JP3640023B2 - Emission CO2 recovery system - Google Patents

Emission CO2 recovery system Download PDF

Info

Publication number
JP3640023B2
JP3640023B2 JP2002247813A JP2002247813A JP3640023B2 JP 3640023 B2 JP3640023 B2 JP 3640023B2 JP 2002247813 A JP2002247813 A JP 2002247813A JP 2002247813 A JP2002247813 A JP 2002247813A JP 3640023 B2 JP3640023 B2 JP 3640023B2
Authority
JP
Japan
Prior art keywords
low
exhaust
temperature
heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002247813A
Other languages
Japanese (ja)
Other versions
JP2004085099A (en
Inventor
克己 藤間
朝郁 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2002247813A priority Critical patent/JP3640023B2/en
Publication of JP2004085099A publication Critical patent/JP2004085099A/en
Application granted granted Critical
Publication of JP3640023B2 publication Critical patent/JP3640023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所や焼却施設、工場等の事業所より排出する排ガスの100〜200℃前後の低温排熱を使用して、ケミカルヒートポンプを介しての冷熱生成と、該冷熱及び排熱とにより複合プロセスを形成させた低濃度COの吸着分離プロセスと、
吸着分離されたCOより液化CO、ドライアイス或いは三重点以下の低圧COの温度と略同等の温度を持つ低温媒体による低温冷熱源を形成するCO超臨界冷凍サイクルとよりなる排出COの回収システムに関する。
【0002】
【従来の技術】
地球環境保護に対するフロン系冷媒の規制から自然冷媒に期待が掛けられ、特にその中でもオゾン層破壊係数が零で、地球温暖化係数が1の値を持つCOの存在が注目されている。
則ち、地球温暖化に関しては、COの数千倍の温暖化係数を持つフロン系冷媒に対し、上記地球温暖化の観点から、温暖化係数の低い冷媒の開発が強く要望され、フロン系冷媒の代わりに自然界に多く存在するCOを冷媒として活用することが期待されている。
一方COは、高密度エネルギの貯蔵・輸送冷熱の媒体として認められ、用途の多様化が図られ、その回収については、低濃度COの回収プロセスの高率化が要求され、その実現は、民生・運輸等の産業各部門へのさらなる適用を促すとともに、省エネルギシステムの構築にも寄与する点からも強く要望されている。
【0003】
則ち、火力発電所や焼却施設、工場等の事業所より排出する100〜200℃前後の従来より使い捨ての状況にあった低温排熱の有効利用を図るとともに、地球環境問題、特に地球温暖化防止の観点に立ち、COの大気排出量の削減、回収と、回収したCOの冷凍サイクルにおける冷媒の効果的使用が強く要望されている。
【0004】
上記COの燃焼排ガスからの分離回収には、圧力スイング吸着式(PTS)が使用されている。上記PTSは加圧原料ガスをゼオライトのような吸着物質に通して不純物を吸着分離し、所要純度の目的ガスを得るもので、吸着した不純物ガスは、大気圧または真空圧にして解放除去している。
例えば、高炉熱風炉排ガスより高濃度のCOの分離回収には合成ゼオライトを使用したPTS法による回収が使用されている。
なお、この場合は通常の燃焼排ガスよりも高濃度のCOを原料とし、更に上記したように分離効率の高い合成ゼオライトを使用した真空脱離PTS法の採用により価格競争力のあるCOの回収を可能にしているが、上記吸着分離に要する動力費は分離後の液化COを得るまでの動力費と同等のエネルギを必要とし、吸着分離に要する動力費の削減が要望されている。
なお、吸着剤として活性炭あるいは合成ゼオライトを使用するPTS分離の場合、原料ガス中の水分は吸着成分であり、COの吸着を阻害する。従って前処理として原料ガスの除湿が必要となり、排熱を利用した除湿プロセスも必要とされている。
【0005】
また、回収したCOを冷媒として冷凍機に使用する場合、COの臨界点は低いため上記冷凍サイクルは臨界点を越えた超臨界域を含むサイクルを形成することになり、凝縮過程が高温の顕熱変化を求めるため、この温熱を効率よく取り出す冷熱を必要とするが、これらの冷熱も前記COとともに系内排ガスより取り出した排熱により駆動するケミカルヒートポンプにより得られるようにして、この冷熱の使用によりCO超臨界冷凍サイクルとして充分に機能させ、高密度エネルギの媒体の生成と多用途熱供給システムの形成が求められている。
【0006】
上記した燃焼排ガスよりCOを回収し、ガス状、液状または固体状ドライアイスとして回収する提案は従来より種々なされている。
特開2000−24454公報には「燃焼排ガスの処理方法及び装置」なる提案が開示されている。
前記提案の概略構成を図5を参照して下記に説明する。
本装置は、燃焼排ガス中の炭酸ガスをLNG冷熱を有効利用してドライアイスとして固化した後に分離・回収する燃焼排ガスの処理方法とその装置に関するものである。
【0007】
その構成は、ボイラ60より排出された燃焼排ガス61中の水分を冷却して水分を凝集する水分凝集手段62と、燃焼排ガス中の残存水分を−30℃以下の低温で冷却して氷63aを固化する氷固化装置63と、炭酸ガス固化装置64と、水分を完全に除去した燃焼排ガス61中の炭酸ガス(ドライアイス)65と低温の炭酸ガスを含まない排ガス66とを分離する固気分離器67と、分離されたドライアイス65を加圧して液化する炭酸ガス液化装置68と、液化炭酸ガスを69を貯蔵する液化炭酸貯槽70と、前記LNGを液化して冷熱を得る図示していない熱交換器とより構成している。
【0008】
上記提案は前記LNGの気化熱を冷熱として有効利用を図ったもので、燃焼排ガス中の水分を氷として固化・分離後に、さらに燃焼排ガス中の炭酸ガスをドライアイスとして固化または液化したものであるが、このような大きな気化熱を持つ燃料使用の場合は特定の場合に限定され、一般の都市ガスを使用する場合には適用不可の問題がある。
【0009】
一方、CO液化装置については、原料のCOを外部へ逃すことの少ない高収率のCO液化装置に関する提案が特開平10−59706号公報に開示されている。該提案は図6に示すように、
COを貯留するガスホルダ81からの低圧ガスライン83は炭酸ガス中の不純物を除去する水洗筒82を介して二段圧縮機よりなる炭酸ガス圧縮機84の低圧側吸入口84aに接続されていて、圧縮機84の低圧側吐出口84bは中圧ガスライン86により脱臭装置85を介して前記圧縮機の高圧側吸入口84cに接続され、同吐出口84dは高圧ガスライン87により除湿装置88を介して冷却装置89の炭酸ガス入り口89aに接続されている。
【0010】
冷却装置89は高圧ガスライン87からのCOを冷却することにより、凝縮液化せしめ、例えば不図示の冷凍機からの冷却装置89内の冷媒コイル89c内に送られる冷媒により炭酸ガスの凝縮液化をしている。
冷却装置89の液化CO出口89bに一端が接続された高圧液ライン90の他端は液化COを貯留する真空断熱タンク91の下部には開閉弁92を備える液化COの供給ライン93の一端が接続されている。
前記真空断熱タンク91内の気相部位に一端が臨む戻りガスライン94の他端を前記圧縮機84の低圧側吐出口84bと脱臭装置85間の中圧ガスライン86に接続する。
上記構成により、圧縮機84で圧縮されたCOは冷却装置89で凝縮、液化され液化COになり、真空断熱タンク91に送られ貯留される。
同タンク内に液化COが送り込まれることによりタンク内の気相圧力が所定値を越えると圧力調整器96からの信号により戻りガスラインを介してCOは圧縮機の吸入側に還流され、無駄をなくしている。
【0011】
また、従来のCOの液化を含むドライアイス製造工程では、図7に見るように、炭酸ガスの圧縮機100による圧縮前に行なう洗浄塔101による洗浄処理及び脱硫器102による脱硫処理、圧縮後に行なう精製塔103による精製処理、脱湿器104による脱湿処理が(前記提案においてもその一部が散見される)必要とし、これらの処理の後、高圧高温COを氷冷却器105、CO冷却器106と、過冷却器107により過冷却状超臨界COを形成させ、該超臨界COの液に近い高密度の超臨界ガスをCO液化タンク108に貯留後、減圧弁109を介してドライアイスプレス機110に導入し、該ドライアイスプレス機で約−78.5℃のドライアイスを生成するとともに、前記減圧の際発生した低温COを前記過冷却器107の熱交換器を経由後圧縮機100に還流させる構成にしてある。
上記従来のドライアイス生成システムにおいては、原料が粗ガスのため、前記したように圧縮前後に洗浄塔101、脱硫器102、精製塔103、脱湿器104の設備コストを必要とする上、原料のCO粗ガス111に対して39.4%の低収率である。
そのため、上記設備コストを低コストに抑えるとともに、省エネルギ性の高い高収率のドライアイス製造方法とその装置の実現が要望されている。
【0012】
また、回収されたCOを冷媒として使用したCO冷凍サイクルによる、高密度エネルギ媒体を供給する多用途化システムについては、下記構成の蓄熱システムがある。
