JP2001223106A - Dust core and high-frequency reactor using the same - Google Patents

Dust core and high-frequency reactor using the same

Info

Publication number
JP2001223106A
JP2001223106A JP2000030667A JP2000030667A JP2001223106A JP 2001223106 A JP2001223106 A JP 2001223106A JP 2000030667 A JP2000030667 A JP 2000030667A JP 2000030667 A JP2000030667 A JP 2000030667A JP 2001223106 A JP2001223106 A JP 2001223106A
Authority
JP
Japan
Prior art keywords
magnetic
core
dust core
powder
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030667A
Other languages
Japanese (ja)
Inventor
Teruhiko Fujiwara
照彦 藤原
Masayoshi Ishii
政義 石井
Yoshitaka Saito
義孝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2000030667A priority Critical patent/JP2001223106A/en
Publication of JP2001223106A publication Critical patent/JP2001223106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Abstract

PROBLEM TO BE SOLVED: To provide a dust core for a high-frequency reactor having an excellent frequency characteristic and a high magnetic permeability, and a high-frequency reactor that can be manufactured easily at a low cost and improve efficiency. SOLUTION: This dust core is constituted by alloy powder having a composition of 3.0 to 6.0 weight % of Si and 0.1 to 1.0 weight % of O with a remainder of Fe and a grain size of substantially 150 μm or smaller and a binder. Consequently, the ac magnetic permeability μ20kHz is 25 or higher at a dc applied magnetic filed of 1200 A/m, and the iron loss is 1000 kW/m3 under measurement conditions of 20 kHz and 0.1 T.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業用機器及び一
般家庭用電気製品に搭載されるスイッチング電源の中
で、そのスイッチング周波数が10kHz以上の電源に
搭載される高周波リアクトル用圧粉磁心及びこれを用い
た高周波リアクトルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dust core for a high-frequency reactor which is mounted on a power supply having a switching frequency of 10 kHz or more, among switching power supplies mounted on industrial equipment and general household electric appliances. The present invention relates to a high-frequency reactor using the same.

【0002】[0002]

【従来の技術】近年、省エネルギー、CO問題の高ま
りから一般家電及び産業用機器において省エネルギー対
策が急速に進んでいる。一般的に消費電力が大きく省エ
ネルギー効果が高いものとして、エアコン、冷蔵庫等の
モーターを使用しているもの、及び照明器具等が挙げら
れる。これら製品の省エネルギー化を進めるために高効
率モーターの採用、電気回路の高効率化等が進められて
いる。電気回路で効率が大きく問題となるのは50/6
0HzAC入力をDC化する電源部であり、その効率改
善のためスイッチング電源の普及が近年急速に進んでい
る。
2. Description of the Related Art In recent years, energy saving and CO2 problems have been increasing, and energy saving measures have been rapidly advanced in general home electric appliances and industrial equipment. In general, a device using a motor such as an air conditioner and a refrigerator, a lighting device, and the like can be cited as devices having a large power consumption and a high energy saving effect. In order to promote energy saving of these products, adoption of high-efficiency motors, high-efficiency electric circuits, and the like are being promoted. Efficiency is a big problem in electric circuits is 50/6
This is a power supply unit that converts 0 Hz AC input into DC. In order to improve the efficiency, switching power supplies have been rapidly spread in recent years.

【0003】しかしながら、スイッチング電源を採用す
ると電流波形の歪により高調波電流の発生が問題となっ
てくる。この対策として様々な回路方式が提案されてい
る。例えば、チョークインプット方式、一石コンバータ
ー方式、アクティブフィルター方式等が挙げられるが、
いずれの方式においても電流の導通角を広げるためにリ
アクトルが使用される。このリアクトルに求められる特
性は、インダクタンス値の他に、変換効率が高い、可聴
域のうねりがない、温度上昇が小さい、小型軽量である
及びコストが低い等多岐にわたっている。
[0003] However, when a switching power supply is employed, generation of a harmonic current becomes a problem due to distortion of a current waveform. As a countermeasure, various circuit systems have been proposed. For example, choke input method, one-stone converter method, active filter method, etc.
In each case, a reactor is used to increase the conduction angle of the current. In addition to the inductance value, the characteristics required for this reactor are various, such as high conversion efficiency, no undulation in the audible range, small temperature rise, small size and light weight, and low cost.

【0004】これら特性を達成する方法は、個別には種
々あるが、同時に解決できる最も有効な手段としてスイ
ッチング周波数を上げることが考えられる。その場合、
使用されるリアクトル材が重要であり、高周波まで低損
失、さらにエアコン等比較的大容量のために高磁界で高
透磁率、即ち高磁界までの直流重畳特性が必要とされ
る。その観点から、現状の磁心材がこれら高周波リアク
トル材に適用できるか否かについて次に述べる。
Although there are various methods for achieving these characteristics, it is conceivable to increase the switching frequency as the most effective means that can be simultaneously solved. In that case,
The reactor material to be used is important, and low loss up to high frequencies, and a relatively large capacity such as an air conditioner, require a high magnetic field and high magnetic permeability, that is, DC superimposition characteristics up to a high magnetic field. From that point of view, whether the current magnetic core material can be applied to these high-frequency reactor materials will be described next.

