JP2001223530A - Digital temperature compensated oscillator - Google Patents

Digital temperature compensated oscillator

Info

Publication number
JP2001223530A
JP2001223530A JP2000032525A JP2000032525A JP2001223530A JP 2001223530 A JP2001223530 A JP 2001223530A JP 2000032525 A JP2000032525 A JP 2000032525A JP 2000032525 A JP2000032525 A JP 2000032525A JP 2001223530 A JP2001223530 A JP 2001223530A
Authority
JP
Japan
Prior art keywords
temperature
converter
voltage
clock source
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000032525A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2000032525A priority Critical patent/JP2001223530A/en
Publication of JP2001223530A publication Critical patent/JP2001223530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a digital temperature compensated oscillator that reduces noise and obtains stable oscillation frequency. SOLUTION: In this temperature compensated oscillator 1 provided with a temperature sensor 6 generating a detection voltage responding to temperature, an A/D converter 7 converting the detection voltage into a digital value, a storage circuit 8 having data for compensating the frequency temperature characteristic of a crystal oscillator in response to the digital value, a D/A converter 9 converting the data into a compensation voltage of an analog value and a clock source 10 synchronously operating the converter 7, the circuit 8 and the converter 9, the operation of the source 10 is stopped just after power is supplied. An inverter 13 having an interacting circuit consisting of a resistor 12 and a capacitor 11 on the input side is provided between a power source terminal of the source 10 and a main power source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度補償電圧発生
器(補償電圧発生器とする)及びこれを用いたデジタル
温度補償発振器(温度補償発振器とする)を産業上の技
術分野とし、特に消費電力を少なくした間欠型の温度補
償発振器に関する。
The present invention relates to a temperature compensation voltage generator (hereinafter referred to as a compensation voltage generator) and a digital temperature compensation oscillator (hereinafter referred to as a temperature compensation oscillator) using the same, as an industrial technical field, and particularly to a method for consuming the same. The present invention relates to an intermittent temperature compensated oscillator with reduced power.

【0002】(発明の背景)温度補償発振器は、温度に
依存して変化する発振周波数を補償するものとして、例
えば動的環境下で使用される携帯電話の周波数源として
使用される。近年では、通話時間以外は発振器を間欠動
作として、消費電力を抑えるようにしている。
BACKGROUND OF THE INVENTION A temperature-compensated oscillator is used as a frequency source for a mobile phone used in a dynamic environment, for example, for compensating an oscillation frequency that changes depending on temperature. In recent years, the oscillator is operated intermittently during periods other than the talk time to reduce power consumption.

【0003】(従来技術の一例)第3図は一従来例を説
明する温度補償発振器の概略ブロック図である。温度補
償発振器は、補償電圧発生回路としての温度補償機構部
1を電圧制御発振器2に設けてなる。電圧制御発振器2
は、水晶振動子3をインダクタ成分とした例えばコルピ
ッツ型の発振回路4に電圧可変容量素子5を挿入してな
る。要するに、発振閉ループ内に電圧可変容量素子5を
挿入してなる。温度補償機構部1は、温度センサ6、A
/D変換器7、記憶回路8、D/A変換器9及びクロッ
ク源10からなる。
FIG. 3 is a schematic block diagram of a temperature-compensated oscillator for explaining a conventional example. The temperature-compensated oscillator includes a temperature-compensated mechanism 1 as a compensation voltage generating circuit provided in a voltage-controlled oscillator 2. Voltage controlled oscillator 2
Is obtained by inserting a voltage variable capacitance element 5 into a Colpitts-type oscillation circuit 4 using the crystal resonator 3 as an inductor component. In short, the voltage variable capacitance element 5 is inserted in the oscillation closed loop. The temperature compensating mechanism 1 includes a temperature sensor 6, A
It comprises a / D converter 7, a storage circuit 8, a D / A converter 9, and a clock source 10.

