損は基本
的に3相同時進行するため、各相の碍子表面電流Igと
内部素子電流Iarの合成電流Ioは、これもまた歪み
の少ない正弦波となる。(d)は、その時の各相電圧と
零相電流の関係を示したものである。アレスタ健全時の
零相電流Ioは碍子汚損がある場合でも、汚損がないと
き(図5(d))と同じになる。
(C) shows each phase voltage Va, Vb, Vc and each phase current Ia, when a resistive current due to insulator contamination flows.
It shows the relationship between Ib and Ic. Since the insulator contamination basically proceeds in three phases simultaneously, the combined current Io of the insulator surface current Ig and the internal element current Iar of each phase also becomes a sine wave with little distortion. (D) shows the relationship between each phase voltage and the zero-phase current at that time. The zero-phase current Io when the arrester is sound is the same as that when there is no contamination (FIG. 5D) even when the insulator is dirty.

【0028】図7は、アレスタの1相の素子劣化時の内
部素子電流と電圧位相の関係を示した波形である。
(a)に示すように、容量成分電流Icは電圧Vの位相
に対して90°進んだ波形となり、抵抗成分電流Irは
電圧位相のピーク付近で大きな値となる。(b)はこの
2つの内部素子電流の合成電流Iarを示す。(c)は
各相電圧Va,Vb,Vcと各相電流Ia,Ib,Ic
の位相関係を示したものである。(d)は各相電圧と零
相電流Ioの関係を示したものである。この波形から明
らかなように、アレスタの素子劣化が1相で発生した場
合は、零相電流Ioが大きな値を示す。
FIG. 7 is a waveform showing the relationship between the internal element current and the voltage phase at the time of one-phase element deterioration of the arrester.
As shown in (a), the capacitance component current Ic has a waveform advanced by 90 ° with respect to the phase of the voltage V, and the resistance component current Ir has a large value near the peak of the voltage phase. (B) shows the combined current Iar of the two internal element currents. (C) shows each phase voltage Va, Vb, Vc and each phase current Ia, Ib, Ic.
FIG. (D) shows the relationship between each phase voltage and the zero-phase current Io. As is apparent from this waveform, when the element deterioration of the arrester occurs in one phase, the zero-phase current Io shows a large value.

【0029】図8は、1相の素子劣化と碍子汚損が同時
に発生した時の電流と電圧位相の関係を示す波形であ
る。(a)に示すように、碍子表面電流Igは、抵抗成
分が大きくなるので、電圧Vと同相の大電流となる。内
部素子電流Iarは、図7(b)と同様に、電圧Vより
ほぼ90°進んで歪み波形の大電流となる。図8(b)
は、1相の電圧Vと合成電流Iとの位相関係を示したも
のである。
FIG. 8 is a waveform showing the relationship between the current and the voltage phase when one-phase element deterioration and insulator fouling occur simultaneously. As shown in (a), the insulator surface current Ig becomes a large current in phase with the voltage V because the resistance component increases. As in FIG. 7B, the internal element current Iar leads the voltage V by approximately 90 ° and becomes a large current having a distorted waveform. FIG. 8B
Shows a phase relationship between the one-phase voltage V and the combined current I.

【0030】(c)は各相電圧Va,Vb,Vcと各相
電流Ia,Ib,Icの位相関係を示したものである。
1相の電流Iaが素子劣化により歪んだ波形となる。他
の相電流Ib,Icは、碍子汚損による大電流となって
いる。(d)は、各相電圧と零相電流Ioとの位相関係
を示す。各相の碍子汚損による電流成分は3相合成によ
り打ち消し合うので、零相電流Ioは1相の素子劣化に
よる成分のみが検出される。
FIG. 3C shows the phase relationship between each phase voltage Va, Vb, Vc and each phase current Ia, Ib, Ic.
The one-phase current Ia has a waveform distorted due to element deterioration. The other phase currents Ib and Ic are large currents due to insulator contamination. (D) shows the phase relationship between each phase voltage and the zero-phase current Io. Since the current components due to the insulator contamination of each phase cancel each other out by three-phase synthesis, only the component due to the one-phase element deterioration is detected as the zero-phase current Io.