【0005】まず、珪素鋼板は、6.5%の高珪素鋼板
でも20kHzを越えると急激にコアロスの増大と透磁
率の著しい劣化が発生するので、使用周波数が20kH
z以下に限定されている。また、アモルファスは、高価
なBを使用すること及び特殊な製造装置が必要なので、
どうしても高コストになること、さらに磁歪が大きいた
め可聴域のうねりの発生が避けられないので、とても最
適な材料とはいえない。
[0005] First, even if the silicon steel sheet has a high silicon content of 6.5%, if the frequency exceeds 20 kHz, the core loss sharply increases and the magnetic permeability significantly deteriorates.
z or less. In addition, since amorphous requires the use of expensive B and special manufacturing equipment,
This is not a very optimal material because the cost is inevitably increased and the undulation in the audible range is unavoidable due to the large magnetostriction.

【0006】次に、圧粉磁心は、周波数特性が良好であ
り初透磁率が低いという欠点はあるが、一方で初透磁率
を下げることにより直流重畳特性、具体的には直流印加
磁界が400A/m近辺での透磁率が良好であること、
コアロスも比較的低いことが知られている。しかし、リ
アクトルに要求される直流重畳特性は、1200A/m
近辺の高磁界であり、さらにコアロス特性も重要なの
で、とても従来の圧粉磁心の特性では対応が不可能であ
った。
[0006] Next, the dust core has the disadvantage that the frequency characteristics are good and the initial permeability is low, but on the other hand, by lowering the initial permeability, the DC superposition characteristics, specifically, the DC applied magnetic field is 400 A / M is good permeability,
It is known that core loss is also relatively low. However, the DC superposition characteristic required for the reactor is 1200 A / m
Because of the high magnetic field in the vicinity and the core loss characteristics are also important, it was impossible to cope with the characteristics of the conventional dust core.

【0007】一般的に直流重畳特性を改善する方法とし
て、磁心の飽和磁化を高くすること、磁路の一部に空隙
を設けること等が考えられる。しかし、例えば、特開平
2−290002には飽和磁化の高いFe−Si合金粉
末を使用した圧粉磁心について述べられているものの、
単に初透磁率と周波数特性の改善についてのものであ
り、直流重畳特性、コアロスの改良については何の記載
もない。
In general, as methods for improving the DC superimposition characteristics, it is conceivable to increase the saturation magnetization of the magnetic core, or to provide a gap in a part of the magnetic path. However, for example, although Japanese Patent Application Laid-Open No. 2-290002 describes a dust core using an Fe-Si alloy powder having a high saturation magnetization,
It is merely about the improvement of the initial magnetic permeability and the frequency characteristics, and there is no description about the improvement of the DC superimposition characteristics and the core loss.

【0008】従って、現状の大容量リアクトルは、スイ
ッチング周波数を20kHz以下に限定した上で高珪素
鋼板を積層した磁心にマグネットワイヤーを巻線したも
のが一般的である。しかし、今後、省エネルギー、CO
抑制は必須の課題であり、大容量スイッチング電源に
おいてもその高周波化は不可避と考えられ、それに適合
可能なリアクトルが強く求められている。
Accordingly, the current large-capacity reactor generally has a switching frequency limited to 20 kHz or less and a magnet wire wound around a magnetic core laminated with a high silicon steel sheet. However, in the future, energy saving, CO
2. Suppression is an indispensable subject, and it is considered that higher frequency is inevitable even in a large-capacity switching power supply.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、上記
問題点に鑑み、周波数特性に優れ、しかも透磁率が高い
高周波リアクトル用圧粉磁心及びそれを用いた容易かつ
安価に製造でき、効率を向上させることができる高周波
リアクトルを提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a powder magnetic core for a high-frequency reactor which has excellent frequency characteristics and high magnetic permeability, and which can be easily and inexpensively manufactured using the core. It is an object of the present invention to provide a high-frequency reactor capable of improving the performance.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を達成するべくリアクトル材について検討を重ねた結
果、組成が3.0〜6.0wt%Si、0.1〜1.0wt
%O、残部Feから構成され、かつ粒径が実質的に15
0μm以下の合金粉末とバインダーとから成形体を構成
することにより、優れた直流重畳特性とコアロス特性を
有する高周波リアクトル用圧粉磁心及びこの磁心に導線
を巻線することにより優れた高周波リアクトルが得られ
ることを見出した。また、さらに望ましくは、Si系樹
脂を磁性粉末に混合後、10〜20t/cmの圧力で
成形し、その成形体を500〜1000℃で熱処理する
ことで、より優れた特性を有する高周波リアクトル用圧
粉磁心及び高周波リアクトルが得られることを見出し
た。
Means for Solving the Problems The inventors of the present invention have studied the reactor material in order to achieve the above object, and as a result, have found that the composition is 3.0 to 6.0 wt% Si, 0.1 to 1.0 wt%.
% O, the balance being Fe and having a particle size of substantially 15
By forming a compact from an alloy powder of 0 μm or less and a binder, a powder magnetic core for a high-frequency reactor having excellent DC superimposition characteristics and core loss characteristics and an excellent high-frequency reactor by winding a conductive wire around this core are obtained. Was found to be. More desirably, after mixing the Si-based resin with the magnetic powder, the mixture is molded at a pressure of 10 to 20 t / cm 2 , and the molded body is heat-treated at 500 to 1000 ° C. to obtain a high-frequency reactor having more excellent characteristics. It has been found that a dust core for use and a high-frequency reactor can be obtained.

