JP2001223261A - Electrostatic chuck and electrostatic attraction device - Google Patents

Electrostatic chuck and electrostatic attraction device

Info

Publication number
JP2001223261A
JP2001223261A JP2000034310A JP2000034310A JP2001223261A JP 2001223261 A JP2001223261 A JP 2001223261A JP 2000034310 A JP2000034310 A JP 2000034310A JP 2000034310 A JP2000034310 A JP 2000034310A JP 2001223261 A JP2001223261 A JP 2001223261A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
base plate
copper
insulating layer
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000034310A
Other languages
Japanese (ja)
Inventor
Yasuo Kondo
保夫 近藤
Hajime Murakami
村上  元
Teruyoshi Abe
輝宜 阿部
Kazutaka Okamoto
和孝 岡本
Noriyuki Watabe
典行 渡部
Yasuhisa Aono
泰久 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000034310A priority Critical patent/JP2001223261A/en
Publication of JP2001223261A publication Critical patent/JP2001223261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck and an electrostatic adsorption device in which there is no warping, cracking nor peeling even if the temperature varies due to heating or cooling. SOLUTION: In this electrostatic chuck, a composite material which contains cuprous oxide (Cu2O) by 20-80 vol.% and copper (Cu) and inevitable impurities in the remainder, and whose thermal expansion coefficient from room temperature to 300 deg.C is 5×10-6-14-×10-6/ deg.C and heat conductivity is 30-325 W/m.K, is used for an electrode plate 12, a stress relaxation layer or a base plate 14. As a result difference in thermal expansion coefficient between an insulation layer 11 and the electrode plate 12 or between the insulation layer and the base plate is made small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハなど
の半導体基板に成膜処理するエッチング装置やCVD装
置に係り、特に半導体ウエハなどの半導体基板を吸着保
持する静電チャック及び静電吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an etching apparatus and a CVD apparatus for forming a film on a semiconductor substrate such as a semiconductor wafer, and more particularly to an electrostatic chuck and an electrostatic suction apparatus for holding a semiconductor substrate such as a semiconductor wafer by suction. .

【0002】[0002]

【従来の技術】従来より半導体製造工程において、半導
体ウエアなどの半導体基板を処理するために、反応性プ
ラズマを利用したプラズマCVD(Chemical VaporDepo
sition)装置やプラズマエッチング装置等が使用されて
いる。これらのプラズマ処理装置では静電吸着装置が広
く使用されている。第1の従来技術として、低温用に電
極板表面にアルミナ等の絶縁層を直接あるいは間接に溶
射してなる静電チャックと、静電チャックを固定すると
共に冷却機構を有するベース板を備えた吸着装置が知ら
れており、電極及びベース板材として通常アルミニウム
が用いられている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, a plasma CVD (Chemical Vapor Depo) using a reactive plasma has been used to process a semiconductor substrate such as a semiconductor ware.
sition) apparatus, plasma etching apparatus and the like are used. In these plasma processing apparatuses, an electrostatic suction apparatus is widely used. As a first prior art, an adsorption chuck having an electrostatic chuck formed by directly or indirectly spraying an insulating layer such as alumina on the surface of an electrode plate for a low temperature, and a base plate having the electrostatic chuck fixed and having a cooling mechanism are provided. An apparatus is known, and aluminum is usually used as an electrode and a base plate.

【0003】一方、第2の従来技術は、例えば高温用と
して、静電チャックがセラミックス製基板の上にW,M
o等からなる膜状の電極層を形成し、その上に絶縁層を
形成したもの、絶縁性基体内部に電極層を組み込んだも
の等が知られ、冷却或いは加熱機構を有するアルミニウ
ム製ベース板とろう付け等で接合されている。
[0003] On the other hand, in a second prior art, for example, for high temperature use, an electrostatic chuck is provided on a ceramic substrate by W, M
An aluminum base plate having a cooling or heating mechanism is known, including a film-shaped electrode layer made of o and the like, an insulating layer formed thereon, an electrode layer incorporated inside an insulating substrate, and the like. They are joined by brazing or the like.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術におい
て、静電チャックはプラズマ処理中に半導体ウエハを介
しての入熱と、ウエハの過熱を抑えるためのサーキュレ
ータによる冷却により温度上昇,下降の熱サイクルを受
ける。そして、絶縁層と電極との熱膨張係数の差によっ
て接合面に引張りあるいは圧縮の繰り返しの熱応力が生
じ、これに起因して接合面が剥がれたり、絶縁層が割れ
たりする問題があった。
In the above-mentioned prior art, the electrostatic chuck has a thermal cycle in which the temperature rises and falls due to heat input through a semiconductor wafer during plasma processing and cooling by a circulator for suppressing overheating of the wafer. Receive. Then, due to the difference in the thermal expansion coefficient between the insulating layer and the electrode, thermal stress of repeated tension or compression is generated on the bonding surface, and there is a problem that the bonding surface is peeled off or the insulating layer is broken.

【0005】この問題を解決するために、第1の従来技
術では電極材料を絶縁層のアルミナの熱膨張係数7×1
-6/℃に近いW,Mo等の高価な材料とする必要があ
り、電極が非常に高価なものになるという欠点がある。
また、第2の上記従来技術においては、W,Mo等から
なる膜状の電極層を形成しており、絶縁層に対する信頼
性は高いが、セラミックス製基板の熱伝導率が小さいた
めベース板への伝熱が阻害されること、静電チャックと
ベース板との熱膨張係数の差によって第1の従来技術で
述べたと同様の熱応力の問題が指摘されている。
In order to solve this problem, in the first prior art, the electrode material is made of a thermal expansion coefficient of 7 × 1 of alumina of the insulating layer.
It is necessary to use expensive materials such as W and Mo close to 0 −6 / ° C., and there is a disadvantage that the electrodes become very expensive.
In the second prior art, a film-like electrode layer made of W, Mo, or the like is formed, and the reliability of the insulating layer is high. The problem of thermal stress similar to that described in the first prior art is pointed out due to the fact that the heat transfer is inhibited and the difference in the thermal expansion coefficient between the electrostatic chuck and the base plate.

【0006】一方、特開平10−41377 号公報では、静電
チャックとアルミニウムもしくはアルミニウム合金製ベ
ース板との熱膨張差に起因する熱応力の発生を防止する
目的で、静電チャックとベース間にアルミニウムとアル
ミナ,窒化アルミあるいは炭化珪素からなる複合材を応
力緩和層に設ける方法が提案されているが、複合材が高
価でかつ難加工な点が欠点である。
On the other hand, in Japanese Patent Application Laid-Open No. 10-41377, in order to prevent generation of thermal stress due to a difference in thermal expansion between the electrostatic chuck and a base plate made of aluminum or an aluminum alloy, the electrostatic chuck and the base are interposed between the electrostatic chuck and the base. A method of providing a composite material composed of aluminum and alumina, aluminum nitride, or silicon carbide in the stress relaxation layer has been proposed, but disadvantageously, the composite material is expensive and difficult to process.

【0007】一方、プラズマ処理において、半導体基板
はプラズマ粒子の照射を受けて加熱されるため、温度上
昇して処理膜の品質に悪影響を及ぼす。そこで、半導体
基板の温度上昇を抑制し、一定温度に保つため、電極板
あるいはベース板に冷却,加熱装置を設ける手段が通常
とられている。しかしながら、電極板あるいはベース板
にアルミニウムを用いた場合、材料の熱伝導性が十分で
なく、ウエハ等の半導体基板の温度を精度良く制御する
ことが難しいことから、電極板あるいはベース板材料と
して低熱膨張性と高熱伝導性を兼備した材料が求められ
ていた。
On the other hand, in the plasma processing, the semiconductor substrate is heated by being irradiated with the plasma particles, so that the temperature rises and adversely affects the quality of the processed film. Therefore, in order to suppress a rise in the temperature of the semiconductor substrate and keep it at a constant temperature, a means for providing a cooling and heating device on the electrode plate or the base plate is usually adopted. However, when aluminum is used for the electrode plate or the base plate, the thermal conductivity of the material is not sufficient, and it is difficult to accurately control the temperature of the semiconductor substrate such as a wafer. Materials having both expandability and high thermal conductivity have been demanded.

【0008】本発明の目的は、加熱及び冷却による温度
変化があっても、絶縁層の剥離や反りや割れを防止する
と共に、被処理物品の冷却あるいは加熱を効率的に行う
ことができる静電チャック及び静電吸着装置を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent an insulating layer from peeling, warping, and cracking and to efficiently cool or heat an article to be treated even when there is a temperature change due to heating and cooling. An object of the present invention is to provide a chuck and an electrostatic chuck.