上記システムは、COを冷媒とする超臨界COサイクルと、該サイクルのガスクーラを形成する空冷冷凍機ユニットと、前記超臨界冷凍サイクルの前段膨張手段により圧力約9.2Kg/cm、温度−40℃の低圧液化COを得る液化CO生成部と、前記液化COを後段膨張手段により三重点圧力付近まで降下させる蒸発器とより構成し、該蒸発器に設けた熱交換器を介して間接接触により冷熱を供給して約−40℃のR22の低温冷媒液を得るとともに、前記蒸発器より蒸発ガスが還流する構成にしてある。
この場合は液化COの三重点以下の降温により固化の問題があるため、圧力降下は三重点付近に押さえ、ドライアイスは使用しないため、冷却温度も三重点温度の−56.6℃以上に押さえられ、負荷側の伝熱媒体の温度は−40℃以下には冷却され得ない状況にある。
【0013】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたもので、
火力発電所や焼却施設、工場等の事業所より排出する100〜200℃前後の低温排熱を使用して、ケミカルヒートポンプを介しての冷熱生成と、該冷熱と前記排熱との複合化により高率化させた低濃度COの吸着分離プロセスと、
吸着分離されたCOを冷媒として使用して液化COドライアイスの生成と液化COやドライアイス等密度のエネルギ媒体の生成や三重点以下の低温冷熱を提供する等の多用途CO冷凍サイクルを形成する、排出COの回収システムの提供を目的とするものである。
【0014】
【課題を解決するための手段】
そこで、本発明の排出COの回収システムは、
火力発電所や焼却施設、工場等の事業所より排出する排ガスの100〜200℃前後の低温排熱と該排熱を使用して作動するケミカルヒートポンプより得られる冷熱とを使用してなる排出COの回収システムにおいて、前記排ガスとともに排出される低濃度のCOの回収を変形圧力スイング吸着により行う第1の手段と、
回収したCOを前記冷熱により作動する液化器を備えたCO超臨界冷凍サイクルの冷媒に使用して、複数段の膨張手段の前段において液化COを形成し後段の膨張手段により三重点以下の低温冷熱を形成する冷熱生成手段(第2の手段)とにより構成したことを特徴とする。
【0015】
上記本発明は、火力発電所や焼却施設、工場等の事業所より排出する100〜200℃前後の低温排熱系における、排ガスとともに排出される低濃度COの回収において、前記低温排熱より吸着式ヒートポンプ等のケミカルヒートポンプを介して冷熱を生成させ、生成された冷熱及び前記排熱による吸着促進及び脱着促進手段を加味した吸着分離手段により前記低濃度COの回収を圧力スイング吸着(PTS)を変形した吸脱着により効率的に行なわせ、
回収した低濃度COを冷凍サイクルの冷媒として使用するとともに、前記ケミカルヒートポンプにより形成された冷熱を圧縮機の下流に設けた液化器(ガスクーラ)へ導入させ、前記冷凍サイクルにより形成されたCO超臨界ガスの顕熱を吸収させて、その下流側に設けた複数段の断熱膨張手段により三重点手前までの圧力降下により液化COを得て、前記液化COの形成についで、その下流の膨張手段により三重点圧力以下の圧力降下によりドライアイスまたはそれの昇華熱による低温冷熱源を形成する低温冷熱を得て、本発明の目的である多用途冷熱の供給を可能とする排出COの回収システムを提案するものである。
【0016】
則ち上記発明により低温排熱系内で発生する低温排熱を使用して、該排熱とともに排出される排ガス中より低濃度COを前記排熱及び排熱により形成された冷熱の複合使用により効率的に回収し、回収したCOを冷凍サイクルのオゾン層破壊、地球温暖化等を解決する冷媒として使用し、前記低温排熱により形成された冷熱によりCO使用による高圧側の超臨界域の顕熱を吸収させ、複数段の膨張手段により液化CO、ドライアイス又はサイクル形成可能の低温冷熱源を得る等の回収COの高率的多用途熱供給システムを形成してある。
【0017】
前記本発明の排出COの回収システムにおける、低温冷熱によりドライアイスが生成される構成が好ましい。
【0018】
または、前記低温冷熱形成は、三重点以下に降圧した液化COの不凍液への直接噴き込みによる、三重点以下の低圧CO温度で作動する低温媒体の形成を冷凍サイクルに設けた構成が好ましく、従来不可能であった三重点以下の−56.6℃以下の低温冷熱に対しても、三重点以下の圧力降下に対応する−78.9℃までの低温冷熱を低温媒体より、サイクル形成のなかで得ることが出来、低温冷熱の供給にドライアイス以外の多様性を持たせることができる。
【0019】
また、前記低温冷熱形成は、三重点以下に降圧した低圧COの不凍液への直接噴き込みにより形成された低温媒体により生成するのが良い。
則ち、液化COは三重点以下の圧力降下により固化を開始してドライアイスの形成過程に移行するが、この三重点以下の低圧COを不凍液中に噴き込めば昇華熱の直接伝播により不凍液は冷却され圧力低下したCOの温度と等温度の約−79℃までの低温媒体を形成させるとともに、気化した低温COは冷凍サイクルの低段圧縮機の吸入側へ還流させ、冷凍サイクルを形成する。
なお、上記直接接触により還流する気化したCOの中に前記不凍液の蒸発ガスは混入するが、混入ガスはサイクルの後工程で凝縮させ除去する。
また、低温媒体を形成する不凍液の中にはCOが混入されるが、混入により本来熱伝導率の低い当該不凍液の熱伝導率は改善され、効率的熱交換を可能にする利点を持つ。
【0020】
また、前記本発明の排出COの回収システムにおける、第1の手段である前記変形圧力スイング吸着手段は、前記排熱により形成された冷熱を利用した吸着促進手段と排熱を利用した脱着促進手段とよりなる温度スイング吸着(TSA)を、圧力スイング吸着(PTS)に付加する構が好ましい。
【0021】
則ち、吸着分離を高分子合成のゼオライトを使用した真空離脱型の圧力スイング吸着(PTS)に冷熱による吸着促進手段と、加熱(排熱利用)による脱着促進手段とよりなる温度スイング吸着(TSA)を加味した温度圧力PTSA方式により高率的な低濃度COの回収を可能にしたものである。
なお、前記吸着促進手段に使用する冷熱は、系内に排出された100〜200℃前後の低温排熱よりケミカルヒートポンプを介して生成されたものを使用する構成にしてある。
なお、前記圧力スイング吸着(PTS)は吸着剤への押し込み機と吸着剤より吸着した不純物を離脱させる真空ポンプと複数の吸着装置を設け、該吸着装置に内蔵させたゼオライト等の吸着物質により前記押し込み機により加圧された加圧原料ガスより不純物を吸着分離させ、吸着分離した不純物は真空ポンプにより真空離脱させるようにしたものである。
【0022】
前記本発明の排出COの回収システムにおける、
前記第2の手段によるCO超臨界冷凍サイクルは、2段圧縮2段膨張冷凍サイクルにより構成し、第1段目断熱膨張手段により三重点手前までの圧力降下により液化COを形成し、第2段目断熱膨張手段により三重点以下の圧力降下によりドライアイス又は低温冷熱源を形成することが好ましい。
【0023】
則ち本発明における冷凍サイクルは、2段圧縮2段膨張冷凍サイクルにより構成し、高圧側冷媒の全量を前段の膨張手段により中間圧力である三重点の手前の圧力まで減圧し、ついで、中間冷却器底部の中間圧力液を後段の膨張手段により減圧して蒸発器へ流入させるようにしたもので、
前記前段の膨張段階で液化COを形成させ、後段の膨張段階で三重点圧力以下に降圧させドライアイス又は低温冷熱源をドライアイスプレス機、または前記蒸発器に形成させたものである。
【0024】
則ち、後段の膨張手段の下流に設けた蒸発器内に不凍液を充填して置き、該不凍液内に前記膨張手段を介しての三重点以下の圧力への降圧により形成された固化過程にある低温低圧COを投入し直接接触により低温媒体を形成する。
そのため、蒸発器内の低温媒体は噴き込まれた三重点圧力以下に降圧したCOにより、その昇華熱により冷却され約−79℃までの低温の冷熱源を形成する。
なお、噴き込まれたCOは気化して低段圧縮機へ還流しサイクルを形成する。
【0025】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は、本発明の排出COの回収システムの概略構成を示すブロック図で、図2は図1の温度圧力スイング吸着(PTSA)の概略構成を示す図で、図3は図1のドライアイス製造過程を示すブロック図で、図4は図1のCO超臨界冷凍サイクルのモリエル線図である。
【0026】
図1に示すように、本発明の排出COの回収システムは、
火力発電所や焼却施設、工場等の事業所より排出される低温排ガスを対象とし、該排熱に含まれる低濃度COを回収し、回収した回収COを冷媒として駆動するCO超臨界冷凍サイクルを介して、液化COやドライアイス又は低温冷熱を供給する多用途冷熱システムを形成したもので、
その概略構成は、前記低温排熱30より冷熱を生成する排熱駆動ケミカルヒートポンプ31と、前記低温排ガスに含まれる低濃度CO回収分離を行う吸着分離手段である温度圧力スイング吸着(PTSA)20と、回収CO26を冷媒として駆動するCO超臨界冷凍サイクル11とより構成する。
【0027】
則ち、低温排ガス排出系で排出された100〜200℃前後の温度よりなる低温排熱30は該低温排熱で駆動可能の吸着式ヒートポンプよりなるケミカルヒートポンプ31に供給され、約−5〜5℃の冷熱31aを形成する。
上記して形成された冷熱31aは、図に示すように温度圧力スイング吸着(PTSA)20に前記低温排熱30とともに供給する一方、CO超臨界冷凍サイクル11のCO超臨界領域の顕熱冷却用に供給する構成にしてある。
【0028】
前記温度圧力スイング吸着(PTSA)20は、前記低温排ガス25に含まれる低濃度COを吸着分離により回収する装置で、図2に示すように吸着21aと脱着21bとスイングして、内蔵するゼオライト等の吸着剤に排ガス中の不純物を吸着し又は吸着した不純物を脱着するする吸脱着機構21と、