【0031】図9は、素子劣化が3相同時に発生した場
合(碍子汚損は発生していない場合)の電圧及び電流波
形を示す。(a)は、各相電圧Va,Vb,Vcと各相
電流Ia,Ib,Icの位相関係を示す。(b)は、各
相電圧と零相電流Ioとの位相関係を示す。この波形か
ら明らかなように、3相同時に素子劣化が発生した場合
も、大きな零相電流Ioが検出される。
FIG. 9 shows voltage and current waveforms when element deterioration occurs simultaneously in three phases (when insulator contamination does not occur). (A) shows the phase relationship between each phase voltage Va, Vb, Vc and each phase current Ia, Ib, Ic. (B) shows the phase relationship between each phase voltage and the zero-phase current Io. As is apparent from this waveform, a large zero-sequence current Io is also detected when the three phases are simultaneously degraded.

【0032】図10は、素子劣化と碍子汚損が3相同時
に発生した場合の電圧及び電流波形を示す。(a)は、
各相電圧Va,Vb,Vcと各相電流Ia,Ib,Ic
の位相関係を示す。(b)は、各相電圧と零相電流Io
との位相関係を示す。この波形から明らかなように、3
相同時に素子劣化が発生した場合でも、電流波形の歪み
により、大きな零相電流Ioが検出される。
FIG. 10 shows voltage and current waveforms when element deterioration and insulator contamination occur simultaneously in three phases. (A)
Each phase voltage Va, Vb, Vc and each phase current Ia, Ib, Ic
Shows the phase relationship. (B) shows each phase voltage and zero-phase current Io.
This shows the phase relationship with. As is clear from this waveform,
Even when the elements deteriorate simultaneously, a large zero-phase current Io is detected due to the distortion of the current waveform.

【0033】図2の機能F8で零相電流Ioが識別管理
値Nn以上であると判定されると、第9の機能F9で、
素子劣化検出アルゴリズムを用いて、素子劣化の検出を
行う。図11(a)は、アレスタ漏れ電流の実測値の1
か月の推移を示す図である。横軸の目盛りは、1日を表
している。漏れ電流は碍子汚損と湿度の影響により激し
く変動している。碍子汚損と湿度の影響を排除するた
め、既述の機能F7で記憶した1日ごとの漏れ電流の最
小値Imdを1か月プロットすると、(b)(c)
(d)に示す傾向となる。(b)は、素子劣化がない場
合を示し、(c)(d)は、1相に素子劣化が発生した
場合を示す。
If it is determined in the function F8 of FIG. 2 that the zero-phase current Io is equal to or larger than the discrimination management value Nn, a ninth function F9 is performed.
Element deterioration is detected using an element deterioration detection algorithm. FIG. 11A shows one of the measured values of the arrester leakage current.
It is a figure showing transition of a month. The scale on the horizontal axis represents one day. Leakage current fluctuates strongly due to insulator fouling and humidity. In order to eliminate the effects of insulator contamination and humidity, when the minimum value Imd of the leak current for each day stored in the function F7 described above is plotted for one month, (b) and (c)
The tendency shown in FIG. (B) shows a case where there is no element degradation, and (c) and (d) show a case where element degradation has occurred in one phase.

【0034】(c)の場合は、各相のデータを相互に3
相比較して素子劣化の有無を検出する。ある相が他の相
に対して突出している状態が継続すれば、内部素子電流
が増加したことになるので、その相を劣化相として検出
する。同じデータに対して、3相比較でなく、(d)の
ように劣化管理値In(機能F7参照)と比較して、そ
れを超える状態が継続すれば、その相を劣化相として検
出し、表示手段15に表示をする。
In the case of (c), the data of each phase is
The presence or absence of element deterioration is detected by comparing the phases. If a certain phase continues to protrude from other phases, it means that the internal element current has increased, and that phase is detected as a deteriorated phase. The same data is compared with the deterioration management value In (see function F7) as shown in (d) instead of the three-phase comparison, and if the state continues beyond the state, the phase is detected as the deteriorated phase. Display is made on the display means 15.