【0009】[0009]

【課題を解決するための手段】本発明は、半導体基板等
の被処理物品を静電吸着載置する絶縁層を上面に設けた
電極板と、該電極板を保持すると共に冷却又は加熱構造
を有するベース板とを備えた静電チャックにおいて、前
記電極板又は電極板及び前記ベース板が銅(Cu)と第一酸
化銅(Cu2O )とを有する複合材で構成されることを
特徴とする。
According to the present invention, there is provided an electrode plate provided with an insulating layer on an upper surface on which an article to be processed such as a semiconductor substrate is electrostatically attracted and mounted, and a cooling or heating structure for holding the electrode plate and for cooling. An electrostatic chuck comprising: a base plate having the electrode plate or the electrode plate and the base plate are made of a composite material containing copper (Cu) and cuprous oxide (Cu 2 O). I do.

【0010】本発明は、前述の静電チャックにおいて、
前記電極板及び前記ベース板が銅(Cu)と第一酸化銅
(Cu2O )とを有する複合材で構成され、かつ前記電
極板が前記絶縁層との接合面側から前記ベース板側に向
けて熱膨張係数が段階的に高くなるように、銅(Cu)
に対する第一酸化銅(Cu2O )の配合割合が減少する
複合材からなることを特徴とする。
According to the present invention, in the above-mentioned electrostatic chuck,
The electrode plate and the base plate are composed of a composite material having copper (Cu) and cuprous oxide (Cu 2 O), and the electrode plate is from a bonding surface side with the insulating layer to the base plate side. (Cu) so that the coefficient of thermal expansion gradually increases toward
Characterized by a composite material in which the mixing ratio of cuprous oxide (Cu 2 O) is reduced.

【0011】本発明は、前述の静電チャックにおいて、
前記静電チャックと前記ベース板の間に両者間の熱膨張
差を調節するための応力緩和層を設け、前記緩和層及び
前記ベース板が銅(Cu)と第一酸化銅(Cu2O )か
らなる複合材で構成されることを特徴とする静電吸着装
置である。
The present invention provides the above-mentioned electrostatic chuck,
A stress relaxation layer for adjusting a difference in thermal expansion between the electrostatic chuck and the base plate is provided, and the relaxation layer and the base plate are made of copper (Cu) and cuprous oxide (Cu 2 O). An electrostatic attraction device characterized by being composed of a composite material.

【0012】本発明は、前述の静電チャックにおいて、
前記チャック部と前記ベース板の間に両者間の熱膨張差
を調節するための応力緩和層を設け、前記緩和層及び前
記ベース板が銅(Cu)と第一酸化銅(Cu2O )とを
有する複合材で構成され、かつ前記緩和層が前記絶縁層
との接合面側から前記ベース板側に向けて熱膨張係数が
段階的に高くなるように、銅(Cu)に対する第一酸化
銅(Cu2O )の配合割合が減少する複合材からなるこ
とを特徴とする。
The present invention provides the above-mentioned electrostatic chuck,
A stress relaxation layer is provided between the chuck portion and the base plate for adjusting a difference in thermal expansion between the chuck portion and the base plate, and the relaxation layer and the base plate include copper (Cu) and cuprous oxide (Cu 2 O). The first copper oxide (Cu) with respect to copper (Cu) is composed of a composite material, and the relaxation layer gradually increases in coefficient of thermal expansion from the bonding surface side with the insulating layer toward the base plate side. It is characterized by comprising a composite material in which the mixing ratio of 2 O) is reduced.

【0013】本発明の前記複合材は、第一酸化銅(Cu2
O)を20〜80体積%含み、残部が銅(Cu)と不可
避的不純物からなり、前記Cu2O 相及びCu相が分散
した組織を有し、室温から300℃における熱膨張係数
が5×10-6〜14×10-6〜/℃及び熱伝導率が30
〜325W/m・kであることが好ましい。
[0013] The composite material of the present invention comprises copper ( II) oxide (Cu 2
O) in an amount of 20 to 80% by volume, the balance being composed of copper (Cu) and unavoidable impurities, having a structure in which the Cu 2 O phase and Cu phase are dispersed, and having a thermal expansion coefficient of 5 × from room temperature to 300 ° C. 10 −6 to 14 × 10 −6 / ° C. and thermal conductivity of 30
It is preferably m325 W / m · k.

【0014】本発明の複合材は、溶解法及び粉末冶金法
によって製造される。好適な製造方法は、第一酸化銅
(Cu2O )を好ましくは20〜80体積%含み、残部
が銅(Cu)と不可避的不純物からなる混合粉末をプレ
ス成形して予備成形体を作製した後、予備成形体をアル
ゴンガス雰囲気中で好ましくは800〜1050℃の温
度で焼結する方法である。
The composite of the present invention is produced by a melting method and a powder metallurgy method. A preferred production method is to prepare a pre-formed body by press-molding a mixed powder containing preferably cuprous oxide (Cu 2 O) in an amount of 20 to 80% by volume and a balance of copper (Cu) and unavoidable impurities. Thereafter, the preformed body is sintered at a temperature of preferably 800 to 1050 ° C. in an argon gas atmosphere.

【0015】本発明に係る複合材料は、金属として電気
導電性の高いCu,Al,Tiが用いられ、特にCuは
高熱伝導性を有する点で最も優れている。また、複合材
を構成する粒子として、ベースの金属に対して極端に硬
さの違う従来のSiC,Al23等の化合物ではなく、
比較的軟かい粒子で焼結後に安定で、20〜150℃の範
囲での平均熱膨張係数が好ましくは5.0×10-6/℃
以下、より好ましくは3.5×10-6/℃ 以下で、ヴィ
ッカース硬さが300以下のものが好ましい。このよう
に粒子として軟かいものを用いることによって焼結後の
熱間,冷間による高い塑性加工性が得られる。複合化粒
子として第一酸化銅(Cu2O ),酸化錫,酸化鉛,酸
化ニッケル等が考えられる。しかし、特に熱膨張係数が
最も小さく軟らかい第一酸化銅(Cu2O )が好まし
い。
The composite material according to the present invention uses Cu, Al, and Ti having high electrical conductivity as a metal, and Cu is most excellent in that it has high thermal conductivity. Also, the particles constituting the composite material are not compounds such as conventional SiC and Al 2 O 3 having extremely different hardnesses from the base metal.
It is a relatively soft particle, stable after sintering, and preferably has an average coefficient of thermal expansion in the range of 20 to 150 ° C. of 5.0 × 10 −6 / ° C.
It is more preferably at most 3.5 × 10 −6 / ° C. and the Vickers hardness is at most 300. By using soft particles as described above, high plastic workability by hot and cold after sintering can be obtained. Copper oxide (Cu 2 O), tin oxide, lead oxide, nickel oxide and the like can be considered as composite particles. However, copper oxide (Cu 2 O), which has the smallest coefficient of thermal expansion and is soft, is particularly preferable.

【0016】更に、本発明の複合材料はSiC,Al2
3,SiO2 等のヴィッカース硬さが1000以上の
硬い平均粒径3μm以下の微細なセラミックス粒子を5
体積%以下含有させてより強化させるのが好ましい。
Further, the composite material of the present invention is made of SiC, Al 2
Hard ceramic particles having a Vickers hardness of 1000 or more and a mean particle size of 3 μm or less such as O 3 and SiO 2
It is preferable that the content is not more than 10% by volume to strengthen the steel.

【0017】本発明において、複合材料は低熱膨張・高
熱伝導性のCu−Cu2O 合金からなり、一例として電
極材及びベース板、他の例として応力緩和層及びベース
板に適用されるので、前記例のそれぞれの部材間で熱膨
張係数の差を小さくすることができ、熱応力に起因する
静電チャックの反りや割れあるいは接合面の剥離などの
トラブルを防止することができる。また、電極板,ベー
ス板あるいは応力緩和層は高熱伝導性を有するため、半
導体基板の温度コントロールが容易である。
In the present invention, the composite material is made of a Cu—Cu 2 O alloy having low thermal expansion and high thermal conductivity, and is applied to an electrode material and a base plate as an example, and to a stress relaxation layer and a base plate as another example. The difference in the coefficient of thermal expansion between the members in the above example can be reduced, and problems such as warpage or cracking of the electrostatic chuck or peeling of the joint surface due to thermal stress can be prevented. Further, since the electrode plate, the base plate or the stress relaxation layer has high thermal conductivity, the temperature control of the semiconductor substrate is easy.

【0018】すなわち、複合材料は第一酸化銅(Cu2
O )を20〜80体積%含み、残部が銅(Cu)と不
可避的不純物からなり、室温から300℃における熱膨
張係数を5×10-6〜14×10-6〜/℃及び熱伝導率
を30〜325W/m・k間で任意に設定することがで
きるので、接合される絶縁層あるいはベース材の熱膨張
係数を合わせることが容易に可能である。
That is, the composite material is made of cuprous oxide (Cu 2
O 2) in an amount of 20 to 80% by volume, with the balance being copper (Cu) and inevitable impurities, having a coefficient of thermal expansion from room temperature to 300 ° C. of 5 × 10 −6 to 14 × 10 −6 / ° C. and thermal conductivity Can be arbitrarily set in the range of 30 to 325 W / m · k, so that the thermal expansion coefficients of the insulating layer or the base material to be joined can be easily adjusted.

【0019】本発明に係る複合材料は以下の焼結合金又
はその熱間,冷間での鍛造,圧延による塑性加工材から
なるものが好ましい。
The composite material according to the present invention is preferably made of the following sintered alloy or a plastically worked material obtained by hot or cold forging or rolling.

【0020】(1)銅と銅よりも熱膨張係数が小さい酸
化銅粒子とを有し、酸化銅粒子は単独で存在する粒子の
数が断面で100μm四方内に100個以下であり、残
りの粒子は互いに連なった複雑形状の塊となって分散し
ている。
(1) Copper and copper oxide particles having a smaller coefficient of thermal expansion than copper, wherein the number of copper oxide particles alone is 100 or less in a 100 μm square cross section, and The particles are dispersed as a mass of a complex shape connected to each other.

【0021】(2)銅と銅よりも熱膨張係数が小さい酸
化銅粒子とを有し、その粒子はヴィッカース硬さが30
0以下である。
(2) Copper and copper oxide particles having a smaller coefficient of thermal expansion than copper, the particles having a Vickers hardness of 30
0 or less.

【0022】(3)銅と銅よりも熱膨張係数が小さい酸
化銅粒子とを有し、20℃での熱伝導率1W/m・k当
りの20〜150℃での平均熱膨張係数の増加率が0.02
5〜0.035ppm/℃である。
(3) Increasing the average coefficient of thermal expansion at 20 to 150 ° C. per 1 W / m · k of thermal conductivity at 20 ° C. comprising copper and copper oxide particles having a smaller coefficient of thermal expansion than copper. Rate 0.02
5 to 0.035 ppm / ° C.

【0023】(4)銅と銅よりも熱膨張係数が小さい酸
化銅粒子とを有し、前記化合物粒子は互いに連なり塊と
なって分散しており、前記塊は塑性加工によって伸ばさ
れた方向に延びている。
(4) Copper and copper oxide particles having a smaller coefficient of thermal expansion than copper, wherein the compound particles are connected to each other and dispersed as a lump, and the lump is oriented in a direction elongated by plastic working. Extending.

【0024】(5)銅と酸化銅粒子とを有し、前記酸化
銅粒子は断面の面積率で前記粒子の全体の95%以上が
互いに連なった複雑形状の塊となって分散している。
(5) Copper and copper oxide particles are provided, and the copper oxide particles are dispersed in the form of a complex shape in which 95% or more of the whole particles in terms of cross-sectional area are connected to each other.

【0025】更に、本発明に係る複合材料は以下の鋳造
合金又はその熱間,冷間での鍛造,圧延による塑性加工
材からなるものが好ましい。
Further, the composite material according to the present invention is preferably made of the following cast alloy or a plastically worked material obtained by hot or cold forging or rolling.

【0026】(1)銅と好ましくは銅よりも熱膨張係数
が小さい酸化銅を有し、酸化銅は大部分が好ましくは粒
径50μm以下の粒状及びデンドライト状に形成されて
いる。
(1) Copper and preferably copper oxide having a smaller coefficient of thermal expansion than copper, and most of the copper oxide is preferably formed in the form of particles having a particle size of 50 μm or less and dendrites.

【0027】前記酸化銅は棒状の幹に粒子状の枝が形成
されたデンドライト状に形成されているのが好ましい。
It is preferable that the copper oxide is formed in a dendrite shape in which a bar-shaped trunk is formed with particulate branches.

【0028】(2)銅と酸化銅とを有し、前記酸化銅は
大部分が粒径5〜50μm以下の粒状及びデンドライト
状に形成され、かつ前記酸化銅全体の1〜10%が粒径
1μm以下の微細粒子を形成している。
(2) It has copper and copper oxide, and the copper oxide is mostly formed in a granular form and a dendritic form having a particle size of 5 to 50 μm or less, and 1 to 10% of the whole copper oxide has a particle size. Fine particles of 1 μm or less are formed.

【0029】(3)銅と酸化銅とを有し、熱膨張係数又
は熱伝導率が凝固方向がその方向に水平な方向よりも大
きい値を有する。
(3) It has copper and copper oxide, and has a coefficient of thermal expansion or thermal conductivity that is larger in a solidification direction than in a direction horizontal to that direction.

【0030】(4)銅と酸化銅とを有する複合材料にお
いて特に好ましいものである。
(4) Particularly preferred is a composite material containing copper and copper oxide.

【0031】(5)銅と直径が5〜30μmである棒状
の酸化銅とを有し、好ましくは前記酸化銅はその全体に
対して、断面の面積率で90%以上が直径5〜30μm
である棒状である。
(5) It has copper and rod-shaped copper oxide having a diameter of 5 to 30 μm. Preferably, the copper oxide has a cross-sectional area ratio of 90% or more with respect to the whole of 5 to 30 μm in diameter.
Is a bar shape.

【0032】(6)銅と酸化銅とを有し、塑性加工され
ている。
(6) It has copper and copper oxide and is plastically processed.

【0033】(7)銅,酸化銅と不可避的不純物を有
し、前記酸化銅は10〜55体積%でデンドライトを形
成し、かつ室温から300℃の線膨張係数が5×10-6
〜17×10-6/℃及び室温の熱伝導率が100〜38
0W/m・kであり、異方性を有する。
(7) Copper and copper oxide and unavoidable impurities. The copper oxide forms a dendrite at 10 to 55% by volume, and has a linear expansion coefficient of 5 × 10 −6 from room temperature to 300 ° C.
~ 17 × 10 -6 / ° C and room temperature thermal conductivity of 100-38
It is 0 W / mk and has anisotropy.

【0034】(8)銅,酸化銅好ましくは第一酸化銅
(Cu2O )と不可避的不純物を有し、前記酸化銅は好
ましくは10〜55体積%有し、一方向に配向した棒状
であり、かつ室温から300℃の線膨張係数が5×10
-6〜17×10-6/℃及び室温の熱伝導率が100〜3
80W/m・kであり、さらに配向方向の熱伝導率が配
向方向に直角方向の熱伝導率より高く、好ましくはその
差が5〜100W/m・kである。
(8) Copper, copper oxide, preferably copper oxide (Cu 2 O) and unavoidable impurities. The copper oxide preferably has 10 to 55% by volume, and has a rod shape oriented in one direction. Has a linear expansion coefficient of 5 × 10 from room temperature to 300 ° C.
-6 to 17 × 10 -6 / ° C. and room temperature thermal conductivity of 100 to 3
80 W / m · k, and the thermal conductivity in the orientation direction is higher than the thermal conductivity in the direction perpendicular to the orientation direction, preferably the difference is 5 to 100 W / m · k.

【0035】(9)銅と酸化銅を有する複合材料の製造
方法において、銅または銅及び酸化銅を原料とし、酸素
分圧が10-2Pa〜103Pa の雰囲気中で溶解後鋳造
する工程と、800℃〜1050℃で熱処理する工程及
び冷間もしくは熱間で塑性加工する工程を含むことが好
ましい。
(9) In a method for producing a composite material having copper and copper oxide, a step of casting after melting copper or copper and copper oxide in an atmosphere having an oxygen partial pressure of 10 −2 Pa to 10 3 Pa. And a step of performing a heat treatment at 800 ° C. to 1050 ° C. and a step of performing plastic working cold or hot.

【0036】[0036]

【発明の実施の形態】(実施例1)図1に、本発明の静
電チャックの断面構成図を示す。静電チャックは、冷却
或いは加熱孔13が設けられたベース板14と、ベース
板14上に載置された電極板12及びアルミナあるいは
窒化アルミなどのセラミックスからなる絶縁層11を備
え、電極板12には外部から電源が供給されるようにな
っている。
(Embodiment 1) FIG. 1 shows a sectional view of an electrostatic chuck according to the present invention. The electrostatic chuck includes a base plate 14 provided with cooling or heating holes 13, an electrode plate 12 mounted on the base plate 14, and an insulating layer 11 made of ceramics such as alumina or aluminum nitride. Is supplied with power from the outside.

【0037】電極板12及びベース板14は、第一酸化
銅(Cu2O )を20〜80体積%含み、残部が銅(C
u)と不可避的不純物からなり、室温から300℃にお
ける熱膨張係数が5×10-6〜14×10-6〜/℃及び
熱伝導率が30〜325W/m・kの銅複合材料で構成
されている。銅複合材料は、Cu2O 量を調節すること
により、任意に熱膨張係数を選択できるので、絶縁層1
1と電極板12及びチャック部15とベース板14の熱
膨張係数差を小さくすることが可能であり、チャック部
15の反りや異物の発生原因となる割れ,剥離を防止す
ることができる。
The electrode plate 12 and the base plate 14 contain 20 to 80% by volume of cuprous oxide (Cu 2 O), and the balance is copper (C).
u) and unavoidable impurities, and composed of a copper composite material having a thermal expansion coefficient from room temperature to 300 ° C. of 5 × 10 −6 to 14 × 10 −6 / ° C. and a thermal conductivity of 30 to 325 W / mk. Have been. Since the coefficient of thermal expansion of the copper composite material can be arbitrarily selected by adjusting the amount of Cu 2 O, the insulating layer 1
It is possible to reduce the difference between the thermal expansion coefficients of the base plate 1 and the electrode plate 12 and between the chuck portion 15 and the base plate 14, thereby preventing the chuck portion 15 from being warped or cracking or peeling which may cause foreign matter.

【0038】絶縁層11の形成は、溶射あるいは蒸着等
の方法によっておこなわれ、チャック部15とベース板
14は機械的な締結あるいはろう付けによって接合され
る。以下、本発明に係る銅複合材の具体的な製造法を説
明する。
The insulating layer 11 is formed by a method such as thermal spraying or vapor deposition, and the chuck portion 15 and the base plate 14 are joined by mechanical fastening or brazing. Hereinafter, a specific method for producing the copper composite material according to the present invention will be described.

【0039】(A)原料粉として、75μm以下の電解
Cu粉末と純度3N,粒径1〜2μmのCu2O粉末を
用いた。Cu粉末とCu2O粉末を表2に示す比率で140
0g調合した後、スチールボールを入れた乾式のポット
ミル中で10時間以上混合した。混合粉末を直径150
mmの金型に注入し、Cu2O 含有量に応じて400〜1
000kg/cm2 の圧力で冷間プレスして直径150mm×
高さ17〜19mmの予備成形体を得た。その後、予備成
形体をアルゴンガス雰囲気中で焼結させて化学分析,組
織観察,熱膨張係数,熱伝導率及びヴィッカース硬さの
測定に供した。なお、焼結温度はCu2O 含有量に応じ
て900℃〜1000℃の間で変化させ、各温度で3時
間保持した。熱膨張係数は室温から300℃の温度範囲
でTMA(Thermal Mechanical Analysis )装置を用い
て行い、熱伝導率はレーザーフラッシュ法により測定し
た。その結果を表1に併記した。
(A) As raw material powder, electrolytic Cu powder having a particle size of 75 μm or less and Cu 2 O powder having a purity of 3N and a particle size of 1 to 2 μm were used. Cu powder and Cu 2 O powder were mixed at a ratio shown in Table 2 to 140
After mixing 0 g, the mixture was mixed in a dry pot mill containing steel balls for 10 hours or more. 150 mixed powder
mm, and 400 to 1 depending on the Cu 2 O content.
Cold pressed at a pressure of 000 kg / cm 2 150 mm in diameter
A preform having a height of 17 to 19 mm was obtained. Thereafter, the preform was sintered in an argon gas atmosphere and subjected to chemical analysis, structure observation, measurement of thermal expansion coefficient, thermal conductivity, and measurement of Vickers hardness. The sintering temperature was varied between 900 ° C. and 1000 ° C. in accordance with the content of Cu 2 O, and kept at each temperature for 3 hours. The coefficient of thermal expansion was measured in a temperature range from room temperature to 300 ° C. using a TMA (Thermal Mechanical Analysis) device, and the thermal conductivity was measured by a laser flash method. The results are shown in Table 1.

【0040】焼結体組成は化学分析の結果、配合組成と
一致していた。また、熱膨張係数及び熱伝導率は、表1
より明らかなように、CuとCu2O の組成比を調整す
ることによって、広範囲に亘って変化しており、放熱板
に求められる熱的特性にコントロールできることがわか
った。
As a result of chemical analysis, the composition of the sintered body was consistent with the composition. Table 1 shows the thermal expansion coefficient and thermal conductivity.
As is clear, it was found that by adjusting the composition ratio of Cu and Cu 2 O, the composition varied over a wide range, and it was possible to control the thermal characteristics required for the heat sink.

【0041】[0041]

【表1】 [Table 1]

【0042】一方、ミクロ組織より明らかなように、C
2O は混合工程において凝集,焼結工程において肥大
成長するが、粒径は50μm以下であり、Cu相とCu
2O相が均一に分散した緻密な組織となっている。
On the other hand, as is clear from the microstructure, C
Although u 2 O agglomerates in the mixing step and grows enlarged in the sintering step, the particle size is 50 μm or less, and the Cu phase and Cu
It has a dense structure in which the 2O phase is uniformly dispersed.

【0043】図に示す様に、Cu2O 粒子は断面の面積
率でその全体の99%以上が連らなった不規則な形状の
塊となって分散していることが明らかである。
As shown in the figure, it is apparent that the Cu 2 O particles are dispersed as irregularly shaped masses in which 99% or more of the entire cross-sectional area ratio is continuous.

【0044】硬さ測定の結果、Cu相はHv75〜8
0、Cu2O がHv210〜230の硬さであった。ま
た、機械加工性を旋盤及びドリル加工で評価した結果、
加工性は非常に良好であり、形状付与が容易であること
がわかった。
As a result of the hardness measurement, the Cu phase was Hv 75-8.
0, Cu 2 O had a hardness of Hv 210 to 230. In addition, as a result of evaluating the machinability by lathe and drill processing,
It was found that the workability was very good, and that the shape was easily imparted.

【0045】尚、本実施例では原料粉として第一酸化銅
(Cu2O )を用いたが、第二酸化銅(CuO)を用い
ても大気中で焼結することによりCu2O に変化し、複
合材はCu2O が分散したものとなる。
In the present embodiment, cuprous oxide (Cu 2 O) was used as a raw material powder. However, even when copper dioxide (CuO) was used, it was changed to Cu 2 O by sintering in the air. The composite material has Cu 2 O dispersed therein.

【0046】(B)銅と純度2NのCu2O 粉末を表2
に示す比率で調合した原料を大気溶解後に鋳造した複合
材料に関して、線膨張係数,熱伝導率及び硬さを測定し
た。熱膨張係数は、標準試料をSiO2 とし、押し棒式
測定装置を用いた室温から300℃の温度範囲で測定し
た。また熱伝導率はレーザーフラッシュ法により測定し
た。その結果を表1に併記した。視野として720×9
50μmを観察した結果、酸化銅はデンドライト状に形
成されており、更に粒径10〜50μmの粒状のものが
大部分で、径100μmの塊のものが1個見られる。ま
た、径が30μm以下で長さが50μm以上の棒状とデ
ンドライト状のものが約10個であり、更に基地に0.
2μm 以下の粒状のものが前述の棒状及びデンドライ
ト状の形成した部分から0.5μm 程度の幅の非形成帯
があり、その部分を除いて分散しており、またそれが糸
状に連らなったものも形成されている。
(B) Copper and Cu 2 O powder having a purity of 2N are shown in Table 2.
The linear expansion coefficient, the thermal conductivity, and the hardness were measured for a composite material which was cast after dissolving the raw materials prepared in the ratios shown in Table 1 in the air. The coefficient of thermal expansion was measured in a temperature range from room temperature to 300 ° C. using a push-bar type measuring device using a standard sample as SiO 2 . The thermal conductivity was measured by a laser flash method. The results are shown in Table 1. 720 × 9 as the field of view
As a result of observing 50 μm, copper oxide was formed in a dendrite shape, most of which had a particle diameter of 10 to 50 μm, and one lump having a diameter of 100 μm was observed. In addition, there are about 10 rod-shaped and dendrite-shaped ones having a diameter of 30 μm or less and a length of 50 μm or more.
There was a non-formation zone having a width of about 0.5 μm from the above-mentioned rod-like and dendrite-like part where the granular thing of 2 μm or less was dispersed, except for that part, and it was connected in a thread form. Things are also formed.

【0047】熱膨張係数及び熱伝導率は、表2より明ら
かなように、CuとCu2O の組成比を調整することに
よって、広範囲にわたって変化しており、放熱板に求め
られる熱的特性に制御できることがわかった。
As is clear from Table 2, the thermal expansion coefficient and the thermal conductivity vary over a wide range by adjusting the composition ratio of Cu and Cu 2 O. I found that I could control it.

【0048】[0048]

【表2】 [Table 2]

【0049】一方、ミクロ組織より、Cu2O はデンド
ライトを形成し、Cu相とCu2O相が均一に分散した
緻密な組織となっていた。
On the other hand, from the microstructure, Cu 2 O formed a dendrite, and had a dense structure in which the Cu phase and the Cu 2 O phase were uniformly dispersed.

【0050】硬さ測定の結果、Cu相はHv75〜8
0,Cu2O がHv210〜230の硬さであった。ま
た、機械加工性を旋盤及びドリル加工で評価した結果、
加工性は非常に良好であり、形状付与が容易であること
がわかった。
As a result of the hardness measurement, the Cu phase was Hv 75-8.
0, Cu 2 O had a hardness of Hv 210 to 230. In addition, as a result of evaluating the machinability by lathe and drill processing,
It was found that the workability was very good, and that the shape was easily imparted.

【0051】(C)Cu2O を40体積%,残部Cuか
らなる合金を一方向凝固によって得た鋳物を900℃に
おいて90%の加工度まで熱間加工した結果、加工性は
健全であり、本発明の複合材料は、塑性加工性に優れる
ことが判明した。鋳造のままのものに比較して配向性が
顕著となり、またCu2O 相は塑性加工方向に伸ばされ
一方向に伸長し、かつ1から20の範囲でアスプクト比
を有する組織となった。棒径は20μm以下で、1〜1
0μmがほとんどである。また、長さが100μm以上
のものは約15個である。更に、鋳造時の0.2μm 以
下の微細粒子2〜5μm程度の粒子に成長して消失して
いる。また表3に併記するように、上記試料の線膨張係
数及び熱伝導率には、いっそう顕著な異方性が認められ
た。特に、熱伝導率は棒状に沿った縦方向が横方向の
1.22 倍の値を示した。また、熱膨張係数は縦方向が
横方向よりも若干大きくなっている。
(C) A cast obtained by unidirectionally solidifying an alloy consisting of 40% by volume of Cu 2 O and the balance of Cu was hot-worked at 900 ° C. to a workability of 90%, and the workability was sound. The composite material of the present invention was found to be excellent in plastic workability. The orientation became remarkable as compared with the as-cast one, and the Cu 2 O phase was elongated in the plastic working direction, elongated in one direction, and had a structure having an aspect ratio in the range of 1 to 20. The rod diameter is 20 μm or less,
0 μm is most common. Further, about 15 pieces have a length of 100 μm or more. Further, the fine particles of 0.2 μm or less at the time of casting grow into particles of about 2 to 5 μm and disappear. Further, as also shown in Table 3, more remarkable anisotropy was recognized in the linear expansion coefficient and the thermal conductivity of the sample. In particular, the thermal conductivity showed a value that was 1.22 times higher in the vertical direction along the rod shape than in the horizontal direction. The thermal expansion coefficient is slightly larger in the vertical direction than in the horizontal direction.

【0052】[0052]

【表3】 [Table 3]

【0053】(実施例2)図2に、本発明の静電チャッ
クの断面構成図を示す。静電チャックは、冷却或いは加
熱孔23が設けられたベース板24と、ベース板24上
に載置された電極板22及びアルミナあるいは窒化アル
ミなどのセラミックスからなる絶縁層21を備え、電極
板22には外部から電源が供給されるようになってい
る。
(Embodiment 2) FIG. 2 is a sectional view showing the configuration of an electrostatic chuck according to the present invention. The electrostatic chuck includes a base plate 24 provided with cooling or heating holes 23, an electrode plate 22 mounted on the base plate 24, and an insulating layer 21 made of ceramics such as alumina or aluminum nitride. Is supplied with power from the outside.

【0054】電極板22及びベース板24は、第一酸化
銅(Cu2O )を20〜80体積%含み、残部が銅(C
u)と不可避的不純物からなり、室温から300℃にお
ける熱膨張係数が5×10-6〜14×10-6〜/℃及び
熱伝導率が30〜325W/m・kの複合材料で構成さ
れている。そして、電極板22は絶縁層21及びベース
板24の両方と熱膨張係数が合うように22a,22
b,22c層の順にCu2O量が減少させて傾斜化されてい
る。すなわち、絶縁層21との接合面側から前記ベース
板24側に向けて熱膨張係数が段階的に大きくなるよう
に、銅(Cu)に対する第一酸化銅(Cu2O )の配合
割合を減少して配置されている。その結果、絶縁層21
と電極板22及び電極板22とベース板24との熱膨張
係数差を小さくすることが可能であり、チャック部25
の反りや異物の発生原因となる割れ、剥離を防止するこ
とができる。また、ベース板24はアルミニウム或いは
アルミニウム合金に比べて低熱膨張で高熱伝導性を付与
されているので、熱変形が抑制されると共に、冷却の場
合はチャック部25から効率良く放熱され、逆にヒータ
を組み込んだ場合には、ウエハが効率良く加熱される。
The electrode plate 22 and the base plate 24 contain 20 to 80% by volume of cuprous oxide (Cu 2 O), and the balance is copper (C).
u) and inevitable impurities, and is composed of a composite material having a thermal expansion coefficient of 5 × 10 −6 to 14 × 10 −6 / ° C. and a thermal conductivity of 30 to 325 W / m · k from room temperature to 300 ° C. ing. Then, the electrode plates 22 are formed so that the thermal expansion coefficients of both the insulating layer 21 and the base plate 24 match.
The layers are tilted by decreasing the amount of Cu 2 O in the order of the b and 22c layers. That is, the mixing ratio of cuprous oxide (Cu 2 O) to copper (Cu) is reduced so that the coefficient of thermal expansion increases stepwise from the bonding surface side with the insulating layer 21 toward the base plate 24 side. It is arranged. As a result, the insulating layer 21
And the electrode plate 22, and the thermal expansion coefficient difference between the electrode plate 22 and the base plate 24 can be reduced.
It is possible to prevent cracking and peeling which cause warpage and foreign matter. Further, since the base plate 24 is provided with low thermal expansion and high thermal conductivity as compared with aluminum or aluminum alloy, thermal deformation is suppressed, and in the case of cooling, the heat is efficiently radiated from the chuck portion 25, and conversely, the heater is heated. In the case where is incorporated, the wafer is efficiently heated.

【0055】本実施例において、ベース板24は3層構
造としたが、装置のサイズや使用条件によって任意に変
えることができ、傾斜化は各層をろう付等で接合するこ
とでも得られるが、より好適には原料の混合粉末をプレ
スして予備成形体を作製する際に、各層の混合粉末を積
層した後にプレスして一体化し、焼結により一体にする
方法が良い。そのようにすることで、接合強度が増し、
熱伝導性も向上する。絶縁層21の形成は、溶射あるい
は蒸着等の方法によって行われ、チャック部25とベー
ス板24は機械的な締結、ろう付け或いは拡散接合等に
よって接合される。
In the present embodiment, the base plate 24 has a three-layer structure. However, the base plate 24 can be arbitrarily changed according to the size of the apparatus and operating conditions, and the inclination can be obtained by joining the respective layers by brazing or the like. More preferably, when the mixed powder of the raw materials is pressed to produce a preform, a method is preferred in which the mixed powders of the respective layers are laminated, pressed, integrated, and integrated by sintering. By doing so, the joining strength increases,
Thermal conductivity is also improved. The insulating layer 21 is formed by a method such as thermal spraying or vapor deposition, and the chuck portion 25 and the base plate 24 are joined by mechanical fastening, brazing, diffusion bonding, or the like.

【0056】(実施例3)図3に、本発明の静電チャッ
クの断面構成図を示す。静電チャックは、絶縁層内部に
電極板を埋設した構造を有している。冷却或いは加熱孔
33が設けられたベース板34と、ベース板34上に載
置されたアルミナあるいは窒化アルミなどのセラミック
スからなる絶縁層31の内部に電極板32を備えてい
る。さらに絶縁層31とベース板34の中間には、両者
間の熱膨張係数の差によって発生する熱応力を吸収する
ための応力緩和層36が設けられている。電極板32は
モリブデン或いはタングステン等で作られ、外部から電
源が供給されるようになっている。
(Embodiment 3) FIG. 3 is a sectional view showing the configuration of an electrostatic chuck according to the present invention. The electrostatic chuck has a structure in which an electrode plate is embedded inside an insulating layer. A base plate 34 provided with cooling or heating holes 33 is provided, and an electrode plate 32 is provided inside an insulating layer 31 made of ceramics such as alumina or aluminum nitride placed on the base plate 34. Further, a stress relaxation layer 36 for absorbing thermal stress generated due to a difference in thermal expansion coefficient between the insulating layer 31 and the base plate 34 is provided. The electrode plate 32 is made of molybdenum, tungsten, or the like, and is supplied with power from the outside.

【0057】応力緩和層36及びベース板34は、第一
酸化銅(Cu2O )を20〜80体積%含み、残部が銅
(Cu)と不可避的不純物からなり、室温から300℃
における熱膨張係数が5×10-6〜14×10-6〜/℃
及び熱伝導率が30〜325W/m・kの複合材料で構
成されている。複合材料は、Cu2O 量を調節すること
により、任意に熱膨張係数を選択できるので、絶縁層3
1と応力緩和層36及び応力緩和層36とベース板34
の熱膨張係数差を小さくすることが可能であり、チャッ
ク部35の反りや異物の発生原因となる割れ,剥離を防
止することができる。
The stress relieving layer 36 and the base plate 34 contain 20 to 80% by volume of cuprous oxide (Cu 2 O), and the remainder consists of copper (Cu) and unavoidable impurities.
Thermal expansion coefficient at 5 × 10 −6 to 14 × 10 −6 / ° C.
And a composite material having a thermal conductivity of 30 to 325 W / mk. The composite material can arbitrarily select the thermal expansion coefficient by adjusting the amount of Cu 2 O.
1 and stress relaxation layer 36 and stress relaxation layer 36 and base plate 34
Can be reduced, and cracking and peeling, which cause warpage of the chuck portion 35 and generation of foreign matter, can be prevented.

【0058】絶縁層41の形成は、溶射あるいは蒸着等
の方法によって行われ、チャック部35と応力緩和層3
6は機械的な締結あるいはろう付け等によって接合され
る。 (実施例4)図4に、本発明の静電チャックの断面構成
図を示す。静電チャックは、応力緩和層を複合構造とし
て熱膨張係数を傾斜化させた以外は、実施例3と同様の
構造を有している。すなわち、応力緩和層46は、第一
酸化銅(Cu2O)を20〜80体積%含み、残部が銅
(Cu)と不可避的不純物からなり、室温から300℃
における熱膨張係数が5×10-6〜14×10-6〜/℃
及び熱伝導率が30〜325W/m・kの複合材料で構
成されている。そして、応力緩和層46は絶縁層41及
びベース板44の両方と熱膨張係数が合うように46
a,46b,46c層によってCu2O 量が傾斜化されて
いる。すなわち、絶縁層41との接合面側から前記ベー
ス板44側に向けて熱膨張係数が段階的に大きくなるよ
うに、銅(Cu)に対する第一酸化銅(Cu2O )の配
合割合を段階的に減少して配置されている。その結果、
絶縁層41と応力緩和層46及び応力緩和層46とベー
ス板44との熱膨張係数差が小さくなり、チャック部4
5の反りや異物の発生原因となる割れ,剥離が防止され
るのでより高温での成膜が可能となる。
The insulating layer 41 is formed by a method such as thermal spraying or vapor deposition.
6 is joined by mechanical fastening or brazing. (Embodiment 4) FIG. 4 is a sectional view showing the configuration of an electrostatic chuck according to the present invention. The electrostatic chuck has the same structure as that of the third embodiment, except that the stress relaxation layer is a composite structure and the thermal expansion coefficient is inclined. That is, the stress relaxation layer 46 contains 20 to 80% by volume of cuprous oxide (Cu 2 O), and the remainder is made of copper (Cu) and unavoidable impurities.
Thermal expansion coefficient at 5 × 10 −6 to 14 × 10 −6 / ° C.
And a composite material having a thermal conductivity of 30 to 325 W / mk. The stress relieving layer 46 has a thermal expansion coefficient matching that of both the insulating layer 41 and the base plate 44.
The amount of Cu 2 O is graded by the layers a, b, c. That is, the compounding ratio of cuprous oxide (Cu 2 O) to copper (Cu) is adjusted stepwise so that the coefficient of thermal expansion increases stepwise from the joint surface side with the insulating layer 41 toward the base plate 44 side. Are arranged in a reduced manner. as a result,
The difference in thermal expansion coefficient between the insulating layer 41 and the stress relaxation layer 46 and between the stress relaxation layer 46 and the base plate 44 becomes small,
Since cracking and peeling, which cause warpage and foreign matter, are prevented, the film can be formed at a higher temperature.

【0059】(実施例5)図5は、実施例2〜4に記載
の静電チャックを使用した静電吸着装置の断面図であ
る。
(Embodiment 5) FIG. 5 is a sectional view of an electrostatic chuck using the electrostatic chuck described in Embodiments 2 to 4.

【0060】本静電吸着装置は、図に示すように、真空
処理室95内部の減圧雰囲気中で導体または半導体から
なる被処理物品90に加工を施すスパッタリング装置の
静電チャックとして使用可能である。本静電吸着装置の
べース板94に直流電源装置91からの電圧(500V
程度)を印加すると、チャック部92の表面に被処理物
品90を吸着させることができる。
As shown in the drawing, the present electrostatic chucking apparatus can be used as an electrostatic chuck of a sputtering apparatus for processing a workpiece 90 made of a conductor or a semiconductor in a reduced-pressure atmosphere inside a vacuum processing chamber 95. . The voltage (500 V) from the DC power supply 91 is applied to the base plate 94 of the electrostatic chuck.
When the degree is applied, the article to be processed 90 can be adsorbed on the surface of the chuck section 92.

【0061】さて、実際のスパッタリングに際しては、
本静電吸着装置に被処理物品90を装着した後、ガス排
気口97に連結された排気ポンプを駆動することによっ
て、真空処理室95の内部圧力が1×10-3Pa程度に
なるまで真空排気する。その後、ガス導入口96に取り
付けられたバルブを開放することによって、真空処理室
95の内部に反応ガス(アルゴンガス等)を10SCC
M程度導入する。このときの真空処理室95の内部圧力
は2×10-2Pa程度である。
Now, in actual sputtering,
After the article to be treated 90 is mounted on the electrostatic suction device, the exhaust pump connected to the gas exhaust port 97 is driven, so that the vacuum inside the vacuum processing chamber 95 is reduced to about 1 × 10 −3 Pa. Exhaust. Thereafter, by opening a valve attached to the gas inlet 96, a reaction gas (argon gas or the like) is introduced into the vacuum processing chamber 95 by 10 SCC.
About M are introduced. At this time, the internal pressure of the vacuum processing chamber 95 is about 2 × 10 −2 Pa.

【0062】その後、本静電吸着装置のベース板94の
高周波電源93から約4kWの高周波電力(13.56
MHz )を供給することによって、本静電吸着装置の
ベース板94と他の電極(不図示)との間にプラズマを
生成させる。この場合、高周波印加電圧VDC及びV
PPは、2kV及び4kVである。なお、本静電吸着装置
のベース板94と高周波電源93との間に挿入されてい
るマッチングボックス98は、高周波電力がプラズマに
効率的に供給されるように真空処理室95側とのインピ
ーダンス整合をとるためのものである。
Thereafter, a high-frequency power (about 13.56 kW) of about 4 kW was supplied from the high-frequency power supply 93 of the base plate 94 of the present electrostatic chuck.
MHz), plasma is generated between the base plate 94 of the present electrostatic chuck and another electrode (not shown). In this case, the high frequency applied voltages VDC and V
PP is 2 kV and 4 kV. The matching box 98 inserted between the base plate 94 and the high-frequency power supply 93 of the present electrostatic suction device has an impedance matching with the vacuum processing chamber 95 so that the high-frequency power is efficiently supplied to the plasma. It is for taking.

【0063】このスパッタリング装置を実際に使用した
結果、加工中に被処理物品90の温度は450℃程度ま
で達したが、本静電吸着装置のチャック部92には、異
物発生の原因となる割れ等は認められなかった。このこ
とは、本静電吸着装置の使用が、加工の信頼性向上に有
用であることを意味する。
As a result of actually using this sputtering apparatus, the temperature of the article to be processed 90 reached about 450 ° C. during processing, but the chuck portion 92 of the present electrostatic chuck apparatus has cracks which cause foreign matter to be generated. Was not recognized. This means that the use of the present electrostatic suction device is useful for improving processing reliability.

【0064】なお、スパッタリング装置のほか、減圧雰
囲気で導体または半導体(例えば、シリコン基板)から
なる加工物に加工を施す加工装置(いわゆる、減圧中加
工装置)、例えば、化学的気相蒸着装置,物理的蒸着装
置,ミリング装置,エッチング装置,イオン注入装置等
のチャックとして本静電吸着装置を使用しても、加工の
信頼性の向上という同様の効果が達成されることは言う
までもない。
In addition to the sputtering apparatus, a processing apparatus for processing a workpiece made of a conductor or a semiconductor (for example, a silicon substrate) in a reduced-pressure atmosphere (so-called processing apparatus under reduced pressure), for example, a chemical vapor deposition apparatus, It goes without saying that the same effect of improving the reliability of processing can be achieved even when the present electrostatic chucking device is used as a chuck for a physical vapor deposition device, a milling device, an etching device, an ion implantation device and the like.

【0065】本実施例によれば、静電吸着装置のチャッ
ク部の絶縁破壊強度を低下させることなく、その耐熱性
を向上させることができる。従って、本発明に係る静電
吸着装置を減圧中加工装置のチャックとして利用すれ
ば、誘電体板の割れ等に起因する異物の発生を低減する
ことができる。
According to this embodiment, the heat resistance can be improved without lowering the dielectric breakdown strength of the chuck portion of the electrostatic chuck. Therefore, if the electrostatic suction device according to the present invention is used as a chuck for a processing device under reduced pressure, it is possible to reduce the generation of foreign matter due to cracks in the dielectric plate.

【0066】尚、本発明の静電吸着装置は、スパッタリ
ング装置の他、減圧雰囲気で導体または半導体(例え
ば、シリコン基板)からなる加工物に加工を施す加工装
置(いわゆる、減圧中加工装置)、例えば、化学的気相
蒸着装置,物理的蒸着装置,ミリング装置,エッチング
装置,イオン注入装置等のチャックとして本静電吸着装
置を使用しても、加工の信頼性の向上という同様な効果
が達成されることはいうまでもない。
The electrostatic attraction device of the present invention is not limited to a sputtering device, but a processing device for processing a workpiece made of a conductor or a semiconductor (for example, a silicon substrate) in a reduced-pressure atmosphere (a so-called low-pressure processing device). For example, even if the present electrostatic chuck is used as a chuck for a chemical vapor deposition apparatus, a physical vapor deposition apparatus, a milling apparatus, an etching apparatus, an ion implantation apparatus, etc., the same effect of improving processing reliability is achieved. Needless to say.

【0067】[0067]

【発明の効果】本発明によれば、電極板,応力緩和層あ
るいはベース板に低熱膨張・高熱伝導性を有するCu−
Cu2O 複合材を用い、加えて複合材の熱膨張係数を調
節することによって絶縁層と電極板との間あるいは絶縁
層とベース板間の熱膨張係数の差を小さくすることがで
き、静電チャックの反りや異物の発生原因となる割れ,
剥離を防止することができる。
According to the present invention, the electrode plate, the stress relieving layer or the base plate has a low thermal expansion and high thermal conductivity.
By using a Cu 2 O composite material and additionally adjusting the thermal expansion coefficient of the composite material, the difference in the thermal expansion coefficient between the insulating layer and the electrode plate or between the insulating layer and the base plate can be reduced. Cracks, which may cause warpage or foreign matter of the electro chuck,
Peeling can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電チャックの断面構成図。FIG. 1 is a sectional configuration view of an electrostatic chuck according to the present invention.

【図2】本発明の静電チャックの断面構成図。FIG. 2 is a sectional configuration diagram of the electrostatic chuck of the present invention.

【図3】本発明の静電チャックの断面構成図。FIG. 3 is a sectional configuration diagram of the electrostatic chuck of the present invention.

【図4】本発明の静電チャックの断面構成図。FIG. 4 is a sectional configuration diagram of the electrostatic chuck of the present invention.

【図5】本発明の静電吸着装置の断面図。FIG. 5 is a cross-sectional view of the electrostatic suction device of the present invention.

【符号の説明】[Explanation of symbols]

11,21,31,41…絶縁層、12,22,32,
42…電極板、22a…電極板a層、22b…電極板b
層、22c…電極板c層、15,25,35,45,9
2…チャック部、13,23,33,43…冷却或いは
加熱孔、14,24,34,44,94…ベース板、3
6,46…応力緩和層、46a…応力緩和a層、46b
…応力緩和b層、46c…応力緩和c層、90…被処理
物品、91…直流電源装置、93…高周波電源、95…
真空処理室、96…ガス導入口、97…ガス排気口、9
8…マッチングボックス。
11, 21, 31, 41 ... insulating layers, 12, 22, 32,
42 ... electrode plate, 22a ... electrode plate a layer, 22b ... electrode plate b
Layer, 22c... Electrode plate c layer, 15, 25, 35, 45, 9
2: chuck part, 13, 23, 33, 43: cooling or heating hole, 14, 24, 34, 44, 94: base plate, 3
6, 46: stress relaxation layer, 46a: stress relaxation a layer, 46b
... stress relaxation b layer, 46c ... stress relaxation c layer, 90 ... article to be processed, 91 ... DC power supply, 93 ... high frequency power supply, 95 ...
Vacuum processing chamber, 96 gas inlet, 97 gas outlet, 9
8. Matching box.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 輝宜 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 岡本 和孝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 渡部 典行 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 3C016 GA10 5F004 AA16 BB22 BB29 5F031 CA02 HA02 HA03 HA17 HA18 HA37 HA38 MA28 MA29 MA31 MA32 NA05 PA11 PA30 5F045 BB14 EM05 EM09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Teruyoshi Abe 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kazutaka Okamoto 7, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Noriyuki Watanabe 1-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Yasuhisa Aono Hitachi, Ibaraki Prefecture 7-1-1, Omika-cho, Hitachi F-term in Hitachi Research Laboratory, Hitachi, Ltd. 3C016 GA10 5F004 AA16 BB22 BB29 5F031 CA02 HA02 HA03 HA17 HA18 HA37 HA38 MA28 MA29 MA31 MA32 NA05 PA11 PA30 5F045 BB14 EM05 EM09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被処理物品を静電吸着する絶縁層を上面に
設けた電極板と、該電極板を保持すると共に冷却又は加
熱構造を有するベース板とを備えた静電チャックにおい
て、前記電極板が酸化銅を有する銅複合材で構成される
ことを特徴とする静電チャック。
1. An electrostatic chuck comprising: an electrode plate provided on an upper surface with an insulating layer for electrostatically attracting an article to be processed; and a base plate holding the electrode plate and having a cooling or heating structure. An electrostatic chuck, wherein the plate is made of a copper composite material having copper oxide.
【請求項2】被処理物品を静電吸着する絶縁層を上面に
設けた電極板と、該電極板を保持すると共に冷却又は加
熱構造を有するベース板とを備えた静電チャックにおい
て、前記電極板が酸化銅を有する銅複合材で構成され、
かつ前記絶縁層側から前記ベース板側に向けて熱膨張係
数が高くなるように、酸化銅の配合割合が減少する銅複
合材からなることを特徴とする静電チャック。
2. An electrostatic chuck comprising: an electrode plate provided on an upper surface with an insulating layer for electrostatically adsorbing an article to be processed; and a base plate holding the electrode plate and having a cooling or heating structure. The board is made of a copper composite material having copper oxide,
An electrostatic chuck comprising a copper composite material in which the proportion of copper oxide is reduced so that the coefficient of thermal expansion increases from the insulating layer side toward the base plate side.
【請求項3】被処理物品を静電吸着する絶縁層と、該絶
縁層内部に埋設された電極板と、該電極板を保持すると
共に冷却又は加熱構造を有するベース板とを備えた静電
チャックにおいて、前記絶縁層と前記ベース板の間に両
者間の熱膨張差を緩和する応力緩和層を設け、前記緩和
層が酸化銅を有する銅複合材で構成されることを特徴と
する静電チャック。
3. An electrostatic device comprising: an insulating layer for electrostatically adhering an article to be processed; an electrode plate embedded in the insulating layer; and a base plate holding the electrode plate and having a cooling or heating structure. An electrostatic chuck according to claim 1, wherein a stress relaxation layer is provided between the insulating layer and the base plate to reduce a difference in thermal expansion between the insulation layer and the base plate, and the relaxation layer is made of a copper composite material containing copper oxide.
【請求項4】被処理物品を静電吸着するための絶縁層
と、該絶縁層内部に埋設された電極板と、該電極板を保
持すると共に冷却又は加熱構造を有するベース板とを備
えた静電チャックにおいて、前記絶縁層と前記ベース板
の間に両者間の熱膨張差を緩和する応力緩和層を設け、
前記緩和層が酸化銅を有する銅複合材で構成され、かつ
前記絶縁層側から前記ベース板側に向けて熱膨張係数が
段階的に高くなるように、前記酸化銅の配合割合が減少
していることを特徴とする静電チャック。
4. An insulating layer for electrostatically adhering an article to be processed, an electrode plate embedded inside the insulating layer, and a base plate holding the electrode plate and having a cooling or heating structure. In the electrostatic chuck, a stress relaxation layer is provided between the insulating layer and the base plate to reduce a difference in thermal expansion between the insulating layer and the base plate,
The compounding ratio of the copper oxide is reduced so that the relaxation layer is formed of a copper composite material having copper oxide, and the coefficient of thermal expansion increases stepwise from the insulating layer side toward the base plate side. An electrostatic chuck characterized by:
【請求項5】請求項1〜4のいずれかにおいて、前記ベ
ース板が銅複合材よりなることを特徴とする静電チャッ
ク。
5. The electrostatic chuck according to claim 1, wherein said base plate is made of a copper composite material.
【請求項6】請求項1〜5のいずれかにおいて、前記銅
複合材は、第一酸化銅(Cu2O )を20〜80体積%
含み、残部が銅(Cu)と不可避的不純物からなり、前
記Cu2O 相及びCu相が分散した組織を有し、室温か
ら300℃における熱膨張係数が5×10-6〜14×1
-6〜/℃及び熱伝導率が30〜325W/m・kであ
ることを特徴とする静電チャック。
6. The copper composite material according to claim 1, wherein the copper composite material contains 20 to 80% by volume of cuprous oxide (Cu 2 O).
And the remainder consists of copper (Cu) and unavoidable impurities, has a structure in which the Cu 2 O phase and the Cu phase are dispersed, and has a coefficient of thermal expansion from room temperature to 300 ° C. of 5 × 10 −6 to 14 × 1.
An electrostatic chuck characterized by having a thermal conductivity of 0 to -6 W / m and a thermal conductivity of 30 to 325 W / mk.
【請求項7】真空処理室と、該真空処理室を真空排気す
る真空排気装置と、前記真空排気室内に設けられ被処理
物品を静電吸着させる静電チャックと、該静電チャック
に電圧を印加する直流電源とを備えた静電吸着装置にお
いて、前記静電チャックが請求項1〜6のいずれかに記
載の静電チャックよりなることを特徴とする静電吸着装
置。
7. A vacuum processing chamber, a vacuum exhaust device for evacuating the vacuum processing chamber, an electrostatic chuck provided in the vacuum exhaust chamber for electrostatically adhering an article to be processed, and applying a voltage to the electrostatic chuck. An electrostatic chuck comprising an applied DC power supply, wherein the electrostatic chuck comprises the electrostatic chuck according to claim 1.
JP2000034310A 2000-02-07 2000-02-07 Electrostatic chuck and electrostatic attraction device Pending JP2001223261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034310A JP2001223261A (en) 2000-02-07 2000-02-07 Electrostatic chuck and electrostatic attraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000034310A JP2001223261A (en) 2000-02-07 2000-02-07 Electrostatic chuck and electrostatic attraction device

Publications (1)

Publication Number Publication Date
JP2001223261A true JP2001223261A (en) 2001-08-17

Family

ID=18558670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034310A Pending JP2001223261A (en) 2000-02-07 2000-02-07 Electrostatic chuck and electrostatic attraction device

Country Status (1)

Country Link
JP (1) JP2001223261A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049180A1 (en) * 2001-12-04 2003-06-12 Toto Ltd. Electrostatic clampless holder module and cooling system
WO2006054407A1 (en) * 2004-10-29 2006-05-26 Shin-Etsu Engineering Co., Ltd. Electrostatic chuck for vacuum bonding equipment and vacuum bonding equipment using the same
WO2008026655A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel battery system, and electronic device
JP2008056526A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic device
WO2009149275A2 (en) * 2008-06-05 2009-12-10 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
JP2010052015A (en) * 2008-08-28 2010-03-11 Nhk Spring Co Ltd Method for producing different material-joined body and different material-joined body by the method
WO2010019430A3 (en) * 2008-08-12 2010-05-14 Applied Materials, Inc. Electrostatic chuck assembly
DE102008054982A1 (en) * 2008-12-19 2010-07-01 Carl Zeiss Smt Ag Wafer chuck for EUV lithography
USRE42175E1 (en) 2002-04-16 2011-03-01 Canon Anelva Corporation Electrostatic chucking stage and substrate processing apparatus
JP2016012608A (en) * 2014-06-27 2016-01-21 京セラ株式会社 Junction body and wafer support member using the same
JP2019083331A (en) * 2013-05-07 2019-05-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrostatic chuck having thermally isolated zones with minimal crosstalk
JP2019185905A (en) * 2018-04-04 2019-10-24 日本特殊陶業株式会社 Ceramic member and manufacturing method of buffer member
JP2021125488A (en) * 2020-01-31 2021-08-30 住友大阪セメント株式会社 Ceramic joint, electrostatic chuck device, and manufacturing method of ceramic joint
CN114751751A (en) * 2022-04-18 2022-07-15 南通三责精密陶瓷有限公司 Manufacturing method of semiconductor high-temperature water-cooling high-precision ceramic sucker and ceramic sucker

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174079A (en) * 2001-12-04 2003-06-20 Toto Ltd Electrostatic chuck module and cooling system
CN1299345C (en) * 2001-12-04 2007-02-07 东陶机器株式会社 Electrostatic clampless holder module and cooling system
US7615133B2 (en) 2001-12-04 2009-11-10 Toto Ltd. Electrostatic chuck module and cooling system
WO2003049180A1 (en) * 2001-12-04 2003-06-12 Toto Ltd. Electrostatic clampless holder module and cooling system
JP4493251B2 (en) * 2001-12-04 2010-06-30 Toto株式会社 Electrostatic chuck module and substrate processing apparatus
USRE42175E1 (en) 2002-04-16 2011-03-01 Canon Anelva Corporation Electrostatic chucking stage and substrate processing apparatus
WO2006054407A1 (en) * 2004-10-29 2006-05-26 Shin-Etsu Engineering Co., Ltd. Electrostatic chuck for vacuum bonding equipment and vacuum bonding equipment using the same
WO2008026655A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel battery system, and electronic device
JP2008056526A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic device
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
WO2009149275A2 (en) * 2008-06-05 2009-12-10 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
WO2009149275A3 (en) * 2008-06-05 2010-03-25 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
KR20110049867A (en) * 2008-08-12 2011-05-12 어플라이드 머티어리얼스, 인코포레이티드 Electrostatic chuck assembly
WO2010019430A3 (en) * 2008-08-12 2010-05-14 Applied Materials, Inc. Electrostatic chuck assembly
CN102160167A (en) * 2008-08-12 2011-08-17 应用材料股份有限公司 Electrostatic chuck assembly
KR101582785B1 (en) 2008-08-12 2016-01-07 어플라이드 머티어리얼스, 인코포레이티드 Electrostatic chuck assembly
JP2011530833A (en) * 2008-08-12 2011-12-22 アプライド マテリアルズ インコーポレイテッド Electrostatic chuck assembly
US8390980B2 (en) 2008-08-12 2013-03-05 Applied Materials, Inc. Electrostatic chuck assembly
JP2010052015A (en) * 2008-08-28 2010-03-11 Nhk Spring Co Ltd Method for producing different material-joined body and different material-joined body by the method
US8564925B2 (en) 2008-12-19 2013-10-22 Carl Zeiss Smt Gmbh Wafer chuck for EUV lithography
JP2012512537A (en) * 2008-12-19 2012-05-31 カール・ツァイス・エスエムティー・ゲーエムベーハー Wafer chuck for EUV lithography
DE102008054982A1 (en) * 2008-12-19 2010-07-01 Carl Zeiss Smt Ag Wafer chuck for EUV lithography
CN102257436A (en) * 2008-12-19 2011-11-23 卡尔蔡司Smt有限责任公司 Wafer chuck for EUV lithography
JP2019083331A (en) * 2013-05-07 2019-05-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrostatic chuck having thermally isolated zones with minimal crosstalk
JP2016012608A (en) * 2014-06-27 2016-01-21 京セラ株式会社 Junction body and wafer support member using the same
JP2019185905A (en) * 2018-04-04 2019-10-24 日本特殊陶業株式会社 Ceramic member and manufacturing method of buffer member
JP7010750B2 (en) 2018-04-04 2022-01-26 日本特殊陶業株式会社 Manufacturing method of ceramic member and cushioning member
JP2021125488A (en) * 2020-01-31 2021-08-30 住友大阪セメント株式会社 Ceramic joint, electrostatic chuck device, and manufacturing method of ceramic joint
JP7010313B2 (en) 2020-01-31 2022-01-26 住友大阪セメント株式会社 Ceramic joint, electrostatic chuck device, manufacturing method of ceramic joint
CN114751751A (en) * 2022-04-18 2022-07-15 南通三责精密陶瓷有限公司 Manufacturing method of semiconductor high-temperature water-cooling high-precision ceramic sucker and ceramic sucker

Similar Documents

Publication Publication Date Title
JP4855177B2 (en) Electrostatic chuck device
JP2001223261A (en) Electrostatic chuck and electrostatic attraction device
US9837296B2 (en) Electrostatic chuck apparatus
KR101505211B1 (en) High density refractory metals & alloys sputtering targets
WO2005009919A1 (en) Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
Zhai et al. Effect of Si content on microstructure and properties of Si/Al composites
JP3819863B2 (en) Silicon sintered body and manufacturing method thereof
KR20080080462A (en) High density ceramic and cermet sputtering targets by microwave sintering
JP2001261457A (en) Boron carbide joined body, method for producing the same and plasma-resistant member
WO2019111945A1 (en) Method for producing gold sputtering target and method for producing gold film
JP4537957B2 (en) Aluminum material having AlN region on surface and method for producing the same
JP4354721B2 (en) Method for producing silicon sintered body
JP3883805B2 (en) Electrostatic chuck stage and manufacturing method thereof
TWI764320B (en) Composite sintered body and method of manufacturing composite sintered body
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP2004002101A (en) Plasma resistant member and its manufacturing process
JP2003171760A (en) Tungsten sputtering target
WO2023223646A1 (en) Wafer support
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP7148446B2 (en) Zygote and method for producing the zygote
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JP2023170164A (en) wafer support
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP2019511992A (en) Copper-ceramic composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719