前記吸脱着機構21の吸着21aにおいて吸着剤に低濃度COを含む排ガス25aを供給してブロア22aにより加圧して送り込む原料ガス供給部22と、前記吸脱着機構21の吸着21aにおいて冷熱31aを供給して吸着促進をする吸着促進部23aと、
前記吸脱着機構21の脱着21bにおいて低温排熱30を供給加熱して脱着促進をする脱着促進部23bと、
前記吸脱着機構21の脱着21bにおいて前記排熱により加熱され脱着促進された吸着剤より真空離脱部24aを介して不純物を真空離脱させるとともに分離回収したCOを送出する回収CO26の送出部24とより構成する。
【0029】
上記構成により、従来のブロアによる圧入と真空による離脱を交互に行うようにした、圧力スイング吸着(PTS)の吸着時には前記圧入に吸着促進部23aを介して冷熱31aにより吸着を促進効率化し、
脱着時には前記真空による離脱に加え、前記脱着促進部23bを介して低温排熱30により脱着を促進効率化させ、
従来の圧力スイング吸着(PTS)に冷熱と排熱による温度スイング吸着(TSA)を加味したもので、高い効率のもとに低濃度COの分離を行い排ガス25aより回収CO26を得ている。
【0030】
前記CO超臨界冷凍サイクル11は、図1に示すように、2段圧縮2段膨張冷凍サイクルによりなり、低段圧縮機12a、後段圧縮機12b、ガスクーラ13a、高段二相流膨張機14a、中間冷却器15、低段二相流膨張機14b、蒸発器16とより構成する。
【0031】
そして、図4に示すモリエル線図に見るように、
前記低段圧縮機12aで導入された回収CO(1)、及び蒸発器16からの還流ガス(10)は等エントロピ線に添い三重点圧力以上の中間圧力に断熱圧縮される。中間冷却器15で(2)より飽和状態(3)まで冷却された後、高段圧縮機12bで断熱圧縮を続け、超臨界圧7.38MPa以上に圧縮され超臨界状態(4)になり高温高圧圧縮冷媒を形成する。ついで、ガスクーラ13aで冷熱31aにより顕熱冷却され超臨界状態(5)を形成する。
上記形成された超臨界COは高段二相流膨張機14aよりなる断熱膨張手段により中間圧力である三重点の手前の圧力(6)まで減圧して中間冷却器15に投入され液化CO18を形成する。ついで、(7)を経て中間冷却器15より低段二相流圧縮機14bよりなる断熱膨張手段により三重点以下の圧力(8)まで降圧させ、ドライアイス19または低温冷熱源17を形成させる。
【0032】
上記低温冷熱源17の形成は、低段二相流膨張機14bの下流に設けた蒸発器16内に不凍液16aを充填して置き、該不凍液内に前記膨張手段を介しての三重点以下の圧力への降圧により形成された固化過程にある低温低圧COを噴き込み昇華熱の直接接触により冷却され前記低温低圧COの温度と同等の低温媒体を形成する。
そのため、蒸発器16内の不凍液16aは噴き込まれた三重点圧力以下に降圧したCOにより、その昇華熱によって直接接触により冷却され、約−79℃までの低温媒体を効率的に形成する。形成された低温媒体を冷熱源17へ還流させ−79℃近く迄の冷熱を供給できる。
なお、噴き込まれ低圧COは気化して低段圧縮機12aへ還流しサイクルを形成する。
【0033】
なお、上記直接接触により還流する気化したCOの中には、前記不凍液の蒸発ガスが混入するが、混入ガスはサイクルの後工程で凝縮させ除去する。
また、低温媒体を形成する不凍液の中にはCOが混入されるが、混入により本来熱伝導率の低い当該不凍液の熱伝導率は改善され、効率的熱交換を可能にする利点を持つ。
【0034】
また、前記ドライアイス19の生成は、図3に示すように、前記CO超臨界冷凍サイクル11の低段二相流膨張機14bの下流に前記蒸発器16に代わるドライアイスプレス機35を設け、該プレス機35で固化されドライアイス19を生成する。前記プレスの際発生する低温COガスは低段圧縮機12aへ還流する。
【0035】
なお、前記二相流膨張機14a、14bは、膨張タービンで形成され膨張の際はCOを断熱膨張させる。なお、直結した発電機G(図4参照)を作動させ動力回収ができるようにしてある。
【0036】
また、前記液化CO18は低温冷熱源17をサイクル形成のなかで生成して略−79℃に近い冷熱を供給でき、またはドライアイスの生成により、冷熱の貯蔵等の冷熱利用の多様化を図ることができる。
【0037】
【発明の効果】
上記構成により、本発明は下記効果を奏する。
低温排熱を利用して、冷熱への変換と、変換した冷熱と前記排熱との複合利用により低濃度COの効率的回収を行なわせ、前記回収したCOを超臨界冷凍サイクルの冷媒として使用し、オゾン層保護、地球温暖化防止に貢献するとともに、液化COやドライアイス等の高密度エネルギの製造プロセス、及び−70℃付近の低温冷熱源の提供を可能とした。
【図面の簡単な説明】
【図1】 本発明の排出COの回収システムの概略構成を示すブロック図である。
【図2】 図1の温度圧力スイング吸着(PTSA)の概略構成を示すブロック図である。
【図3】 本発明のドライアイス製造装置の概略構成を示すブロック図である。
【図4】 図1のCO液化サイクルのモリエル線図である。
【図5】 従来の燃焼ガスの処理方法の一実施例を示すブロック図である。
【図6】 従来のCO液化装置の概略構成を示す図である。
【図7】 従来のCO粗ガス使用の場合のドライアイス製造装置の概略構成を示すブロック図である。
【符号の説明】
11 CO超臨界冷凍サイクル
12a 低段圧縮機
12b 高段圧縮機
13a ガスクーラ
14a 高段二相流膨張機
14b 低段二相流膨張機
15 中間冷却器
16 蒸発器
16a 不凍液
17 低温冷熱源
18 液化CO
19 ドライアイス
20 温度圧力スイング吸着(PTSA)
21 吸脱着機構
21a 吸着
21b 脱着
22 原料ガス供給部
22a ブロア
23a 吸着促進部
23b 脱着促進部
24 送出部
24a 真空離脱部
25 低温排ガス
26 回収CO
30 低温排熱
31 排熱駆動ケミカルヒートポンプ
31a 冷熱
35 ドライアイスプレス機
[0001]
BACKGROUND OF THE INVENTION
The present invention uses low-temperature exhaust heat of about 100 to 200 ° C. of exhaust gas discharged from establishments such as thermal power plants, incineration facilities, factories, etc., and generates cold heat through a chemical heat pump, and the cold heat and exhaust heat. A low-concentration CO 2 adsorption separation process in which a composite process is formed by
Exhaust CO comprising a CO 2 supercritical refrigeration cycle that forms a low-temperature cold heat source with a low-temperature medium having a temperature substantially equal to the temperature of liquefied CO 2 , dry ice, or low-pressure CO 2 below the triple point from adsorbed and separated CO 2 This relates to the second recovery system.
[0002]
[Prior art]
Natural refrigerants are expected from the regulation of fluorocarbon refrigerants for protection of the global environment, and in particular, the presence of CO 2 having an ozone depletion coefficient of zero and a global warming coefficient of 1 is drawing attention.
In other words, regarding global warming, the development of a refrigerant with a low global warming potential is strongly demanded from the viewpoint of global warming as compared with the fluorocarbon refrigerant having a global warming potential several thousand times that of CO 2. It is expected that CO 2 that exists in large quantities in nature instead of the refrigerant will be used as the refrigerant.
On the other hand, CO 2 is recognized as a medium for storing and transporting cold energy with high-density energy, and its use is diversified. For its recovery, it is required to increase the rate of the low-concentration CO 2 recovery process. In addition, there is a strong demand from the viewpoint of further application to industrial sectors such as consumer and transportation, as well as contributing to the construction of energy-saving systems.
