JP2001226746A - Manganese alloy steel - Google Patents

Manganese alloy steel

Info

Publication number
JP2001226746A
JP2001226746A JP2000034110A JP2000034110A JP2001226746A JP 2001226746 A JP2001226746 A JP 2001226746A JP 2000034110 A JP2000034110 A JP 2000034110A JP 2000034110 A JP2000034110 A JP 2000034110A JP 2001226746 A JP2001226746 A JP 2001226746A
Authority
JP
Japan
Prior art keywords
less
mns
steel
manganese alloy
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000034110A
Other languages
Japanese (ja)
Other versions
JP4221133B2 (en
Inventor
Takayuki Nakamura
孝幸 中村
Chihiro Kitazawa
千弘 北澤
Naohisa Miyashita
直久 宮下
Eijiro Muramatsu
栄次郎 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Steel Corp
Seiko Epson Corp
Nippon Steel Corp
Daito Manufacturing Co Ltd
Original Assignee
Shinhokoku Steel Corp
Seiko Epson Corp
Sumitomo Metal Industries Ltd
Daito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Steel Corp, Seiko Epson Corp, Sumitomo Metal Industries Ltd, Daito Manufacturing Co Ltd filed Critical Shinhokoku Steel Corp
Priority to JP2000034110A priority Critical patent/JP4221133B2/en
Publication of JP2001226746A publication Critical patent/JP2001226746A/en
Application granted granted Critical
Publication of JP4221133B2 publication Critical patent/JP4221133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide new steel provided with corrosion resistance which allows heat treatment and surface treatment such as planting treatment to be needless and moreover having characteristics excellent in wear resistance and the facial roughness of the worked surface. SOLUTION: This manganese alloy steel contains, by weight, 0.05 to 0.50% C, <=0.5% Si, 6.0 to 25% Mn, <=0.05% P, <=0.35% S, 0 to 3.0% Cu, 0 to 5.0% Ni, 5.0 to 20.0% Cr, 0 to 3.0% Mo, 0.04 to 0.30% N, <=0.10% Al, and the balance Fe with inevitable impurities, and, MnS as nonmetallic inclusions on which the ones having the shape with a width of <=3 μm and a length of <=40 μm occupy >=90% is finely dispersed into the inside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマンガン合金鋼に係
り、特に、機器内部の部品の素材として好適な合金鋼に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manganese alloy steel, and more particularly, to an alloy steel suitable as a material for components inside equipment.

【0002】[0002]

【従来の技術】従来より、OA関連機器、モータ、自動
車、建築機材等の部品構成材料として、メッキ処理、浸
炭窒化処理などを前提とした鋼材若しくは各種ステンレ
ス鋼材が使用されている。これらの鋼材は、用途によっ
て耐蝕性、耐磨耗性,及び高強度を実現するための表面
処理、又はそれらに関連する表面加工処理が施されてい
た。
2. Description of the Related Art Conventionally, steel materials or various stainless steel materials premised on plating, carbonitriding, and the like have been used as component materials for OA-related equipment, motors, automobiles, building equipment, and the like. These steel materials have been subjected to a surface treatment for realizing corrosion resistance, abrasion resistance, and high strength, or a surface treatment related thereto, depending on the use.

【0003】また、上記鋼材を用いた部品は切削により
目的形状に加工されることが多いが、その切削加工面は
粗面化することから、面粗度の要求に応じて、さらに研
削加工やバニシング加工等の表面加工が必要とされてお
り、熱処理や上記の浸炭・窒化などの表面処理を施した
場合にも歪みや面粗度の劣化が発生するため、これらを
矯正するためにも、再度、部品に対して表面加工をする
ことが必要であった。さらに、これらの表面処理、表面
加工処理を施す際には、取扱い時の疵防止に細心の注意
が必要とされる。
[0003] In addition, parts using the above-mentioned steel materials are often machined into a target shape by cutting. However, since the machined surface is roughened, a grinding process or the like may be further performed according to the demand for surface roughness. Surface treatment such as burnishing is required, and even when heat treatment or the above-described surface treatment such as carburizing / nitriding is performed, distortion and deterioration of surface roughness occur.In order to correct these, Again, it was necessary to surface-treat the part. Furthermore, when performing these surface treatments and surface treatments, it is necessary to pay close attention to preventing scratches during handling.

【0004】[0004]

【発明が解決しようとする課題】上記のような部品の素
材となる鋼材、或いは、表面処理においては、ステンレ
ス鋼のように高価な材料には価格的に問題があり、メッ
キ処理には環境的に問題を生ずる可能性があり、浸炭焼
入れ、窒化処理等の熱処理には歪みが発生することによ
る形状精度の不良を生ずる可能性があるなどの問題点が
ある。さらに、軸材やネジ等の量産時に使用される自動
旋盤の加工領域においては低周速、低送り、高肉厚で切
削面の面粗度を一定水準以下に維持することが困難であ
る。例えば、SUS303が被削材である場合、切削面
が初期的にはRy3μm前後と良好であるが、被削材が
Niを8%と多く含有しているため、ガイドブッシュを
有するスイス型自動旋盤ではガイドブッシュのかじり現
象が常に問題となり、面粗度の劣化は避けられない。
In the case of a steel material or a surface treatment as described above, expensive materials such as stainless steel are problematic in terms of price, and plating is an environmental problem. In addition, heat treatments such as carburizing, quenching, nitriding, and the like have a problem in that distortion may cause a defect in shape accuracy. Further, in a machining area of an automatic lathe used for mass production of shaft members, screws, and the like, it is difficult to maintain the surface roughness of a cut surface at a certain level or less at a low peripheral speed, a low feed, and a high wall thickness. For example, when SUS303 is a work material, the cut surface is initially as good as about 3 μm Ry, but since the work material contains a large amount of 8% Ni, a Swiss-type automatic lathe having a guide bush is used. In this case, the galling phenomenon of the guide bush is always a problem, and the deterioration of the surface roughness cannot be avoided.

【0005】従来にあっても、上記のような問題点を解
決するいくつかの材料が提案されている。例えば、特開
昭55−94464号公報には、C:0.5wt%以
下、Si:2.0wt%以下、Mn:7〜40wt%、
Ca:0.0005〜0.0200%を含有し、酸化物
組成を規定した、被削性の良好な低炭素高マンガン鋼が
提案されている。また、特開昭55−76042号公報
には、C:2.0%以下、Si:2.0%以下、Mn:
7〜40%、Ca:0.0005〜0.0200%を含
有し、酸化物組成を規定した、被削性の良好な高炭素高
マンガン鋼が提案されている。
[0005] Even in the past, some materials have been proposed to solve the above problems. For example, JP-A-55-94464 discloses that C: 0.5 wt% or less, Si: 2.0 wt% or less, Mn: 7 to 40 wt%,
A low-carbon high-manganese steel containing 0.0005 to 0.0200% of Ca and having a specified oxide composition and good machinability has been proposed. JP-A-55-76042 discloses that C: 2.0% or less, Si: 2.0% or less, Mn:
A high carbon high manganese steel containing 7 to 40% and Ca: 0.0005 to 0.0200% and having a specified oxide composition and excellent machinability has been proposed.

