JP2001221429A - Apparatus and method for supplying oxygen to oxygen combusting facility - Google Patents

Apparatus and method for supplying oxygen to oxygen combusting facility

Info

Publication number
JP2001221429A
JP2001221429A JP2000031604A JP2000031604A JP2001221429A JP 2001221429 A JP2001221429 A JP 2001221429A JP 2000031604 A JP2000031604 A JP 2000031604A JP 2000031604 A JP2000031604 A JP 2000031604A JP 2001221429 A JP2001221429 A JP 2001221429A
Authority
JP
Japan
Prior art keywords
oxygen
steam
generated
facility
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000031604A
Other languages
Japanese (ja)
Inventor
Takuji Nishimoto
拓治 西本
Akira Mori
章 森
Atsushi Inoue
篤 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2000031604A priority Critical patent/JP2001221429A/en
Publication of JP2001221429A publication Critical patent/JP2001221429A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04036Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for supplying oxygen to an oxygen combusting facility, which can save electric power consumption by driving a rotor used for an oxygen manufacturing equipment by a steam turbine. SOLUTION: Steam is generated in a boiler 1a by the heat of combustion from an oxygen combusting facility 1. A steam turbine 12 is driven by the generated steam to generate power. A vacuum pump 25 provided in a PSA device 20 is driven by the power. Thus, oxygen manufactured in the device 20 is supplied to the facility 1 through an oxygen gas supply path 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素燃焼設備への
酸素供給装置及び供給方法に関し、特に、中・小型規模
の産業用の酸素燃焼設備への酸素供給装置及び供給方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for supplying oxygen to an oxyfuel facility, and more particularly to an apparatus and a method for supplying oxygen to an industrial oxyfuel facility of a medium or small scale.

【0002】[0002]

【従来の技術】金属やガラス溶融などに用いられていた
従来の酸素を支燃性ガスとする酸素燃焼設備では、生成
する熱量を充分に有効利用していなかった。産業用ボイ
ラーは、空気燃焼方式であったが、ボイラーの高性能化
が要求されてきた。このため、ボイラーを酸素燃焼方式
にして、ボイラーの燃焼エネルギー効率を高めるととも
に、ボイラーのコンパクト化による設備コストの低減を
図るようにしている。また、ゴミの燃焼や溶融において
も、ダイオキシンの発生の問題から酸素燃焼方式の採用
が検討されつつある。しかし、このような酸素燃焼設備
への酸素供給装置は、動力源として電動機駆動が一般的
であった。
2. Description of the Related Art In a conventional oxyfuel combustion system using oxygen as a combustion supporting gas, which has been used for melting metals and glass, the amount of heat generated has not been sufficiently utilized. Industrial boilers are of the air combustion type, but high performance boilers have been required. For this reason, the boiler is changed to an oxyfuel combustion system to increase the combustion energy efficiency of the boiler and to reduce the equipment cost by downsizing the boiler. Also, in the burning and melting of refuse, the use of an oxyfuel combustion method is being studied due to the problem of dioxin generation. However, such an oxygen supply device for oxyfuel combustion equipment is generally driven by an electric motor as a power source.

【0003】一方、酸素燃焼方式の場合は、酸素供給手
段が必要になる。この供給手段としては、タンクに貯蔵
した液化酸素をガス化して供給する手段と、空気分離装
置で酸素ガスを製造して供給する手段とがある。
On the other hand, in the case of the oxyfuel combustion system, an oxygen supply means is required. As the supply means, there are means for gasifying and supplying liquefied oxygen stored in the tank, and means for producing and supplying oxygen gas by an air separation device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、液化酸
素をガス化して供給する手段は、貯蔵タンクまで液化酸
素をタンクローリーで搬送する手間が掛かるため、空気
分離装置で製造した酸素ガスを配管を介して酸素燃焼設
備に供給して使用することが至便であった。この空気分
離装置としては、圧力変動吸着式や深冷式が広く知られ
ている。
However, the means for gasifying and supplying liquefied oxygen requires time for transporting the liquefied oxygen to the storage tank by a tank lorry, so that the oxygen gas produced by the air separation device is supplied through a pipe. It was convenient to supply it to an oxygen combustion facility for use. As the air separation device, a pressure fluctuation adsorption type and a cryogenic type are widely known.