[0003]
In other words, while aiming to effectively use low-temperature exhaust heat that has been in the disposable state of around 100-200 ° C, which is discharged from business sites such as thermal power plants, incineration facilities, and factories, global environmental problems, especially global warming From the standpoint of prevention, there is a strong demand for the reduction and recovery of atmospheric CO 2 emissions and the effective use of refrigerant in the refrigeration cycle of recovered CO 2 .
[0004]
A pressure swing adsorption type (PTS) is used for the separation and recovery of the CO 2 from the combustion exhaust gas. The PTS is a process in which a pressurized raw material gas is passed through an adsorbing substance such as zeolite to adsorb and separate impurities to obtain a target gas having a required purity. The adsorbed impurity gas is released and removed at atmospheric pressure or vacuum pressure. Yes.
For example, recovery by PTS method using synthetic zeolite is used for separation and recovery of CO 2 having a higher concentration than blast furnace hot stove exhaust gas.
Incidentally, the CO 2 in a higher concentration than the normal flue gas in this case as a raw material, further the CO 2 with employing the price competitiveness of the vacuum desorption PTS method using a high separation efficiency synthetic zeolite as above Although recovery is possible, the power cost required for the adsorption separation requires energy equivalent to the power cost for obtaining the liquefied CO 2 after separation, and reduction of the power cost required for the adsorption separation is desired.
In the case of PTS separation using activated carbon or synthetic zeolite as an adsorbent, moisture in the raw material gas is an adsorbing component and inhibits CO 2 adsorption. Therefore, it is necessary to dehumidify the source gas as a pretreatment, and a dehumidification process using exhaust heat is also required.
[0005]
When the recovered CO 2 is used as a refrigerant in a refrigerator, since the critical point of CO 2 is low, the above refrigeration cycle forms a cycle including a supercritical region exceeding the critical point, and the condensation process is performed at a high temperature. In order to determine the sensible heat change, it is necessary to cool the heat efficiently. The cold heat is obtained by a chemical heat pump driven by exhaust heat extracted from the exhaust gas in the system together with the CO 2. There is a demand for the production of a high-density energy medium and the formation of a versatile heat supply system that can function sufficiently as a CO 2 supercritical refrigeration cycle by using cold heat.
[0006]
There have been various proposals for recovering CO 2 from the above-described combustion exhaust gas and recovering it as gaseous, liquid or solid dry ice.
Japanese Laid-Open Patent Publication No. 2000-24454 discloses a proposal “Method and apparatus for treating flue gas”.
The schematic configuration of the proposal will be described below with reference to FIG.
This apparatus relates to a combustion exhaust gas treatment method and apparatus for separating and recovering carbon dioxide in combustion exhaust gas after solidifying it as dry ice using LNG cold heat.
[0007]
The structure is composed of a moisture aggregating means 62 for aggregating moisture by cooling the moisture in the combustion exhaust gas 61 discharged from the boiler 60, and cooling the residual moisture in the combustion exhaust gas at a low temperature of −30 ° C. or lower to make the ice 63a. Solid-gas separation for separating the solidifying ice solidifying device 63, the carbon dioxide solidifying device 64, the carbon dioxide gas (dry ice) 65 in the combustion exhaust gas 61 from which moisture has been completely removed, and the exhaust gas 66 containing no low-temperature carbon dioxide gas. A unit 67, a carbon dioxide gas liquefying device 68 for pressurizing and liquefying the separated dry ice 65, a liquefied carbon dioxide storage tank 70 for storing liquefied carbon dioxide 69, and liquefying the LNG to obtain cold heat (not shown) It consists of a heat exchanger.