【0011】即ち、本発明は、組成が3.0〜6.0wt
%Si、0.1〜1.0wt%O、残部Feで、かつ粒径
が実質的に150μm以下の合金粉末とバインダーとか
ら構成される圧粉磁心であって、交流透磁率μ
20kHzが直流印加磁界1200A/m時、25以上
で、かつ鉄損が20kHz、0.1Tの条件下で100
0kW/m以下であることを特徴とする圧粉磁心であ
る。
That is, according to the present invention, the composition is 3.0 to 6.0 wt.
% Si, 0.1 to 1.0 wt% O, the balance being Fe, and a powder magnetic core composed of a binder and an alloy powder having a particle size of substantially 150 μm or less, and having an AC magnetic permeability μ
20 kHz is a DC applied magnetic field of 1200 A / m, 25 or more, and iron loss is 100 kHz under the conditions of 20 kHz and 0.1 T.
It is a dust core having a power of 0 kW / m 3 or less.

【0012】また、本発明は、上記の圧粉磁心におい
て、バインダーとしてSi系樹脂を用い、10〜20t
/cmの成形圧力で成形し、500〜1000℃の熱
処理温度で熱処理し、得られた成形体の密度が6.0〜
7.0g/cmであることを特徴とする圧粉磁心であ
る。
The present invention also provides a powder magnetic core as described above, wherein a Si-based resin is used as a binder,
/ Cm 2 at a molding pressure of 500 to 1000 ° C. and a heat treatment temperature of 500 to 1000 ° C.
It is a dust core characterized by having a weight of 7.0 g / cm 3 .

【0013】また、本発明は、上記の圧粉磁心におい
て、磁路長の10%以下が一箇所以上の空隙または非磁
性物から構成されていることを特徴とする圧粉磁心であ
る。
The present invention also provides a dust core, wherein 10% or less of the magnetic path length is formed of one or more voids or non-magnetic material in the above-mentioned dust core.

【0014】また、本発明は、上記の圧粉磁心に巻線を
施したことを特徴とする高周波リアクトルである。
Further, the present invention is a high-frequency reactor characterized in that the above-mentioned dust core is provided with a winding.

【0015】直流重畳特性を向上させるためには、可能
な限り高い飽和磁化の磁性体を使用し、しかも磁界の変
化に対する透磁率の変化が極力小さくなるように、即ち
磁化曲線が平坦な特性を示す必要がある。磁性体の種類
は低Si−Fe系、パーマロイPB系、純鉄等が考えら
れるが、特性、コストの面から、ほぼ低Si−Fe系に
限定される。次に、磁化曲線の平坦化には磁路の一部を
空隙または非磁性体で置換する方法もあるが、圧粉磁心
は、元来、初透磁率が低いため、それだけで必要な特性
を得るのは困難である。
In order to improve the DC superimposition characteristics, use a magnetic material having a saturation magnetization as high as possible, and furthermore, make the characteristic that the change of the magnetic permeability relative to the change of the magnetic field becomes as small as possible, that is, the characteristic whose magnetization curve is flat. Need to show. The type of the magnetic material may be a low Si-Fe system, a permalloy PB system, pure iron, or the like, but is substantially limited to a low Si-Fe system in terms of characteristics and cost. Next, to flatten the magnetization curve, there is a method of replacing a part of the magnetic path with a void or a non-magnetic material.However, dust cores originally have a low initial magnetic permeability, so that the required properties are used alone. It is difficult to get.

【0016】本発明者らは、優れた軟磁気特性を示す
6.5%Si−Feよりも、低Siかつ0.1〜1.0w
t%Oを含有する合金の磁化曲線の方が高磁界まで平坦
であり、直流重畳特性に優れることを見出した。これ
は、適度な磁気異方性を有する方が直流重畳特性の向上
に有効なことを示しており、O量についても、これら適
度の磁気異方性に何らかの効果があるものと推測され
る。一方、Cは保磁力を増加させ、コアロスの原因とな
るので、300ppm以下が望ましい。
The inventors of the present invention have found that a lower Si and 0.1 to 1.0 watts than 6.5% Si—Fe showing excellent soft magnetic properties.
It has been found that the magnetization curve of the alloy containing t% O is flatter up to a high magnetic field, and is superior in DC superposition characteristics. This indicates that having an appropriate magnetic anisotropy is more effective for improving the DC bias characteristics, and it is presumed that the O content also has some effect on the appropriate magnetic anisotropy. On the other hand, C increases the coercive force and causes core loss. Therefore, C is desirably 300 ppm or less.

【0017】さらに、磁性粉末の粒径も非常に重要であ
り、粒径が大きいと初透磁率は大きくなるが直流重畳特
性が劣化し、逆に小さすぎると磁心密度の低下の影響も
あって初透磁率、直流重畳特性ともに劣化する原因とな
る。従って、実質的に150μm以下の粉末であり、さ
らに望ましくは20μm以下の粉末が50wt%以下の
とき本発明で示された直流重畳特性が得られる。
Further, the particle size of the magnetic powder is also very important. If the particle size is large, the initial magnetic permeability increases, but the DC superposition characteristics deteriorate. On the other hand, if the particle size is too small, the magnetic core density decreases. Both the initial magnetic permeability and the DC superposition characteristics cause deterioration. Therefore, when the powder is substantially 150 μm or less, and more desirably, the powder having 20 μm or less is 50 wt% or less, the direct current superposition characteristic shown in the present invention can be obtained.