【0035】アレスタの3相同時劣化が確率的に発生し
にくいと考えれば、(c)(d)を合わせた条件で劣化
を判定してもよい。以上説明した例では、漏れ電流の最
小値Imdと劣化管理値Inとを比較しているが、機能
F7で記憶してある、湿度管理値Hn以下の漏れ電流値
Ixoを劣化管理値Inと比較するようにしても良い。
湿度Hが湿度管理値Hn以下に低下した場合は、碍子汚
損による漏れ電流Igがほとんどゼロになるため、碍子
汚損の影響を受けずに劣化判定をすることができ、信頼
性が向上する。
If it is considered that the three-phase simultaneous deterioration of the arrester is unlikely to occur stochastically, the deterioration may be judged under the condition of (c) and (d). In the example described above, the minimum value Imd of the leakage current is compared with the deterioration management value In, but the leakage current value Ixo that is stored in the function F7 and is equal to or less than the humidity management value Hn is compared with the deterioration management value In. You may do it.
When the humidity H falls below the humidity control value Hn, the leakage current Ig due to the insulator contamination becomes almost zero, so that the deterioration can be determined without being affected by the insulator contamination, and the reliability is improved.

【0036】図2の機能F8で零相電流Ioが識別管理
値Nn以下であると判定されると、第10の機能F10
で、碍子汚損検出のアルゴリズムを用いて、碍子汚損の
検出を行う。碍子表面電流Ig(機能F7参照)と所定
の管理値(汚損管理値)Mnとを比較し、Ig>Mnで
あれば、碍子汚損が発生していると判定し、表示手段1
5に碍子汚損発生の表示を行う。
When the zero-phase current Io is determined to be equal to or smaller than the discrimination management value Nn in the function F8 of FIG. 2, the tenth function F10
Then, insulator contamination detection is performed using an insulator contamination detection algorithm. The insulator surface current Ig (see function F7) is compared with a predetermined control value (contamination control value) Mn. If Ig> Mn, it is determined that the insulator contamination has occurred, and the display means 1
An indication of occurrence of insulator contamination is shown in FIG.

【0037】なお、アレスタ素子2が劣化し、素子電流
Iarが多く流れていると、碍子表面電流Igを求める
際に大きな誤差が発生することがある。このため、その
相については碍子劣化汚損電流換算を行わないこととす
る。零相電流Ioが識別管理値Nnを超えている、又は
識別管理値Nnよりも小さいが、やや大きい場合などは
ある相が劣化している、又は劣化に移行中である可能性
が強い。そのときは、各相の中で最大のレベルとなって
いる相、又は上位2相については、碍子汚損電流は求め
ない。
If the arrester element 2 is deteriorated and a large element current Iar flows, a large error may occur when the insulator surface current Ig is obtained. Therefore, the conversion of the insulator deterioration fouling current is not performed for that phase. If the zero-phase current Io exceeds the identification management value Nn or is smaller than the identification management value Nn, but is slightly larger, it is highly likely that a certain phase has deteriorated or is in transition to deterioration. In that case, the insulator fouling current is not determined for the phase having the highest level among the phases or the upper two phases.

【0038】前項の碍子汚損電流を求めない相の判定方
法として、最大値のレベルとなる相のみを対象としても
良いし、或いは、中間レベルの相が最大値相と最小値相
の中間値よりも大きければ中間値の相も除外対象として
もかまわない。または、零相の実効値と波高値の比(ク
レストファクタ)によって、最大1相除外、又は最大2
相除外としても良い。
As a method for determining a phase in which the insulator fouling current is not determined in the preceding paragraph, only the phase having the maximum value level may be used, or the phase at the intermediate level may be determined from the intermediate value between the maximum value phase and the minimum value phase. If it is larger, the phase of the intermediate value may be excluded. Alternatively, depending on the ratio (crest factor) between the effective value and peak value of the zero phase, a maximum of one phase is excluded, or a maximum of two phases is excluded.
It is good also as phase exclusion.