【0006】しかしながら、これらの材料は、耐蝕性や
耐磨耗性などの点で十分でなく、また、切削性に関して
もCaを添加させて介在物組成を制御することで被削性
を改善させることを目的とした技術であるため、浸炭・
窒化等の熱処理やメッキ処理などの表面処理を省略する
ことができないという問題点がある。
However, these materials are not sufficient in terms of corrosion resistance and abrasion resistance and the like, and in terms of machinability, machinability is improved by adding Ca to control the composition of inclusions. Since the technology is aimed at carburizing and
There is a problem that heat treatment such as nitriding or surface treatment such as plating cannot be omitted.

【0007】そこで本発明は上記問題点を解決するもの
であり、その課題は、熱処理やメッキ処理等の表面処理
を不要とすることができる耐蝕性を備えているととも
に、耐磨耗性や加工表面の面粗度に優れた特性を有する
新規の鋼材を提供することにある。
Accordingly, the present invention has been made to solve the above-mentioned problems, and its object is to provide not only corrosion resistance which can eliminate the need for surface treatment such as heat treatment and plating treatment, but also wear resistance and processing. It is an object of the present invention to provide a new steel material having excellent surface roughness.

【0008】[0008]

【課題を解決するための手段】通常、マンガン合金鋼に
おいては、鋼材中にMnSの粒隗が析出する場合があ
る。このMnSの粒隗が鋼材中に分散して存在している
と、切削抵抗を低減する効果がある。特に、切削性を大
きく改善するにはMnSのアスペクト比(長さ/幅)を
小さくする必要がある。しかし、加工表面にMnSが残
存していると、その部分から腐食が進行するため、アス
ペクト比が小さくても、MnSの粒隗の粒径が大きい
と、耐蝕性が低下したり、他部材に対する摩擦抵抗が大
きくなって耐磨耗性が悪化したりする。ここで、MnS
の粒隗を小さくする方法としては鋼材中の酸素濃度或い
は酸化物量を制御する方法が知られているが、組成比率
や元素種の組み合わせによって必ずしも酸素量を制御す
ることが容易でない場合が多い。一般に組成範囲のマン
ガン合金鋼においては、MnSの粒隗の形成過程や鋼材
に対する圧延その他の塑性加工などに起因して、鋼材中
のMnSの粒隗が細長形状になる場合が多い。したがっ
て、上記マンガン合金鋼の特性は、MnSの細長形状に
も影響されるものと考えることができる。本発明らは、
種々の検討及び実験を繰り返した結果、単なるMnSの
粒径や数量ではなく、MnSの細長形状の形状分布に着
目し、本発明に至ったものである。
Means for Solving the Problems Normally, in a manganese alloy steel, there is a case where MnS grains precipitate in the steel material. If the MnS particles are dispersed and present in the steel material, there is an effect of reducing the cutting resistance. In particular, to greatly improve the machinability, it is necessary to reduce the aspect ratio (length / width) of MnS. However, if MnS remains on the machined surface, corrosion progresses from that part. Therefore, even if the aspect ratio is small, if the particle size of the MnS agglomerate is large, the corrosion resistance decreases, The frictional resistance increases and the wear resistance deteriorates. Where MnS
As a method for reducing the particle size of, a method of controlling the oxygen concentration or the amount of oxide in the steel material is known, but it is often not easy to control the amount of oxygen by a combination of the composition ratio or the element type. Generally, in a manganese alloy steel having a composition range, the MnS particle in the steel material often has an elongated shape due to the process of forming the MnS particle, rolling or other plastic working on the steel material, or the like. Therefore, it can be considered that the characteristics of the manganese alloy steel are influenced by the elongated shape of MnS. The present invention provides:
As a result of repeating various examinations and experiments, the present invention has been achieved by focusing on the shape distribution of the elongated shape of MnS, not just the particle size or quantity of MnS.

【0009】第1の発明のマンガン合金鋼は、C:0.
05〜0.50wt%、Si:0.5wt%以下、M
n:6.0〜25wt%、P:0.05wt%以下、
S:0.35wt%以下、Cu:0〜3.0wt%、N
i:0〜5.0wt%、Cr:5.0〜20.0wt
%、Mo:0〜3.0wt%、N:0.04〜0.30
wt%、Al:0.10wt%以下を含有し、残部がF
e及び不可避不純物からなり、内部に、幅が3μm以下
で、長さが40μm以下の形状のものが90%以上を占
める非金属介在物MnSが微細分散されていることを特
徴とする。
[0009] The manganese alloy steel of the first invention has a C: 0.
05 to 0.50 wt%, Si: 0.5 wt% or less, M
n: 6.0 to 25 wt%, P: 0.05 wt% or less,
S: 0.35% by weight or less, Cu: 0 to 3.0% by weight, N
i: 0 to 5.0 wt%, Cr: 5.0 to 20.0 wt%
%, Mo: 0 to 3.0 wt%, N: 0.04 to 0.30
wt%, Al: 0.10 wt% or less, with the balance being F
e and non-metallic inclusions MnS, having a width of 3 μm or less and a length of 40 μm or less and accounting for 90% or more, are finely dispersed therein.

【0010】本発明者らは、種々検討した結果、上記組
成範囲のマンガン合金鋼において、内部に分散形成され
る微細なMnSの粒隗のうち、幅3μm以下、長さ40
μm以下の範囲内のものが90%以上を占める組織であ
れば、十分な耐蝕性及び耐磨耗性を有し、しかも、加工
表面の面粗度が良好であることを見出した。すなわち、
上記の組成範囲を有するマンガン合金鋼においては、内
部に存在するMnSの粒隗の90%以上について、幅
(長手方向と直交する方向の幅)と、長さ(長手方向の
長さ)とがそれぞれの所定寸法以下になる場合、十分な
切削性を確保した上で、耐蝕性、耐磨耗性の低下を抑制
し、しかも、加工表面の面粗度を良好にすることができ
ることを見出し、本発明を完成したものである。
As a result of various studies, the present inventors have found that, in the manganese alloy steel having the above composition range, among the fine MnS particles dispersed and formed therein, the width is 3 μm or less and the length is 40 μm or less.
It has been found that if the structure occupies 90% or more in the range of not more than μm, it has sufficient corrosion resistance and abrasion resistance, and has good surface roughness of the processed surface. That is,
In the manganese alloy steel having the above composition range, the width (width in the direction orthogonal to the longitudinal direction) and the length (length in the longitudinal direction) are not less than 90% of the MnS aggregate present therein. When the size is less than each predetermined dimension, it has been found that, after securing sufficient cutting properties, the corrosion resistance and the reduction in wear resistance can be suppressed, and that the surface roughness of the processed surface can be improved, The present invention has been completed.