【0018】しかも、これら粉末にSi系樹脂を混合
後、10〜20t/cmの圧力で成形し、その成形体
を500〜1000℃で熱処理することにより、さらに
優れた直流重畳特性とコアロス特性が得られる。これは
バインダーとしてSi系樹脂を使用することにより、5
00℃以上の熱処理でも粉末間の電気的絶縁性が保持さ
れ、しかも粉末成形時の応力歪が除去されたためと思わ
れる。この電気絶縁性については、合金中の酸素も何ら
かの影響があると思われる。しかし、熱処理温度が10
00℃を越えると磁心の比抵抗が0.01Ω・cm以下
となり、コアロス特性が急増する。
Furthermore, after mixing the Si-based resin with these powders and molding them under a pressure of 10 to 20 t / cm 2 , the molded body is heat-treated at 500 to 1000 ° C., thereby further improving the DC superimposition characteristics and the core loss characteristics. Is obtained. This is achieved by using Si-based resin as a binder.
This is probably because the electrical insulation between the powders was maintained even with the heat treatment at a temperature of 00 ° C. or higher, and the stress strain during powder molding was removed. It is thought that oxygen in the alloy has some influence on the electrical insulation. However, when the heat treatment temperature is 10
When the temperature exceeds 00 ° C., the specific resistance of the magnetic core becomes 0.01 Ω · cm or less, and the core loss characteristic sharply increases.

【0019】さらに、これらの磁心の磁路の10%以内
を空隙または非磁性体で置換することにより磁化曲線の
平坦化が促進され直流重畳特性が向上するが、10%を
越えると漏れ磁束が増大するため巻線が発熱し、結果と
して電力変換効率が劣化する。
Further, by replacing less than 10% of the magnetic path of these magnetic cores with an air gap or a non-magnetic material, the flattening of the magnetization curve is promoted and the DC bias characteristics are improved. Because of the increase, the winding generates heat, and as a result, the power conversion efficiency deteriorates.

【0020】以上述べた方法によれば、リアクトル製造
のための特殊な装置を必要としないので、容易かつ安価
にリアクトルを製造することが可能となる。
According to the above-described method, a special device for manufacturing the reactor is not required, so that the reactor can be manufactured easily and inexpensively.

【0021】[0021]

【発明の実施の形態】出発原料は、溶解法によって作製
したインゴットを機械的に粉砕したものでもよいし、ア
トマイズ法によって作製した粉末のどちらを使用しても
問題ない。粉末のO量が0.1wt%以下の時は、適当
な酸素雰囲気と温度で熱処理し粉末表面に酸化処理を施
す。ここで、水アトマイズ法は既に適当なO量を含有し
ているので酸化処理を省略してもよい。この粉末を15
0μmのふるいを使用して分級するが、さらに良好な特
性を得ようとすれば20μm以下の粉末は全体の50w
t%以下となることが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a starting material, either an ingot produced by a melting method by mechanical pulverization or a powder produced by an atomizing method can be used without any problem. When the O content of the powder is 0.1 wt% or less, heat treatment is performed in an appropriate oxygen atmosphere and temperature to oxidize the powder surface. Here, since the water atomizing method already contains an appropriate amount of O, the oxidation treatment may be omitted. 15 of this powder
Classification is performed using a sieve of 0 μm, but in order to obtain better characteristics, powder having a size of 20 μm or less must
It is desirably t% or less.

【0022】次に、例えばSi樹脂をバインダーとして
混合し、例えばトロイダル形状の金型を使用して適切な
圧力、望ましくは10〜20t/cmの圧力で圧縮成
形する。さらにその成形体に対し、適切な温度望ましく
は500〜1000℃の範囲で歪とり熱処理を行う。次
いで、定格電流に応じた線径のマグネットワイヤーを使
用し所望のインダクタンス値になるようにターン数を決
める。
Next, for example, a Si resin is mixed as a binder, and the mixture is compression molded at an appropriate pressure, preferably a pressure of 10 to 20 t / cm 2 using, for example, a toroidal mold. Further, the formed body is subjected to a heat treatment at an appropriate temperature, preferably in the range of 500 to 1000 ° C. Next, the number of turns is determined so that a desired inductance value is obtained by using a magnet wire having a wire diameter corresponding to the rated current.

【0023】ここで、合金の組成を規定した理由を述べ
ると、Si量が3.0〜6.0wt%としたのは、3.0
wt%未満では合金の磁気異方性が高く、しかも比抵抗
が低いので、磁心のコアロスが高くなるためであり、
6.0wt%を越えると合金の飽和磁化が低く、また硬
度が高いので成形体密度が低くなり、直流重畳特性が劣
化するためである。O量を0.1〜1.0wt%としたの
は、0.1wt%未満では初透磁率が高すぎて直流重畳
特性が向上せず、1.0wt%を越えると粉末中の磁性
体の割合が減少するので、飽和磁化が著しく低下し直流
重畳特性が劣化するためである。
Here, the reason for defining the composition of the alloy is as follows. The reason why the amount of Si is 3.0 to 6.0 wt% is that 3.0% by weight.
If the content is less than wt%, the magnetic anisotropy of the alloy is high and the specific resistance is low, so that the core loss of the magnetic core becomes high.
If the content exceeds 6.0% by weight, the saturation magnetization of the alloy is low, and the hardness is high, so that the density of the compact becomes low and the DC superimposition characteristics deteriorate. The reason why the O content is set to 0.1 to 1.0 wt% is that if the O content is less than 0.1 wt%, the initial magnetic permeability is too high to improve the DC superimposition characteristic. This is because, since the ratio decreases, the saturation magnetization significantly decreases, and the DC superimposition characteristics deteriorate.