【0039】碍子汚損検出中であっても緊急的な素子劣
化を監視できるようにするため、機能F9で零相電流I
oのレベルと継続性によって劣化を検出する。そのと
き、各相電流Ia,Ib,Icの波高値を監視すること
で、劣化した相を判定しても良い。不平等に碍子汚損が
進展し、各相の汚損による漏れ電流に多少のばらつきが
あっても波高値監視により確実に劣化相の判定ができ
る。
In order to be able to monitor urgent element deterioration even during detection of insulator contamination, the zero-phase current I
Deterioration is detected by the level and continuity of o. At this time, the deteriorated phase may be determined by monitoring the peak values of the phase currents Ia, Ib, and Ic. Even if the insulator contamination progresses unequally, and the leakage current due to the contamination of each phase has some variation, the degraded phase can be reliably determined by monitoring the peak value.

【0040】図12は、3相アンバランス汚損により各
相の碍子表面電流Igにばらつきがある場合で、汚損電
流の一番少ないA相で劣化が発生した場合を示したもの
である。(a)は、各相電圧Va,Vb,Vcと素子電
流Iarの位相関係を示す。(b)は、各相電圧と各相
の碍子表面電流(碍子汚損電流)IgA,IgB,Ig
Cとの位相関係を示す。(d)は各相電圧と各相ごとの
合成電流Ioとの位相関係を示す。
FIG. 12 shows a case in which the insulator surface current Ig of each phase varies due to three-phase unbalanced contamination, and a case in which deterioration occurs in the A phase having the least contamination current. (A) shows the phase relationship between the phase voltages Va, Vb, Vc and the device current Iar. (B) shows each phase voltage and each insulator surface current (insulator contamination current) IgA, IgB, Ig
The phase relationship with C is shown. (D) shows the phase relationship between each phase voltage and the combined current Io for each phase.

【0041】(c)に示すように、碍子表面電流Igが
一番少なく且つ素子劣化したa相の電流Iaと汚損電流
が一番大きなc相の電流Icは実効値で比較するとほぼ
同じとなる。しかしながら、波高値で比較するとa相電
流Iaの方がc相電流Icより約1.5倍大きくなる。
よって、通常の碍子汚損のアンバランス電流の大きさ
や、劣化管理値Inの大きさを考慮すれば、碍子汚損中
でも各相の波高値を監視することで劣化相を判定でき
る。
As shown in (c), the current Ia of the a-phase in which the insulator surface current Ig is the smallest and the element is deteriorated and the current Ic of the c-phase in which the fouling current is the largest are almost the same when compared by their effective values. . However, comparing the peak values, the a-phase current Ia is about 1.5 times larger than the c-phase current Ic.
Therefore, if the magnitude of the unbalance current of the ordinary insulator contamination and the magnitude of the deterioration management value In are considered, the deteriorated phase can be determined by monitoring the peak value of each phase even during the insulator contamination.

【0042】[0042]

【発明の効果】本発明によれば、素子劣化を簡単な構成
で正確に検出でき、更に、碍子汚損も区別して検出でき
るアレスタ劣化検出装置を得ることができる。
According to the present invention, it is possible to obtain an arrester deterioration detecting device capable of accurately detecting element deterioration with a simple configuration and further capable of distinguishing and detecting insulator contamination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアレスタ劣化検出装置の構成を示す
図。
FIG. 1 is a diagram showing a configuration of an arrester deterioration detection device of the present invention.

【図2】図1の検出手段の機能を示す図。FIG. 2 is a diagram showing a function of a detection unit in FIG. 1;

【図3】図1のアレスタ素子の温度特性を示す図。FIG. 3 is a view showing temperature characteristics of the arrester element of FIG. 1;

【図4】湿度管理値以下のアレスタ漏れ電流を示す図。FIG. 4 is a diagram showing an arrester leakage current equal to or lower than a humidity control value.

【図5】アレスタの碍子非汚損時の3相合成電流を示す
図。
FIG. 5 is a diagram showing a three-phase combined current when the insulator of the arrester is not contaminated.