【0004】温度センサ6は周囲温度に応答して検出電
圧を発生する。A/D変換器7は検出電圧をデジタル値
に変化する。記憶回路8は、温度(検出電圧)に応答し
たデジタル値の温度補償電圧を予め各アドレスに記憶す
る。そして、検出電圧のデジタル値によってアドレスを
指定される。D/A変換器9はデジタル値の温度補償電
圧をアナログ値に変換し、電圧可変容量素子5に印加す
る。クロック源10は水晶発振器等からなり、A/D変
換器7、記憶回路8及びD/A変換器9を同期して動作
させる。
A temperature sensor 6 generates a detection voltage in response to an ambient temperature. The A / D converter 7 changes the detection voltage to a digital value. The storage circuit 8 stores a digital temperature compensation voltage in response to a temperature (detection voltage) at each address in advance. Then, an address is designated by the digital value of the detection voltage. The D / A converter 9 converts the digital temperature compensation voltage into an analog value and applies the analog value to the voltage variable capacitance element 5. The clock source 10 includes a crystal oscillator or the like, and operates the A / D converter 7, the storage circuit 8, and the D / A converter 9 in synchronization.

【0005】このようなものでは、水晶振動子3に起因
した例えば常温近傍に変曲点を有する3次曲線の周波数
温度特性によって変化する発振周波数を平坦にして温度
補償する。すなわち、温度補償電圧によって、電圧可変
容量素子5の容量が変化し、これによって水晶振動子3
から見た発振閉ループの直列等価容量(所謂負荷容量)
が変化する。
In such a device, the oscillation frequency that changes due to the frequency-temperature characteristic of a cubic curve having an inflection point in the vicinity of room temperature, for example, due to the crystal resonator 3 is flattened to compensate for the temperature. That is, the capacitance of the voltage variable capacitance element 5 changes according to the temperature compensation voltage.
Equivalent series capacitance of oscillation closed loop (so-called load capacitance)
Changes.

【0006】したがって、周波数温度特性を補償する温
度に応答した温度補償電圧を予め記憶回路8に保持する
ことによってデジタル的に温度補償できる。そして、近
年では消費電力を節約するため、主電源がON状態で
も、発振器の電源はON、OFFを周期的に繰返す間欠
型のシステムを採用している(第4図)。すなわち、発
振器の電源がON(動作中)のときに受信すると、それ
以降は通信が終了するまでON状態を継続する。
Therefore, the temperature can be digitally compensated by holding the temperature compensation voltage corresponding to the temperature for compensating the frequency temperature characteristic in the storage circuit 8 in advance. In recent years, in order to save power consumption, an intermittent system in which the power supply of the oscillator is periodically turned on and off even when the main power supply is in the ON state is employed (FIG. 4). That is, if the signal is received when the power supply of the oscillator is ON (during operation), the ON state is continued thereafter until the communication ends.

【0007】[0007]

【発明が解決しようとする課題】(従来技術の問題点)
しかしながら、上記構成の温度補償発振器では、温度補
償時の周波数変化がデジタル的すなわち階段状に急激に
変化するので、雑音を発生する問題があった。このこと
から、水晶発振器の電源投入後に温度補償し、それ以降
はAFC(自動周波数制御)によって周波数変動を防止
するシステムが提案されている(参照:特開平10-16375
1号)。すなわち、AFCの作動中は、記憶回路8から
の一定の補償電圧をラッチ信号によって維持し、温度補
償動作を停止させる。
[Problems to be Solved by the Invention]
However, the temperature-compensated oscillator having the above-described configuration has a problem in that noise is generated because the frequency change during temperature compensation rapidly changes digitally, that is, stepwise. For this reason, a system has been proposed in which the temperature is compensated after the power supply of the crystal oscillator is turned on, and thereafter the frequency fluctuation is prevented by AFC (automatic frequency control) (see Japanese Patent Application Laid-Open No. 10-16375).
No. 1). That is, during the operation of the AFC, the constant compensation voltage from the storage circuit 8 is maintained by the latch signal, and the temperature compensation operation is stopped.