[0008]
The above proposal is to effectively use the heat of vaporization of the LNG as a cold heat, solidified or separated moisture in the combustion exhaust gas as ice, and further solidified or liquefied the carbon dioxide gas in the combustion exhaust gas as dry ice. However, the use of fuel having such a large heat of vaporization is limited to a specific case, and there is a problem that cannot be applied when using general city gas.
[0009]
On the other hand, as for the CO 2 liquefaction apparatus, Japanese Patent Laid-Open No. 10-59706 discloses a proposal relating to a high-yield CO 2 liquefaction apparatus that hardly releases CO 2 as a raw material to the outside. The proposal is shown in FIG.
The low-pressure gas line 83 from the gas holder 81 storing CO 2 is connected to the low-pressure side suction port 84a of the carbon dioxide gas compressor 84 composed of a two-stage compressor through a water washing cylinder 82 that removes impurities in the carbon dioxide gas. The low pressure side discharge port 84b of the compressor 84 is connected to the high pressure side suction port 84c of the compressor via the deodorizing device 85 by the medium pressure gas line 86, and the discharge port 84d is connected to the dehumidifier 88 by the high pressure gas line 87. And connected to a carbon dioxide gas inlet 89 a of the cooling device 89.
[0010]
The cooling device 89 cools CO 2 from the high-pressure gas line 87 to condense and liquefy it. For example, the refrigerant sent into the refrigerant coil 89c in the cooling device 89 from a refrigerator (not shown) condenses and liquefies carbon dioxide gas. doing.
Supply line 93 of the liquefied CO 2 and the other end of the liquefied CO 2 high-pressure liquid line 90 having one end connected to the outlet 89b is at the bottom of the vacuum insulated tank 91 for storing liquefied CO 2 with the opening and closing valve 92 of the cooling device 89 One end is connected.
The other end of the return gas line 94 whose one end faces the gas phase portion in the vacuum heat insulation tank 91 is connected to an intermediate pressure gas line 86 between the low pressure side discharge port 84 b of the compressor 84 and the deodorizing device 85.
With the above configuration, CO 2 compressed by the compressor 84 is condensed and liquefied by the cooling device 89 to be liquefied CO 2 , and is sent to the vacuum heat insulation tank 91 and stored.
When liquefied CO 2 is sent into the tank and the gas phase pressure in the tank exceeds a predetermined value, CO 2 is returned to the suction side of the compressor via a return gas line by a signal from the pressure regulator 96, Eliminate waste.
[0011]
Further, in the conventional dry ice production process including liquefaction of CO 2 , as shown in FIG. 7, the washing treatment by the washing tower 101 and the desulfurization treatment by the desulfurizer 102 performed before the compression by the compressor 100 of carbon dioxide gas, after the compression The purification process performed by the purification tower 103 and the dehumidification process performed by the dehumidifier 104 are required (some of which are also found in the above proposal). After these processes, the high-pressure high-temperature CO 2 is supplied to the ice cooler 105, CO A supercooled supercritical CO 2 is formed by the two cooler 106 and the supercooler 107, and after storing a high density supercritical gas close to the supercritical CO 2 liquid in the CO 2 liquefaction tank 108, the pressure reducing valve 109 The dry ice press machine 110 is used to generate dry ice at about −78.5 ° C., and the low-temperature CO 2 generated during the decompression is passed through the process. The configuration is such that the compressor 100 is refluxed through the heat exchanger of the cooler 107.
In the conventional dry ice production system, since the raw material is a crude gas, the equipment costs of the washing tower 101, the desulfurizer 102, the purification tower 103, and the dehumidifier 104 are required before and after compression as described above, and the raw material It is a low yield of 39.4% with respect to the CO 2 crude gas 111.
Therefore, there is a demand for realizing a high-yield dry ice production method with high energy saving and an apparatus therefor while keeping the facility cost low.
[0012]
Further, by CO 2 refrigeration cycle using recovered CO 2 as the refrigerant, for versatile system for supplying a high-density energy medium, there is a heat storage system having the following constitutions.
The system includes a supercritical CO 2 cycle using CO 2 as a refrigerant, an air-cooled refrigerator unit forming a gas cooler of the cycle, and a pressure of about 9.2 Kg / cm 2 , a temperature by a pre-stage expansion means of the supercritical refrigeration cycle. A liquefied CO 2 generator that obtains low-pressure liquefied CO 2 at −40 ° C. and an evaporator that lowers the liquefied CO 2 to near the triple point pressure by means of subsequent expansion means, and a heat exchanger provided in the evaporator Then, cold heat is supplied through indirect contact to obtain a low-temperature refrigerant liquid R22 of about −40 ° C., and evaporative gas is recirculated from the evaporator.
In this case, since there is a problem of solidification due to a temperature drop below the triple point of liquefied CO 2 , the pressure drop is kept near the triple point and dry ice is not used, so the cooling temperature is also above the triple point temperature of −56.6 ° C. The temperature of the heat transfer medium on the load side cannot be cooled below -40 ° C.
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems,
By using low-temperature exhaust heat of about 100 to 200 ° C. discharged from establishments such as thermal power plants, incineration facilities, factories, etc., by generating cold heat through a chemical heat pump and combining the cold heat and the exhaust heat An adsorption separation process of low-concentration CO 2 at a high rate;
Versatile CO 2 refrigeration such as to provide a low-temperature cold generating and below the triple point of the liquefied CO 2 dry ice generation and liquefaction CO 2 or dry ice, etc. The density of the energy medium using a CO 2 adsorbed separated as a refrigerant The purpose is to provide an exhaust CO 2 recovery system that forms a cycle.
[0014]
[Means for Solving the Problems]
Therefore, the exhaust CO 2 recovery system of the present invention is
Exhaust CO that uses low-temperature exhaust heat around 100 to 200 ° C of exhaust gas discharged from establishments such as thermal power plants, incineration facilities, and factories, and cold heat obtained from chemical heat pumps that operate using the exhaust heat In the recovery system of No. 2, first means for performing recovery of low concentration CO 2 discharged together with the exhaust gas by deformation pressure swing adsorption,
The recovered CO 2 is used as a refrigerant for a CO 2 supercritical refrigeration cycle equipped with a liquefier that operates by cold, and liquefied CO 2 is formed in the front stage of the multi-stage expansion means, and below the triple point by the subsequent stage expansion means. And a cold heat generating means (second means) for forming a low-temperature cold heat.
[0015]
The above-mentioned present invention is based on the low-temperature exhaust heat in the recovery of low-concentration CO 2 discharged together with exhaust gas in a low-temperature exhaust heat system of about 100 to 200 ° C. discharged from establishments such as thermal power plants, incineration facilities, and factories. Chilled heat is generated through a chemical heat pump such as an adsorption heat pump, and the recovery of the low-concentration CO 2 is performed by pressure swing adsorption (PTS) using an adsorption separation means that takes into account the generated cold heat and adsorption promotion and desorption promotion means by the exhaust heat. ) Efficiently by deformed adsorption / desorption,
The recovered low-concentration CO 2 is used as a refrigerant for the refrigeration cycle, and cold heat formed by the chemical heat pump is introduced into a liquefier (gas cooler) provided downstream of the compressor, and CO 2 formed by the refrigeration cycle. by absorbing the sensible heat of the supercritical gas, to obtain a liquefied CO 2 by the pressure drop to just before the triple point by adiabatic expansion means in a plurality of stages provided on the downstream side, and then the formation of the liquified CO 2, the downstream Exhaust CO 2 that provides low-temperature cold heat that forms a low-temperature cold heat source by dry ice or its sublimation heat by a pressure drop below the triple point pressure by the expansion means of the present invention, and enables the supply of versatile cold heat that is the object of the present invention A collection system is proposed.