【図6】アレスタの碍子汚損時の3相合成電流を示す
図。
FIG. 6 is a diagram showing a three-phase combined current when the insulator of the arrester is contaminated.

【図7】アレスタの素子劣化が1相に発生した時の電
圧、電流波形を示す図。
FIG. 7 is a diagram showing voltage and current waveforms when element deterioration of an arrester occurs in one phase.

【図8】アレスタの素子劣化が1相に発生し、碍子汚損
が同時に発生した時の電圧、電流波形を示す図。
FIG. 8 is a diagram showing voltage and current waveforms when element deterioration of an arrester occurs in one phase and insulator contamination occurs simultaneously.

【図9】アレスタの素子劣化が3相同時に発生した時の
電圧、電流波形を示す図。
FIG. 9 is a diagram showing voltage and current waveforms when three phases of arrester element deterioration occur simultaneously.

【図10】アレスタの3相の素子劣化と碍子汚損が同時
に発生した時の電圧、電流波形を示す図。
FIG. 10 is a diagram showing voltage and current waveforms when three-phase element deterioration and insulator contamination of an arrester occur simultaneously.

【図11】アレスタに素子劣化が発生したときの判定方
法を示す図。
FIG. 11 is a diagram showing a determination method when element deterioration occurs in the arrester.

【図12】碍子汚損がアンバランスに発生し、かつ素子
劣化が発生したときの判定方法を示す図。
FIG. 12 is a diagram showing a determination method when insulator contamination occurs unbalanced and element deterioration occurs.

【符号の説明】[Explanation of symbols]

1…アレスタ 2…素子 3…碍子 4…電力線 5…変流器 6…セレクタ 7…電/光変換器 8…光ファイバ 9…検出装置本体 11…光/電変換器 12…検出手段 13…温度測定手段 14…湿度測定手段 15…表示手段 16…発光ダイオード 17…直流電源 V…電圧 I…測定した漏れ電流 Ix…温度補正した漏れ電流 Ixo…湿度が管理値以下に低下したときの温度補正し
た漏れ電流 Io…零相電流 Iy…湿度が管理値を超えたときの温度補正した漏れ電
流 In…素子劣化検出のための劣化管理値 Iar…素子電流 Ic…容量成分電流 Ir…抵抗成分電流 Ia,Ib,Ic…各相電流 Ig…碍子表面電流 Imi…過去数日間の最小漏れ電流又は最小代表値 T…外気温 H…湿度 Mn…汚損管理値 Nm…識別管理値 Hn…湿度管理値
DESCRIPTION OF SYMBOLS 1 ... Arrester 2 ... Element 3 ... Insulator 4 ... Power line 5 ... Current transformer 6 ... Selector 7 ... Electric / optical converter 8 ... Optical fiber 9 ... Detector main body 11 ... Optical / electrical converter 12 ... Detecting means 13 ... Temperature Measuring means 14 Humidity measuring means 15 Display means 16 Light emitting diode 17 DC power supply V Voltage I Measured leakage current Ix Temperature-corrected leakage current Ixo Temperature-corrected when humidity falls below the control value Leakage current Io: Zero-phase current Iy: Temperature-corrected leakage current when humidity exceeds a control value In: Deterioration control value for detecting element deterioration Iar: Element current Ic: Capacitive component current Ir: Resistance component current Ia, Ib, Ic: each phase current Ig: insulator surface current Imi: minimum leakage current or minimum representative value in the past several days T: outside temperature H: humidity Mn: pollution control value Nm: identification management value Hn: humidity management