【0011】また、第2の発明は、上記と同じ組成範囲
のマンガン合金鋼において、平均幅が3μm以下で、平
均アスペクト比が4以上の細長形状の非金属介在物Mn
Sが微細分散されていることを特徴とする。
A second invention is directed to a manganese alloy steel having the same composition range as described above, wherein an elongated non-metallic inclusion Mn having an average width of 3 μm or less and an average aspect ratio of 4 or more.
S is finely dispersed.

【0012】上記組成の合金において、平均幅が3μm
以下で、平均アスペクト比(長さ/幅)が4以上の細長
形状のMnSが微細分散されていることによって、加工
表面の面粗度がきわめて良好で、耐磨耗性も良好な鋼材
を提供できる。一般にMnSの粒隗が小さく、アスペク
ト比が小さければ上述のように良好な特性が得られる
が、製造条件や組成によっては必ずしもMnSの粒隗を
微細化することができない場合もある。しかし、本発明
者らは、MnSの粒隗が細長形状である場合、それらの
平均幅が所定寸法以下で、平均アスペクト比が所定数値
以上であれば、MnSの粒径(球形であるとした場合の
換算径)を必ずしも微細化しなくても、耐食性を確保し
た上で、加工表面の面粗度が著しく改善され、表面の摩
擦係数も低く、耐磨耗性の良好な鋼材が得られることを
見出したものである。
The alloy having the above composition has an average width of 3 μm
In the following, since MnS in an elongated shape having an average aspect ratio (length / width) of 4 or more is finely dispersed, a steel material having extremely good surface roughness of the processed surface and excellent wear resistance is provided. it can. In general, if the MnS particle size is small and the aspect ratio is small, good characteristics can be obtained as described above. However, depending on the manufacturing conditions and composition, the MnS particle size cannot always be reduced. However, the present inventors have found that when the MnS aggregate is in an elongated shape, the average width thereof is equal to or less than a predetermined dimension and the average aspect ratio is equal to or greater than a predetermined numerical value. Even if the converted diameter is not necessarily reduced, the corrosion resistance is ensured, the surface roughness of the machined surface is significantly improved, the friction coefficient of the surface is low, and a steel material with good wear resistance can be obtained. Is found.

【0013】上記各発明においては、上記細長形状のM
nSは、面粗度や耐磨耗性が要求される表面に対してほ
ぼ平行な姿勢で微細分散されていることが、加工表面の
面粗度や耐磨耗性を向上させるという観点から見て好ま
しい。これは、特に、本発明の鋼材を用いた軸材、ネジ
材、その他の種々の部品を製造する上で重要である。
In each of the above inventions, the elongated M
nS is finely dispersed in a posture substantially parallel to the surface where surface roughness and abrasion resistance are required, which is considered from the viewpoint of improving the surface roughness and abrasion resistance of the processed surface. Preferred. This is particularly important for manufacturing shafts, screws, and other various parts using the steel material of the present invention.

【0014】なお、上記第1の発明と第2の発明は相互
に矛盾するものではなく、第1の発明の構成要件を満た
すと同時に、第2の発明の構成要件をも満たすものであ
ることが最も望ましい。
Note that the first and second inventions do not contradict each other and satisfy the constituent features of the first invention and also satisfy the constituent features of the second invention. Is most desirable.

【0015】[0015]

【発明の実施の形態】次に、本発明に係るマンガン合金
鋼の実施形態について詳細に説明する。最初に、本発明
の前提となるマンガン合金鋼の組成について説明する。
Next, embodiments of the manganese alloy steel according to the present invention will be described in detail. First, the composition of the manganese alloy steel as a premise of the present invention will be described.

【0016】C(炭素):Cはオーステナイト組織を安
定化する元素であり、0.05wt以上含有させる。し
かし、0.50wt%を越えて含有させると、オーステ
ナイトの結晶粒界に炭化物が析出し、冷間加工性や耐蝕
性が低下する。したがって上限を0.50wt%とし
た。加工後の硬さを調整するために好ましくは0.10
〜0.30wt%である。
C (carbon): C is an element for stabilizing the austenite structure, and is contained in an amount of 0.05 wt. However, when the content exceeds 0.50 wt%, carbides precipitate at the grain boundaries of austenite, and the cold workability and corrosion resistance deteriorate. Therefore, the upper limit is set to 0.50 wt%. Preferably 0.10 in order to adjust the hardness after processing.
0.30.30 wt%.

【0017】Si(珪素):Siは精錬工程での脱酸剤
として溶鋼中に添加されるが、過剰の添加は脱酸生成物
である非金属介在物を増加させ、鋼材の清浄性を劣化さ
せる。さらにSiはフェライト生成元素であるため、多
量に含有させるとオーステナイト組織が不安定になる。
したがって上限を0.5wt%とした。
Si (silicon): Si is added to molten steel as a deoxidizing agent in the refining process. Excessive addition increases non-metallic inclusions, which are deoxidizing products, and deteriorates the cleanliness of steel. Let it. Further, since Si is a ferrite-forming element, if it is contained in a large amount, the austenite structure becomes unstable.
Therefore, the upper limit was set to 0.5 wt%.

【0018】Mn(マンガン):Mnはオーステナイト
組織を安定化させる安価な元素であり、オーステナイト
組織を安定化するNiの含有量を減少させることができ
る。Niの代替としては、Mnを6wt%以上含有させ
る。しかし、25wt%を越えて含有させると熱間加工
性が著しく低下し、熱間圧延時に割れが発生する可能性
が増大するので好ましくない。従って上限を25wt%
とした。これらの特性において、好ましくは6〜15w
t%であり、さらに8〜13wt%であることがより望
ましい。
Mn (manganese): Mn is an inexpensive element that stabilizes the austenite structure, and can reduce the content of Ni that stabilizes the austenite structure. As an alternative to Ni, Mn is contained in an amount of 6 wt% or more. However, if the content exceeds 25 wt%, the hot workability is significantly reduced, and the possibility of cracking during hot rolling increases, which is not preferable. Therefore, the upper limit is 25 wt%
And In these characteristics, preferably 6 to 15 w
t%, and more preferably 8 to 13 wt%.

【0019】P(リン):Pは有害元素であって意図的
に添加せず、できるだけ少ないほうがよい。Pは偏析を
起こしやすく、熱間加工性を悪化させるため、0.05
wt%以下とした。
P (phosphorus): P is a harmful element and should not be added intentionally. P tends to cause segregation and deteriorates hot workability.
wt% or less.

【0020】S(硫黄):Sは意図的に添加しなくても
よい。添加すれば切削性が改善される作用があるため、
被削性を求める場合には0.05wt%以上の添加が望
ましい。しかし、0.35wt%を越えて含有させる
と、熱間加工性や耐食性が劣化する。したがって、上限
を0.35wt%とした。
S (sulfur): S may not be added intentionally. If added, it has the effect of improving machinability,
When machinability is required, addition of 0.05 wt% or more is desirable. However, when the content exceeds 0.35 wt%, hot workability and corrosion resistance deteriorate. Therefore, the upper limit is set to 0.35 wt%.

【0021】Cu(銅):Cuは添加しなくてもよい。
添加すれば冷間加工時にオーステナイト組織を安定化さ
せる作用がある。しかし、3wt%を越えて含有させる
と熱間加工性が著しく低下する。したがって3wt%以
下とした。
Cu (copper): Cu may not be added.
If added, it has the effect of stabilizing the austenite structure during cold working. However, when the content exceeds 3 wt%, the hot workability is significantly reduced. Therefore, the content was set to 3 wt% or less.

【0022】Ni(ニッケル):Niは所望添加元素で
あって、オーステナイト組織を安定にし、耐蝕性を改善
するのに有効な元素であるが、Niは高価であるため5
wt%を越えて含有させるとコストの上昇を招き好まし
くなく、また、環境への影響からも極力添加量を減少さ
せることが好ましい。したがって、オーステナイト組織
の安定性とコスト面に配慮してNiの含有量を5.0w
t%以下とした。
Ni (nickel): Ni is a desired additive element, which is an effective element for stabilizing the austenite structure and improving the corrosion resistance.
If the content is more than wt%, the cost is increased, which is not preferable. In addition, it is preferable to reduce the addition amount as much as possible from the viewpoint of the influence on the environment. Therefore, considering the stability of the austenitic structure and the cost, the Ni content is set to 5.0 w.
t% or less.

【0023】Cr(クロム):Crはフェライト生成元
素であるが、耐蝕性を付与するために必須な元素であ
る。耐蝕性を付与させるためには10wt%以上を含有
させる必要があるが、耐候性を得る程度であれば5wt
%以上でよい。しかし、20wt%を越えるとオーステ
ナイト組織の安定性が損なわれる。したがってCr量を
5〜20wt%とした。好ましくは10〜20wt%、
さらには13〜17wt%である。
Cr (chromium): Cr is a ferrite-forming element, but is an essential element for imparting corrosion resistance. In order to impart corrosion resistance, it is necessary to contain 10 wt% or more.
% Or more. However, if it exceeds 20 wt%, the stability of the austenitic structure is impaired. Therefore, the amount of Cr was set to 5 to 20 wt%. Preferably 10 to 20 wt%,
Further, the content is 13 to 17% by weight.

【0024】Mo(モリブデン):Moは添加しなくて
もよい。添加すれば冷間加工時に加工誘起マルテンサイ
トの生成を抑制するため、冷間加工性の向上に有効で
す。しかし、Moはフェライト生成元素であるため、過
剰に添加するとオーステナイト組織が不安定になる。し
たがって3wt%以下とした。
Mo (molybdenum): Mo may not be added. If added, it suppresses the formation of work-induced martensite during cold working, which is effective for improving cold workability. However, since Mo is a ferrite-forming element, if added in excess, the austenite structure becomes unstable. Therefore, the content was set to 3 wt% or less.

【0025】N(窒素):Nは応力腐食割れを改善する
効果もあり、そのためには0.04wt%以上含有させ
る必要がある。これにより、耐食性改善等を目的とした
Ni等の高価な元素の多量添加を回避することもでき
る。また、Nは窒化物を生成し、この窒化物により加工
硬化が得られ耐磨耗性が改善される。一方、Nが0.3
0wt%を越えるような鋼材を溶解することは困難であ
り、このような高N鋼は鋼隗中にブローホールによる欠
陥を発生する恐れがあり好ましくない。したがって0.
04〜0.30wt%とした。
N (nitrogen): N also has an effect of improving stress corrosion cracking, and therefore, it is necessary to contain N in an amount of 0.04 wt% or more. Thereby, it is also possible to avoid adding a large amount of expensive elements such as Ni for the purpose of improving corrosion resistance. In addition, N forms a nitride, and work hardening is obtained by the nitride, thereby improving abrasion resistance. On the other hand, if N is 0.3
It is difficult to dissolve a steel material exceeding 0 wt%, and such a high N steel is not preferable because a defect due to a blowhole may occur in the steel ingot. Therefore, 0.
04-0.30 wt%.

【0026】Al(アルミニウム):Alは強力な脱酸
剤であり、精錬工程時に溶鋼中に添加される。しかし添
加量が0.10wt%を越えると非金属介在物である酸
化物が増大し、鋼の清浄性を劣化させる。したがって
0.10wt%以下とした。
Al (aluminum): Al is a strong deoxidizer and is added to molten steel during the refining process. However, if the addition amount exceeds 0.10 wt%, oxides which are non-metallic inclusions increase, thereby deteriorating the cleanliness of the steel. Therefore, the content is set to 0.10 wt% or less.

【0027】MnSの形状寸法:MnSは鋼材中に分散
形成されるが、主に溶鋼中の酸素濃度によってその粒径
が変化する。例えば、一般に酸素濃度が低くなるとMn
Sの粒径は小さくなり、そのアスペクト比も小さくな
る。MnSの粒隗の存在は切削抵抗を低下させ、切削性
を向上させるが、MnSの粒径が大きくなると加工表面
の面粗度が悪化するとともに耐磨耗性が低下する。ま
た、加工表面に大きなMnSが存在すると、その部分か
ら腐食が進行するために耐食性が低下する。
Shape and size of MnS: MnS is dispersed and formed in a steel material, and its particle size changes mainly depending on the oxygen concentration in molten steel. For example, generally, when the oxygen concentration decreases, Mn
The particle size of S becomes smaller and its aspect ratio also becomes smaller. The presence of the MnS particles reduces the cutting resistance and improves the machinability, but when the MnS particle size increases, the surface roughness of the processed surface deteriorates and the wear resistance decreases. Further, when large MnS exists on the processed surface, corrosion progresses from that portion, so that the corrosion resistance is reduced.

【0028】MnSの形状寸法は、具体的には幅(短軸
の長さ)が3μm以下で、長さ(長軸の長さ)が40μ
m以下のものが全体の90%以上を占めていることが好
ましい。MnSの粒隗が上記寸法範囲内の形状寸法を備
えていれば加工性や耐食性を大きく悪化させることな
く、しかも、加工表面の面粗度を良好にし、摩擦係数が
低く、耐磨耗性の良好な鋼材を構成できる。また、上記
寸法範囲内の粒隗が90%以上であれば、鋼材の均質性
が保たれ、加工性、耐食性、耐磨耗性に支障が生じな
い。
Specifically, the shape and size of MnS are such that the width (length of the short axis) is 3 μm or less and the length (length of the long axis) is 40 μm.
It is preferable that those having m or less account for 90% or more of the whole. If the MnS particle has a shape and a size within the above range, the workability and the corrosion resistance are not significantly deteriorated, and the surface roughness of the processed surface is improved, the friction coefficient is low, and the abrasion resistance is reduced. Good steel material can be constituted. Further, if the particle size within the above-mentioned size range is 90% or more, the homogeneity of the steel material is maintained, and there is no problem in workability, corrosion resistance, and wear resistance.

【0029】また、MnSの形状寸法としては、平均の
幅が3μm以下で、平均のアスペクト比が4以上である
ことが好ましい。このような細長形状のMnSが微細分
散していると、実質的な粒径(例えばMnSの粒隗の体
積と同じ体積を有する球体の直径)がそれほど小さくな
くても、上記の諸特性に優れた鋼材を実現することが可
能である。
The MnS preferably has an average width of 3 μm or less and an average aspect ratio of 4 or more. When such elongated MnS is finely dispersed, even if the substantial particle size (for example, the diameter of a sphere having the same volume as the volume of the MnS aggregate) is not so small, the above-mentioned various properties are excellent. It is possible to realize a reduced steel material.

【0030】これらのマンガン合金鋼は、鋼材一般とし
て利用でき、例えば板材、管材、棒材、線材などとして
用いることができる。それらの用途としては、軸材、ネ
ジ材などのような機能部品や、梁、フレーム、支持板な
どの構造部品が考えられる。これらの場合、各部品にお
いては、面粗度や耐磨耗性が要求される部品表面に対し
て、細長形状のMnSがほぼ平行になるように構成する
ことが好ましい。
These manganese alloy steels can be used as general steel materials, and can be used, for example, as plates, pipes, bars, wires and the like. These applications include functional components such as shafts and screws, and structural components such as beams, frames, and support plates. In these cases, each component is preferably configured such that the elongated MnS is substantially parallel to the surface of the component that requires surface roughness and wear resistance.

【0031】次に、本発明の鋼材を用いて、軸部材及び
ネジ部材を製造する場合について、その成形加工法及び
熱処理方法について説明する。ここで、「軸部材」とし
ては、OA機器端末のシリアルプリンタに使用されるキ
ャリッジシャフト、活字輪選択型プリンタに使用されて
いる活字輪軸、モータシャフト等が例示され、また、
「ネジ部材」としては、セルフドリリングネジ、タッピ
ングネジ、建築用ボルト等が例示される。
Next, in the case of manufacturing a shaft member and a screw member using the steel material of the present invention, a forming method and a heat treatment method will be described. Here, examples of the “shaft member” include a carriage shaft used in a serial printer of an OA device terminal, a type wheel set used in a type wheel selection type printer, a motor shaft, and the like.
Examples of the “screw member” include a self-drilling screw, a tapping screw, a building bolt, and the like.

【0032】一般的に、これらの部材は素材からのスケ
ール除去工程を経て潤滑剤が塗布され、冷間圧延、引き
抜き及び鍛造(熱間、冷間)で中間製品に成形加工され
た後、そのままの状態、或いは、切削若しくは鍛造工程
による更なる成形加工を経て使用されるか、又は、軟化
若しくは硬化の熱処理(通常は軟化の熱処理)が行われ
る。本発明の鋼材についても、上記工程及び処理が実施
される。
Generally, these members are applied with a lubricant through a process of removing scale from the material, formed into an intermediate product by cold rolling, drawing and forging (hot and cold), and then processed as they are. Or through further forming by a cutting or forging process, or a softening or hardening heat treatment (usually a softening heat treatment) is performed. The above steps and treatments are also performed on the steel material of the present invention.

【0033】一般的なOA機器に使用されているシャフ
ト及び自動車用シャフトの場合、従来は、最終的に浸炭
処理、窒化処理、又は、メッキ処理を行っていたが、こ
のような製品において本発明の鋼材を用いると、最終的
なこれらの表面処理を省略することができる。
In the case of shafts used in general OA equipment and shafts for automobiles, conventionally, carburizing treatment, nitriding treatment, or plating treatment was finally performed. When these steel materials are used, these final surface treatments can be omitted.

【0034】このように、本発明の鋼材においては、既
存設備がある場合、特に国内では上記表面処理が省略で
きることから、作業費、エネルギー費、物流費等が不要
となる。また、設備投資を新たに行う場合など、特に海
外においては、上記表面処理を省略することができるこ
とから、表面処理のための設備が不要で初期投資が低減
できる。
As described above, in the case of the steel material of the present invention, when there is existing equipment, especially in Japan, the above-mentioned surface treatment can be omitted, so that work costs, energy costs, distribution costs, and the like are unnecessary. In addition, since the above surface treatment can be omitted, especially when overseas investment is made, capital equipment for surface treatment is unnecessary and initial investment can be reduced.

【0035】しかも、近年、地球温暖化防止、化学物質
規制の世論が高まる中、省資源省エネルギーおよび環境
汚染の最小化を図るために、本発明が浸炭処理、窒化処
理、又はメッキ処理を省略することができることは、今
日、きわめて大きな意義を有する。
Furthermore, in recent years, as public opinion on prevention of global warming and regulation of chemical substances has been increasing, the present invention omits carburizing treatment, nitriding treatment, or plating treatment in order to save resources and energy and minimize environmental pollution. Being able to do so is of great significance today.

【0036】[0036]

【実施例】必要な各元素を配合し、試験溶解した後に熱
間圧延を行うことにより、複数種類の直径を有する丸棒
及び線材に加工し、熱間圧延を施した後、空冷して、表
1に示す各組成を有する鋼材を作成した。線材は、それ
ぞれ冷間加工性、耐磨耗性、及び、切削肌評価試験用の
供試材とした。
EXAMPLE The necessary elements were blended, and after performing test melting, hot rolling was performed, thereby processing into round rods and wires having a plurality of types of diameters, performing hot rolling, and then air cooling. Steel materials having the respective compositions shown in Table 1 were prepared. The wires were used as test materials for cold workability, abrasion resistance, and cutting surface evaluation tests, respectively.

【0037】冷間加工性は溶体化条件及び伸線加工によ
って評価した。また、耐食性、切削性及び耐磨耗性は、
後述するものと同じ要領で試験をして評価した。さら
に、鋼材の縦断面を鏡面研摩し、光学顕微鏡で倍率40
0倍で観察し、5箇所の視野において大きなMnS介在
物を6個ずつ、合計30個について形状の測定を行い、
その平均値を求めた。上記各試験の結果を表1乃至表3
にまとめて示す。
The cold workability was evaluated by solution treatment conditions and wire drawing. In addition, corrosion resistance, machinability and abrasion resistance,
The test was performed and evaluated in the same manner as described below. Further, the longitudinal section of the steel material is mirror-polished, and the magnification is 40 with an optical microscope.
Observation was performed at 0x, and the shape was measured for a total of 30 large MnS inclusions in 6 visual fields in 5 visual fields.
The average was determined. Tables 1 to 3 show the results of the above tests.
Are shown together.

【0038】[0038]

【表1】 [Table 1]

【0039】表1において、鋼材1〜8までが実施例で
あり、鋼材9〜15までが比較例であり、組成分析値
と、MnSの平均形状(平均幅及び平均アスペクト比)
とを示し、切削性、耐食性、及び、加工表面の面粗度、
並びに総合評価についてまとめた。切削性の評価は、切
削表面の仕上り状態で判断した。すなわち、材料を旋削
加工後、仕上り表面に全くむしれ疵が認められなかった
ものを「○」、若干のむしれ疵は認められるが、手直し
によって実用上問題がないと判断されるものを「△」、
むしれ疵が著しく、実用に耐えないと判断されるものを
「×」として評価し、「×」以外を合格とした。
In Table 1, steel materials 1 to 8 are examples and steel materials 9 to 15 are comparative examples. The composition analysis value and the average shape (average width and average aspect ratio) of MnS are shown.
Shows, cutting properties, corrosion resistance, and surface roughness of the machined surface,
And the comprehensive evaluation was summarized. The evaluation of the machinability was determined based on the finished state of the cutting surface. That is, after turning the material, "○" indicates that no peeling flaws were found on the finished surface, and "Scratching flaws were recognized, but those that were judged to have no practical problem by reworking" △ ",
Those which were judged to be remarkably flawed and unsuitable for practical use were evaluated as "x", and those other than "x" were evaluated as acceptable.

【0040】表1に示すように、各実施例の鋼材1〜8
では、組成分析値が本発明のマンガン合金鋼の上記組成
範囲に該当しており、また、MnSの平均幅はいずれも
3μm以下の条件、平均アスペクト比はいずれも4以上
の条件を満たしている。そして、切削性、耐食性及び面
粗度はいずれも良好であり、いずれも総合的に実用に耐
え得る素材と判定された。一方、比較例においては、組
成分析値が上記組成範囲から外れているか、或いは、M
nS形状の平均幅又は平均アスペクト比が上記条件に該
当しない。そして、比較例は、切削性、耐食性、面粗度
のいずれか一つが不良であるか、或いは、圧延時に割れ
が発生したかのいずれかであり、総合的に見て実用的な
ものではなかった。
As shown in Table 1, the steel materials 1-8
In the above, the composition analysis values correspond to the above composition range of the manganese alloy steel of the present invention, and the average width of MnS satisfies the condition of 3 μm or less and the average aspect ratio satisfies the condition of 4 or more. . Then, the machinability, the corrosion resistance and the surface roughness were all good, and all of them were determined to be materials that could endure practical use. On the other hand, in the comparative example, the composition analysis value is out of the above composition range, or M
The average width or average aspect ratio of the nS shape does not satisfy the above conditions. And, the comparative example is either one of poor machinability, corrosion resistance, and surface roughness, or one in which cracks occurred during rolling, and is not practical in total. Was.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】また、表2及び表3には、実施例のうちの
鋼材5について引き抜きし、旋削試験、表面面粗度、及
び、穴ぐり性の試験を行った結果を示す。ここで、比較
対象として、旋削試験及び表面面粗度では現在使用され
ているSUS416及びSUS303を、穴あけ性では
量産時に最低必要な穴あけ性を有する標準的なS45C
及びSUS304を用いた。切削条件は、工具(バイ
ト)としてマクロアロイAF1(商標)を用い、回転数
を2650rpm、周速度を50m/minとし、送り
量を25μm/REとした。表3に示す穴あけ性の評価
のための加工条件は、工具として2.6mm径のドリル
を用い、ドリル回転数を500rpmとし、自動送り量
を70μm/RE、送り深さを10mmとした。また、
表3に示す溶体化処理Aは1100℃×水冷、同Bは1
150℃×水冷、同Cは1200℃×水冷、同Dは引き
抜き後、1050℃×水冷の条件で行った。
Tables 2 and 3 show the results of pulling out the steel 5 of the examples and performing a turning test, a surface roughness, and a boring test. Here, SUS416 and SUS303, which are currently used in the turning test and the surface roughness, are compared with the standard S45C having the minimum necessary drilling property in mass production.
And SUS304. The cutting conditions used were Macro Alloy AF1 (trademark) as a tool (bite), the number of revolutions was 2650 rpm, the peripheral speed was 50 m / min, and the feed amount was 25 μm / RE. The processing conditions for the evaluation of the drillability shown in Table 3 were as follows: a drill having a diameter of 2.6 mm was used as a tool, the rotational speed of the drill was 500 rpm, the automatic feed amount was 70 μm / RE, and the feed depth was 10 mm. Also,
Solution treatment A shown in Table 3 was 1100 ° C. × water cooling, and B was 1
150 ° C. × water cooling, C: 1200 ° C. × water cooling, D: after drawing, 1050 ° C. × water cooling.

【0044】表2に示すように、鋼材5に由来する素材
は、通常の耐食性素材SUS416、SUS303と比
べて切削性が遜色なく良好であり、しかも加工表面の面
粗度が大幅に小さいとともにそのばらつきがきわめて少
なく、特に優れた切削特性を有している。また、表3に
示すように、穴あけ加工においても、鋼材5に由来する
素材では、比較材S45C、SUS304と比べてほぼ
遜色がないか、或いは却って優れており、加工性におい
て全く問題がないことが判る。
As shown in Table 2, the material derived from the steel material 5 has the same excellent machinability as that of the normal corrosion-resistant materials SUS416 and SUS303, and has a significantly reduced surface roughness and a large surface roughness. The dispersion is extremely small and has particularly excellent cutting characteristics. Also, as shown in Table 3, in the drilling process, the material derived from the steel material 5 has almost no inferiority to the comparative materials S45C and SUS304 or is rather excellent, and there is no problem in workability at all. I understand.

【0045】次に、供試材を旋盤にて旋削後、#500
のペーパーによって仕上げ研摩した試験片を気温45
℃、湿度90%の雰囲気中に360時間保持し、JIS
鉄鋼材料の錆判定基準のレーティングで9以上を「○」
とし、この基準を満たさないものは「×」とした。具体
的には、鋼材5の6.5mm径の線材を表面研削した
後、SUS416及びSUS303と比較した。この結
果を表4に示す。表4に示すように、実施例の鋼材は耐
食性が良好であり、比較材よりも優れていることがわか
る。
Next, after turning the test material on a lathe, # 500
A test piece finished and polished with paper
It is kept for 360 hours in an atmosphere of 90 ° C. and 90% humidity, according to JIS
"○" if the rating of the rust judgment standard of steel materials is 9 or more
Those that do not satisfy this criterion are marked with “x”. Specifically, a 6.5 mm diameter wire rod of steel 5 was ground and compared with SUS416 and SUS303. Table 4 shows the results. As shown in Table 4, it can be seen that the steel materials of the examples have good corrosion resistance and are superior to the comparative materials.

【0046】[0046]

【表4】 [Table 4]

【0047】次に、鋼材5の線材を引き抜き加工したも
の、同一サイズのSUM24L材に軟窒化処理したも
の、SUS416、及びSUS303の各シャフトをプ
リンタに装着して、同一条件で過酷な繰り返し摺動試験
を行い、シャフトの磨耗量を測定した。結果を表5に示
す。過酷な摺動試験でも、現行品と同等若しくは優れた
耐磨耗性を有することが判明した。
Next, a wire rod of steel 5 was drawn out, a SUM24L rod of the same size was soft-nitrided, and SUS416 and SUS303 shafts were mounted on a printer and subjected to severe repeated sliding under the same conditions. A test was performed to measure the amount of shaft wear. Table 5 shows the results. Even in a severe sliding test, it was found to have the same or better abrasion resistance as the current product.

【0048】[0048]

【表5】 [Table 5]

【0049】次に、鋼材5について、MnS介在物を光
学顕微鏡にて観察し、その幅(長手方向と直交する方向
の幅)及び長さ(長手方向の長さ)の分布を調べた。具
体的には、鋼材の表面、中心部及びそれらの中間深さの
部位について、それぞれ倍率400倍で8視野ずつ、視
野中に観察される介在物を全数測定する方法で実施し
た。これらの結果を表6乃至表8に示す。これらの各表
に示すように、鋼材5においては、いずれの部分におい
ても、MnS介在物のうち90%以上が、幅3μm以下
で、且つ、長さ40μm以下の細長形状を備えていた。
また、多くの介在物がアスペクト比(長さ/幅)5〜1
5の範囲内に集中していた。
Next, regarding the steel material 5, MnS inclusions were observed with an optical microscope, and the distribution of the width (width in a direction orthogonal to the longitudinal direction) and the length (length in the longitudinal direction) was examined. Specifically, the method was carried out in such a manner that all the inclusions observed in the visual field were measured in eight visual fields at a magnification of 400 with respect to the surface, the central part, and the part at the intermediate depth of the steel material. Tables 6 to 8 show the results. As shown in these tables, 90% or more of the MnS inclusions in any part of the steel material 5 had an elongated shape with a width of 3 μm or less and a length of 40 μm or less.
In addition, many inclusions have an aspect ratio (length / width) of 5-1.
It was concentrated in the range of 5.

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【表7】 [Table 7]

【0052】[0052]

【表8】 [Table 8]

【0053】一方、SUMについても、上記と全く同様
の方法で介在物の形状寸法の分布を調べた。その結果を
表9乃至表11に示す。各表に示すように、SUMにお
いては、特に幅において3μmを越えるMnS介在物が
鋼材内部に多く分布しており、また、アスペクト比が上
記実施例よりも大幅にばらついていることが判る。
On the other hand, for SUM, the distribution of the shape and size of inclusions was examined in the same manner as described above. The results are shown in Tables 9 to 11. As shown in each table, it can be seen that in the SUM, MnS inclusions exceeding 3 μm in particular, particularly in width, are distributed more in the steel material, and that the aspect ratio is more greatly varied than in the above-mentioned examples.

【0054】[0054]

【表9】 [Table 9]

【0055】[0055]

【表10】 [Table 10]

【0056】[0056]

【表11】 [Table 11]

【0057】最後に、上記鋼材5のシャフト(面粗度
2.7μm)、SUS303のシャフト(面粗度3.3
μm)、SUMのシャフト表面にNiメッキを施したも
の(面粗度1.7μm)、及びSUMのシャフト表面に
窒化処理を施したもの(面粗度2.4μm)に、50〜
500gの荷重をかけた状態で、コピー用紙(コクヨ社
製、PPC用紙)に対する摩擦係数をそれぞれ5回ずつ
測定した。その結果(平均幅)を表12及び図1に示
す。このように、本実施例では、他の従来素材よりも格
段に摩擦係数が低い事がわかる。特に、実施例は、面粗
度が実施例よりも小さいSUMの表面処理品よりもさら
に摩擦係数が低くなっている。したがって、これらの結
果は、素材の表面粗さではなく、素材の耐磨耗性自体に
よって摩擦係数が決定されていることを示していると考
えられる。この結果、本実施例では、用紙の搬送時や用
紙に対する印刷(印字)時において、接触する鋼材自体
の磨耗が少なくなるとともに紙粉の発生を抑制すること
ができるという利点を備えていることが理解できる。
Finally, the shaft of steel 5 (surface roughness of 2.7 μm) and the shaft of SUS303 (surface roughness of 3.3 μm)
μm), a SUM shaft surface with Ni plating (surface roughness 1.7 μm), and a SUM shaft surface with nitriding treatment (surface roughness 2.4 μm).
With a load of 500 g applied, the coefficient of friction against copy paper (PPC paper, manufactured by KOKUYO Co., Ltd.) was measured five times each. The results (average width) are shown in Table 12 and FIG. Thus, it can be seen that in the present embodiment, the friction coefficient is significantly lower than other conventional materials. In particular, the example has a lower coefficient of friction than the SUM surface-treated product having a smaller surface roughness than the example. Therefore, it is considered that these results indicate that the coefficient of friction is determined not by the surface roughness of the material but by the wear resistance itself of the material. As a result, in the present embodiment, there is an advantage that when the paper is transported or printed (printed) on the paper, the abrasion of the contacting steel material itself is reduced and the generation of paper dust can be suppressed. It can be understood.

【0058】[0058]

【表12】 [Table 12]

【0059】尚、本発明は、上述の例示にのみ限定され
るものではなく、本発明の要旨を逸脱しない範囲内にお
いて種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described example, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0060】[0060]

【発明の効果】以上説明したように本発明によれば、耐
食性や切削性が良好で、さらに耐磨耗性が高く、しかも
高精度で小さな面粗度を備えた加工表面を得ることがで
きるマンガン合金鋼を実現することができ、この材料を
用いることにより、OA関連機器、モータ、自動車、建
築等の部品構成材料のメッキ処理、浸炭・窒化処理など
の表面処理を省略して代替使用することが可能になる。
特に、従来のマンガン鋼とは異なり、多くの優れた特性
を同時に備え、そのときのニーズに合わせて任意に適用
できる汎用性に富んだ鋼材を提供することができる。
As described above, according to the present invention, it is possible to obtain a processed surface having good corrosion resistance and machinability, high abrasion resistance, high precision and small surface roughness. Manganese alloy steel can be realized, and by using this material, it is possible to omit the surface treatment such as plating, carburizing, nitriding, etc. of the component materials of OA related equipment, motors, automobiles, buildings, etc. It becomes possible.
In particular, unlike conventional manganese steels, it is possible to provide a highly versatile steel material that has many excellent properties at the same time and can be arbitrarily applied according to the needs at that time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る鋼材と比較品の摩擦係数を示すグ
ラフである。
FIG. 1 is a graph showing a coefficient of friction between a steel material according to the present invention and a comparative product.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591274299 新報国製鉄株式会社 埼玉県川越市新宿町5丁目13番地1 (72)発明者 中村 孝幸 福岡県北九州市小倉区許斐町1番地 住友 金属工業株式会社小倉製鉄所内 (72)発明者 北澤 千弘 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 宮下 直久 長野県諏訪市上川1丁目1544番地 株式会 社大東製作所内 (72)発明者 村松 栄次郎 埼玉県川越市新宿町5丁目13番地1 新報 国製鉄株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (71) Applicant 591274299 Shinpokoku Iron & Steel Co., Ltd. 5-13-1, Shinjuku-cho, Kawagoe-shi, Saitama (72) Inventor Takayuki Nakamura 1 Konomi-cho, Kokura-ku, Kitakyushu-shi, Fukuoka Sumitomo Metal Industries Co., Ltd. (72) Inventor Chihiro Kitazawa 3-3-5 Yamato, Suwa City, Nagano Prefecture Seiko Epson Corporation (72) Inventor Naohisa Miyashita 1-1544 Kamikawa, Suwa City, Nagano Prefecture Daito Manufacturing Co., Ltd. 72) Eijiro Muramatsu 5-13-1, Shinjuku-cho, Kawagoe-shi, Saitama

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.50wt%、Si:
0.5wt%以下、Mn:6.0〜25wt%、P:
0.05wt%以下、S:0.35wt%以下、Cu:
0〜3.0wt%、Ni:0〜5.0wt%、Cr:
5.0〜20.0wt%、Mo:0〜3.0wt%、
N:0.04〜0.30wt%、Al:0.10wt%
以下を含有し、 残部がFe及び不可避不純物からなり、 内部に、幅が3μm以下で、長さが40μm以下の形状
のものが90%以上を占める非金属介在物MnSが微細
分散されていることを特徴とするマンガン合金鋼。
1. C: 0.05 to 0.50 wt%, Si:
0.5 wt% or less, Mn: 6.0 to 25 wt%, P:
0.05 wt% or less, S: 0.35 wt% or less, Cu:
0 to 3.0 wt%, Ni: 0 to 5.0 wt%, Cr:
5.0 to 20.0 wt%, Mo: 0 to 3.0 wt%,
N: 0.04 to 0.30 wt%, Al: 0.10 wt%
Non-metallic inclusions MnS, which has the following composition, the balance being Fe and inevitable impurities, and having a width of 3 μm or less and a length of 40 μm or less occupying 90% or more, are finely dispersed therein. A manganese alloy steel characterized by the following.
【請求項2】 C:0.05〜0.50wt%、Si:
0.5wt%以下、Mn:6.0〜25wt%、P:
0.05wt%以下、S:0.35wt%以下、Cu:
0〜3.0wt%、Ni:0〜5.0wt%、Cr:
5.0〜20.0wt%、Mo:0〜3.0wt%、
N:0.04〜0.30wt%、Al:0.10wt%
以下を含有し、 残部がFe及び不可避不純物からなり、 内部に、平均幅が3μm以下で、平均アスペクト比が4
以上の細長形状の非金属介在物MnSが微細分散されて
いることを特徴とするマンガン合金鋼。
2. C: 0.05 to 0.50 wt%, Si:
0.5 wt% or less, Mn: 6.0 to 25 wt%, P:
0.05 wt% or less, S: 0.35 wt% or less, Cu:
0 to 3.0 wt%, Ni: 0 to 5.0 wt%, Cr:
5.0 to 20.0 wt%, Mo: 0 to 3.0 wt%,
N: 0.04 to 0.30 wt%, Al: 0.10 wt%
The balance contains Fe and unavoidable impurities, and has an average width of 3 μm or less and an average aspect ratio of 4
A manganese alloy steel in which the elongated nonmetallic inclusions MnS are finely dispersed.
JP2000034110A 2000-02-10 2000-02-10 Manganese alloy steel Expired - Lifetime JP4221133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034110A JP4221133B2 (en) 2000-02-10 2000-02-10 Manganese alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000034110A JP4221133B2 (en) 2000-02-10 2000-02-10 Manganese alloy steel

Publications (2)

Publication Number Publication Date
JP2001226746A true JP2001226746A (en) 2001-08-21
JP4221133B2 JP4221133B2 (en) 2009-02-12

Family

ID=18558491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034110A Expired - Lifetime JP4221133B2 (en) 2000-02-10 2000-02-10 Manganese alloy steel

Country Status (1)

Country Link
JP (1) JP4221133B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190513A (en) * 2010-03-16 2011-09-29 Tnk Sanwa Precision Co Ltd Method for manufacturing sliding component
JP2011202237A (en) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp High strength and high ductility austenitic stainless steel sheet for structural member, and method for producing the same
CN102251196A (en) * 2011-07-22 2011-11-23 江苏联兴成套设备制造有限公司 Wear-resistant relieved tooth prepared from high-strength alloy steel
JP2017061741A (en) * 2015-09-25 2017-03-30 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Nickel-free austenitic stainless steel
CN112609134A (en) * 2020-12-31 2021-04-06 宁波耀义新材料有限公司 Novel austenite free-cutting stainless steel material
CN113278894A (en) * 2021-05-20 2021-08-20 成都先进金属材料产业技术研究院股份有限公司 Fe-Mn-Al-S series low-density free-cutting steel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190513A (en) * 2010-03-16 2011-09-29 Tnk Sanwa Precision Co Ltd Method for manufacturing sliding component
JP2011202237A (en) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp High strength and high ductility austenitic stainless steel sheet for structural member, and method for producing the same
CN102251196A (en) * 2011-07-22 2011-11-23 江苏联兴成套设备制造有限公司 Wear-resistant relieved tooth prepared from high-strength alloy steel
JP2017061741A (en) * 2015-09-25 2017-03-30 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Nickel-free austenitic stainless steel
CN112609134A (en) * 2020-12-31 2021-04-06 宁波耀义新材料有限公司 Novel austenite free-cutting stainless steel material
CN113278894A (en) * 2021-05-20 2021-08-20 成都先进金属材料产业技术研究院股份有限公司 Fe-Mn-Al-S series low-density free-cutting steel and preparation method thereof

Also Published As

Publication number Publication date
JP4221133B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
CN100355927C (en) Steel excellent in machinability
JP5114689B2 (en) Case-hardened steel and method for producing the same
JP3700582B2 (en) Martensitic stainless steel for seamless steel pipes
US9238856B2 (en) Lead free free-cutting steel
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP4384592B2 (en) Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP4221133B2 (en) Manganese alloy steel
JP4441360B2 (en) Low carbon composite free-cutting steel with excellent finish surface roughness
JP3638828B2 (en) High corrosion-resistant free-cutting stainless steel with excellent surface finish
JP4178670B2 (en) Manganese alloy steel and shaft, screw member
JP3966841B2 (en) Ferritic free-cutting stainless steel
JP4546917B2 (en) Free-cutting steel with excellent hot ductility
JP3703008B2 (en) Free-cutting stainless steel
JP5957241B2 (en) Ferritic free-cutting stainless steel bar wire and method for producing the same
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP2011184716A (en) Martensitic stainless free-cutting steel bar wire having excellent forgeability
CN107429359B (en) Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material
JP5082389B2 (en) Austenitic free-cutting stainless steel
JP2006161142A (en) Case-hardening rolled bar steel having excellent high temperature carburizing property
JP3966190B2 (en) Stainless steel with excellent machinability and cold workability
JP2005307320A (en) Steel having excellent cold forgeability, cutting property, and fatigue strength
JPH062931B2 (en) Stainless steel non-magnetic steel for electronic device parts
JP2005281826A (en) Corrosion resistant steel having excellent cold workability and machinability

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4221133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term