【0024】また、粉末粒径は実質的に、150μm以
下でさらに細かい方が直流重畳特性も向上する傾向を示
すが、20μm以下の粉末が50wt%を越えると成形
体密度の低下により飽和磁化が低下し直流重畳特性が劣
化するためである。
Further, when the powder particle diameter is substantially 150 μm or less, the finer the powder, the more the DC superposition characteristics tend to be improved. However, when the powder having a particle diameter of 20 μm or less exceeds 50 wt%, the saturation magnetization is reduced due to the decrease in the density of the compact. This is because the DC superimposition characteristic deteriorates.

【0025】また、成形圧力についてはSi系樹脂のバ
インダーを使用して10t/cm以上の圧力で粉末を
成形したとき、6.0g/cm以上の高い成形体密度
と優れた直流重畳特性とコアロス特性が得られるが、2
0t/cmを越える成形圧力では金型寿命が著しく短
くなるため現実的ではない。
As for the molding pressure, when a powder is molded at a pressure of 10 t / cm 2 or more using a binder of Si resin, a high compact density of 6.0 g / cm 3 or more and excellent direct current superposition characteristics are obtained. And core loss characteristics are obtained.
A molding pressure exceeding 0 t / cm 2 is not realistic because the life of the mold is significantly shortened.

【0026】また、成形体の熱処理温度については、5
00℃以上で成形歪が除去され直流重畳特性が向上する
が、1000℃を越えると成形体密度が7.0g/cm
を越え、比抵抗が低下するため、高周波特性の劣化が
著しくなる。これは焼結により粉末間の電気的絶縁が破
壊されるためと思われ、焼結体密度比が95%を越える
ような焼結磁心と本発明による圧粉磁心の決定的差異と
なる。
The heat treatment temperature of the compact is 5
When the temperature is higher than 00 ° C., the molding distortion is removed, and the DC superimposition characteristics are improved.
3 , the specific resistance decreases, and the high-frequency characteristics deteriorate significantly. This is presumably because the electrical insulation between the powders is destroyed by sintering, which is a critical difference between the sintered core having a sintered body density ratio exceeding 95% and the dust core according to the present invention.

【0027】[0027]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0028】(実施例1)水アトマイズ法で作製した
3.0wt%Si−0.5wt%O−balFe合金粉末
を150μm〜20μmに分級した。ここで20μm以
下の粉末は全体の9%だったので、分級した粉末に戻し
た。次に、バインダーとしてSi系樹脂を重量比で2.
0wt%混合した。次いで、成形用金型を使用し、外形
15mm、内径10mm、高さ5mmの形状に金型成形
した。その後、この成形体を不活性雰囲気で800℃×
1時間保持後、室温まで徐冷した。次にこの成形体に1
次15ターン、2次15ターンの巻線をし、岩崎通信機
のSY−8232交流BHトレーサーで20kHz、
0.1Tにおける透磁率、コアロス特性を測定した。
Example 1 A 3.0 wt% Si-0.5 wt% O-balFe alloy powder produced by a water atomizing method was classified into 150 μm to 20 μm. Here, the powder having a size of 20 μm or less accounted for 9% of the whole powder, and thus was returned to the classified powder. Next, a Si-based resin was used as a binder in a weight ratio of 2.
0 wt% was mixed. Next, using a molding die, the die was formed into a shape having an outer shape of 15 mm, an inner diameter of 10 mm, and a height of 5 mm. Thereafter, the molded body is heated at 800 ° C. in an inert atmosphere.
After holding for 1 hour, the mixture was gradually cooled to room temperature. Next, 1
The next 15 turns and the next 15 turns are wound, and the SY-8232 AC BH tracer of Iwasaki Tsushinki 20kHz,
The magnetic permeability and core loss characteristics at 0.1 T were measured.

【0029】比較例として、全く同様の形状の磁心を板
厚0.1mmの3%珪素鋼板から金型で打ち抜き後、樹
脂で積層し磁心を作製した。次に、歪とり熱処理を行っ
た後、直流透磁率μが実施例をほぼ同じ値になるように
磁心にギャップを入れ、実施例と全く同様に1次、2次
の巻線を行い交流の磁気特性を測定した。これらの結果
を表1に示す。
As a comparative example, a magnetic core having exactly the same shape was punched out from a 0.1% thick 3% silicon steel sheet with a mold, and then laminated with resin to produce a magnetic core. Next, after performing a strain relief heat treatment, a gap is inserted in the magnetic core so that the DC magnetic permeability μ becomes substantially the same value as in the embodiment, and the primary and secondary windings are performed in exactly the same manner as in the embodiment to perform an alternating current. The magnetic properties were measured. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示すとおり、本実施例で作製した磁
心は、比較例に比べ高周波における磁気特性が良好であ
ることがわかる。
As shown in Table 1, it can be seen that the magnetic core manufactured in this example has better magnetic characteristics at high frequencies than the comparative example.

【0032】(実施例2)Si量が2.0、3.0、4.
0、5.0、6.0、7.0wt%でO量が0.5±0.1
wt%、残部Feよりなる合計6ロットの組成について
水アトマイズ法で合金粉末を作製し、実施例1と全く同
様の方法で150〜20μmに分級した。ここで全ての
ロットについて20μm以下の粉末は10wt%以下だ
ったので分級した粉末に戻した。
(Example 2) The amount of Si was 2.0, 3.0, 4.
O content is 0.5 ± 0.1 at 0, 5.0, 6.0, 7.0 wt%.
An alloy powder was prepared by a water atomizing method for a composition of a total of 6 lots consisting of wt% and the balance of Fe, and classified into 150 to 20 μm in the same manner as in Example 1. Here, the powder having a particle size of 20 μm or less was 10 wt% or less for all the lots, and thus was returned to the classified powder.

【0033】次に、バインダーを添加しφ60×φ35
×φ20のトロイダル形状に金型で磁心を成形した。そ
の後、850℃窒素雰囲気で歪とり熱処理を行った後、
マグネットワイヤーで90ターン巻線後、20A直流重
畳時(1200A/m)のインダクタンスを周波数20
kHzにおいて測定した。そのインダクタンス値より、
交流透磁率を計算した。その結果を図1に示す。図1よ
り、Si量が2.0〜6.0wt%のとき、μ20kHz
が25以上を示すことがわかる。
Next, a binder was added to the mixture to give φ60 × φ35.
A magnetic core was formed in a toroidal shape of × φ20 using a mold. Then, after performing a strain relief heat treatment in a nitrogen atmosphere at 850 ° C.,
After winding 90 turns with a magnet wire, the inductance at the time of DC superimposition (1200 A / m) at 20 A
It was measured at kHz. From its inductance value,
The AC permeability was calculated. The result is shown in FIG. FIG. 1 shows that when the amount of Si is 2.0 to 6.0 wt%, μ 20 kHz
Shows 25 or more.

【0034】次に、20kHz、0.1Tの条件でコア
ロスを測定したところ、2.0%Si組成以外の磁心の
コアロスは、1000kW/m以下であった。
Next, when the core loss was measured under the conditions of 20 kHz and 0.1 T, the core loss of the magnetic core other than the 2.0% Si composition was 1000 kW / m 3 or less.

【0035】次に、これらリアクトルの実装特性を調べ
るため、市販のエアコンでアクティブフィルターを搭載
している出力2kWのスイッチング電源に、これらリア
クトルを接続し、回路効率を測定した。ここで、出力側
には一般的な電子負荷装置を接続した。また、回路効率
は出力電力を入力電力で割った値を使用した。その結果
を表2に示す。
Next, in order to examine the mounting characteristics of these reactors, these reactors were connected to a switching power supply having an output of 2 kW equipped with an active filter in a commercially available air conditioner, and the circuit efficiency was measured. Here, a general electronic load device was connected to the output side. The circuit efficiency was obtained by dividing the output power by the input power. Table 2 shows the results.

【0036】[0036]

【表2】 [Table 2]

【0037】表2より、例えば、1000Wで93%以
上の高い効率が得られるのはSi量が3.0〜6.0wt
%の範囲であり、これはコアロスが1000kW/m
で、かつ1200A/mにおける透磁率が25以上の組
成範囲と一致していることがわかる。
From Table 2, for example, a high efficiency of 93% or more can be obtained at 1000 W when the Si content is 3.0 to 6.0 wt.
%, Which means that the core loss is 1000 kW / m 3
It can be seen that the magnetic permeability at 1200 A / m matches the composition range of 25 or more.

【0038】(実施例3)Si量が4.5wt%、残部
Fe合金組成のガスアトマイズ粉末を作製し、150〜
20μmに分級後、温度を一定にし雰囲気を適切に調節
することによりO量が0.05、0.1、0.25、0.
5、0.75、1.0、1.25wt%の各合金粉末を作
製した。
(Example 3) A gas atomized powder having a Si content of 4.5 wt% and a balance of Fe alloy was prepared,
After classifying to 20 μm, the O amount was adjusted to 0.05, 0.1, 0.25, 0.2 by adjusting the temperature and the atmosphere appropriately.
5, 0.75, 1.0, and 1.25 wt% of each alloy powder were produced.

【0039】次に、この合金に実施例1、2と全く同様
の方法でバインダー混合後、実施例2と全く同様の方法
で、同様の寸法のトロイダル磁心を作製し、歪とり熱処
理後、これら磁心に実施例1と全く同様の方法で巻線を
し、20kHz、0.1Tの条件でコアロスを測定し
た。その結果を図2に示す。図2よりO量が0.1wt
%より低くなると急激にコアロスが劣化することがわか
る。
Next, a binder was mixed with this alloy in exactly the same manner as in Examples 1 and 2, and a toroidal magnetic core having the same dimensions was produced in exactly the same manner as in Example 2. The magnetic core was wound in exactly the same manner as in Example 1, and the core loss was measured at 20 kHz and 0.1 T. The result is shown in FIG. According to FIG. 2, the O content is 0.1 wt.
%, The core loss sharply deteriorates.

【0040】次に、実施例2と全く同様の方法で巻線を
し、20A直流重畳時(1200A/m)の20kHz
のインダクタンスを測定し、交流透磁率を計算したとこ
ろ、O量が1.25wt%の磁心のμ20kHzは1
3、0.05wt%の磁心のμ 0kHzは23であ
り、それ以外の磁心のμ20kHzは25以上であっ
た。
Next, winding was performed in the same manner as in Example 2, and the frequency was changed to 20 kHz at the time of superimposing DC current of 20 A (1200 A / m).
Of the magnetic core having an O content of 1.25 wt% was 1 kHz.
Mu 2 0 kHz of 3,0.05Wt% of core is 23, mu 20 kHz of the other core was 25 or more.

【0041】次に実施例2と全く同様の方法でこれらリ
アクトルの実装特性を測定した。その結果を表3に示
す。
Next, the mounting characteristics of these reactors were measured in exactly the same manner as in Example 2. Table 3 shows the results.

【0042】[0042]

【表3】 [Table 3]

【0043】表3より、例えば、1000Wで93%以
上の高い効率が得られるのはO量が0.1〜1.0wt%
の範囲であり、これはコアロスが1000kW/m
下でかつμ20kHzが25以上の特性を示す組成範囲
と一致していることがわかる。
From Table 3, for example, a high efficiency of 93% or more at 1000 W is obtained when the O content is 0.1 to 1.0 wt%.
It can be seen that this is consistent with the composition range in which the core loss is 1000 kW / m 3 or less and μ20 kHz is 25 or more.

【0044】(実施例4)実施例2で作製した4.0w
t%Si−0.5wt%O−balFe合金粉末に、S
i系樹脂をバインダーとして各々1.0、2.0、3.
0、4.0、5.0wt%の各バインダー量の粉末を作製
した。次に、実施例2、3と全く同様の方法で磁心作
製、巻線後1200A/mの直流重畳時の透磁率を測定
した。その結果を図3に示す。また、バインダー量と磁
心の密度の関係を表4に示す。
(Example 4) 4.0 w produced in Example 2
t% Si-0.5wt% O-balFe alloy powder,
Using i-based resin as a binder, 1.0, 2.0, and 3.
Powders with binder amounts of 0, 4.0, and 5.0 wt% were prepared. Next, a magnetic core was manufactured in exactly the same manner as in Examples 2 and 3, and the magnetic permeability at the time of DC superposition of 1200 A / m after winding was measured. The result is shown in FIG. Table 4 shows the relationship between the amount of the binder and the density of the magnetic core.

【0045】[0045]

【表4】 [Table 4]

【0046】図3及び表4より、バインダー量が3.0
wt%以下、磁心の密度が6.0g/cm以上のと
き、25以上のμ20kHzが得られることがわかる。
From FIG. 3 and Table 4, the binder amount was 3.0.
It can be seen that, when the magnetic core density is 6.0 g / cm 3 or more, the μ 20 kHz of 25 or more can be obtained.

【0047】(実施例5)実施例3で作製した4.5w
t%Si−0.5wt%O−balFe合金粉末で作製
したトロイダル磁心に90ターン巻線したリアクトルの
20A直流重畳時のインダクタンスを測定したところ5
00μHであった。この回路効率を実施例2と全く同様
の方法で出力600W〜2000Wに変化させて測定し
た。
(Example 5) 4.5 w produced in Example 3
The inductance of the reactor wound with 90 turns around a toroidal magnetic core made of t% Si-0.5 wt% O-balFe alloy powder was measured at the time of DC superimposition at 20A.
It was 00 μH. The circuit efficiency was measured by changing the output from 600 W to 2000 W in exactly the same manner as in Example 2.

【0048】比較例として、幅20mmのFe系アモル
ファス薄帯を使用し、上記と全く同様の寸法のトロイダ
ル磁心を作製した。次に、熱処理後、上記と全く同様の
インダクタンスになるようにギャップを挿入し、90タ
ーン巻線後、20A直流重畳時のインダクタンスを測定
したところ、520μHであった。さらに、上記と全く
同様の方法でスイッチング電源に接続してその回路効率
を測定した。その結果を表5に示す。
As a comparative example, a toroidal magnetic core having exactly the same dimensions as above was manufactured using an Fe-based amorphous ribbon having a width of 20 mm. Next, after the heat treatment, a gap was inserted so as to have exactly the same inductance as above, and after winding of 90 turns, the inductance at the time of DC superimposition at 20 A was measured and found to be 520 μH. Further, it was connected to a switching power supply in exactly the same manner as described above, and its circuit efficiency was measured. Table 5 shows the results.

【0049】[0049]

【表5】 [Table 5]

【0050】表5より、本実施例によるリアクトルは比
較例に比べ、回路効率が高いことがわかった。これは、
アモルファス磁心はギャップを入れる必要があり、この
ためのギャップ付近の漏洩磁束が巻線及び磁心を発熱さ
せるため、効率に悪影響を及ぼしているためと思われ
る。また磁心のうねりが発生し、実用上、大きな問題が
あることがわかった。
From Table 5, it was found that the reactor according to the present example had higher circuit efficiency than the comparative example. this is,
It is considered that the amorphous magnetic core needs to have a gap, and the leakage magnetic flux in the vicinity of the gap generates heat in the windings and the magnetic core, which adversely affects the efficiency. In addition, it was found that undulation of the magnetic core occurred, and there was a serious problem in practical use.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
周波数特性に優れ、しかも透磁率が高い高周波リアクト
ル用圧粉磁心及びそれを用いた容易かつ安価に製造で
き、効率を向上させることができる高周波リアクトルを
提供することができた。
As described above, according to the present invention,
A powder magnetic core for a high-frequency reactor having excellent frequency characteristics and high magnetic permeability, and a high-frequency reactor that can be manufactured easily and inexpensively using the same and that can improve efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2におけるSi量とμとの関係を示す
図。
FIG. 1 is a diagram showing the relationship between the amount of Si and μ in Example 2.

【図2】実施例3におけるO量とPcvとの関係を示す
図。
FIG. 2 is a diagram showing a relationship between an O amount and Pcv in Example 3.

【図3】実施例4におけるバインダー量とμとの関係を
示す図。
FIG. 3 is a graph showing the relationship between the amount of binder and μ in Example 4.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 37/00 H01F 27/24 K 41/02 D Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01F 37/00 H01F 27/24 K 41/02 D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成が3.0〜6.0wt%Si、0.1
〜1.0wt%O、残部Feで、かつ粒径が実質的に1
50μm以下の合金粉末とバインダーとから構成される
圧粉磁心であって、交流透磁率μ20kHzが直流印加
磁界1200A/m時、25以上で、かつ鉄損が20k
Hz、0.1Tの条件下で1000kW/m以下であ
ることを特徴とする圧粉磁心。
1. A composition having a composition of 3.0 to 6.0 wt% Si, 0.1
~ 1.0 wt% O, the balance being Fe, and the particle size is substantially 1
A dust core composed of an alloy powder having a particle size of 50 μm or less and a binder, wherein an AC magnetic permeability μ 20 kHz is 25 or more when a DC applied magnetic field is 1200 A / m, and an iron loss is 20 k.
A dust core having a frequency of 1,000 kW / m 3 or less under the conditions of Hz and 0.1 T.
【請求項2】 請求項1記載の圧粉磁心において、バイ
ンダーとしてSi系樹脂を用い、10〜20t/cm
の成形圧力で成形し、500〜1000℃の熱処理温度
で熱処理し、得られた成形体の密度が6.0〜7.0g/
cmであることを特徴とする圧粉磁心。
2. The powder magnetic core according to claim 1, wherein a Si-based resin is used as a binder, and the binder is 10 to 20 t / cm 2.
, And heat-treated at a heat treatment temperature of 500 to 1000 ° C., and the density of the obtained molded body is 6.0 to 7.0 g /
cm 3 , a dust core.
【請求項3】 請求項1または2記載の圧粉磁心におい
て、磁路長の10%以下が一箇所以上の空隙または非磁
性物から構成されていることを特徴とする圧粉磁心。
3. The dust core according to claim 1, wherein 10% or less of the magnetic path length is constituted by one or more voids or a non-magnetic material.
【請求項4】 請求項1〜3のいずれかに記載の圧粉磁
心に巻線を施したことを特徴とする高周波リアクトル。
4. A high-frequency reactor obtained by winding a dust core according to any one of claims 1 to 3.
JP2000030667A 2000-02-08 2000-02-08 Dust core and high-frequency reactor using the same Pending JP2001223106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030667A JP2001223106A (en) 2000-02-08 2000-02-08 Dust core and high-frequency reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030667A JP2001223106A (en) 2000-02-08 2000-02-08 Dust core and high-frequency reactor using the same

Publications (1)

Publication Number Publication Date
JP2001223106A true JP2001223106A (en) 2001-08-17

Family

ID=18555651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030667A Pending JP2001223106A (en) 2000-02-08 2000-02-08 Dust core and high-frequency reactor using the same

Country Status (1)

Country Link
JP (1) JP2001223106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JP2007012647A (en) Complex magnetic core and reactor employing the same
JP2007281186A (en) Composite magnetic core and reactor
CN105074843A (en) Annular magnetic core using Fe iron-based nanocrystalline soft-magnetic alloy and magnetic component using said annular magnetic core
JP2001196216A (en) Dust core
JP2008192897A (en) Dust core and reactor
US6646532B2 (en) Powder core and reactor using the same
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JPH061727B2 (en) Iron core
JP2005213621A (en) Soft magnetic material and powder magnetic core
JP3860456B2 (en) Magnetic core and inductance component using the same
JP2006294733A (en) Inductor and its manufacturing method
JP2006319020A (en) Inductance component
JP2008192896A (en) Dust core
JP2008141012A (en) Reactor
JP2009117442A (en) Compound reactor
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2001223106A (en) Dust core and high-frequency reactor using the same
JP2002164208A (en) Powder for dust core, dust core, method of manufacturing the powder, and high-frequency reactor using the powder
JP5004260B2 (en) Outer iron type power transformer and power converter using the same
JP2001115201A (en) Alloy powder for high frequency reactor and high frequency reactor using the same
JP2003249410A (en) Dust core and reactor using the same
JP2004103779A (en) High-frequency reactor, dust core therefor and its manufacturing method
JP2002075719A (en) Dust core
JP2002217014A (en) Dust core, powder therefor, and method of manufacturing the same, and high-frequency reactor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090318