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 仁 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 (72)発明者 金万 直弘 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 (72)発明者 斉藤 宗敬 群馬県群馬郡箕郷町生原1219−6 (72)発明者 大木 秀人 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 Fターム(参考) 2G015 AA20 CA20 2G036 AA24 BA01 CA06 2G060 AA01 AA08 AA20 AB02 AE07 AE26 AF03 HA02 HC02 HC08 HC10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jin Hoshino 3-7-1, Ichibancho, Aoba-ku, Sendai City, Miyagi Prefecture Inside Tohoku Electric Power Co., Inc. (72) Inventor Naohiro Kanaman 47 Nissin Electric Co., Ltd. (72) Inventor Munetaka Saito 1219-6, Ikuhara, Minago-cho, Gunma-gun, Gunma Prefecture (72) Inventor Hideto Oki 47, Umezu Takaune-cho, Ukyo-ku, Kyoto, Kyoto, Japan F term (reference) 2G015 AA20 CA20 2G036 AA24 BA01 CA06 2G060 AA01 AA08 AA20 AB02 AE07 AE26 AF03 HA02 HC02 HC08 HC10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 各相ごとに碍子内に素子が配置された多
相のアレスタの劣化を検出する装置において、 前記アレスタの各相ごとに漏れ電流を測定する手段と、 各相ごとの測定手段の出力を、各相ごとの漏れ電流及び
各相の合成の漏れ電流に切替えるチャネルセレクタと、 このチャネルセレクタの出力信号を光信号に変換する電
気/光変換手段と、 この電気/光変換手段の出力光を伝達する光ファイバ
と、 この光ファイバにより伝達された光信号に基づいて、前
記多相のアレスタの各相ごとの漏れ電流及び各相の合成
の漏れ電流を測定し、その測定結果に基づいて前記素子
の劣化を検出する検出手段と、 を具備することを特徴とするアレスタ劣化検出装置。
1. An apparatus for detecting deterioration of a multi-phase arrester in which an element is arranged in an insulator for each phase, means for measuring a leakage current for each phase of the arrester, and measuring means for each phase. A channel selector for switching the output of each channel to a leakage current for each phase and a combined leakage current for each phase; an electrical / optical converter for converting an output signal of the channel selector into an optical signal; An optical fiber that transmits output light, and a leakage current for each phase of the multi-phase arrester and a combined leakage current of each phase are measured based on the optical signal transmitted by the optical fiber. Detecting means for detecting the deterioration of the element based on the arrestor deterioration detecting device.
【請求項2】 気温を測定する温度測定手段を更に具備
し、前記検出手段は、前記気温に基づいて前記測定した
漏れ電流を補正する請求項1に記載のアレスタ劣化検出
装置。
2. The arrester deterioration detection device according to claim 1, further comprising a temperature measurement unit for measuring an air temperature, wherein the detection unit corrects the measured leakage current based on the air temperature.
【請求項3】 前記検出手段は、前記合成の漏れ電流と
所定の管理値とを比較する手段を更に具備し、前記各相
の漏れ電流がほぼ同様に増大し、前記合成の漏れ電流が
前記管理値以下の漏れ電流となる場合は前記碍子の汚損
を検出するアルゴリズムにより、前記合成の漏れ電流が
増大した場合は前記素子の劣化を検出するアルゴリズム
により、碍子の汚損と素子の劣化の両方の検出を可能と
する請求項1又は2に記載のアレスタ劣化検出装置。
3. The detecting means further comprises means for comparing the combined leakage current with a predetermined control value, wherein the leakage current of each phase increases substantially similarly, and the combined leakage current is When the leakage current is equal to or less than the control value, an algorithm for detecting contamination of the insulator is used, and when the combined leakage current is increased, an algorithm for detecting deterioration of the element is used. The arrester deterioration detection device according to claim 1, wherein the arrester deterioration detection device enables detection.
【請求項4】 前記検出手段は、一定期間ごとに各相同
士の漏れ電流値を比較し、ある相の漏れ電流値が突出し
ていた場合は、その相を素子劣化相として特定する判定
アルゴリズムを具備する請求項3に記載のアレスタ劣化
検出装置。
4. A detecting algorithm for comparing a leakage current value of each phase with each other at regular intervals and, when a leakage current value of a certain phase is prominent, identifying a phase as an element deterioration phase. The arrester deterioration detection device according to claim 3, further comprising:
【請求項5】 前記検出手段は、各相の漏れ電流値を一