【0008】なお、AFCは例えば基地局からの基準周
波数を受信して発振周波数との周波数差を電圧可変容量
素子5に印加して補正する。しかし、この場合には、外
部からのラッチ信号によって補償電圧を保持するのみ
で、それ以降でもクロック信号によるデジタル的な温度
補償動作を繰り返す。したがって、デジタル動作によっ
て補償電圧に干渉し、なお雑音が発生する問題があっ
た。
The AFC receives a reference frequency from a base station, for example, and corrects the difference by applying a frequency difference from the oscillation frequency to the voltage variable capacitance element 5. However, in this case, only the compensation voltage is held by an external latch signal, and thereafter, the digital temperature compensation operation by the clock signal is repeated. Therefore, there is a problem that the digital operation interferes with the compensation voltage and still generates noise.

【0009】また、特開平11-27178号公報では、発振器
の電源が投入される各間欠動作中の受信待ち直前の1m
sだけ温度補償することを提案している。しかし、この
ようなものでは発振器の各間欠動作中に繰り返し温度補
償を行うので、雑音の発生を排除することは困難であっ
た。
In Japanese Patent Application Laid-Open No. H11-27178, 1 m immediately before reception waiting during each intermittent operation when the oscillator is turned on.
It proposes temperature compensation by s. However, in such a device, temperature compensation is repeatedly performed during each intermittent operation of the oscillator, so that it has been difficult to eliminate generation of noise.

【0010】(発明の目的)本発明は、雑音を少なくし
て安定な発振周波数を得る温度補償発振器を提供するこ
とを目的とする。
(Object of the Invention) It is an object of the present invention to provide a temperature-compensated oscillator that obtains a stable oscillation frequency with reduced noise.

【0011】[0011]

【課題を解決するための手段】本発明は、A/D変換器
7、記憶回路8及びD/A変換器9の動作を同期させる
クロック源の動作を水晶発振器の電源の投入直後に停止
させたことを基本的な解決手段とする。
According to the present invention, the operation of the clock source for synchronizing the operations of the A / D converter 7, the storage circuit 8, and the D / A converter 9 is stopped immediately after the power of the crystal oscillator is turned on. That is the basic solution.

【0012】[0012]

【作用】本発明では、クロック信号の動作を電源投入直
後に停止させるので、温度補償動作は電源投入後の直後
のみとなる。そして、それ以降は例えばAFCによって
発振周波数を制御できる。以下、本発明の一実施例を説
明する。
According to the present invention, since the operation of the clock signal is stopped immediately after the power is turned on, the temperature compensation operation is performed only immediately after the power is turned on. After that, the oscillation frequency can be controlled by, for example, AFC. Hereinafter, an embodiment of the present invention will be described.

【0013】[0013]

【第1実施例】第1図は本発明の一実施例を説明する温
度補償発振器のブロック図である。なお、前従来例図と
同一部分には同番号を付与してその説明は簡略又は省略
する。温度補償発振器は、前述したように電圧可変容量
素子5を発振閉ループ内に有する電圧制御発振器2に、
温度センサ6、A/D変換器7、記憶回路8、D/A変
換器9及びクロック源10からなる温度補償機構部1を
設けてなる。そして、この実施例では、クロック源10
の電源端子と温度補償発振器を間欠動作させる電源との
間にクロック停止装置を挿入する。クロック停止装置
は、コンデンサ11と抵抗12からなる積分回路を入力
側に有するインバータ13からなる。また、電圧可変容
量素子5には、例えば温度補償電圧をアノード側に、A
FCの制御電圧Vaを逆方向電圧としてアノード側に印
加する。
FIG. 1 is a block diagram of a temperature-compensated oscillator for explaining an embodiment of the present invention. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted. As described above, the temperature-compensated oscillator includes the voltage-controlled oscillator 2 having the voltage variable capacitance element 5 in the oscillation closed loop,
The temperature compensating unit 1 includes a temperature sensor 6, an A / D converter 7, a storage circuit 8, a D / A converter 9, and a clock source 10. In this embodiment, the clock source 10
A clock stop device is inserted between the power supply terminal of the power supply and the power supply for intermittently operating the temperature compensated oscillator. The clock stop device includes an inverter 13 having an integration circuit including a capacitor 11 and a resistor 12 on an input side. The voltage variable capacitance element 5 has, for example, a temperature compensation voltage applied to the anode side and A
The FC control voltage Va is applied to the anode side as a reverse voltage.