[0016]
That is, by using the low-temperature exhaust heat generated in the low-temperature exhaust heat system according to the above invention, the combined use of the low-temperature CO 2 formed by the exhaust heat and the exhaust heat from the exhaust gas discharged together with the exhaust heat. by efficiently collecting, using the recovered CO 2 ozone depletion of the refrigeration cycle, as the refrigerant to solve global warming and the like, the high pressure side of the supercritical by CO 2 used by cold formed by the low-temperature waste heat A high-efficiency versatile heat supply system for recovered CO 2 is formed, such as liquefied CO 2 , dry ice, or a low-temperature cold-heat source that can be cycled is formed by a plurality of stages of expansion means.
[0017]
In the exhaust CO 2 recovery system of the present invention, a configuration in which dry ice is generated by low-temperature cold heat is preferable.
[0018]
Alternatively, the low-temperature cold heat formation preferably has a configuration in which a refrigeration cycle is provided with formation of a low-temperature medium that operates at a low-pressure CO 2 temperature below the triple point by directly injecting liquefied CO 2 that has been depressurized below the triple point into the antifreeze. Cycle formation of low-temperature cooling to -78.9 ° C corresponding to a pressure drop below the triple point from a low-temperature medium, even for low-temperature cooling below -56.6 ° C below the triple point, which was impossible in the past It is possible to obtain a variety of materials other than dry ice in the supply of low-temperature cold heat.
[0019]
In addition, the low-temperature cold heat formation is preferably generated by a low-temperature medium formed by direct injection of low-pressure CO 2 whose pressure is lowered below the triple point into the antifreeze.
In other words, liquefied CO 2 begins to solidify due to a pressure drop below the triple point and shifts to the formation process of dry ice. If low pressure CO 2 below the triple point is injected into the antifreeze solution, direct propagation of sublimation heat occurs. The antifreeze is cooled to form a low-temperature medium up to about −79 ° C., which is equal to the temperature of CO 2 whose pressure has dropped, and the vaporized low-temperature CO 2 is refluxed to the suction side of the low-stage compressor of the refrigeration cycle. Form.
Note that the evaporated gas of the antifreeze liquid is mixed in the vaporized CO 2 refluxed by the direct contact, but the mixed gas is condensed and removed in a later step of the cycle.
In addition, CO 2 is mixed in the antifreeze forming the low-temperature medium. However, the heat conductivity of the antifreeze having a low heat conductivity is improved by the mixing, which has an advantage of enabling efficient heat exchange.
[0020]
Further, in the exhaust CO 2 recovery system of the present invention, the deformation pressure swing adsorption means as the first means is an adsorption promotion means using the cold formed by the exhaust heat and a desorption promotion using the exhaust heat. It is preferable to add temperature swing adsorption (TSA) comprising means to pressure swing adsorption (PTS).
[0021]
In other words, adsorption separation is performed by vacuum swing type pressure swing adsorption (PTS) using polymer synthesized zeolite, and temperature swing adsorption (TSA) comprising adsorption promotion means by cold heat and desorption promotion means by heating (utilizing exhaust heat). ) With a high temperature and pressure PTSA method, which enables highly efficient recovery of low concentration CO 2 .
In addition, the cooling heat used for the said adsorption | stimulation promotion means is set as the structure which uses what was produced | generated via the chemical heat pump from the low-temperature waste heat of about 100-200 degreeC discharged | emitted in the system.
The pressure swing adsorption (PTS) is provided with a pusher into the adsorbent, a vacuum pump for removing impurities adsorbed from the adsorbent and a plurality of adsorbers, and the adsorbent such as zeolite incorporated in the adsorber. Impurities are adsorbed and separated from the pressurized source gas pressurized by the pusher, and the adsorbed and separated impurities are separated from the vacuum by a vacuum pump.
[0022]
In the exhaust CO 2 recovery system of the present invention,
The CO 2 supercritical refrigeration cycle by the second means is constituted by a two-stage compression and two-stage expansion refrigeration cycle, and the first stage adiabatic expansion means forms liquefied CO 2 by a pressure drop before the triple point, It is preferable to form dry ice or a low-temperature cold heat source by a pressure drop below the triple point by the second stage adiabatic expansion means.
[0023]
In other words, the refrigeration cycle in the present invention is constituted by a two-stage compression and two-stage expansion refrigeration cycle, and the entire amount of the high-pressure side refrigerant is reduced to a pressure just before the triple point, which is an intermediate pressure, by the preceding stage expansion means. The intermediate pressure liquid at the bottom of the vessel is depressurized by the expansion means at the subsequent stage and flows into the evaporator.
Liquefied CO 2 is formed in the previous stage of expansion, and the pressure is reduced to below the triple point pressure in the subsequent stage of expansion, and dry ice or a low-temperature cold heat source is formed in the dry ice press machine or the evaporator.
[0024]
In other words, the antifreeze is filled in an evaporator provided downstream of the subsequent expansion means, and is in a solidification process formed by reducing the pressure to a pressure below the triple point through the expansion means in the antifreeze. Low temperature and low pressure CO 2 is introduced to form a low temperature medium by direct contact.
Therefore, the low-temperature medium in the evaporator is cooled by the sublimation heat by CO 2 that has been lowered below the injected triple point pressure to form a low-temperature heat source up to about −79 ° C.
The injected CO 2 is vaporized and refluxed to the low-stage compressor to form a cycle.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, as long as there is no specific description, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention. .
FIG. 1 is a block diagram showing a schematic configuration of the exhaust CO 2 recovery system of the present invention, FIG. 2 is a diagram showing a schematic configuration of temperature-pressure swing adsorption (PTSA) in FIG. 1, and FIG. FIG. 4 is a block diagram showing the ice production process, and FIG. 4 is a Mollier diagram of the CO 2 supercritical refrigeration cycle of FIG.
[0026]
As shown in FIG. 1, the exhaust CO 2 recovery system of the present invention is
CO 2 supercritical that targets low-temperature exhaust gas discharged from establishments such as thermal power plants, incineration facilities, and factories, recovers low-concentration CO 2 contained in the exhaust heat, and drives the recovered CO 2 recovered as a refrigerant A multi-purpose cooling system that supplies liquefied CO 2 , dry ice or low-temperature cooling through a refrigeration cycle,
The schematic configuration includes an exhaust heat driven chemical heat pump 31 that generates cold from the low temperature exhaust heat 30, and a temperature pressure swing adsorption (PTSA) 20 that is an adsorption separation means for performing low concentration CO 2 recovery separation contained in the low temperature exhaust gas. When, more configuration recovered CO 2 26 with CO 2 supercritical refrigeration cycle 11 for driving as a refrigerant.
[0027]
That is, the low-temperature exhaust heat 30 having a temperature of about 100 to 200 ° C. discharged by the low-temperature exhaust gas exhaust system is supplied to a chemical heat pump 31 including an adsorption heat pump that can be driven by the low-temperature exhaust heat. A cold heat 31a of 0 ° C. is formed.
Cold 31a formed by the above, the temperature pressure swing adsorption, as shown in FIG. (PTSA) while supplied with the low-temperature exhaust heat 30 to 20, the sensible heat of the CO 2 supercritical region of CO 2 supercritical refrigeration cycle 11 It is configured to supply for cooling.
[0028]
The temperature-pressure swing adsorption (PTSA) 20 is an apparatus for recovering low-concentration CO 2 contained in the low-temperature exhaust gas 25 by adsorption separation. As shown in FIG. 2, it swings between adsorption 21a and desorption 21b and incorporates zeolite. An adsorption / desorption mechanism 21 for adsorbing impurities in exhaust gas to an adsorbent such as, or desorbing the adsorbed impurities;
The adsorbent 21a of the adsorption / desorption mechanism 21 supplies an exhaust gas 25a containing low-concentration CO 2 to the adsorbent and pressurizes the adsorbent by a blower 22a, and the adsorbent 21a of the adsorption / desorption mechanism 21 generates cold heat 31a. An adsorption promoting part 23a for promoting adsorption by supplying,
A desorption promoting portion 23b for supplying and heating the low-temperature exhaust heat 30 to promote desorption in the desorption 21b of the adsorption / desorption mechanism 21;
Sending of the recovery CO 2 26 for delivering the CO 2 that said impurities through the vacuum withdrawal portion 24a from the heated desorption promoted adsorbent by the exhaust heat separated and recovered with is vacuum leaving the desorption 21b of the adsorption-desorption mechanism 21 24.