定期間ごとに劣化管理値と比較し、長時間にわたって前
記管理値を超えている相を素子劣化相として検出するこ
とで、碍子汚損による影響を排除した判定アルゴリズム
を具備する請求項3に記載のアレスタ劣化検出装置。
5. The insulator according to claim 1, wherein the detecting means compares a leakage current value of each phase with a deterioration management value at regular intervals, and detects a phase exceeding the management value for a long time as an element deterioration phase. The arrester deterioration detection device according to claim 3, further comprising a determination algorithm that eliminates the influence of contamination.
【請求項6】 請求項4及び請求項5の2つの判定アル
ゴリズムを用いて素子劣化相を特定する請求項3に記載
のアレスタ劣化検出装置。
6. The arrester deterioration detection apparatus according to claim 3, wherein the element deterioration phase is specified by using the two determination algorithms according to claim 4 and claim 5.
【請求項7】 湿度を測定する湿度測定手段を更に具備
し、前記検出手段は、測定した湿度がある湿度管理値以
下である時の各相の漏れ電流、及び合成の漏れ電流を記
録していき、測定した湿度が管理値を超えた場合は、湿
度が管理値を超える直前のデータを保持するアルゴリズ
ムを具備する請求項3〜6のいずれか1項に記載のアレ
スタ劣化検出装置。
7. A humidity measuring means for measuring humidity, wherein the detecting means records a leakage current of each phase when the measured humidity is below a certain humidity control value, and a combined leakage current. The arrester deterioration detection device according to any one of claims 3 to 6, further comprising an algorithm for retaining data immediately before the measured humidity exceeds the control value when the measured humidity exceeds the control value.
【請求項8】 前記検出手段は、前記湿度管理値以下で
ある時の漏れ電流値から各種管理値を自動決定する請求
項7に記載のアレスタ劣化検出装置。
8. The arrester deterioration detection device according to claim 7, wherein the detection means automatically determines various management values from a leakage current value when the humidity is equal to or less than the humidity management value.
【請求項9】 前記検出手段は、前記アレスタの運用初
期に健全時の全漏れ電流を登録し、 更に、使用しているアレスタ素子により決まる既知の比
率により前記登録されている全漏れ電流から前記素子の
抵抗分電流と容量分電流を演算することにより、汚損に
よる漏れ電流のみを抽出検索し、汚損レベル判定に使用
する請求項8に記載のアレスタ劣化検出装置。
9. The detecting means registers a total leakage current in a healthy state at an early stage of the operation of the arrester, and further calculates the total leakage current from the registered total leakage current at a known ratio determined by an arrestor element used. 9. The arrester deterioration detection device according to claim 8, wherein only the leakage current due to the contamination is extracted and searched for by calculating the resistance component current and the capacitance component current of the element and used for determining the contamination level.
【請求項10】 前記検出手段は、登録されている全漏
れ電流を過去のデータによって更新して、この更新した
漏れ電流を使用して、素子劣化の検出と碍子汚損の検出
を行う請求項8に記載のアレスタ劣化検出装置。
10. The detection means updates all registered leakage currents with past data, and detects element degradation and insulator contamination using the updated leakage currents. 2. The arrester deterioration detection device according to 1.
【請求項11】 前記検出手段は、漏れ電流から碍子汚
損による漏れ電流を抽出計算する際に、素子劣化電流が
流れていると仮定できる相については汚損電流計算を行
わない請求項3〜10のいずれか1項に記載のアレスタ
劣化検出装置。
11. The method according to claim 3, wherein said detecting means does not perform a contamination current calculation for a phase which can be assumed to have an element deterioration current flowing when extracting and calculating a leakage current due to insulator contamination from the leakage current. The arrester deterioration detection device according to any one of the preceding claims.
JP2000041652A 2000-02-18 2000-02-18 Arrester degradation detector Expired - Lifetime JP4248720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041652A JP4248720B2 (en) 2000-02-18 2000-02-18 Arrester degradation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041652A JP4248720B2 (en) 2000-02-18 2000-02-18 Arrester degradation detector

