JP2001222911A - Conductivity orientated zinc oxide flake and its manufacturing process - Google Patents

Conductivity orientated zinc oxide flake and its manufacturing process

Info

Publication number
JP2001222911A
JP2001222911A JP2000032305A JP2000032305A JP2001222911A JP 2001222911 A JP2001222911 A JP 2001222911A JP 2000032305 A JP2000032305 A JP 2000032305A JP 2000032305 A JP2000032305 A JP 2000032305A JP 2001222911 A JP2001222911 A JP 2001222911A
Authority
JP
Japan
Prior art keywords
zinc
zinc oxide
conductivity
salt
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000032305A
Other languages
Japanese (ja)
Other versions
JP3359606B2 (en
Inventor
Toku Toda
徳 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Hakusui Tech Co Ltd
Original Assignee
Hakusui Tech Co Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakusui Tech Co Ltd, Japan Science and Technology Corp filed Critical Hakusui Tech Co Ltd
Priority to JP2000032305A priority Critical patent/JP3359606B2/en
Publication of JP2001222911A publication Critical patent/JP2001222911A/en
Application granted granted Critical
Publication of JP3359606B2 publication Critical patent/JP3359606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a in a conductivity orientated zinc oxide flake that display an excellent performance as a conductive component to add to an anti- static additive and an anti-static paint, and its manufacturing process. SOLUTION: A conductivity orientational zinc oxide flake having an index determined according to the following formula (1) of 40 or more and containing a trivalent metal oxide in 1×10-4 to 2×10-1 mol per mol of zinc oxide in metal conversion and its manufacturing method is disclosed. Orientational index = [34.56 deg./(31.88 deg.+34.56 deg.+36.36 deg.)×100 (Each numerical value in the formula represents a strength at 2θ angle in X-ray diffraction).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、亜鉛塩とアミノア
ルコールを原料とし、且つ導電性付与のためのドーピン
グ成分として3価金属化合物を使用することによって得
られる新規な導電配向性フレーク状酸化亜鉛とその製法
に関し、この導電配向性フレーク状酸化亜鉛は、帯電防
止剤や帯電防止塗料などへの導電性付与剤や化粧料、樹
脂、繊維、塗料等への熱線反射・紫外線遮蔽剤として好
適に使用できる。また抗菌剤、脱臭剤、ゴムの加硫促進
剤、陶磁器のうわ薬、医薬、触媒等としても使用するこ
ともできる。
The present invention relates to a novel conductive oriented flake zinc oxide obtained by using a zinc salt and an amino alcohol as raw materials and using a trivalent metal compound as a doping component for imparting conductivity. And its production method, this conductive oriented flake zinc oxide is suitable as a heat-reflecting / ultraviolet shielding agent for conductive agents and cosmetics, resins, fibers, paints, etc. for antistatic agents and antistatic paints Can be used. It can also be used as an antibacterial agent, a deodorant, a vulcanization accelerator for rubber, a glaze for ceramics, a medicine, a catalyst and the like.

【0002】[0002]

【従来の技術】導電性酸化亜鉛を製造する方法として
は、その前駆体である水酸化亜鉛もしくは塩基性硫酸亜
鉛を製造する際に3価もしくは4価の金属化合物を少量
添加し、これを還元雰囲気下で焼成する方法が知られて
いる(たとえば特開平3−60429、特開平4−26
514号公報、特開平7−69631号公報など)。
2. Description of the Related Art As a method for producing conductive zinc oxide, a small amount of a trivalent or tetravalent metal compound is added when producing a precursor of zinc hydroxide or basic zinc sulfate, and this is reduced. A method of baking in an atmosphere is known (for example, Japanese Patent Application Laid-Open Nos. 3-60429 and 4-26).
514, JP-A-7-69631).

【0003】ところがそれら従来の方法によって得られ
る導電性酸化亜鉛は、導電性が高々1.0×10-6S/
cm程度と低く、また、板状物が崩壊した形状の粒子径
バラツキの大きなものであり、導電性付与剤としての特
性は必ずしも高いものとはいえない。
However, the conductive zinc oxide obtained by these conventional methods has a conductivity of at most 1.0 × 10 −6 S /
cm, and a large variation in particle diameter in the form of a collapsed plate-like material, and the properties as a conductivity-imparting agent are not necessarily high.

【0004】一方、JOURNAL OF MATERIAL SCIENCE 27,
2713-2718には酸化亜鉛をη−Al2O3と混合し1000℃で
焼成することにより、C軸に配向した酸化亜鉛が得られ
る旨の記述が見られる。しかしこの方法では、酸化亜鉛
が部分的に配向したものが得られるだけで、全体に亘っ
て均一に配向したものが得られる訳ではなく、しかもそ
の粒子形状はフレーク状と針状の混合物である。そし
て、これを塩化アンモニウム−アンモニウム溶液で分解
すると、高配向性の酸化亜鉛を得ることができるが、球
状のη−Al2O3との混合状態で得られるのみで、酸化
亜鉛単独の高配向性物として得られる訳ではなく、また
その粒子径も平均粒子径で20μm程度の粗大なもので
ある。
On the other hand, JOURNAL OF MATERIAL SCIENCE 27,
2713-2718 describes that zinc oxide is mixed with η-Al 2 O 3 and calcined at 1000 ° C. to obtain zinc oxide oriented in the C axis. However, in this method, only a partially oriented zinc oxide is obtained, but not a uniformly oriented zinc oxide throughout, and the particle shape is a mixture of flake and needle. . When this is decomposed with an ammonium chloride-ammonium solution, highly oriented zinc oxide can be obtained, but only in a mixed state with spherical η-Al 2 O 3. It is not obtained as an active substance, and its particle diameter is coarse, with an average particle diameter of about 20 μm.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の様な従
来技術に鑑みてなされたものであって、その目的は、焼
成後の粒子径が微細で且つ揃っており、しかも高配向性
で高い導電性を示すフレーク状酸化亜鉛とその製法を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and it is an object of the present invention to provide fine and uniform particle diameters after firing and high orientation. An object of the present invention is to provide flake zinc oxide having high conductivity and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る導電配向性フレーク状酸化亜鉛と
は、下記式(1)によって求められる配向性指数が40
以上であり、且つ、3価金属の酸化物が金属換算で酸化
亜鉛1モル当たり1×10-4〜2×10-1モル含まれた
ものであるところに要旨を有している。 配向性指数=[34.56°/(31.88°+34.56°+36.36°)×100…(1) (式中の各数値は、X線回折における2θ角の強度を表わす)。
Means for Solving the Problems The conductive oriented flake zinc oxide according to the present invention which can solve the above-mentioned problems has an orientation index of 40 obtained by the following formula (1).
The gist is that the oxide of the trivalent metal is contained in an amount of 1 × 10 −4 to 2 × 10 −1 mol per mol of zinc oxide in terms of metal. Orientation index = [34.56 ° / (31.88 ° + 34.56 ° + 36.36 °) × 100 (1) (each numerical value in the formula represents the intensity at 2θ angle in X-ray diffraction).