【0014】このようなものでは、第2図のタイムチャ
ート図(a〜e)に示したように、電源が投入されると
(同図a)、温度補償発振器(温度補償機構部1)が動
作するとともに、積分回路のCRによる時定数によっ
て、投入直後にクロック源10が停止する(同図b)。
すなわち、インバータ13の入力電圧は積分回路によっ
て遅延し、時間と共に電源電圧まで増加する。したがっ
て、インバータ13のしきい値電圧を越えた時点で、ク
ロック源10の電源はOFFになる。
In this case, as shown in the time charts (a to e) of FIG. 2, when the power is turned on (a in FIG. 2), the temperature compensation oscillator (temperature compensation mechanism 1) is turned on. While operating, the clock source 10 stops immediately after being turned on due to the time constant of the CR of the integration circuit (FIG. 2B).
That is, the input voltage of the inverter 13 is delayed by the integration circuit, and increases to the power supply voltage with time. Therefore, when the threshold voltage of the inverter 13 is exceeded, the power of the clock source 10 is turned off.

【0015】このことから、温度補償動作は間欠動作の
電源投入後の例えば発振が安定する前の1msの短時間
のみに行われ、それ以降はデジタル的な補償動作は中止
する。すなわち、電源投入時の短時間に発生するクロッ
ク源からのクロックパルスに基づき(同図c)、温度補
償動作が行われる。そして、周囲温度(特定温度とす
る)に応答した補償電圧が電圧可変容量素子5に印加さ
れ、それ以降は間欠動作の終了時まで特定温度時の補償
電圧が印加される(同図d)。
Therefore, the temperature compensation operation is performed only for a short period of time, for example, 1 ms before the oscillation is stabilized after the power supply of the intermittent operation is turned on, and thereafter, the digital compensation operation is stopped. That is, the temperature compensating operation is performed based on a clock pulse generated from the clock source in a short time when the power is turned on (FIG. 3C). Then, a compensation voltage responsive to the ambient temperature (supposed to be a specific temperature) is applied to the voltage variable capacitance element 5, and thereafter, the compensation voltage at the specific temperature is applied until the end of the intermittent operation (d in the figure).

【0016】したがって、温度補償機構のデジタル動作
は、各間欠動作の電源投入直後のみとなるので、雑音の
発生を防止できる。また、電源投入後の発振が安定する
前に温度補償電圧は決定されて電圧可変容量素子5に印
加するので、発振が安定するときにはすでに温度補償さ
れた発振周波数となる。したがって、AFCによる周波
数変化量を小さくして、AFC制御を容易にする。
Therefore, the digital operation of the temperature compensating mechanism is performed only immediately after the power is turned on for each intermittent operation, so that generation of noise can be prevented. Further, since the temperature compensation voltage is determined and applied to the voltage variable capacitance element 5 before the oscillation is stabilized after the power is turned on, the oscillation frequency is already temperature-compensated when the oscillation is stabilized. Therefore, the amount of frequency change by AFC is reduced, and AFC control is facilitated.

【0017】なお、AFCによる周波数制御は立上がり
に時間が掛かるため、当初は温度補償機構によって周波
数制御が行われる。また、基地局からの送信周波数と周
波数差が大きいとAFCは機能しなくなるので、周波数
差を小さくしておく必要がある。
Since the frequency control by the AFC takes a long time to start, the frequency control is initially performed by the temperature compensation mechanism. Also, if the frequency difference from the transmission frequency from the base station is large, the AFC will not function, so the frequency difference needs to be reduced.

【0018】[0018]

【第2実施例】第3図は本発明の第2実施例を説明する
温度補償発振器の概略ブロック図である。なお、前第1
実施例と同一部分の説明は省略又は簡略する。第2実施
例は、温度補償機構部1を、温度センサ6、比較器1
4、A/D変換器7、カウンタ15、制御機構部16、
記憶回路8、D/A変換器9及び図示しないクロック源
からなる。比較器14は温度センサ6の検出電圧を一端
に入力する。カウンタ15は比較器14からの出力をカ
ウントし、D/A変換器9を経て比較器14の他端に入
力する。また、カウンタ15からの出力を記憶回路8に
送出し、補償電圧データのアドレスを指定する。制御機
構部16は検出電圧とカウント信号とが一致したとき、
カウント信号に基づいた補償電圧データを記憶回路8か
らD/A変換器9に出力させる。また、これと併行して
クロック信号を発生するクロック源10を停止させる。
Second Embodiment FIG. 3 is a schematic block diagram of a temperature compensated oscillator for explaining a second embodiment of the present invention. Note that the first
The description of the same parts as in the embodiment is omitted or simplified. In the second embodiment, the temperature compensating mechanism 1 includes a temperature sensor 6, a comparator 1
4, A / D converter 7, counter 15, control mechanism 16,
It comprises a storage circuit 8, a D / A converter 9, and a clock source (not shown). The comparator 14 inputs the detection voltage of the temperature sensor 6 to one end. The counter 15 counts the output from the comparator 14 and inputs it to the other end of the comparator 14 via the D / A converter 9. Further, the output from the counter 15 is sent to the storage circuit 8, and the address of the compensation voltage data is specified. When the detected voltage and the count signal match, the control mechanism 16
The compensation voltage data based on the count signal is output from the storage circuit 8 to the D / A converter 9. At the same time, the clock source 10 that generates the clock signal is stopped.

【0019】このようなものでは、第4図(イ〜ホ)の
タイムチャート図に示したように、先ず、発振器の電源
がONになると(同イ)、クロック源が動作してクロッ
ク信号を発生する(同ロ)。また、温度センサ6の検出
電圧(同ハ)が比較器14の一端に入力される。そし
て、比較器は、カウンタ信号が検出電圧になるまではO
N信号(1レベル、同ホ)を出力する。そして、カウン
タ信号が検出電圧に一致するとOFF信号(0レベル)
を出力する。制御機構部はこのOFF信号によって、前
述のように記憶回路から補償電圧データを出力させるる
ともに、クロック源を停止させる。
In such a case, as shown in the time chart of FIG. 4 (a) to (e), when the power supply of the oscillator is turned on (same as a), the clock source operates to generate the clock signal. Occur (b). Further, a detection voltage of the temperature sensor 6 (same as C) is input to one end of the comparator 14. Then, the comparator operates until the counter signal reaches the detection voltage.
An N signal (one level, the same signal E) is output. When the counter signal matches the detection voltage, an OFF signal (0 level)
Is output. The control mechanism outputs the compensation voltage data from the storage circuit and stops the clock source in response to the OFF signal as described above.

【0020】このような構成であれば、検出電圧とカウ
ント信号とが一致するまでの電源投入直後の時間内(1
ms程度)で温度補償し、それ以降はクロック源10の
停止により温度補償動作を中止する。したがって、温度
補償機構部のデジタル動作は、前第1実施例と同様に各
間欠動作の電源投入直後のみとなるので、雑音の発生を
防止できる。そして、周波数が安定する前に温度補償電
圧が設定されるので、AFCによる周波数制御を容易に
する。
With such a configuration, the time (1) immediately after the power is turned on until the detection voltage matches the count signal is reached.
ms), and thereafter the temperature compensation operation is stopped by stopping the clock source 10. Therefore, the digital operation of the temperature compensating mechanism is performed only immediately after the power is turned on for each intermittent operation as in the first embodiment, so that generation of noise can be prevented. Since the temperature compensation voltage is set before the frequency is stabilized, the frequency control by AFC is facilitated.

【0021】[0021]

【他の事項】上記実施例ではAFCの制御電圧を印加し
たが、例えば携帯電話で通話時間が短い場合には急激な
温度変化はないので、必ずしも必要とはしない。また、
間欠動作としたが、非間欠動作の場合には電源投入直後
のみに温度補償して、その後AFCにより周波数制御す
ればよいので、デジタルとした温度補償動作による雑音
を無視できる。
[Other Matters] In the above embodiment, the control voltage of the AFC is applied. However, when the talk time is short in a mobile phone, for example, there is no rapid temperature change, so that it is not always necessary. Also,
Although the operation is intermittent, in the case of non-intermittent operation, the temperature is compensated only immediately after the power is turned on, and then the frequency is controlled by AFC, so that noise due to the digital temperature compensation operation can be ignored.

【0022】本発明は、温度保証機構部のA/D変換
器、記憶回路及びD/A変換器の動作を同期して動作さ
せるクロック源の動作を、水晶発振器の電源の投入直後
に停止させたので、雑音を少なくして安定な発振周波数
を得る温度補償発振器を提供できる。
According to the present invention, the operation of the clock source for synchronizing the operations of the A / D converter, the storage circuit and the D / A converter of the temperature assurance mechanism is stopped immediately after the power of the crystal oscillator is turned on. Therefore, it is possible to provide a temperature-compensated oscillator that obtains a stable oscillation frequency while reducing noise.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を説明する温度補償発振器
の概略のブロック図である。
FIG. 1 is a schematic block diagram of a temperature compensated oscillator illustrating a first embodiment of the present invention.

【図2】本発明の第1実施例を説明する温度補償発振器
のタイムチャート図である。
FIG. 2 is a time chart of the temperature-compensated oscillator explaining the first embodiment of the present invention.

【図3】本発明の第2実施例を説明する温度補償発振器
の概略のブロック図である。
FIG. 3 is a schematic block diagram of a temperature compensated oscillator illustrating a second embodiment of the present invention.

【図4】本発明の第2実施例を説明する温度補償発振器
のタイムチャート図である。
FIG. 4 is a time chart of a temperature-compensated oscillator explaining a second embodiment of the present invention.

【図5】従来例を説明する温度補償発振器の概略のブロ
ック図である。
FIG. 5 is a schematic block diagram of a temperature compensated oscillator explaining a conventional example.

【図6】従来例を説明する温度補償発振器の間欠動作を
示すタイムチャート図である。
FIG. 6 is a time chart illustrating an intermittent operation of a temperature-compensated oscillator for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 温度補償機構部、2 電圧制御発振器、3 水晶振
動子、4 発振回路、5 電圧可変容量素子、6 温度
センサ、7 A/D変換器、8 記憶回路、9D/A変
換器、10 クロック源、11 コンデンサ、12 抵
抗、13 インバータ、14 比較器、15 カウン
タ、16 制御回路.
Reference Signs List 1 temperature compensation mechanism part, 2 voltage controlled oscillator, 3 crystal oscillator, 4 oscillation circuit, 5 voltage variable capacitance element, 6 temperature sensor, 7 A / D converter, 8 storage circuit, 9 D / A converter, 10 clock source , 11 capacitors, 12 resistors, 13 inverters, 14 comparators, 15 counters, 16 control circuits.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】温度に応答した検出電圧を発生する温度セ
ンサと、前記検出電圧をデジタル値に変換するA/D変
換器と、前記デジタル値に応答して水晶発振器の周波数
温度特性を補償するデータを有した記憶回路と、前記デ
ータをアナログ値の補償電圧に変換するD/A変換器
と、前記A/D変化器、前記記憶回路及びD/A変換器
を同期して動作させるクロック源とを備えた温度補償発
振器において、前記クロック源の動作を前記電源の投入
直後に停止させたことを特徴とする温度補償発振器。
A temperature sensor for generating a detection voltage responsive to temperature, an A / D converter for converting the detection voltage into a digital value, and compensating a frequency temperature characteristic of a crystal oscillator in response to the digital value. A storage circuit having data, a D / A converter for converting the data into a compensation voltage of an analog value, and a clock source for operating the A / D converter, the storage circuit, and the D / A converter in synchronization Wherein the operation of the clock source is stopped immediately after the power is turned on.
【請求項2】前記クロック源の電源端子と主電源との間
に積分回路を入力側に有するインバータを設けた請求項
1のデジタル温度補償発振器。
2. The digital temperature compensated oscillator according to claim 1, wherein an inverter having an integration circuit on an input side is provided between a power supply terminal of said clock source and a main power supply.
【請求項3】温度に応答した検出電圧を発生する温度セ
ンサと、 クロック源に同期してそれぞれが動作する前記検出電圧
を一端に入力する比較器と、前記比較器からの出力をカ
ウントして前記比較器の他端にD/A変換器を経てカウ
ント信号を入力するカウンタと、前記カウンタに接続し
て温度補償データを備えた記憶回路と、前記比較器の出
力を検出して前記検出電圧と前記カウント信号が一致し
たときに、前記カウント一致信号に基づいた補償電圧デ
ータを前記記憶回路に出力させるとともに、前記クロッ
ク源を停止させる制御機構部と、前記補償電圧データを
アナログ値の補償電圧に変換するD/A変換器とを備え
たことを特徴とするデジタル温度補償発振器。
3. A temperature sensor for generating a detection voltage in response to a temperature, a comparator for inputting the detection voltage, which operates in synchronization with a clock source, to one end, and counting an output from the comparator. A counter for inputting a count signal through a D / A converter to the other end of the comparator, a storage circuit connected to the counter and having temperature compensation data, and an output of the comparator for detecting the detection voltage And a control mechanism for stopping the clock source while outputting compensation voltage data based on the count match signal to the storage circuit when the count signal matches, and a compensation voltage of an analog value. A digital temperature-compensated oscillator comprising: a D / A converter that converts the data into a digital signal.
JP2000032525A 2000-02-10 2000-02-10 Digital temperature compensated oscillator Pending JP2001223530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032525A JP2001223530A (en) 2000-02-10 2000-02-10 Digital temperature compensated oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032525A JP2001223530A (en) 2000-02-10 2000-02-10 Digital temperature compensated oscillator

Publications (1)

Publication Number Publication Date
JP2001223530A true JP2001223530A (en) 2001-08-17

Family

ID=18557114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032525A Pending JP2001223530A (en) 2000-02-10 2000-02-10 Digital temperature compensated oscillator

Country Status (1)

Country Link
JP (1) JP2001223530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023082A (en) * 2004-07-06 2006-01-26 Daishinku Corp Oscillation tester of piezoelectric oscillating device, manufacturing equipment, and oscillation test method
KR101520358B1 (en) 2008-12-09 2015-05-14 삼성전자주식회사 A Temperature sensor with compensated output characteristics against variation of temperature and the compensating method used by the sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023082A (en) * 2004-07-06 2006-01-26 Daishinku Corp Oscillation tester of piezoelectric oscillating device, manufacturing equipment, and oscillation test method
KR101520358B1 (en) 2008-12-09 2015-05-14 삼성전자주식회사 A Temperature sensor with compensated output characteristics against variation of temperature and the compensating method used by the sensor

Similar Documents

Publication Publication Date Title
EP1107455B1 (en) Temperature compensated oscillator and method of controlling it
EP1585223B1 (en) Method and circuit for determining a slow clock calibration factor
JP4588886B2 (en) Oscillator using calibration method
US6084441A (en) Apparatus for and method of processing data
JPH11271476A (en) Reference frequency generating device
US20060045215A1 (en) Method and apparatus for frequency correcting a periodic signal
JP2000323983A (en) Oscillation frequency adjusting device
JPH1168557A (en) Reference frequency generator
JP2001223530A (en) Digital temperature compensated oscillator
JP3753307B2 (en) Portable wireless terminal device
JPH04369927A (en) Pll oscillator
JP2000244385A (en) Frame generation circuit
JP2008005336A (en) Receiver, reception processing method, and base band processor
KR101128613B1 (en) Quick Start Crystal oscillator and calibration method thereof
JP2004023634A (en) High frequency oscillation circuit, temperature compensation method for high frequency oscillation circuit, and wireless communication apparatus
JP2001077688A (en) Digital processing phase lock loop circuit
JPH09191249A (en) Frequency deviation correction system
JP2002223260A (en) Portable radio terminal and afc control method
JP2002204127A (en) Method and device for adjusting temperature compensating crystal oscillator
KR100450507B1 (en) Apparatus For Compensating Real Time Clock Timing For Mobile Communication
JPH06252642A (en) Control circuit for frequency characteristic of digitally controlled temperature compensation type crystal oscillator
JP2001168640A (en) Temperature compensation type oscillator, radio communication equipment and electronic equipment
JPH04157922A (en) Digital control type temperature compensation piezoelectric oscillator
JPH10215293A (en) Portable terminal
JP3436498B2 (en) Clock generation circuit with frequency correction function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801