Publications (2)

Publication Number Publication Date
JP2001228198A true JP2001228198A (en) 2001-08-24
JP4248720B2 JP4248720B2 (en) 2009-04-02

Family

ID=18564855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041652A Expired - Lifetime JP4248720B2 (en) 2000-02-18 2000-02-18 Arrester degradation detector

Country Status (1)

Country Link
JP (1) JP4248720B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308440A (en) * 2005-04-28 2006-11-09 Honda Motor Co Ltd Gas detector
JP2010515022A (en) * 2006-12-20 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Detection system
JP2013172140A (en) * 2012-02-23 2013-09-02 Toshiba Corp Arrester and arrester monitoring system
CN103777064A (en) * 2014-01-23 2014-05-07 国家电网公司 Zinc oxide arrester live detection device free of external connection with alternating-current power supply
CN106405283A (en) * 2016-08-27 2017-02-15 许继集团有限公司 Lightning arrester fault early warning method capable of overcoming environment humiture influence
JP2022506865A (en) * 2018-11-08 2022-01-17 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Relative bushing parameter method avoiding the influence of temperature in monitoring the absolute bushing parameter of the transformer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308440A (en) * 2005-04-28 2006-11-09 Honda Motor Co Ltd Gas detector
JP2010515022A (en) * 2006-12-20 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Detection system
JP2013172140A (en) * 2012-02-23 2013-09-02 Toshiba Corp Arrester and arrester monitoring system
CN103777064A (en) * 2014-01-23 2014-05-07 国家电网公司 Zinc oxide arrester live detection device free of external connection with alternating-current power supply
CN106405283A (en) * 2016-08-27 2017-02-15 许继集团有限公司 Lightning arrester fault early warning method capable of overcoming environment humiture influence
CN106405283B (en) * 2016-08-27 2019-08-16 许继集团有限公司 A kind of surge arrester failure method for early warning for overcoming ambient temperature and humidity to influence
JP2022506865A (en) * 2018-11-08 2022-01-17 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Relative bushing parameter method avoiding the influence of temperature in monitoring the absolute bushing parameter of the transformer
JP7304416B2 (en) 2018-11-08 2023-07-06 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト A relative bushing parameter method that avoids temperature effects in monitoring absolute bushing parameters of transformers
US11892488B2 (en) 2018-11-08 2024-02-06 Hitachi Energy Ltd Relative bushing parameter method to avoid temperature influence in transformer absolute bushing parameter monitoring

Also Published As

Publication number Publication date
JP4248720B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
EP2806518B1 (en) Serial arc detection based on harmonic content of DC current signal
US7227729B2 (en) Arc fault detection technique
US8279567B2 (en) Circuit breaker with improved re-closing functionality
US7190561B2 (en) Apparatus for detecting arc faults
US8680872B2 (en) Identification of false positives in high impedance fault detection
US10078105B2 (en) Electrical system with arc fault detection
US10132697B2 (en) Current transformer with enhanced temperature measurement functions
JP4886013B2 (en) Method and apparatus for detecting deterioration of lightning arrester
US20060125486A1 (en) System and method of locating ground fault in electrical power distribution system
US20060050450A1 (en) Method for detecting arc faults
KR20100127304A (en) Superconducting coil quench detector and detection method
US20230053450A1 (en) Method for Detecting a Series Resistance Fault in a Digital-Electricity Transmission System
JP5578573B2 (en) DC circuit insulation resistance measuring device, capacitance measuring device, insulation resistance measuring method and capacitance measuring method
TW201303318A (en) Pulsed missing ground detector circuit
JP2001228198A (en) Arrester deterioration detector
US11519952B2 (en) Arc detection method and apparatus using statistical value of electric current
US10944259B2 (en) System and method for over voltage protection in both positive and negative polarities
JPH0580112A (en) Failure diagnostic device for power cable
JP3884667B2 (en) Transmission line fault arc behavior measurement device and transmission line fault cause determination device
KR102387544B1 (en) Distribution Cable Underground Power Cable Diagnosis System
JP5559638B2 (en) Degradation judgment method for power cables
CN115327426A (en) Direct-current power supply ground fault on-line detection method and system
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
Schei Diagnostics techniques for surge arresters with main reference to on-line measurement of resistive leakage current of metal-oxide arresters
JPH02129881A (en) Monitoring system for deterioration of zinc oxide type arrester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term