【0005】ところが、圧力変動吸着式空気分離装置
は、3塔真空再生式の場合、一般に、原料空気を吸着筒
に送り込むための原料空気ブロワ、分離した酸素ガスを
酸素燃焼設備に送るための酸素圧縮機及び吸着筒の再生
のために使用される真空ポンプが、一般に電動機で駆動
されており、例えば、93%濃度の酸素ガスを製造する
場合、酸素ガスの製造に要する電力は、原料空気ブロワ
で約0.03kWh/Nm、真空ポンプで約0.38
kWh/Nm、そして酸素圧縮機で約0.1kWh/
Nm程度である。
[0005] However, in the case of a three-column vacuum regeneration system, a pressure fluctuation adsorption type air separation device generally has a raw air blower for feeding raw air to an adsorption column, and an oxygen blower for feeding separated oxygen gas to an oxygen combustion facility. A vacuum pump used for regeneration of a compressor and an adsorption column is generally driven by an electric motor. For example, when producing 93% -concentration oxygen gas, electric power required for producing oxygen gas is supplied from a raw material air blower. About 0.03 kWh / Nm 3 and about 0.38 with a vacuum pump
kWh / Nm 3 , and about 0.1 kWh /
Is a Nm 3 about.

【0006】また、大気圧再生式の場合は、真空ポンプ
無しで再生するので、真空ポンプの動力は不要となる
が、吸着圧力と再生圧力との圧力差を大きくするため、
原料空気の供給圧力を高めなければならず、原料空気圧
縮機の動力が大きくなる。
In the case of the atmospheric pressure regeneration type, since the regeneration is performed without a vacuum pump, the power of the vacuum pump is not required, but the pressure difference between the adsorption pressure and the regeneration pressure is increased.
The supply pressure of the raw air must be increased, and the power of the raw air compressor increases.

【0007】一方、深冷式空気分離装置は、一般に、原
料空気を精留操作圧力に昇圧する原料空気圧縮機や、分
離した酸素ガスを酸素供給設備に送るための酸素圧縮機
を電動機で駆動しており、例えば、93%濃度の酸素ガ
スを製造する場合、酸素ガスの製造に要する電力は、原
料空気圧縮機で約0.33kWh/Nm、酸素圧縮機
で約0.1kWh/Nm程度となる。
[0007] On the other hand, a cryogenic air separation apparatus generally uses a motor to drive a raw air compressor for raising the raw air to a rectifying operation pressure or an oxygen compressor for sending separated oxygen gas to an oxygen supply facility. and is, for example, when manufacturing a 93% concentration of oxygen gas, electric power required for the production of oxygen gas, about 0.33kWh / Nm 3 in the feed air compressor, about 0.1 kWh / Nm 3 oxygen compressor About.

【0008】そこで本発明は、圧力変動吸着式の原料空
気ブロワ、酸素圧縮機や真空ポンプ、深冷式の原料空気
圧縮機や酸素圧縮機等の酸素製造装置に用いられる回転
機を蒸気タービンで駆動して、使用電力を節約できる酸
素燃焼設備への酸素供給装置及び供給方法を提供するこ
とを目的としている。
Accordingly, the present invention provides a steam turbine for rotating a rotary machine used for an oxygen production apparatus such as a pressure fluctuation adsorption type material air blower, an oxygen compressor or a vacuum pump, or a cryogenic type material air compressor or an oxygen compressor. It is an object of the present invention to provide an oxygen supply apparatus and a supply method for an oxyfuel facility that can be driven to save power consumption.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の酸素供給装置は、酸素を支燃性ガスとする酸素燃焼
設備と、該酸素燃焼設備で生成した熱量を熱源とするボ
イラーと、該ボイラーで発生した蒸気を駆動源として動
力を発生する蒸気タービンと、該蒸気タービンで発生し
た動力により駆動する回転機を設けた酸素製造装置と、
該酸素製造装置で製造した酸素を前記酸素燃焼設備に供
給する酸素ガス供給経路とを備えたことを特徴とし、酸
素供給方法は、酸素を支燃性ガスとする酸素燃焼設備で
生成した熱量を熱源としてボイラーで製品蒸気圧よりも
高い圧力の蒸気を発生させ、この発生蒸気で蒸気タービ
ンを駆動して動力を発生し、該発生動力により酸素製造
装置に設けた回転機を駆動し、該酸素製造装置で製造し
た酸素を酸素ガス供給経路を介して前記酸素燃焼設備に
供給することを特徴としている。
According to the present invention, there is provided an oxygen supply system comprising: an oxygen combustion facility using oxygen as a supporting gas; a boiler using a heat generated by the oxygen combustion facility as a heat source; A steam turbine that generates power using the steam generated by the boiler as a driving source, and an oxygen production apparatus that includes a rotating machine that is driven by the power generated by the steam turbine;
An oxygen gas supply path for supplying oxygen produced by the oxygen production apparatus to the oxyfuel combustion facility, wherein the oxygen supply method comprises: A steam having a pressure higher than the product steam pressure is generated by a boiler as a heat source, and the generated steam drives a steam turbine to generate power, and the generated power drives a rotary machine provided in an oxygen production apparatus to generate oxygen. The method is characterized in that oxygen produced by the production apparatus is supplied to the oxygen combustion equipment via an oxygen gas supply path.

【0010】[0010]

【発明の実施の形態】図1は酸素製造装置が圧力変動吸
着式である場合の本発明の第1形態例を示す系統図、図
2は同じく深冷式である場合の本発明の第2形態例を示
す系統図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing a first embodiment of the present invention when an oxygen production apparatus is of a pressure fluctuation adsorption type, and FIG. 2 is a second embodiment of the present invention when the oxygen production apparatus is also of a cryogenic type. It is a system diagram showing an example of a form.

【0011】まず、図1及び2において、酸素を支燃性
ガスとする酸素燃焼設備1には、ボイラー1aが付設さ
れ、さらに、重油等の燃料供給経路2と、支燃用の酸素
ガス供給経路3とが接続され、ボイラー1aには、給水
タンク4及び熱交換器5を有する給水経路6と、製品蒸
気送出経路7と、排ガス経路8とが接続されている。ま
た、補給水タンク9及び熱交換器10を有する補給水経
路11が給水タンク4に接続している。前記排ガス経路
8の排ガスは、熱交換器5の熱媒体として使用された
後、さらに熱交換器10の熱媒体として使用されてから
排気される。
First, in FIGS. 1 and 2, a boiler 1a is attached to an oxyfuel combustion facility 1 using oxygen as a supporting gas, and a fuel supply path 2 for heavy oil or the like and an oxygen gas supply for supporting. The path 3 is connected, and a water supply path 6 having a water supply tank 4 and a heat exchanger 5, a product steam delivery path 7, and an exhaust gas path 8 are connected to the boiler 1a. A makeup water path 11 having a makeup water tank 9 and a heat exchanger 10 is connected to the water supply tank 4. The exhaust gas in the exhaust gas path 8 is exhausted after being used as a heat medium of the heat exchanger 10 after being used as a heat medium of the heat exchanger 5.

【0012】したがって、給水経路6を介してボイラー
1aに送られた供給水は、酸素燃焼装置1での燃料と酸
素ガスとの燃焼熱によって加熱され蒸気となって、製品
蒸気送出経路7を介して使用先へ送給される。燃焼によ
って生じた排ガスは、ボイラー1aを経て排ガス経路8
から熱交換器5に導入されて、給水タンク4からボイラ
ー1aに送られる供給水を加熱し、さらに、熱交換器1
0に導入されて、補給水タンク9から給水タンク4に補
給される補給水を加熱する。
Therefore, the supply water sent to the boiler 1a via the water supply path 6 is heated by the heat of combustion of the fuel and the oxygen gas in the oxycombustion device 1 to be turned into steam, and is supplied through the product steam delivery path 7. To be used. The exhaust gas generated by the combustion passes through the boiler 1a and passes through an exhaust gas path 8
From the feed water tank 4 to the boiler 1a to heat the supply water.
0, and heats the make-up water supplied from the make-up water tank 9 to the water supply tank 4.

【0013】次に、図1に基づいて、前記酸素燃焼設備
1と該設備1に供給される酸素ガスを製造する酸素製造
装置の1つである圧力変動吸着式空気分離装置(PSA
装置)とを組み合わせた酸素燃焼設備への酸素供給装置
の第1形態例について説明する。
Next, based on FIG. 1, the pressure fluctuation adsorption type air separation apparatus (PSA) which is one of the oxygen combustion equipment 1 and an oxygen production apparatus for producing oxygen gas supplied to the equipment 1 will be described.
A first embodiment of an apparatus for supplying oxygen to oxycombustion equipment, which is a combination of the apparatus and the apparatus, will be described.

【0014】このPSA装置20は、3塔真空再生式で
あって、吸着筒21a,21b,21cを吸着工程,再
生工程,加圧工程に順次切換えることにより、窒素と酸
素とを分離し、酸素を連続的に製造するものであって、
経路22から吸入して原料空気ブロワ23で昇圧した大
気を吸着工程にある吸着筒に導入し、該吸着筒内に充填
した吸着剤に窒素を吸着させ、分離した酸素ガスを経路
24に導出する。経路24に導出した酸素ガスは、酸素
圧縮機30で圧縮された後、アキュームレータ31及び
流量制御装置32を経て、酸素ガス供給経路3から燃料
支燃用として酸素燃焼設備1に供給される。また、再生
工程にある吸着筒は、真空ポンプ25により経路26を
介して当該吸着筒内を真空排気することにより行われ
る。なお、このような構成のPSA装置は従来から存在
する典型的なものであるので、弁等の詳細な構成要素に
ついて省略している。
The PSA apparatus 20 is of a three-column vacuum regeneration type, in which nitrogen and oxygen are separated by sequentially switching the adsorption columns 21a, 21b, 21c to an adsorption step, a regeneration step, and a pressurization step. Is manufactured continuously,
The air sucked from the passage 22 and pressurized by the raw material air blower 23 is introduced into the adsorption column in the adsorption step, nitrogen is adsorbed by the adsorbent filled in the adsorption column, and the separated oxygen gas is led out to the line 24. . After being compressed by the oxygen compressor 30, the oxygen gas led out to the path 24 is supplied to the oxygen combustion equipment 1 through the accumulator 31 and the flow rate control device 32 from the oxygen gas supply path 3 for fuel support. The adsorption cylinder in the regeneration step is evacuated by vacuum pump 25 through a path 26 to evacuate the interior of the adsorption cylinder. Since a PSA device having such a configuration is a typical one existing in the related art, detailed components such as valves are omitted.

【0015】そして、上記形態例では、動力の大きい真
空ポンプ25の駆動にのみ蒸気タービン12の動力を使
用して、消費電力の低減を図っている。すなわち、ボイ
ラー1aから製品蒸気送出経路7を介して使用先に向か
う製品蒸気を、その途中で蒸気タービン12に導入する
ことによって真空ポンプ25を駆動している。この場
合、真空ポンプ25を駆動した製品蒸気は、この駆動に
よりエネルギーが消費されて使用先に送られるため、ボ
イラー1aでは、それに見合うように、製品蒸気圧より
も高い圧力の蒸気を発生させている。
In the above embodiment, the power of the steam turbine 12 is used only for driving the vacuum pump 25 having a large power, thereby reducing power consumption. That is, the vacuum pump 25 is driven by introducing the product steam from the boiler 1a to the use destination via the product steam delivery path 7 into the steam turbine 12 on the way. In this case, since the product steam driven by the vacuum pump 25 consumes energy by this drive and is sent to the place of use, the boiler 1a generates steam having a pressure higher than the product steam pressure to match the consumption. I have.

【0016】なお、PSA装置20のもう一つの回転機
である原料空気ブロワ23や、酸素圧縮機30にも蒸気
タービンを適用することは可能であるが、これらに必要
な動力、例えば電力は、93%濃度の酸素ガスを製造す
る場合で、真空ポンプ25が約0.38kWh/Nm
程度であるのに比べて、原料空気ブロワ23が約0.0
3kWh/Nm、酸素圧縮機30が約0.1kWh/
Nm程度と小さいので、装置コスト、即ち初期投資額
との兼ね合いで、モーター駆動とするかどうかを選定す
ればよい。
Although the steam turbine can be applied to the raw air blower 23 and the oxygen compressor 30 which are the other rotating machines of the PSA apparatus 20, the power required for these, for example, the electric power is When producing 93% oxygen gas, the vacuum pump 25 is operated at about 0.38 kWh / Nm 3.
The raw material air blower 23 is about 0.0
3 kWh / Nm 3 , and the oxygen compressor 30 is about 0.1 kWh /
Since it is as small as about Nm 3, it is sufficient to select whether or not to use the motor drive in consideration of the apparatus cost, that is, the initial investment amount.

【0017】次に、図2に基づいて、前記酸素燃焼設備
1と該設備1に供給される酸素ガスを製造する酸素製造
装置の別の1つである深冷式空気分離装置とを組み合わ
せた酸素燃焼設備への酸素供給装置の第2形態例につい
て説明する。
Next, based on FIG. 2, the oxy-combustion facility 1 and a cryogenic air separation apparatus, which is another oxygen production apparatus for producing oxygen gas supplied to the facility 1, are combined. A description will be given of a second embodiment of the oxygen supply device for the oxygen combustion equipment.

【0018】この深冷式空気分離装置40は、原料空気
圧縮機41で圧縮されて冷却器42で冷却された原料空
気を精製する精製設備43と、原料空気を冷却する主熱
交換器44と、原料空気の一部を断熱膨張させて寒冷を
発生する膨張タービン45と、原料空気を精留して酸素
を分離するための高圧塔(下部塔)46,低圧塔(上部
塔)47及び主凝縮蒸発器48からなる複精留塔49
と、過冷器50,減圧弁51,52等とを主要な構成要
素としている。
The cryogenic air separation device 40 includes a purification equipment 43 for purifying raw air compressed by a raw air compressor 41 and cooled by a cooler 42, a main heat exchanger 44 for cooling raw air, and An expansion turbine 45 for adiabatically expanding a part of the raw air to generate cold, a high-pressure tower (lower tower) 46, a low-pressure tower (upper tower) 47 for rectifying the raw air, and separating oxygen. Double rectification column 49 consisting of condensation evaporator 48
And the subcooler 50, the pressure reducing valves 51 and 52, and the like as main components.

【0019】原料空気圧縮機41で圧縮された原料空気
は、精製設備43で水分や二酸化炭素等の不純物が除去
されて精製され、主熱交換器44で冷却された後、一部
が膨張タービン45を介して低圧塔47に、残部が高圧
塔46にそれぞれ導入され、複精留塔49で液化精留分
離されて低圧塔47上部の窒素ガスと、下部の液化酸素
とに分離する。この液化酸素は、主凝縮蒸発器48で高
圧塔46からの窒素ガスにより加熱されて蒸発し、酸素
ガスとなる。この酸素ガスの一部は、低圧塔47の下部
から経路53に抜き出され、主熱交換器44で常温に戻
って経路54に導出され、該経路54を通って酸素圧縮
機30に導入される。酸素圧縮機30で圧縮された酸素
ガスは、アキュームレータ31及び流量制御装置32を
経て、酸素ガス供給経路3から燃料支燃用として酸素燃
焼設備1に供給される。なお、このような構成の深冷式
空気分離装置は従来から存在する典型的なものであるの
で、弁等の詳細な構成要素について省略している。
The raw material air compressed by the raw material air compressor 41 is purified by removing impurities such as moisture and carbon dioxide in a purifying facility 43, cooled in a main heat exchanger 44, and partially expanded in an expansion turbine. The mixture is introduced into the low-pressure column 47 through 45, and the remainder is introduced into the high-pressure column 46, and is liquefied and rectified and separated in the double rectification column 49 to be separated into nitrogen gas in the upper portion of the low-pressure column 47 and liquefied oxygen in the lower portion. The liquefied oxygen is heated by the nitrogen gas from the high-pressure column 46 in the main condensing evaporator 48 and evaporates to become oxygen gas. A part of this oxygen gas is extracted from the lower part of the low-pressure column 47 to the path 53, returned to room temperature by the main heat exchanger 44, led out to the path 54, and introduced into the oxygen compressor 30 through the path 54. You. The oxygen gas compressed by the oxygen compressor 30 is supplied from the oxygen gas supply path 3 to the oxyfuel combustion facility 1 through the accumulator 31 and the flow rate control device 32 for fuel support. Note that the cryogenic air separation device having such a configuration is a typical one existing in the related art, and detailed components such as valves are omitted.

【0020】そして、上記形態例では、93%濃度の酸
素ガスを製造する場合の電力が、約0.33kWh/N
程度の原料空気圧縮機41の駆動に蒸気タービン1
2の動力を、約0.1kWh/Nm程度の酸素圧縮機
30の駆動に蒸気タービン12aの動力を使用して、消
費電力の低減を図っている。すなわち、ボイラー1aか
ら製品蒸気送出経路7を介して使用先に向かう製品蒸気
を、その途中で蒸気タービン12に導入することによっ
て原料空気圧縮機41を駆動するとともに、蒸気タービ
ン12の手前で製品蒸気送出経路7から分岐した分岐経
路7aを介して使用先に向かう製品蒸気を、その途中で
蒸気タービン12aに導入することによって酸素圧縮機
30を駆動している。この場合、原料空気圧縮機41及
び酸素圧縮機30を駆動した製品蒸気は、これらの駆動
によりエネルギーが消費されて使用先に送られるため、
ボイラー1aでは、それに見合うように、製品蒸気圧よ
りも高い圧力の蒸気を発生させている。
In the above embodiment, the power for producing 93% oxygen gas is about 0.33 kWh / N.
m steam turbine 1 to drive a 3 degree of feed air compressor 41
The power of No. 2 is used to drive the oxygen compressor 30 of about 0.1 kWh / Nm 3 to reduce the power consumption by using the power of the steam turbine 12a. That is, the raw material air compressor 41 is driven by introducing the product steam from the boiler 1a to the use destination via the product steam delivery path 7 into the steam turbine 12 on the way, and the product steam is supplied before the steam turbine 12 The oxygen compressor 30 is driven by introducing product steam toward a use destination via a branch path 7a branched from the delivery path 7 into the steam turbine 12a on the way. In this case, the product steam that drives the raw air compressor 41 and the oxygen compressor 30 consumes energy by these drives and is sent to the use destination.
In the boiler 1a, steam having a pressure higher than the product steam pressure is generated correspondingly.

【0021】なお、上記両形態例では、蒸気タービンを
出た蒸気全量を使用先に供給しているが、必ずしもこれ
に限定されるものではない。例えば、蒸気タービンで製
品蒸気よりも低圧まで膨張させて、給水タンク4等に戻
すようにしてもよいし、蒸気タービン等の回転機の駆動
に使用した後に廃棄してもよい。また、上記両形態例で
は、ボイラー1aは、酸素燃焼設備1に付設されている
ものとしたが、酸素燃焼設備がボイラーの加熱釜とし
て、ボイラーに付設されていてもよい。さらに、ボイラ
ーは、酸素燃焼により発生した熱量の全部又は一部を利
用して蒸気を発生することができる。
In both of the above embodiments, the entire amount of steam exiting the steam turbine is supplied to the user, but the invention is not necessarily limited to this. For example, the steam may be expanded to a pressure lower than the product steam by the steam turbine and returned to the water supply tank 4 or the like, or may be discarded after being used for driving a rotating machine such as a steam turbine. Further, in both of the above embodiments, the boiler 1a is attached to the oxyfuel combustion facility 1, but the oxyfuel combustion facility may be attached to the boiler as a heating pot of the boiler. Further, the boiler can generate steam using all or a part of the heat generated by the oxyfuel combustion.

【0022】[0022]

【実施例】酸素を支燃性ガスとする酸素燃焼設備を加熱
釜として付設した酸素燃焼ボイラーの発生蒸気を利用し
て、酸素量として1500Nm/hを製造する3塔圧
力変動吸着式空気分離装置の真空ポンプを駆動させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Three-column pressure fluctuation adsorption type air separation system producing 1500 Nm 3 / h as an oxygen amount by using steam generated from an oxyfuel boiler provided with an oxyfuel combustion facility using oxygen as a supporting gas as a heating pot. The vacuum pump of the device was turned on.

【0023】酸素量1500Nm/hを用いて酸素燃
焼ボイラーで2.5MPa、543Kの過熱蒸気(29
40kJ/kg)を10トン/h発生させ、発生蒸気の
全量を背圧蒸気タービンに供給して真空ポンプを駆動さ
せた。背圧蒸気タービン出口の蒸気(10トン/h)は
0.4MPaの飽和蒸気(413K、2740kJ/k
g)となり、製品蒸気として回収した。
Using an oxygen combustion boiler with an oxygen amount of 1500 Nm 3 / h, superheated steam of 2.5 MPa, 543 K (29
(40 kJ / kg) was generated at 10 tons / h, and the entire amount of generated steam was supplied to a back-pressure steam turbine to drive a vacuum pump. The steam (10 tons / h) at the outlet of the back pressure steam turbine is saturated steam of 0.4 MPa (413 K, 2740 kJ / k).
g) and recovered as product vapor.

【0024】酸素量として1500Nm/hを製造す
る圧力変動吸着式空気分離装置は、空気ブロワーが電動
機駆動(55kW)で、真空ポンプを出力550kWの
蒸気タービンで駆動させた。
In the pressure fluctuation adsorption type air separation device for producing 1500 Nm 3 / h as the oxygen amount, the air blower was driven by an electric motor (55 kW), and the vacuum pump was driven by a steam turbine having an output of 550 kW.

【0025】エネルギー単位の換算値としては、1kW
・h=3600kJ(860kcal)であるが、発電
効率や送電ロスを考慮すると電力の使用端におけるエネ
ルギー換算値は1kW・h=10260kJ(2450
kcal)であるため、従来技術の電動機駆動による真
空ポンプと比較して、その電力換算値は195kWと評
価できた。
The converted value of the energy unit is 1 kW
H = 3600 kJ (860 kcal), but in consideration of power generation efficiency and transmission loss, the energy conversion value at the end of use of electric power is 1 kW · h = 10260 kJ (2450)
kcal), the power conversion value could be evaluated to be 195 kW as compared with a conventional vacuum pump driven by an electric motor.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
酸素製造装置に設置されている真空ポンプ、原料空気圧
縮機、酸素圧縮機等の回転機の動力を、酸素燃焼設備の
燃焼熱で発生した蒸気を動力源とする蒸気タービンで賄
うようにしているので、電力の大幅な削減が図れる。
As described above, according to the present invention,
The power of rotating machines such as vacuum pumps, raw material air compressors and oxygen compressors installed in the oxygen production equipment is supplied by a steam turbine powered by steam generated by the combustion heat of oxycombustion equipment. As a result, the power can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 酸素製造装置が圧力変動吸着式である場合の
本発明の第1形態例を示す系統図である。
FIG. 1 is a system diagram showing a first embodiment of the present invention when an oxygen production apparatus is of a pressure fluctuation adsorption type.

【図2】 同じく深冷式である場合の本発明の第2形態
例を示す系統図である。
FIG. 2 is a system diagram showing a second embodiment of the present invention in the case of a cryogenic cooling system.

【符号の説明】[Explanation of symbols]

1…酸素燃焼設備、1a…ボイラー、2…燃料供給経
路、3…酸素ガス供給経路、6…給水経路、7…製品蒸
気送出経路、7a…分岐経路、12,12a…蒸気ター
ビン、20…圧力変動吸着式空気分離装置、21a,2
1b,21c…吸着筒、23…原料空気ブロワ、25…
真空ポンプ、30…酸素圧縮機、31…アキュームレー
タ、40…深冷式空気分離装置、41…原料空気圧縮
機、42…冷却器、43…精製設備、44…主熱交換
器、45…膨張タービン、46…高圧塔(下部塔)、4
7…低圧塔(上部塔)、48…主凝縮蒸発器、49…複
精留塔、50…過冷器、51,52…減圧弁
DESCRIPTION OF SYMBOLS 1 ... Oxygen combustion equipment, 1a ... Boiler, 2 ... Fuel supply path, 3 ... Oxygen gas supply path, 6 ... Water supply path, 7 ... Product steam delivery path, 7a ... Branch path, 12, 12a ... Steam turbine, 20 ... Pressure Variable adsorption air separation device, 21a, 2
1b, 21c: adsorption cylinder, 23: raw air blower, 25:
Vacuum pump, 30 oxygen compressor, 31 accumulator, 40 cryogenic air separator, 41 raw air compressor, 42 cooler, 43 purification equipment, 44 main heat exchanger, 45 expansion turbine , 46 ... High pressure tower (lower tower), 4
7 low-pressure tower (upper tower), 48 main condensing evaporator, 49 double rectification tower, 50 subcooler, 51, 52 pressure reducing valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 篤 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 Fターム(参考) 3G081 BA02 BB00 BC07 BD00 DA12 3K023 JA01 4G075 AA05 AA44 BA06 BB02 CA02 DA01 EA06  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Atsushi Inoue 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo F-term in Nippon Oxide Co., Ltd. (reference) 3G081 BA02 BB00 BC07 BD00 DA12 3K023 JA01 4G075 AA05 AA44 BA06 BB02 CA02 DA01 EA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素を支燃性ガスとする酸素燃焼設備
と、該酸素燃焼設備で生成した熱量を熱源とするボイラ
ーと、該ボイラーで発生した蒸気を駆動源として動力を
発生する蒸気タービンと、該蒸気タービンで発生した動
力により駆動する回転機を設けた酸素製造装置と、該酸
素製造装置で製造した酸素を前記酸素燃焼設備に供給す
る酸素ガス供給経路とを備えたことを特徴とする酸素燃
焼設備への酸素供給装置
An oxygen combustion facility using oxygen as a supporting gas, a boiler using heat generated by the oxygen combustion facility as a heat source, and a steam turbine generating power using steam generated by the boiler as a drive source. An oxygen producing apparatus provided with a rotating machine driven by power generated by the steam turbine, and an oxygen gas supply path for supplying oxygen produced by the oxygen producing apparatus to the oxyfuel combustion facility. Oxygen supply equipment for oxyfuel combustion equipment
【請求項2】 酸素を支燃性ガスとする酸素燃焼設備で
生成した熱量を熱源としてボイラーで製品蒸気圧よりも
高い圧力の蒸気を発生させ、この発生蒸気で蒸気タービ
ンを駆動して動力を発生し、該発生動力により酸素製造
装置に設けた回転機を駆動し、該酸素製造装置で製造し
た酸素を酸素ガス供給経路を介して前記酸素燃焼設備に
供給することを特徴とする酸素燃焼設備への酸素供給方
法。
2. A boiler is used to generate steam having a pressure higher than a product steam pressure by using a heat amount generated by an oxyfuel combustion facility using oxygen as a supporting gas, and a steam turbine is driven by the generated steam to generate power. Oxygen combustion equipment, wherein the generated power drives a rotating machine provided in an oxygen production apparatus to supply oxygen produced by the oxygen production apparatus to the oxygen combustion facility via an oxygen gas supply path. How to supply oxygen to
JP2000031604A 2000-02-09 2000-02-09 Apparatus and method for supplying oxygen to oxygen combusting facility Pending JP2001221429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000031604A JP2001221429A (en) 2000-02-09 2000-02-09 Apparatus and method for supplying oxygen to oxygen combusting facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000031604A JP2001221429A (en) 2000-02-09 2000-02-09 Apparatus and method for supplying oxygen to oxygen combusting facility

Publications (1)

Publication Number Publication Date
JP2001221429A true JP2001221429A (en) 2001-08-17

Family

ID=18556340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000031604A Pending JP2001221429A (en) 2000-02-09 2000-02-09 Apparatus and method for supplying oxygen to oxygen combusting facility

Country Status (1)

Country Link
JP (1) JP2001221429A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257721A (en) * 2003-02-24 2004-09-16 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Integrated heat recovering system and method of improving efficiency of oxygen combustion type combustion furnace
KR101376717B1 (en) 2012-04-24 2014-03-20 두산중공업 주식회사 IGCC plant using the heat recovery in compressed air process
KR101448129B1 (en) 2013-04-17 2014-10-08 한국에너지기술연구원 an organic rankine cycle system and controlling apparatus and method thereof
US10543450B2 (en) 2016-03-25 2020-01-28 Ihi Corporation Carbon dioxide recovery method and recovery apparatus
US10682603B2 (en) 2016-03-16 2020-06-16 Ihi Corporation Carbon dioxide recovery method and recovery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171816A (en) * 1987-01-09 1988-07-15 Nkk Corp Utilization of oxygen blast furnace gas
JPH09145003A (en) * 1995-11-27 1997-06-06 Ishikawajima Harima Heavy Ind Co Ltd Lng fire power installation
JPH11230682A (en) * 1998-02-16 1999-08-27 Nippon Sanso Kk Metal melting facility and method for melting metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171816A (en) * 1987-01-09 1988-07-15 Nkk Corp Utilization of oxygen blast furnace gas
JPH09145003A (en) * 1995-11-27 1997-06-06 Ishikawajima Harima Heavy Ind Co Ltd Lng fire power installation
JPH11230682A (en) * 1998-02-16 1999-08-27 Nippon Sanso Kk Metal melting facility and method for melting metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257721A (en) * 2003-02-24 2004-09-16 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Integrated heat recovering system and method of improving efficiency of oxygen combustion type combustion furnace
KR101376717B1 (en) 2012-04-24 2014-03-20 두산중공업 주식회사 IGCC plant using the heat recovery in compressed air process
KR101448129B1 (en) 2013-04-17 2014-10-08 한국에너지기술연구원 an organic rankine cycle system and controlling apparatus and method thereof
US10682603B2 (en) 2016-03-16 2020-06-16 Ihi Corporation Carbon dioxide recovery method and recovery device
US10543450B2 (en) 2016-03-25 2020-01-28 Ihi Corporation Carbon dioxide recovery method and recovery apparatus

Similar Documents

Publication Publication Date Title
US6345493B1 (en) Air separation process and system with gas turbine drivers
EP1058074B1 (en) Air separation process with a combustion engine for the production of atmospheric gas products and electric power
US6871502B2 (en) Optimized power generation system comprising an oxygen-fired combustor integrated with an air separation unit
US6141950A (en) Integrated air separation and combustion turbine process with steam generation by indirect heat exchange with nitrogen
US6263659B1 (en) Air separation process integrated with gas turbine combustion engine driver
JP2516851B2 (en) Integrated gasification combined cycle power generation method
EP2167892B1 (en) Thermal integration of oxygen plants
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
US20110061529A1 (en) Process and device for the separation of foreign gases from a reducing useful gas by steam-driven pressure swing adsorption
KR20150028332A (en) Process and apparatus for generating electric energy
US20120240619A1 (en) Method and device for treating a carbon-dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used
JP3640023B2 (en) Emission CO2 recovery system
JP4213389B2 (en) Production, storage and utilization system for liquefied CO2 and dry ice and production, storage and utilization system for liquefied CO2 and hydrogen
JP2001221429A (en) Apparatus and method for supplying oxygen to oxygen combusting facility
JP4707865B2 (en) Cryogenic air separator
US6058736A (en) Air separation plant
US6161375A (en) Air separation and combined cycle power plant
US20160013702A1 (en) Method and device for generating electrical energy
JP4202971B2 (en) Nitrogen production method and apparatus
US7010919B2 (en) Method and installation for steam production and air distillation
JP2007046526A (en) Rankine cycle cold heat power generator
CN109057899B (en) Gas compression, condensation, liquefaction and low-temperature working medium power generation device and power generation system
JPH09145003A (en) Lng fire power installation
Smith et al. Air separation unit integration for alternative fuel projects
ZA200406038B (en) Optimezed power generation system comprising an oxygen-fired combustor integrated with an air separation unit.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104