【0007】この導電配向性フレーク状酸化亜鉛は、上
記配向性指数に加えて、平均粒子径が0.2〜2μm、
平均厚さが0.03μm以下、配向性指数が40以上で
あり、且つ圧粉体としての導電率が1×10-3S/cm
以上であるものが好ましく、これらの特性を備えた本発
明の導電配向性フレーク状酸化亜鉛は、帯電防止剤や帯
電防止塗料などへの導電性付与剤などとして非常に優れ
た性能を発揮し、また紫外線遮蔽能、赤外線反射能を有
しているので、例えば化粧料、各種樹脂材、繊維、塗料
などに熱線反射能・紫外線遮蔽性能を与えるための添加
剤等としても有効に活用できる。また形状がフレーク状
であるため、抗菌剤、脱臭剤、ゴムの加硫促進剤、陶磁
器のうわ薬、医薬、触媒等としても使用することが可能
である。
The conductive oriented flake zinc oxide has an average particle diameter of 0.2 to 2 μm in addition to the orientation index.
The average thickness is 0.03 μm or less, the orientation index is 40 or more, and the conductivity as a green compact is 1 × 10 −3 S / cm.
The above is preferable, and the conductive oriented flake zinc oxide of the present invention having these properties exhibits extremely excellent performance as an antistatic agent or a conductivity imparting agent to an antistatic paint or the like, In addition, since it has an ultraviolet shielding ability and an infrared reflecting ability, it can be effectively used as an additive for giving a heat ray reflecting ability and an ultraviolet shielding ability to, for example, cosmetics, various resin materials, fibers, and paints. Further, since the shape is a flake shape, it can be used as an antibacterial agent, a deodorant, a vulcanization accelerator for rubber, a glaze for ceramics, a medicine, a catalyst, and the like.

【0008】また本発明の製法は、上記特性を備えた導
電配向性フレーク状酸化亜鉛の製造に適した方法を提供
するもので、その構成は、亜鉛塩とアミノアルコールを
上記亜鉛塩1モルあたり1×10-4〜2×10-1モルの
3価金属化合物の存在下に水溶液中で加熱し、生成する
沈殿を還元性雰囲気下で焼成することころに要旨を有し
ている。
Further, the production method of the present invention provides a method suitable for producing conductive oriented flake zinc oxide having the above-mentioned properties, and comprises a zinc salt and an amino alcohol per mole of the zinc salt. The gist is that the precipitate is heated in an aqueous solution in the presence of 1 × 10 −4 to 2 × 10 −1 mol of a trivalent metal compound, and the resulting precipitate is fired in a reducing atmosphere.

【0009】上記方法を実施する際に用いられる亜鉛塩
としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、炭酸亜鉛お
よび酢酸亜鉛が好ましく使用され、これらは単独で使用
し得る他、必要によっては2種以上を併用しても構わな
い。またアミノアルコールとしては、2−アミノエタノ
ール、2,2'−イミノジエタノールおよび2,2',2''
−ニトリロトリエタノールが好ましく使用され、これら
も単独で使用し得る他、2種以上を併用できる。また、
上記亜鉛塩およびアミノアルコールと併用される3価の
金属化合物として特に好ましいのは、アルミニウム、ガ
リウム、インジウム、タリウムの化合物であり、これら
も単独で使用し得る他、2種以上を併用できる。
As the zinc salt used in carrying out the above method, zinc sulfate, zinc nitrate, zinc chloride, zinc carbonate and zinc acetate are preferably used, and these can be used alone or, if necessary, in two kinds. The above may be used in combination. Examples of amino alcohols include 2-aminoethanol, 2,2′-iminodiethanol and 2,2 ′, 2 ″
-Nitrilotriethanol is preferably used, and these can be used alone or in combination of two or more. Also,
Particularly preferred as the trivalent metal compound used in combination with the zinc salt and the amino alcohol are compounds of aluminum, gallium, indium, and thallium, which can be used alone or in combination of two or more.

【0010】上記亜鉛塩とアミノアルコールとの好まし
い組成比は、亜鉛塩の亜鉛1に対しアミノアルコール中
のアミノ基が0.9〜1.5の範囲となる様に調整する
ことが望ましく、また前記3価の金属化合物は、前記亜
鉛塩1モルに対して各金属換算で1×10-4〜2×10
-1モルの範囲で使用することが望ましく、この様な条件
を特定することによって、高レベルの導電性と共に、前
記配向性指数、あるいは好まし粒度構成や圧粉体導電率
などの要件を満たす導電配向性フレーク状酸化亜鉛をよ
り確実に得ることができる。
The preferred composition ratio of the zinc salt and the amino alcohol is preferably adjusted so that the amino group in the amino alcohol is in the range of 0.9 to 1.5 with respect to zinc 1 of the zinc salt. The trivalent metal compound is 1 × 10 −4 to 2 × 10 4 in terms of each metal per 1 mol of the zinc salt.
It is desirable to use in the range of -1 mol, and by specifying such conditions, together with a high level of conductivity, the orientation index, or satisfying requirements such as preferred particle size configuration and compacted particle conductivity. Conductive oriented flake zinc oxide can be obtained more reliably.

【0011】[0011]

【発明の実施の形態】上記の様に本発明の導電配向性フ
レーク状酸化亜鉛は、前記式(1)で示される配向性指
数が40以上を示す点で新規なものであり、該配向性指
数の特異性は、通常の酸化亜鉛粉末の前記式(1)によ
って求められる配向性指数が21.8であること(JC
PDS No.36-1451)によっても窺われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the conductive oriented flake zinc oxide of the present invention is novel in that the orientation index represented by the above formula (1) is 40 or more. The specificity of the index is that the orientation index of ordinary zinc oxide powder determined by the above formula (1) is 21.8 (JC
PDS No. 36-1451).

【0012】即ち、前記式(1)で示される配向性指数
は、該酸化亜鉛粉末個々のc軸方向への配向度合いを表
しており、従来材においてこの配向性指数が22程度で
あるということは、該酸化亜鉛のc軸方向への配向度合
いが低いことを意味している。これに対し配向性指数が
40以上であるということは、該酸化亜鉛の結晶が主と
し帯電防止剤や帯電防止塗料などに対する導電性付与剤
等として利用する際に極めて重要な特性となる。
That is, the orientation index represented by the above formula (1) represents the degree of orientation of the zinc oxide powder in the c-axis direction, which means that the orientation index of the conventional material is about 22. Means that the degree of orientation of the zinc oxide in the c-axis direction is low. On the other hand, that the orientation index is 40 or more is a very important property when the zinc oxide crystal is mainly used as an antistatic agent or a conductivity imparting agent for an antistatic paint or the like.

【0013】導電性向上の観点からすると、該配向性指
数の上限は特に制限されず、理論上の上限値である10
0であるものであっても勿論構わないが、後述する様な
製法を採用したとしても、該配向性指数を60以上に高
めることは極めて困難であるので、製造可能性を踏まえ
たうえでの配向性指数の上限を示すとすれば、60程度
以下が実際的と思われ、実用上は45〜55程度が好ま
しいと判断される。
[0013] From the viewpoint of improving the conductivity, the upper limit of the orientation index is not particularly limited, and the theoretical upper limit is 10%.
Of course, it may be 0, but it is extremely difficult to increase the orientation index to 60 or more even if a manufacturing method as described below is employed. Assuming that the upper limit of the orientation index is shown, about 60 or less is considered practical, and practically, about 45 to 55 is judged preferable.

【0014】また本発明では、導電性を与える上で欠く
ことのできない要件として3価金属の酸化物をドーピン
グすることが必須であり、3価金属の酸化物として金属
換算で酸化亜鉛を1モル当たり1×10-4〜2×10-1
モル含有させることが必須の要件となる。ちなみに、3
価金属酸化物の量が不足する場合は、前記配向性指数の
要件を満たすものであっても、ドーピング不足により満
足のいく導電性が与えられず、導電性付与剤としての要
求特性を満足し得なくなる。ただし、ドーピング剤を過
度に多くしても導電性向上効果は飽和してそれ以上の改
質効果が得られなくなるばかりでなく、却って導電性と
赤外線反射能が阻害される恐れが生じてくるので、過剰
量のドーピングは避けるべきである。
In the present invention, doping of a trivalent metal oxide is indispensable as an essential requirement for imparting conductivity. As a trivalent metal oxide, one mole of zinc oxide in terms of metal is used. 1 × 10 -4 to 2 × 10 -1
It is an essential requirement to contain them in moles. By the way, 3
When the amount of the valent metal oxide is insufficient, even if the content of the orientation index is satisfied, satisfactory conductivity is not provided due to insufficient doping, and the required properties as a conductivity imparting agent are satisfied. No longer. However, even if the amount of the doping agent is excessively large, the conductivity improving effect is saturated and not only the further modifying effect cannot be obtained, but also the conductivity and the infrared reflectivity may be hindered. Excessive doping should be avoided.

【0015】上記の様な障害を招くことなく高レベルの
導電性を与える上でより好ましいドーピング量は、酸化
亜鉛1モル当たり5×10-3〜5×10-2モルの範囲で
ある。
A more preferable doping amount for providing a high level of conductivity without causing the above-mentioned obstacles is in the range of 5 × 10 -3 to 5 × 10 -2 mol per mol of zinc oxide.

【0016】また、本発明の導電配向性フレーク状酸化
亜鉛は、たとえば帯電防止剤や帯電防止塗料などに均一
に混合・分散させてその優れた導電性付与効果を発揮さ
せ、また化粧料や塗料、成形用樹脂材料や繊維等への赤
外線反射・紫外線遮蔽用配合剤などとして利用する際
に、それら基材成分への均一分散を容易にしてその性能
を有効に発揮させる上で、平均粒子径が0.2〜2μ
m、より好ましくは0.2〜1.0μm、平均厚さが
0.03μm以下、より好ましくは0.02μm以下
で、圧粉体としての導電率が0.01S/cm以上、よ
り好ましくは0.02S/cm以上のものが望ましい。
The conductive oriented flake zinc oxide of the present invention is uniformly mixed and dispersed in, for example, an antistatic agent or an antistatic paint to exhibit its excellent conductivity imparting effect. When used as a compounding agent for infrared reflection / ultraviolet shielding to molding resin materials and fibers, etc., the average particle size is important for facilitating uniform dispersion in these base components and effectively exhibiting the performance. Is 0.2-2μ
m, more preferably 0.2 to 1.0 μm, the average thickness is 0.03 μm or less, more preferably 0.02 μm or less, and the conductivity as a green compact is 0.01 S / cm or more, more preferably 0 or less. It is desirably 2.02 S / cm or more.

【0017】ちなみに平均粒子径が0.2μm未満の過
度に微細な粒子では、フレーク状である利点が活かされ
ず、しかも分散が著しく悪くなり、逆に2μmを超える
粗粒物になると、例えば塗料や化粧料や成形材料などに
配合する時の分散が不均一になり、均一な導電性付与効
果が得られ難くなる。更に圧粉体として導電率が1×10
-3S/cmに満たないものでは、導電性不足により本発
明で意図する導電性付与成分としての適性が確保できな
くなる。
By the way, in the case of excessively fine particles having an average particle diameter of less than 0.2 μm, the advantage of the flake shape cannot be utilized, and the dispersion becomes extremely poor. Dispersion when blended in cosmetics, molding materials, and the like becomes uneven, making it difficult to obtain a uniform conductivity-imparting effect. Furthermore, as a green compact, the conductivity is 1 × 10
If it is less than -3 S / cm, the conductivity as the conductivity imparting component intended in the present invention cannot be secured due to insufficient conductivity.

【0018】尚本発明でいう「フレーク状」とは、酸化
亜鉛が粉末状態で偏平な板状を呈していることを意味し
ており、こうした形状特性は、帯電防止剤や導電性塗料
や日焼け止め化粧料、熱線反射・紫外線遮蔽用フィルム
の如く特に薄片状に加工された時の酸化亜鉛粉末同士の
接触を密にし、導電性等をより効果的に発揮させる上で
重要な特性となる。
In the present invention, the term "flake-like" means that the zinc oxide has a flat plate shape in a powder state, and such a shape characteristic is obtained by using an antistatic agent, a conductive paint, or a sunburn. This is an important property in making the contact between zinc oxide powders particularly dense when processed into a flake shape, such as a stop cosmetic or a film for heat ray reflection / ultraviolet shielding, so as to more effectively exhibit conductivity and the like.

【0019】次に、上記特性を備えた導電配向性フレー
ク状酸化亜鉛を効率よく製造することのできる方法につ
いて説明する。
Next, a method for efficiently producing conductive oriented flake zinc oxide having the above characteristics will be described.

【0020】即ち本発明の製法では、亜鉛塩とアミノア
ルコールとを、水溶液中で該亜鉛塩1モルあたり1×1
-4〜2×10-1モルの3価金属化合物の存在下に混合
することによって錯体を生成させ、これを更に加熱処理
することによってヒドロキシ亜鉛塩よりなる沈殿を生成
させた後、これを還元性雰囲気下で焼成する方法が採用
される。この方法を採用することによって、最終的に得
られる酸化亜鉛は微細で粒子径の揃ったフレーク状の導
電配向性を示すものとなる。
That is, in the production method of the present invention, a zinc salt and an amino alcohol are mixed in an aqueous solution at a concentration of 1 × 1 per mol of the zinc salt.
A complex is formed by mixing in the presence of 0 -4 to 2 × 10 -1 mol of a trivalent metal compound, and further subjected to a heat treatment to form a precipitate of a hydroxyzinc salt. A method of firing in a reducing atmosphere is employed. By adopting this method, the zinc oxide finally obtained has a flake-like conductive orientation with a fine and uniform particle diameter.

【0021】この時、導電配向性を示す酸化亜鉛を得る
には、前記原料を混合して錯体を形成する過程で、系内
に3価の金属原子を共存させることが不可欠であり、3
価金属が共存しない場合は、最終的に得られる酸化亜鉛
に導電性を与えることができず、導電性付与成分として
の機能が確保できなくなる。
At this time, in order to obtain zinc oxide exhibiting conductive orientation, it is indispensable that trivalent metal atoms coexist in the system in the process of forming a complex by mixing the raw materials.
When the valent metal does not coexist, conductivity cannot be given to the zinc oxide finally obtained, and the function as the conductivity imparting component cannot be secured.

【0022】本発明で使用されるアミノアルコールとし
ては、2−アミノエタノール、2,2'−イミノジエタノ
ール、2,2',2''−ニトリロトリエタノール、2−
(ジメチルアミノ)エタノール、2−(ジエチルアミ
ノ)エタノール、1,1,1−ニトリロトリ−2−プロパ
ノール等を挙げることができ、これらは単独で使用し得
る他、必要により2種以上を適宜併用することができ
る。
The amino alcohol used in the present invention includes 2-aminoethanol, 2,2′-iminodiethanol, 2,2 ′, 2 ″ -nitrilotriethanol and 2-aminoethanol.
Examples thereof include (dimethylamino) ethanol, 2- (diethylamino) ethanol, and 1,1,1-nitrilotri-2-propanol. These may be used alone, or may be used in combination of two or more as necessary. Can be.

【0023】上記アミノアルコールの中でも、本発明に
おいて特に好ましく使用されるのは、2−アミノエタノ
ール、2,2'−イミノジエタノール、2,2',2''−ニ
トリロトリエタノールである。
Among the above amino alcohols, 2-aminoethanol, 2,2′-iminodiethanol, 2,2 ′, 2 ″ -nitrilotriethanol are particularly preferably used in the present invention.

【0024】なお本発明では、該錯塩生成反応にアミノ
アルコールを使用することが必須の要件であり、これ以
外のアミンを使用した場合は、中間体として生成する沈
殿がフレーク状にならなかったり、あるいは粒子径が不
揃いなものとなり、これを焼成しても本発明で意図する
様な配向性指数と粒子形状や粒度構成などを満たす導電
配向性フレーク状酸化亜鉛を得ることができない。
In the present invention, the use of an amino alcohol in the complex salt formation reaction is an essential requirement. When other amines are used, the precipitate formed as an intermediate does not form flakes, Alternatively, the particle diameter becomes uneven, and even if this is fired, conductive oriented flake zinc oxide satisfying the orientation index, the particle shape, the particle size configuration, and the like as intended in the present invention cannot be obtained.

【0025】また本発明で使用される亜鉛塩としては、
硫酸亜鉛、硝酸亜鉛、塩化亜鉛、炭酸亜鉛又は酢酸亜鉛
などを挙げることができ、これらも単独で使用し得る
他、必要により2種以上を併用しても構わない。
The zinc salt used in the present invention includes:
Examples thereof include zinc sulfate, zinc nitrate, zinc chloride, zinc carbonate and zinc acetate. These may be used alone, or two or more of them may be used in combination as needed.

【0026】本発明で酸化亜鉛に導電性を付与するため
のドーピング剤として使用される3価の金属化合物とし
ては、アルミニウム、ガリウム、インジウム、タリウム
などの金属の化合物が例示され、これらは前記亜鉛塩と
アミノアルコールの共存系に水溶液として添加すればよ
く、通常は上記3価金属の硫酸塩、硝酸塩、塩化物、酢
酸塩の如き水溶性塩として添加するのが一般的である
が、この他、亜鉛塩に対し、乾式混合、湿式混合などに
よって予め混入させておくことも有効である。
Examples of the trivalent metal compound used as a doping agent for imparting conductivity to zinc oxide in the present invention include compounds of metals such as aluminum, gallium, indium, and thallium. It may be added as an aqueous solution to the coexisting system of the salt and the amino alcohol. Usually, it is generally added as a water-soluble salt such as the sulfate, nitrate, chloride and acetate of the above-mentioned trivalent metal. It is also effective to mix them with zinc salt by dry mixing, wet mixing or the like in advance.

【0027】そして、上記3価金属化合物の共存下に水
溶液中で亜鉛塩とアミノアルコールを混合すると、それ
らは直ちに反応して錯体を生成するが、好ましくはこの
時のpHを6〜10、より好ましくは7〜9の範囲に調
整すれば、錯体生成がより短時間で進行するので好まし
い。上記亜鉛塩とアミノアルコールの混合手順は特に制
限がなく、両者を反応容器に同時にもしくは逐次加えて
混合し、もしくは何れかの溶液を滴下して混合すること
もできる。また該錯体生成反応は、亜鉛塩やアミノアル
コールの濃度には殆ど影響を受けないので、この混合は
亜鉛塩の飽和溶解量以下で行えばよい。
When a zinc salt and an amino alcohol are mixed in an aqueous solution in the presence of the above-mentioned trivalent metal compound, they react immediately to form a complex. Preferably, the pH at this time is from 6 to 10, It is preferable to adjust the range to 7 to 9, since complex formation proceeds in a shorter time. The mixing procedure of the zinc salt and the amino alcohol is not particularly limited, and both may be added simultaneously or sequentially to the reaction vessel and mixed, or any of the solutions may be added dropwise and mixed. Further, since the complex formation reaction is hardly affected by the concentration of the zinc salt or amino alcohol, the mixing may be performed at a saturation solubility of the zinc salt or less.

【0028】この錯体形成反応は、亜鉛1とアミノ基1
の当量反応であるため、反応に用いる亜鉛塩とアミノア
ルコールの比率は、亜鉛塩1モルに対してアミノ基が1
モル前後、好ましくは0.9〜1.5モルの範囲となる
様に使用比率を調整することが望ましい。ちなみに、ア
ミノアルコールの量がアミノ基換算で亜鉛塩1モルに対
し0.9モル未満では、未反応亜鉛塩の量が多くなって
錯体の生成率が低下し、一方1.5モルを超えると、錯
体形成反応は進行するものの、得られる錯体を加熱する
ことによって生成するヒドロキシ亜鉛塩を還元焼成して
も、本発明で意図する様な配向性指数の導電フレーク状
酸化亜鉛が得られ難くなる。
This complex formation reaction is based on zinc 1 and amino group 1
Reaction, the ratio of zinc salt and amino alcohol used in the reaction is 1 mole of zinc salt to 1 amino group.
It is desirable to adjust the use ratio so as to be around mol, preferably in the range of 0.9 to 1.5 mol. By the way, when the amount of amino alcohol is less than 0.9 mol per 1 mol of zinc salt in terms of amino group, the amount of unreacted zinc salt increases and the production rate of the complex decreases. Although the complex formation reaction proceeds, it is difficult to obtain conductive flake zinc oxide having an orientation index as intended in the present invention even if the hydroxyzinc salt generated by heating the resulting complex is reduced and calcined. .

【0029】また、該錯体生成反応系に共存させる前記
3価金属化合物の量は、亜鉛塩1モルあたり1×10-4
〜1×10-1モルの範囲、より好ましくは1×10-4
1×10-2モルの範囲とするのがよく、かかる範囲の3
価金属化合物を錯体生成系に共存させることが好まし
い。そして、かかる量の3価金属化合物の共存下で生成
する錯体中には、該3価金属化合物のほぼ全量が取り込
まれる。生成する錯体は非晶質の綿状として生成し、こ
れを固液分離することは極めて困難であるが、これを加
熱処理すると、錯体は3価金属のヒドロキシル塩を含む
固液分離および洗浄等の容易なヒドロキシ亜鉛塩の沈殿
に変わるので、これを固液分離し、残存イオンなどの可
溶成分を水洗によって除去すると共に、好ましくは更に
乾燥時の凝集などを抑えるために低級アルコールやエー
テル、ケトン、エステルなどで洗浄してから乾燥し、こ
れを還元性雰囲気下で焼成すると、前記配向性指数を満
たす導電配向性フレーク状酸化亜鉛粉末を得ることがで
きる。
The amount of the trivalent metal compound coexisting in the complex formation reaction system is 1 × 10 -4 per mol of zinc salt.
11 × 10 −1 mol, more preferably 1 × 10 -4 mol
The range is preferably 1 × 10 -2 mol.
It is preferable that a valent metal compound coexist in the complex forming system. Then, almost all of the trivalent metal compound is incorporated into the complex formed in the coexistence of such an amount of the trivalent metal compound. The resulting complex is formed as an amorphous flocculent, and it is extremely difficult to separate it into solid and liquid. However, when this is heat-treated, the complex becomes solid-liquid separated containing a trivalent metal hydroxyl salt and washed. It changes to the precipitation of a hydroxyzinc salt which is easy to perform, and this is separated into solid and liquid, and soluble components such as residual ions are removed by washing with water, and preferably lower alcohols or ethers for further suppressing aggregation during drying, etc. After washing with a ketone, an ester or the like, followed by drying and firing in a reducing atmosphere, conductive oriented flake zinc oxide powder satisfying the orientation index can be obtained.

【0030】上記錯体を加熱処理してヒドロキシ亜鉛塩
に変える時の好ましい温度は70℃以上、より好ましく
は80℃以上で、熱処理時間は10分〜4時間程度で十
分である。70℃未満の低温、もしくは10分未満の短
時間ではヒドロキシ亜鉛塩の生成反応が十分に進行せ
ず、非晶質の錯体のままで固液分離などが極めて困難に
なる。反応温度にもよるが、上記ヒドロキシ亜鉛塩への
変化は約4時間でほぼ完了するので、それ以上に加熱処
理時間を延長するのは無駄である。
The temperature at which the above complex is heat-treated to convert it to a hydroxyzinc salt is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and a heat treatment time of about 10 minutes to 4 hours is sufficient. At a low temperature of less than 70 ° C. or a short time of less than 10 minutes, the reaction for forming a hydroxyzinc salt does not sufficiently proceed, and solid-liquid separation or the like becomes extremely difficult in the form of an amorphous complex. Although it depends on the reaction temperature, the conversion to the hydroxyzinc salt is almost completed in about 4 hours, so it is useless to extend the heat treatment time further.

【0031】加熱処理後、固液分離および洗浄・乾燥す
ることによって得られるヒドロキシ亜鉛塩は、その後、
必要により仮焼(仮焼する場合の好ましい条件は、酸化
性雰囲気下で800〜1400℃、好ましくは800〜
1000℃で10分以上、好ましくは30分〜2時間程
度)し、次いで還元性雰囲気下、たとえば水素、アンモ
ニア、一酸化炭素などの雰囲気ガス条件下に700〜1
00℃で10分〜2時間程度焼成を行うと、本発明で意
図する配向性指数を満たす高導電性のフレーク状酸化亜
鉛粉末が得られる。ここで、最終的な焼成を還元性雰囲
気下で行うのは、焼成体中に含まれる3価金属酸化物の
少なくとも一部を還元状態とし、ドーピングによる導電
性付与効果を有効に発揮させるためである。
After the heat treatment, the hydroxyzinc salt obtained by solid-liquid separation, washing and drying is then
If necessary, calcining (a preferable condition for calcining is 800 to 1400 ° C. in an oxidizing atmosphere, preferably 800 to 1400 ° C.).
(At 1000 ° C. for 10 minutes or more, preferably about 30 minutes to 2 hours), and then under a reducing atmosphere, for example, 700 to 1 under an atmosphere gas condition such as hydrogen, ammonia, carbon monoxide or the like.
When baking is performed at 00 ° C. for about 10 minutes to 2 hours, a highly conductive flaky zinc oxide powder satisfying the orientation index intended in the present invention is obtained. Here, the final firing is performed in a reducing atmosphere in order to make at least a part of the trivalent metal oxide contained in the fired body into a reduced state and effectively exert the conductivity imparting effect by doping. is there.

【0032】本発明の導電性配向性フレーク状酸化亜鉛
は、形状がフレーク状で前述の如くc軸配向性を有して
いるので、従来の導電性状酸化亜鉛に比べても優れた導
電性を示し、帯電防止剤や帯電防止塗料、導電性付与剤
などの素材として極めて有効に活用できる。特にこの導
電配向性酸化亜鉛は、たとえば酸化インジウムと混合し
て焼成を行うと層状に化合して(ZnO)5InO3を生成する
が、これは伝熱材料などしても優れた性能を発揮し得る
ものとして有効に活用できる。
Since the conductive oriented flake zinc oxide of the present invention has a flake shape and a c-axis orientation as described above, it has excellent conductivity even compared to the conventional conductive zinc oxide. It can be used very effectively as a material such as an antistatic agent, an antistatic paint, and a conductivity imparting agent. In particular, when this conductive oriented zinc oxide is mixed with, for example, indium oxide and baked, it is combined into a layer to form (ZnO) 5 InO 3 , which exhibits excellent performance even with heat transfer materials It can be used effectively as something that can be done.

【0033】[0033]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも勿論可能であ
り、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited thereto. Of course, the present invention can be implemented with modifications, and all of them are included in the technical scope of the present invention.

【0034】なお、実施例において平均粒子径の測定は
レーザー回折式粒度分布測定装置(島津製作所製の「S
ALD−2000A」)を用いて行ない、厚さは走査型
電子顕微鏡(日本電子製の「JSM−5200」)、X
線回折はX線回折測定装置(島津製作所製の「XD−D
1」)を用いて夫々測定した。また圧粉体としての導電
率は10MPa加圧下において導電率計を用いて測定し
た。
In the examples, the average particle size was measured by a laser diffraction type particle size distribution analyzer (“S” manufactured by Shimadzu Corporation).
ALD-2000A ”), and the thickness was measured using a scanning electron microscope (“ JSM-5200 ”manufactured by JEOL), X
X-ray diffraction is measured using an X-ray diffractometer (“XD-D manufactured by Shimadzu Corporation”).
1)). The conductivity as a green compact was measured using a conductivity meter under a pressure of 10 MPa.

【0035】実施例1 硫酸亜鉛0.25モル/リットルと硫酸アルミニウム
0.25ミリモル/リットルを含む水溶液2リットル
と、2−アミノエタノール0.3モル/リットルを含む
水溶液を2リットル混合し、攪拌すると、直ちに綿状
(アモルファス状)の錯体が生成する。この錯体を90
℃で1時間加熱すると、ヒドロキシ硫酸アルミニウムを
含む固液分離の容易なヒドロキシ硫酸亜鉛の沈殿に変わ
る。この間の反応液のpHは7.3であった。反応液を
常温まで冷却してから固液分離することにより、生成し
た沈殿を濾取する。得られた沈殿を十分に水洗した後、
更にエタノール洗浄してから120℃で2時間乾燥す
る。
Example 1 2 L of an aqueous solution containing 0.25 mol / L of zinc sulfate and 0.25 mmol / L of aluminum sulfate and 2 L of an aqueous solution containing 0.3 mol / L of 2-aminoethanol were mixed and stirred. Then, a flocculent (amorphous) complex is immediately generated. This complex is
Heating at 1 ° C. for 1 hour changes to precipitation of zinc hydroxysulfate containing aluminum hydroxysulfate, which is easily separated from solid and liquid. During this time, the pH of the reaction solution was 7.3. The reaction mixture is cooled to room temperature and then subjected to solid-liquid separation, and the formed precipitate is collected by filtration. After thoroughly washing the obtained precipitate,
Further, after washing with ethanol, it is dried at 120 ° C. for 2 hours.

【0036】次いでこれを昇温速度10℃/分で850
℃まで昇温し、同温度で30分間仮焼し、次いで水素ガ
ス雰囲気下に700℃で10分間還元焼成を行なうと、
酸化アルミニウムをアルミニウム換算で酸化亜鉛の亜鉛
1モルに対し0.001モル含むフレーク状の酸化亜鉛
57gを得られる。該フレーク状酸化亜鉛の平均粒子径
は0.2μm、厚さ0.02μm、配向性指数52で、
圧粉体としての導電率0.03S/cmであり、優れた
導電性と高いc軸配向性を有するものであった。該導電
配向性フレーク状酸化亜鉛のX線回折チャートを図1に
示す。
Next, this was heated at a heating rate of 10 ° C./min to 850.
C., and calcined at the same temperature for 30 minutes, and then reduced and fired at 700.degree. C. for 10 minutes in a hydrogen gas atmosphere.
57 g of flake-form zinc oxide containing 0.001 mol of aluminum oxide per mol of zinc oxide in terms of aluminum is obtained. The average particle diameter of the flaky zinc oxide is 0.2 μm, the thickness is 0.02 μm, and the orientation index is 52.
The conductivity as a green compact was 0.03 S / cm, and it had excellent conductivity and high c-axis orientation. FIG. 1 shows an X-ray diffraction chart of the conductive oriented flake zinc oxide.

【0037】実施例2 上記実施例1において、2−アミノエタノールを2,2'
−イミノジエタノールに代え、錯体を加熱反応させる際
の温度を95℃に代えた以外は同様にして、導電配向性
フレーク状酸化亜鉛58gを得た。錯体生成時および加
熱反応時のpHは7.6であった。得られた導電配向性
フレーク状酸化亜鉛には、酸化亜鉛の亜鉛1モルに酸化
アルミニウムがアルミニウム換算で0.001モル含ま
れており、その平均粒子径は0.3μm、平均厚さは
0.02μm、配向性指数は43、圧粉体としての導電
率は0.02S/cmであった。該導電酸化亜鉛粉末の
X線回折チャートを図2に示す。
Example 2 In Example 1, 2-aminoethanol was replaced with 2,2 ′
58 g of conductively oriented flake zinc oxide was obtained in the same manner except that the temperature during the heat reaction of the complex was changed to 95 ° C. instead of -iminodiethanol. The pH during complex formation and during the heating reaction was 7.6. The obtained conductive oriented flake zinc oxide contains 0.001 mol of aluminum oxide in terms of aluminum per 1 mol of zinc oxide, and has an average particle diameter of 0.3 μm and an average thickness of 0.1 mol. The particle size was 02 μm, the orientation index was 43, and the conductivity as a green compact was 0.02 S / cm. FIG. 2 shows an X-ray diffraction chart of the conductive zinc oxide powder.

【0038】実施例3 塩化亜鉛0.25モル/リットルと塩化アルミニウム
0.25ミリモル/リットルを含む水溶液2リットル
と、2−アミノエタノール0.3モル/リットルを含む
水溶液2リットルをを混合して錯体を生成させ、これを
更に90℃で1時間加熱すると、ヒドロキシ塩化アルミ
ニウムを含むヒドロキシ塩化亜鉛の沈殿が得られる。上
記錯塩生成反応およびヒドロキシ塩化亜鉛生成反応中の
反応液のpHは7.3であった。加熱終了後、固液分離
して沈殿を濾取し、水洗およびエタノール洗浄の後、1
20℃で2時間乾燥してから、昇温速度10℃/分で8
50℃まで昇温し、同温度で30分間仮焼し、次いで水
素ガス雰囲気下に700℃で10分間還元焼成を行って
フレーク状の酸化亜鉛粉末59gを得た。該粉末の平均
粒子径は0.2μm、厚さ0.02μm、配向性指数4
5で、圧粉体としての導電率は0.03S/cmであっ
た。該酸化亜鉛粉末のX線回折チャートを図3に示す。
Example 3 2 L of an aqueous solution containing 0.25 mol / L of zinc chloride and 0.25 mmol / L of aluminum chloride and 2 L of an aqueous solution containing 0.3 mol / L of 2-aminoethanol were mixed. A complex is formed, which is further heated at 90 ° C. for 1 hour, resulting in the precipitation of zinc hydroxychloride containing aluminum hydroxychloride. The pH of the reaction solution during the complex salt formation reaction and the zinc hydroxychloride formation reaction was 7.3. After the heating is completed, solid-liquid separation is performed, and the precipitate is collected by filtration.
After drying at 20 ° C for 2 hours, the temperature was raised at a rate of 10 ° C / min for 8 hours.
The temperature was raised to 50 ° C., calcined at the same temperature for 30 minutes, and then reduced and fired at 700 ° C. for 10 minutes in a hydrogen gas atmosphere to obtain 59 g of flake-like zinc oxide powder. The average particle diameter of the powder was 0.2 μm, the thickness was 0.02 μm, and the orientation index was 4
In No. 5, the conductivity as a green compact was 0.03 S / cm. FIG. 3 shows an X-ray diffraction chart of the zinc oxide powder.

【0039】比較例1 前記実施例1において、2−アミノエタノールをヘキサ
メチレンテトラミンに変更し、反応温度を95℃に代え
た以外は同様にして酸化亜鉛粉末を48g得た。反応時
のpHは6.5であった。得られた酸化亜鉛粉末は粒子
径のバラツキが大きく、平均粒子径は5μm、最大粒子
径は87μmであり、平均厚さは0.5μm、配向性指
数は21.8で、圧粉体としての導電率は0.005S
/cmであった。該酸化亜鉛粉末のX線回折チャートを
図4に示す。
Comparative Example 1 48 g of zinc oxide powder was obtained in the same manner as in Example 1 except that 2-aminoethanol was changed to hexamethylenetetramine and the reaction temperature was changed to 95 ° C. The pH during the reaction was 6.5. The obtained zinc oxide powder has a large variation in particle diameter, an average particle diameter of 5 μm, a maximum particle diameter of 87 μm, an average thickness of 0.5 μm, an orientation index of 21.8, and a green compact. Conductivity 0.005S
/ Cm. FIG. 4 shows an X-ray diffraction chart of the zinc oxide powder.

【0040】比較例2 前記実施例1において、2−アミノエタノール濃度を
0.5モル/リットルに代えた以外は同様にして錯体生
成と加熱処理行い、ヒドロキシ硫酸亜鉛の沈殿を得た。
加熱処理時のpHは9.3であった。このヒドロキシ硫
酸亜鉛の沈殿は不定形であり、固液分離が極めて困難で
あるばかりではなく、これを遠心分離によって固液分離
してから前記と同様な条件で還元焼成を行ったが、導電
配向性フレーク状の酸化亜鉛は生成できなかった。
Comparative Example 2 A complex was formed and heat-treated in the same manner as in Example 1 except that the 2-aminoethanol concentration was changed to 0.5 mol / L, to thereby obtain a precipitate of zinc hydroxysulfate.
The pH at the time of the heat treatment was 9.3. The precipitate of zinc hydroxysulfate is amorphous, and not only is solid-liquid separation extremely difficult, but it is separated and solid-liquid separated by centrifugation, and then reduced and fired under the same conditions as described above. No flake-like zinc oxide could be produced.

【0041】応用例1(塗料としての使用例) 前記実施例1〜3および比較例1で得た各酸化亜鉛50
gを2倍量のトルエンに懸濁し、これをアクリル系樹脂
塗料100gに加えてペイントシェーカーで十分に分散
させた後、ポリエチレンテレフタレートフィルム上に乾
燥膜厚が5μmとなる様に塗布し、得られた各塗膜の表
面固有抵抗値をJIS K7194に準拠して測定し
た。また従来品として、ハクスイテック社製の導電性酸
化亜鉛粉末「23−K」をアクリル系樹脂塗料と同様の
方法で混合し、被膜形成したものについて、同様の方法
で表面固有抵抗値を測定した。結果は下記の通りであ
り、本発明の導電配向性フレーク状酸化亜鉛は、比較例
1のものはもとより、従来の導電性酸化亜鉛に比べても
優れた導電性付与性能を有していることがわかる。
Application Example 1 (Example of Use as Paint) Each zinc oxide 50 obtained in Examples 1 to 3 and Comparative Example 1 was used.
g was suspended in twice the amount of toluene, added to 100 g of an acrylic resin paint, and sufficiently dispersed with a paint shaker, and then applied to a polyethylene terephthalate film so as to have a dry film thickness of 5 μm. The specific surface resistance of each coating film was measured in accordance with JIS K7194. In addition, as a conventional product, a conductive zinc oxide powder “23-K” manufactured by Hakusui Tech Co., Ltd. was mixed by the same method as the acrylic resin paint and a film was formed, and the surface specific resistance was measured by the same method. The results are as follows. The conductive oriented flake zinc oxide of the present invention has excellent conductivity-imparting performance as compared with the conventional conductive zinc oxide as well as that of Comparative Example 1. I understand.

【0042】[0042]

【発明の効果】本発明は以上の様に構成されており、酸
化亜鉛1モルに対して少量の3価金属の酸化物でドーピ
ングされ、且つその配向性指数が40以上でc軸方向へ
配向性が高められたもので、帯電防止剤や帯電防止塗料
などへの導電性付与剤として極めて有用なものであり、
また本発明の製法によれば、こうした特性を備えた導電
配向性フレーク状酸化亜鉛を効率よく製造し得ることに
なった。
The present invention is constituted as described above, is doped with a small amount of trivalent metal oxide per mole of zinc oxide, and has an orientation index of 40 or more, and is oriented in the c-axis direction. It has enhanced properties and is extremely useful as a conductivity-imparting agent for antistatic agents and antistatic paints.
Further, according to the production method of the present invention, it is possible to efficiently produce conductive oriented flake zinc oxide having such characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得た導電配向性フレーク状酸化亜鉛
のX線回折チャートである。
FIG. 1 is an X-ray diffraction chart of conductively oriented flake zinc oxide obtained in Example 1.

【図2】実施例2で得た導電配向性フレーク状酸化亜鉛
のX線回折チャートである。
FIG. 2 is an X-ray diffraction chart of the conductive oriented flake zinc oxide obtained in Example 2.

【図3】実施例3で得た導電配向性フレーク状酸化亜鉛
のX線回折チャートである。
FIG. 3 is an X-ray diffraction chart of conductively oriented flake zinc oxide obtained in Example 3.

【図4】比較例1で得た導電配向性フレーク状酸化亜鉛
のX線回折チャートである。
FIG. 4 is an X-ray diffraction chart of the conductive oriented flake zinc oxide obtained in Comparative Example 1.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記式(1)によって求められる配向性指
数が40以上であり、且つ、3価金属の酸化物が金属換
算で酸化亜鉛1モル当たり1×10-4〜2×10-1モル
含まれていることを特徴とする導電配向性フレーク状酸
化亜鉛。 配向性指数=[34.56°/(31.88°+34.56°+36.36°)×100…(1) (式中の各数値は、X線回折における2θ角の強度を表わす)
1. An orientation index determined by the following formula (1) is 40 or more, and a trivalent metal oxide is 1 × 10 -4 to 2 × 10 -1 per mole of zinc oxide in terms of metal. A conductive oriented flake zinc oxide, which is contained in a molar amount. Orientation index = [34.56 ° / (31.88 ° + 34.56 ° + 36.36 °) × 100 (1) (each numerical value in the formula represents the intensity at 2θ angle in X-ray diffraction)
【請求項2】 平均粒子径が0.2〜2μm、平均厚さ
が0.03μm以下であり、且つ圧粉体としての導電率
が1×10-3S/cm以上である請求項1に記載の導電
配向性フレーク状酸化亜鉛。
2. The method according to claim 1, wherein the average particle size is 0.2 to 2 μm, the average thickness is 0.03 μm or less, and the conductivity as a green compact is 1 × 10 −3 S / cm or more. The conductive oriented flake zinc oxide according to the above.
【請求項3】 亜鉛塩とアミノアルコールを、上記亜鉛
塩1モル当たり1×10-4〜2×10-1モルの3価金属
化合物の存在下に水溶液中で加熱し、生成する沈殿を還
元性雰囲気下で焼成することを特徴とする導電配向性フ
レーク状酸化亜鉛の製法。
3. A zinc salt and an amino alcohol are heated in an aqueous solution in the presence of 1 × 10 -4 to 2 × 10 -1 mol of a trivalent metal compound per 1 mol of the zinc salt to reduce a precipitate formed. A method for producing conductively oriented flake zinc oxide, characterized by firing in a neutral atmosphere.
【請求項4】 亜鉛塩が硫酸亜鉛、硝酸亜鉛、塩化亜
鉛、炭酸亜鉛および酢酸亜鉛よりなる群から選択される
少なくとも1種である請求項3に記載の製法。
4. The method according to claim 3, wherein the zinc salt is at least one selected from the group consisting of zinc sulfate, zinc nitrate, zinc chloride, zinc carbonate and zinc acetate.
【請求項5】 アミノアルコールが、2−アミノエタノ
ール、2,2'−イミノジエタノールおよび2,2',2''
−ニトリロトリエタノールよりなる群から選択される少
なくとも1種である請求項3または4に記載の製法。
5. The amino alcohol is 2-aminoethanol, 2,2′-iminodiethanol and 2,2 ′, 2 ″
The method according to claim 3 or 4, wherein the method is at least one selected from the group consisting of-nitrilotriethanol.
【請求項6】 3価の金属化合物が、アルミニウム、ガ
リウム、インジウム、タリウムよりなる群から選択され
る少なくとも1種の金属の化合物である請求項3〜5の
いずれかに記載の製法。
6. The method according to claim 3, wherein the trivalent metal compound is a compound of at least one metal selected from the group consisting of aluminum, gallium, indium, and thallium.
【請求項7】 亜鉛塩とアミノアルコールとの組成比
を、亜鉛塩の亜鉛1に対し、アミノアルコール中のアミノ
基を0.9〜1.5の範囲とする請求項3〜6のいずれ
かに記載の製法。
7. The composition according to claim 3, wherein the composition ratio of the zinc salt to the amino alcohol is such that the amino group in the amino alcohol is in the range of 0.9 to 1.5 with respect to zinc 1 in the zinc salt. Production method described in 1.
【請求項8】 前記請求項1または2に記載の要件を満
たす導電配向性フレーク状酸化亜鉛を得る請求項3〜7
のいずれかに記載の製法。
8. A conductive oriented flake zinc oxide which satisfies the requirements of claim 1 or 2 is obtained.
The production method according to any one of the above.
JP2000032305A 2000-02-09 2000-02-09 Conductive oriented flake zinc oxide and method for producing the same Expired - Fee Related JP3359606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032305A JP3359606B2 (en) 2000-02-09 2000-02-09 Conductive oriented flake zinc oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032305A JP3359606B2 (en) 2000-02-09 2000-02-09 Conductive oriented flake zinc oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001222911A true JP2001222911A (en) 2001-08-17
JP3359606B2 JP3359606B2 (en) 2002-12-24

Family

ID=18556925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032305A Expired - Fee Related JP3359606B2 (en) 2000-02-09 2000-02-09 Conductive oriented flake zinc oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3359606B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328170C (en) * 2004-03-30 2007-07-25 东华大学 Silver face finished nano zinc oxide and preparation method
JP2009132599A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
JP2009269946A (en) * 2008-04-30 2009-11-19 Sumitomo Metal Mining Co Ltd Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP2015038876A (en) * 2007-11-30 2015-02-26 協立化学産業株式会社 Conductive composition
CN104986794A (en) * 2015-07-10 2015-10-21 常州市宏硕电子有限公司 Nanometer zinc oxide and production process thereof
CN108993554A (en) * 2018-07-09 2018-12-14 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of three-dimensional sheet nano wire and products thereof and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328170C (en) * 2004-03-30 2007-07-25 东华大学 Silver face finished nano zinc oxide and preparation method
JP2009132599A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
JP2015038876A (en) * 2007-11-30 2015-02-26 協立化学産業株式会社 Conductive composition
JP2009269946A (en) * 2008-04-30 2009-11-19 Sumitomo Metal Mining Co Ltd Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP4655105B2 (en) * 2008-04-30 2011-03-23 住友金属鉱山株式会社 Ultraviolet light shielding transparent resin molding and method for producing the same
CN104986794A (en) * 2015-07-10 2015-10-21 常州市宏硕电子有限公司 Nanometer zinc oxide and production process thereof
CN104986794B (en) * 2015-07-10 2016-08-24 常州市宏硕电子有限公司 Nano zine oxide and production technology thereof
CN108993554A (en) * 2018-07-09 2018-12-14 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of three-dimensional sheet nano wire and products thereof and application
CN108993554B (en) * 2018-07-09 2021-03-23 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of three-dimensional sheet nanowire, product and application thereof

Also Published As

Publication number Publication date
JP3359606B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP5677510B2 (en) Infrared reflective material, method for producing the same, and paint and resin composition containing the same
JP5157561B2 (en) Visible light responsive photocatalyst and method for producing the same
Anas et al. Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
JP3359606B2 (en) Conductive oriented flake zinc oxide and method for producing the same
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
JP3398640B2 (en) Manufacturing method of oriented flake zinc oxide
JP3564322B2 (en) Method for producing lithium manganese composite oxide for secondary battery
KR20150044710A (en) Manufacturing method of composite particles and composite particels manufactured thereby
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JP2000086210A (en) Boron nitride-oxide composite particles, their production and ultraviolet ray cut-off agent using same
JPH0360429A (en) Zinc oxide-based electrically-conductive powder
JP2004142999A (en) Method for producing spherical zinc oxide
JP3311966B2 (en) Antibacterial antifungal powder and method for producing the same
JPS6235970B2 (en)
EP1207136A1 (en) Titanium-iron based composite oxide pigment and method for production thereof
JPH06234522A (en) Electrically conductive material and its production
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
JP2644707B2 (en) Method for producing ceramics containing fine metal particles or fine metal oxide particles
JPH0573695B2 (en)
JP3371701B2 (en) Manufacturing method of ITO powder
JP2010195847A (en) Resin composition
JPH06236711A (en) Conductive material and manufacture thereof
JP2004307221A (en) Tin, zinc, aluminum-containing indium oxide particle and method of manufacture the same
KR20190087702A (en) Microwave assisted synthesis method of carbon black-titania composite nano-powder and method for preparing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091011

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131011

LAPS Cancellation because of no payment of annual fees