[0029]
With the above configuration, press-fitting with a conventional blower and detachment with a vacuum are alternately performed, and at the time of adsorption of pressure swing adsorption (PTS), the adsorption is accelerated by the cold heat 31a through the adsorption promoting portion 23a, and the efficiency is enhanced.
At the time of desorption, in addition to the separation by the vacuum, the desorption is promoted by the low-temperature exhaust heat 30 through the desorption promoting portion 23b, and the efficiency is increased
This is a combination of conventional pressure swing adsorption (PTS) and temperature swing adsorption (TSA) by cold heat and exhaust heat, separating low concentration CO 2 with high efficiency and obtaining recovered CO 2 26 from the exhaust gas 25a. Yes.
[0030]
As shown in FIG. 1, the CO 2 supercritical refrigeration cycle 11 is a two-stage compression two-stage expansion refrigeration cycle, and includes a low-stage compressor 12a, a rear-stage compressor 12b, a gas cooler 13a, and a high-stage two-phase flow expander 14a. , The intermediate cooler 15, the low-stage two-phase flow expander 14 b, and the evaporator 16.
[0031]
And as seen in the Mollier diagram shown in Figure 4,
The recovered CO 2 (1) introduced by the low-stage compressor 12a and the reflux gas (10) from the evaporator 16 are adiabatically compressed to an intermediate pressure equal to or higher than the triple point pressure along the isentropic line. After being cooled from (2) to the saturated state (3) by the intercooler 15, the adiabatic compression is continued by the high-stage compressor 12b and compressed to a supercritical pressure of 7.38 MPa or more to become the supercritical state (4) and become a high temperature. A high-pressure compressed refrigerant is formed. Next, the gas cooler 13a is sensible heat cooled by the cold 31a to form the supercritical state (5).
The formed supercritical CO 2 is depressurized to a pressure (6) just before the triple point, which is an intermediate pressure, by the adiabatic expansion means including the high-stage two-phase flow expander 14a, and is introduced into the intermediate cooler 15 to be liquefied CO 2. 18 is formed. Then, after passing through (7), the pressure is lowered to the pressure (8) below the triple point by the adiabatic expansion means comprising the low-stage two-phase flow compressor 14b from the intermediate cooler 15 to form the dry ice 19 or the low-temperature cold heat source 17.
[0032]
The low-temperature cold heat source 17 is formed by placing an antifreeze liquid 16a in an evaporator 16 provided downstream of the low-stage two-phase flow expander 14b and placing the antifreeze liquid 16a below the triple point through the expansion means in the antifreeze liquid. Low temperature low pressure CO 2 in the solidification process formed by pressure reduction to the pressure is injected and cooled by direct contact with sublimation heat to form a low temperature medium equivalent to the temperature of the low temperature low pressure CO 2 .
Therefore, the antifreeze liquid 16a in the evaporator 16 is cooled by direct contact with its sublimation heat by the CO 2 pressure lowered below the injected triple point pressure, and efficiently forms a low-temperature medium up to about −79 ° C. The formed low-temperature medium can be refluxed to the cold heat source 17 to supply cold heat close to −79 ° C.
The injected low pressure CO 2 is vaporized and refluxed to the low stage compressor 12a to form a cycle.
[0033]
Note that the evaporated gas of the antifreeze liquid is mixed in the vaporized CO 2 that is refluxed by the direct contact, and the mixed gas is condensed and removed in a later step of the cycle.
In addition, CO 2 is mixed in the antifreeze forming the low-temperature medium. However, the heat conductivity of the antifreeze having a low heat conductivity is improved by the mixing, which has an advantage of enabling efficient heat exchange.
[0034]
In addition, as shown in FIG. 3, the dry ice 19 is generated by providing a dry ice press machine 35 instead of the evaporator 16 downstream of the low-stage two-phase flow expander 14 b of the CO 2 supercritical refrigeration cycle 11. Then, it is solidified by the press machine 35 to produce dry ice 19. The low temperature CO 2 gas generated during the pressing returns to the low stage compressor 12a.
[0035]
The two-phase flow expanders 14a and 14b are formed by an expansion turbine and adiabatically expand CO 2 during expansion. In addition, the power generator G (refer FIG. 4) connected directly is operated so that motive power can be recovered.
[0036]
Further, the liquefied CO 2 18 can generate the low-temperature cold heat source 17 in the cycle formation and supply cold heat close to about −79 ° C., or the generation of dry ice can diversify the use of cold heat such as storage of cold heat. Can be planned.
[0037]
【The invention's effect】
With the above configuration, the present invention has the following effects.
Using low-temperature exhaust heat, conversion to cold heat, and efficient recovery of low-concentration CO 2 by performing combined use of the converted cold heat and the exhaust heat, the recovered CO 2 is used as a refrigerant for a supercritical refrigeration cycle. As well as contributing to protection of the ozone layer and prevention of global warming, it has become possible to provide a manufacturing process of high-density energy such as liquefied CO 2 and dry ice, and a low-temperature cold heat source around −70 ° C.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an exhaust CO 2 recovery system of the present invention.
2 is a block diagram showing a schematic configuration of temperature-pressure swing adsorption (PTSA) in FIG. 1; FIG.
FIG. 3 is a block diagram showing a schematic configuration of the dry ice production apparatus of the present invention.
4 is a Mollier diagram of the CO 2 liquefaction cycle of FIG. 1. FIG.
FIG. 5 is a block diagram showing an embodiment of a conventional combustion gas processing method.
FIG. 6 is a diagram showing a schematic configuration of a conventional CO 2 liquefaction apparatus.
FIG. 7 is a block diagram showing a schematic configuration of a dry ice production apparatus in the case of using conventional CO 2 crude gas.
[Explanation of symbols]
11 CO 2 supercritical refrigeration cycle 12a Low stage compressor 12b High stage compressor 13a Gas cooler 14a High stage two phase flow expander 14b Low stage two phase flow expander 15 Intermediate cooler 16 Evaporator 16a Antifreeze liquid 17 Low temperature cold heat source 18 Liquefaction CO 2
19 Dry ice 20 Temperature pressure swing adsorption (PTSA)
21 Adsorption / desorption mechanism 21a Adsorption 21b Desorption 22 Source gas supply unit 22a Blower 23a Adsorption promotion unit 23b Desorption promotion unit 24 Delivery unit 24a Vacuum release unit 25 Low temperature exhaust gas 26 Collected CO 2
30 Low temperature exhaust heat 31 Waste heat drive chemical heat pump 31a Cold heat 35 Dry ice press machine

Claims (5)

火力発電所や焼却施設、工場等の事業所より排出する排ガスの100〜200℃前後の低温排熱と該排熱を使用して作動するケミカルヒートポンプより得られる冷熱とを使用してなる排出COの回収システムにおいて 、
前記排ガスとともに排出される低濃度のCOの回収を変形圧力スイング吸着により行う第1の手段と、
回収したCOを前記冷熱により作動する液化器を備えたCO超臨界冷凍サイクルの冷媒に使用して、複数段の膨張手段の前段において液化COを形成し後段の膨張手段により三重点以下の低温冷熱を形成する冷熱生成手段(第2の手段)とにより構成したことを特徴とする排出COの回収システム。
Exhaust CO that uses low-temperature exhaust heat around 100 to 200 ° C of exhaust gas discharged from establishments such as thermal power plants, incineration facilities, and factories, and cold heat obtained from chemical heat pumps that operate using the exhaust heat In the collection system of 2 ,
A first means for recovering low-concentration CO 2 discharged together with the exhaust gas by deformation pressure swing adsorption;
The recovered CO 2 is used as a refrigerant for a CO 2 supercritical refrigeration cycle equipped with a liquefier that operates by cold, and liquefied CO 2 is formed in the front stage of the multi-stage expansion means, and below the triple point by the subsequent stage expansion means. The exhaust CO 2 recovery system, characterized in that it is constituted by a cold heat generating means (second means) for forming a low temperature cold heat.
前記低温冷熱によりドライアイスが生成される構成としたことを特徴とする請求項1記載の排出COの回収システム。The exhaust CO 2 recovery system according to claim 1, wherein dry ice is generated by the low-temperature cold heat. 前記低温冷熱形成は、三重点以下に降圧した低圧COを不凍液へ直接噴き込み、形成された低温媒体により生成したことを特徴とする請求項1記載の排出COの回収システム。 2. The exhaust CO 2 recovery system according to claim 1, wherein the low-temperature cold heat formation is generated by a low-temperature medium formed by directly injecting low-pressure CO 2 whose pressure is lowered to a triple point or less into the antifreeze liquid. 前記第1の手段は、前記排熱により形成された冷熱を利用した吸着促進手段と排熱を利用した脱着促進手段とよりなる温度スイング吸着(TSA)を、圧力スイング吸着(PTS)に付加する構成としたことを特徴とする請求項1記載の排出COの回収システム。The first means adds to the pressure swing adsorption (PTS) a temperature swing adsorption (TSA) comprising an adsorption promotion means using the cold generated by the exhaust heat and a desorption promotion means using the exhaust heat. The exhaust CO 2 recovery system according to claim 1, wherein the system is configured. 前記第2の手段によるCO超臨界冷凍サイクルは、2段圧縮2段膨張冷凍サイクルにより構成し、第1段目断熱膨張手段により三重点手前までの圧力降下により液化COを形成し、第2段目断熱膨張手段により三重点以下の圧力降下によりドライアイス又は低温冷熱源を形成することを特徴とする請求項1記載の排出COの回収システム。The CO 2 supercritical refrigeration cycle by the second means is constituted by a two-stage compression and two-stage expansion refrigeration cycle, and the first stage adiabatic expansion means forms liquefied CO 2 by a pressure drop before the triple point, 2. The exhaust CO 2 recovery system according to claim 1, wherein the dry ice or the low-temperature cold heat source is formed by a pressure drop below the triple point by the second stage adiabatic expansion means.
JP2002247813A 2002-08-27 2002-08-27 Emission CO2 recovery system Expired - Fee Related JP3640023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247813A JP3640023B2 (en) 2002-08-27 2002-08-27 Emission CO2 recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247813A JP3640023B2 (en) 2002-08-27 2002-08-27 Emission CO2 recovery system

Publications (2)

Publication Number Publication Date
JP2004085099A JP2004085099A (en) 2004-03-18
JP3640023B2 true JP3640023B2 (en) 2005-04-20

Family

ID=32055341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247813A Expired - Fee Related JP3640023B2 (en) 2002-08-27 2002-08-27 Emission CO2 recovery system

Country Status (1)

Country Link
JP (1) JP3640023B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938212B2 (en) * 2004-08-03 2007-06-27 株式会社村田製作所 Carbon dioxide absorbent, carbon dioxide separation method using the same, and carbon dioxide separator
WO2007046332A1 (en) * 2005-10-17 2007-04-26 Mayekawa Mfg. Co., Ltd. Co2 refrigerator
JP2008164227A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Refrigerating device
KR100827570B1 (en) 2007-03-02 2008-05-07 (주)엑서지엔지니어링 Heatpump for waste heat recycle of adsorption type refrigerator
EP2078828A1 (en) * 2008-01-11 2009-07-15 ALSTOM Technology Ltd Power plant with CO2 capture and compression
WO2012176258A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Carbon dioxide supply/recovery apparatus for supercritical carbon dioxide gas turbine and method for regulating amount of carbon dioxide introduced
JP5770157B2 (en) * 2012-12-28 2015-08-26 三菱電機株式会社 Refrigeration equipment
CN103983036B (en) * 2014-05-30 2016-06-08 西安交通大学 A kind of CO2 reclaimed for afterheat of IC engine circulates polygenerations systeme
JP2015092622A (en) * 2015-01-14 2015-05-14 日亜化学工業株式会社 Light-emitting device
EP3476920A4 (en) 2016-06-21 2020-01-01 Sekisui Chemical Co., Ltd. Device for manufacturing organic substance and method for manufacturing organic substance
KR20210069783A (en) * 2019-12-03 2021-06-14 현대자동차주식회사 Reforming System and Reforming Method Using Off Gas as Refrigerant
JP2023027674A (en) * 2021-08-17 2023-03-02 国立研究開発法人産業技術総合研究所 High-pressure hydrogen supply system and operation method for the same
JP2023038400A (en) * 2021-09-07 2023-03-17 エア・ウォーター株式会社 Method of producing refined gas, method of producing dry ice, device of producing refined gas, and device of producing dry ice
CN114345079B (en) * 2022-02-25 2024-06-18 中国电力工程顾问集团西北电力设计院有限公司 Temperature and pressure swing adsorption device and method for capturing carbon dioxide in flue gas
CN115075900A (en) * 2022-04-28 2022-09-20 哈尔滨工业大学 Adsorption type compressed supercritical CO 2 Combined heat and power storage and supply system and operation method thereof
JP7328470B1 (en) 2022-07-15 2023-08-16 三菱電機株式会社 HEAT PUMP SYSTEM AND HEAT PUMP DEVICE MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2004085099A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4880098B1 (en) Carbon capture and sequestration system and method
JP3640023B2 (en) Emission CO2 recovery system
EP3310455B1 (en) Integrated process for co2 capture from internal combustion engines of mobile sources and use in thermal power production cycle
CN101460801B (en) Carbon dioxide purification method
EP2505948B1 (en) Cryogenic CO2 separation using a refrigeration system
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
US9844748B2 (en) Method to condense and recover carbon dioxide (CO2) from CO2 containing gas streams
US8065879B2 (en) Thermal integration of oxygen plants
CN109804212A (en) For generating the cryogenic air separation process of hyperbaric oxygen
MX2013014870A (en) Process for liquefaction of natural gas.
Clodic et al. A new method for CO2 capture: frosting CO2 at atmospheric pressure
RU2680285C2 (en) Station for reducing gas pressure and liquefying gas
JP4979138B2 (en) Dry ice manufacturing method and apparatus
JP4276520B2 (en) Operation method of air separation device
JP4213389B2 (en) Production, storage and utilization system for liquefied CO2 and dry ice and production, storage and utilization system for liquefied CO2 and hydrogen
JP2023172311A (en) Dry ice manufacturing system using carbon dioxide in air as gas source capable of supplying conditioned-air
US8549878B2 (en) Method of generating nitrogen and apparatus for use in the same
RU96416U1 (en) COMPLEX FOR AUTONOMOUS PRODUCTION OF LIQUID LOW-TEMPERATURE CARBON DIOXIDE AND GAS-NITROGEN, AND ALSO LIQUID OXYGEN OR NITROGEN
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
US9995530B2 (en) Method for the capture of carbon dioxide through cryogenically processing gaseous emissions from fossil-fuel power generation
RU2380629C1 (en) Carbon dioxide liquefaction plant
KR20150101901A (en) Working gas circulation type engine system and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees