JP2001219164A - Water cleaning unit and water cleaning equipment - Google Patents

Water cleaning unit and water cleaning equipment

Info

Publication number
JP2001219164A
JP2001219164A JP2000030890A JP2000030890A JP2001219164A JP 2001219164 A JP2001219164 A JP 2001219164A JP 2000030890 A JP2000030890 A JP 2000030890A JP 2000030890 A JP2000030890 A JP 2000030890A JP 2001219164 A JP2001219164 A JP 2001219164A
Authority
JP
Japan
Prior art keywords
membrane module
hollow fiber
water
reverse osmosis
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030890A
Other languages
Japanese (ja)
Inventor
Atsuo Kumano
淳夫 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000030890A priority Critical patent/JP2001219164A/en
Publication of JP2001219164A publication Critical patent/JP2001219164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the set of recovery rate of a reverse osmosis membrane module at a value larger than that of a conventional water purifying unit using a reverse osmosis membrane module and an ion exchange unit, to enable the elimination of an ion exchange unit disposed at the latter stage of the reduction of a load on the ion exchange unit, and to allow a hollow fiber nano-filter membrane module to perform a function of the pre-treatment fiber of the reverse osmosis membrane module, thereby eliminating or simplifying a conventional pre-treatment filter. SOLUTION: This water cleaning unit is provided with the hollow fiber nano-filter membrane module before the reverse osmosis membrane module. Active carbon, an ion exchange apparatus, pumps, or the like, is connected to the water cleaning unit, if necessary, to be used as water cleaning equipment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、純水製造器および
純水製造装置の改良に関するものである。さらに詳細に
述べれば、中空糸型ナノろ過膜モジュールと逆浸透膜モ
ジュールを用いることにより、従来の逆浸透膜モジュー
ルとイオン交換器を用いた純水製造器に比べ、逆浸透膜
モジュールの回収率を大きく設定でき、かつ後段のイオ
ン交換器が不要又は、負荷の大幅低減を可能とする純水
製造器に関するものである。本発明における純水製造器
とは分離膜を用いて水道水、工業用水等を精製する器具
を意味し、純水製造装置は純水製造器に加圧手段を設け
てなる装置をいう。これらの純水製造器、純水製造装置
は、実験用の純水、一般分析用純水、生化学用自動分析
装置に用いる純水に利用されたり、製氷用水や、スチー
ム用水を含む一般的な純水製造、軟水化などに使用され
たり、蒸留水の前処理工程などに用いられるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a pure water producing apparatus and a pure water producing apparatus. More specifically, by using the hollow fiber type nanofiltration membrane module and the reverse osmosis membrane module, the recovery rate of the reverse osmosis membrane module is higher than that of a conventional reverse osmosis membrane module and a pure water production device using an ion exchanger. And a pure water producing device which can set a large value and does not require an ion exchanger at the subsequent stage or can greatly reduce the load. The pure water producing device in the present invention means a device for purifying tap water, industrial water or the like using a separation membrane, and the pure water producing device is a device provided with a pressurizing means in the pure water producing device. These pure water production equipment and pure water production equipment are used for pure water for experiments, pure water for general analysis, pure water used for automatic analyzers for biochemistry, and general water containing water for ice making and water for steam. It is used for producing pure water, softening water, and the like, and is used for a pretreatment step of distilled water.

【0002】[0002]

【従来の技術】従来の純水製造器、純水製造装置は、一
般的には水道水を原水として、プレフィルターでゴミ等
を除去後、逆浸透膜で懸濁物質、雑菌、イオンを除去
し、さらにイオン交換樹脂にてさらにイオンを除去し
て、純水を得る方式が採用されている。また、最後にフ
ァイナルフィルターとして0.5μm程度の孔径のメン
ブレンフィルターを設置する場合もある。
2. Description of the Related Art Conventional pure water producing devices and apparatuses generally use tap water as raw water to remove dust and the like with a pre-filter, and then remove suspended substances, germs and ions with a reverse osmosis membrane. In addition, a method is employed in which ions are further removed with an ion exchange resin to obtain pure water. In some cases, a membrane filter having a pore size of about 0.5 μm is finally installed as a final filter.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな、逆浸透膜およびイオン交換樹脂を用いた純水製造
器の場合、逆浸透膜モジュールの回収率を上げると、逆
浸透膜モジュール内のスケール成分濃度が増加し、スケ
ール成分が析出するため高回収率での運転は困難な場合
が多いのが実状である。また、逆浸透膜モジュールの回
収率を上げた場合、透過水のイオン濃度が増加するた
め、後段のイオン交換樹脂の負荷が大きくなる。
However, in the case of such a pure water producing apparatus using a reverse osmosis membrane and an ion exchange resin, when the recovery rate of the reverse osmosis membrane module is increased, the scale in the reverse osmosis membrane module is reduced. In reality, it is often difficult to operate at a high recovery rate due to an increase in component concentration and precipitation of scale components. Further, when the recovery rate of the reverse osmosis membrane module is increased, the ion concentration of the permeated water increases, so that the load on the subsequent ion exchange resin increases.

【0004】[0004]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者は、逆浸透膜モジュールと中空糸型ナ
ノろ過膜モジュールを用いることにより、従来の逆浸透
膜モジュールとイオン交換器を用いた純水製造器に比
べ、逆浸透膜モジュールの回収率を大きく設定でき、か
つ後段のイオン交換器が不要又は、負荷の大幅低減が可
能となることを見いだし本発明に至った。さらに、中空
糸型ナノろ過膜モジュールが逆浸透膜モジュールの前処
理フィルターの役割も果たすことが可能であり、従来の
前処理フィルターの省略また簡略化が可能となる。
Means for Solving the Problems In view of the above objects, as a result of intensive studies, the present inventor has found that the use of a reverse osmosis membrane module and a hollow fiber type nanofiltration membrane module allows a conventional reverse osmosis membrane module and an ion exchanger to be used. The present invention has been found that the recovery rate of the reverse osmosis membrane module can be set to be larger than that of the pure water production device using, and the subsequent ion exchanger is not required or the load can be significantly reduced. Further, the hollow fiber type nanofiltration membrane module can also serve as a pretreatment filter of the reverse osmosis membrane module, and the conventional pretreatment filter can be omitted or simplified.

【0005】すなわち、本発明は、下記のものである。 (1) 逆浸透膜モジュールを用いる純水製造器おい
て、該逆浸透膜モジュールの前段に中空糸型ナノろ過膜
モジュールを設けることを特徴とする純水製造器。 (2) 水道栓やポンプの吐出口に接続可能な原水流入
口部を有し、該原水流入口部は中空糸型ナノろ過膜モジ
ュールの供給水口に連通しており、該中空糸型ナノろ過
膜モジュールの透過水口、非透過水口にそれぞれ連通す
る透過水取り出し口部、非透過水排出口部を有し、非透
過水口には回収率調整手段を設けており、該透過水取り
出し口部は逆浸透膜モジュールの供給水口に連通してい
る上記(1)に記載の純水製造器。 (3) 原水、および/または、中空糸型ナノろ過膜モ
ジュールの透過水を処理する活性炭層を設けている上記
(1)または(2)に記載の純水製造器。 (4) 中空糸型ナノろ過膜モジュールの供給水、およ
び/または、逆浸透膜モジュールの透過水を処理するイ
オン交換器を設けている上記(1)ないし(3)に記載
のいずれかの純水製造器。 (5) 中空糸膜が複合中空糸膜である上記(1)ない
し(4)のいずれかに記載の純水製造器。 (6) 上記(1)ないし(5)のいずれかに記載の純
水製造器を有する純水製造装置であって、該純水製造器
の原水流入口部、および/または、中空糸型ナノろ過膜
モジュールと逆浸透膜モジュールの間に加圧水が供給で
きる加圧手段を設けたことを特徴とする純水製造装置。
That is, the present invention is as follows. (1) A pure water producing apparatus using a reverse osmosis membrane module, wherein a hollow fiber type nanofiltration membrane module is provided in a stage preceding the reverse osmosis membrane module. (2) It has a raw water inlet port connectable to a water tap or a discharge port of a pump, and the raw water inlet port communicates with a supply water port of a hollow fiber type nanofiltration membrane module, and the hollow fiber type nanofiltration The permeated water outlet of the membrane module, a permeated water take-out port communicating with the non-permeated water port, and a non-permeated water outlet are provided, and the non-permeated water port is provided with a recovery rate adjusting means. The pure water production device according to the above (1), which is in communication with the supply water port of the reverse osmosis membrane module. (3) The pure water production device according to the above (1) or (2), further comprising an activated carbon layer for treating raw water and / or permeated water of the hollow fiber type nanofiltration membrane module. (4) The pure water according to any one of (1) to (3) above, wherein an ion exchanger for treating feed water of the hollow fiber type nanofiltration membrane module and / or permeated water of the reverse osmosis membrane module is provided. Water maker. (5) The pure water production device according to any one of the above (1) to (4), wherein the hollow fiber membrane is a composite hollow fiber membrane. (6) A pure water production device having the pure water production device according to any one of the above (1) to (5), wherein the raw water inflow portion of the pure water production device and / or the hollow fiber nano A pure water production apparatus comprising a pressurizing means for supplying pressurized water between a filtration membrane module and a reverse osmosis membrane module.

【0006】本発明において、中空糸型ナノろ過膜と
は、限外ろ過膜と逆浸透膜との間に位置づけられる分画
特性を有する領域の膜を意味する。具体的には、水道水
中に存在する低分子量有機物の除去性能が高く、ミネラ
ル、硬度成分はある程度の除去性能を有する膜である。
さらに、具体的に説明すると、以下の2つの要件を満た
す膜を言う。第1として、その膜の分画分子量が100
から1000であり、好ましくは、100から500で
あり、より好ましくは100から300であること。第
2として、その膜の塩化カルシウムの除去率が40%か
ら95%であり、好ましくは45%から93%であり、
より好ましくは50%から90%である。分画分子量が
1000より大きいと溶解性有機物の除去性能が十分で
はなく、また、100より小さいと、膜の透水性能が低
くなったりするため、好ましくない。また、塩化カルシ
ウムの除去率が40%より小さいと、イオンや、スケー
ル成分の除去性が不充分となり好ましくない。
In the present invention, the hollow fiber type nanofiltration membrane means a membrane in a region having a fractionation property positioned between the ultrafiltration membrane and the reverse osmosis membrane. Specifically, the film has a high performance of removing low-molecular-weight organic substances present in tap water, and has a certain degree of performance of removing minerals and hardness components.
More specifically, the film satisfies the following two requirements. First, the molecular weight cut off of the membrane is 100
To 1000, preferably 100 to 500, more preferably 100 to 300. Second, the membrane has a calcium chloride removal rate of 40% to 95%, preferably 45% to 93%;
More preferably, it is 50% to 90%. If the molecular weight cut-off is more than 1000, the performance of removing soluble organic substances is not sufficient, and if it is smaller than 100, the water permeability of the membrane is undesirably lowered. On the other hand, if the removal rate of calcium chloride is less than 40%, the removability of ions and scale components is insufficient, which is not preferable.

【0007】本発明において、分画分子量とは、以下の
ように定義される。すなわち、供給液濃度1000g/
3 、供給圧力0.3MPa、温度25゜C 、回収率が
5%以下の条件で測定した場合に、除去率が90%に相
当する糖などの溶質の分子量で表される。除去率は下記
(1)式で定義される。また、本発明において、塩化カ
ルシウムの除去率とは、以下のように定義される。すな
わち、供給液濃度500g/m 3 、供給圧力0.3MP
a、温度25゜C 、回収率が5%以下、pH6の条件で
測定した場合の除去率である。除去率は下記(2)式で
定義される。なお、本発明における中空糸型ナノろ過膜
モジュールは、中空糸型ナノろ過膜からなる膜モジュー
ルである。 (1−(Cp1/Cf1)) x 100(%) (1) (1−(Cp2/Cf2)) x 100(%) (2) ここで、 Cp1:膜透過水中の溶質の濃度(g/m3 ) Cf1:供給原水中の溶質の濃度(g/m3 ) Cp2:膜透過水中の塩の濃度(g/m3 ) Cf2:供給原水中の塩の濃度(g/m3
In the present invention, the molecular weight cut off is defined as follows. That is, the supply liquid concentration is 1000 g /
When measured under the conditions of m 3 , supply pressure of 0.3 MPa, temperature of 25 ° C., and recovery of 5% or less, it is expressed by the molecular weight of a solute such as sugar corresponding to a removal of 90%. The removal rate is defined by the following equation (1). In the present invention, the calcium chloride removal rate is defined as follows. That is, supply liquid concentration 500 g / m 3 , supply pressure 0.3MP
a, the removal rate when measured at a temperature of 25 ° C., a recovery rate of 5% or less, and a pH of 6. The removal rate is defined by the following equation (2). The hollow fiber type nanofiltration membrane module in the present invention is a membrane module composed of a hollow fiber type nanofiltration membrane. (1- (Cp1 / Cf1)) x100 (%) (1) (1- (Cp2 / Cf2)) x100 (%) (2) where Cp1: concentration of solute in permeated water (g / m) 3 ) Cf1: concentration of solute in feed water (g / m 3 ) Cp2: concentration of salt in membrane permeate water (g / m 3 ) Cf2: concentration of salt in feed water (g / m 3 )

【0008】本発明において、中空糸型ナノろ過膜の形
態としては、いわゆる非対称膜、複合膜など特に限定さ
れないが、性能の点から複合膜が好ましい。
In the present invention, the form of the hollow fiber type nanofiltration membrane is not particularly limited, such as a so-called asymmetric membrane and a composite membrane, but a composite membrane is preferred from the viewpoint of performance.

【0009】本発明において、原水流入口部とは水道水
や、ポンプにより加圧された原水を流入する流入口部で
あり水道栓やポンプの吐出口に接続可能な形態を有す
る。接続可能な形態とは、ネジ構造、ソケット構造、フ
ランジ構造、カップラー構造、ユニオン構造、ホースノ
ズル構造などホース等を介しても接続可能であれば、特
に限定されない。
In the present invention, the raw water inflow portion is an inflow portion through which tap water or raw water pressurized by a pump flows, and has a form connectable to a tap or a discharge port of a pump. The form that can be connected is not particularly limited as long as it can be connected via a hose such as a screw structure, a socket structure, a flange structure, a coupler structure, a union structure, and a hose nozzle structure.

【0010】本発明において、中空糸型ナノろ過膜モジ
ュールの供給水口とは中空糸型ナノろ過膜モジュールで
処理される原水が供給される流入口であり、透過水口と
は、中空糸型ナノろ過膜モジュールの透過水が流出する
流出口である。非透過水口とは、中空糸型ナノろ過膜モ
ジュールで原水が処理される際、中空糸型ナノろ過膜を
透過せず排出される非透過水の流出口である。
In the present invention, the supply water port of the hollow fiber type nanofiltration membrane module is an inlet for supplying raw water treated by the hollow fiber type nanofiltration membrane module, and the permeate water port is a hollow fiber type nanofiltration membrane module. This is the outlet from which the permeated water of the membrane module flows out. The non-permeate water port is an outlet for non-permeate water that is discharged without passing through the hollow fiber type nanofiltration membrane when raw water is treated by the hollow fiber type nanofiltration membrane module.

【0011】本発明において、透過水取り出し口部、非
透過水排出口部とはそれぞれ中空糸型ナノろ過膜モジュ
ールの透過水、非透過水が取り出し、排出されるところ
である。
In the present invention, the permeated water take-out port and the non-permeated water discharge port are where permeated water and non-permeated water of the hollow fiber type nanofiltration membrane module are taken out and discharged, respectively.

【0012】本発明において、回収率調整手段とは、中
空糸型ナノろ過膜モジュールから排出される非透過水流
量を調整し、回収率を調整できる手段であれば特に限定
されない。一例としてバルブなどの流動抵抗部材があげ
られる。また、連続的な流量調節以外に、間欠的に流れ
を止めたり、流したりする、不連続的な流量制御も含
む。
In the present invention, the recovery rate adjusting means is not particularly limited as long as it can adjust the flow rate of the non-permeated water discharged from the hollow fiber type nanofiltration membrane module to adjust the recovery rate. An example is a flow resistance member such as a valve. In addition to the continuous flow control, the present invention also includes a discontinuous flow control in which the flow is intermittently stopped or caused to flow.

【0013】本発明において、逆浸透膜とは、食塩除去
率が90%以上の分離膜であり、好ましくは92%以
上、より好ましくは94%以上である。除去率は前記、
(2)式で定義される。なお、一般的には、食塩以外の
低分子量有機物も高度に除去可能である。また、逆浸透
膜の形状は特に限定されず、平膜、中空糸膜などがあげ
られる。コンパクト性等の点から、中空糸膜が好まし
い。また、逆浸透膜の素材に関しても、酢酸セルロース
系、ポリアミド系などがあげられるが、上記性能を満た
すものであれば、特に限定されない。逆浸透膜の膜構造
も非対称膜、複合膜などあげられるが特に限定されな
い。
In the present invention, the reverse osmosis membrane is a separation membrane having a salt removal rate of 90% or more, preferably 92% or more, more preferably 94% or more. The removal rate is as described above,
It is defined by equation (2). In addition, generally, low-molecular-weight organic substances other than salt can also be removed to a high degree. The shape of the reverse osmosis membrane is not particularly limited, and examples thereof include a flat membrane and a hollow fiber membrane. From the viewpoint of compactness and the like, a hollow fiber membrane is preferred. In addition, the material of the reverse osmosis membrane includes a cellulose acetate-based material and a polyamide-based material, but is not particularly limited as long as the material satisfies the above performance. The membrane structure of the reverse osmosis membrane includes an asymmetric membrane and a composite membrane, but is not particularly limited.

【0014】本発明において、活性炭層は、水中の残留
塩素や、微量の有機物を除去する機能を有する活性炭か
らなる層であり、その形態、材質等は特に限定されな
い。また、活性炭のみがケースに装着された構成であっ
たり、中空糸型ナノろ過膜モジュールと同じ容器内に装
着された構成であってもかまわない。純水製造器に装着
される中空糸型ナノろ過膜の耐塩素性が十分でない場合
には、膜の供給部に活性炭層を設けることが好ましい。
また、この活性炭層は、必要に応じて膜の供給側および
/または透過側に設置しても良く、必要の無い場合は設
置しなくても良い。
In the present invention, the activated carbon layer is a layer made of activated carbon having a function of removing residual chlorine in water and trace amounts of organic substances, and its form, material, etc. are not particularly limited. Further, the configuration may be such that only activated carbon is mounted on the case, or the configuration may be mounted in the same container as the hollow fiber type nanofiltration membrane module. When the chlorine resistance of the hollow fiber type nanofiltration membrane mounted on the pure water production device is not sufficient, it is preferable to provide an activated carbon layer in the supply part of the membrane.
In addition, the activated carbon layer may be provided on the supply side and / or permeate side of the membrane as necessary, and may not be provided when unnecessary.

【0015】本発明において、イオン交換器は、水中に
溶解しているイオンを除去するためのもので、通常イオ
ン交換樹脂からなるもの等であり、その形態、素材等は
特に限定されない。また、イオン交換器のみがケースに
装着された構成であったり、中空糸型ナノろ過膜モジュ
ールや逆浸透膜モジュールと同じ容器内に装着された構
成であってもかまわない。原水のイオン濃度が高い場合
など、中空糸型ナノろ過膜と逆浸透膜で処理された水で
もイオン除去性能が十分でない場合には、逆浸透膜モジ
ュールの透過側にイオン交換器を設けることが好まし
く、必要の無い場合は設置しなくても良い。これらの、
組合せの一例を図1から図3に示す。図1は逆浸透膜モ
ジュールと中空糸型ナノろ過膜モジュール単独の例、図
2は中空糸型ナノろ過膜モジュール、逆浸透膜モジュー
ルとイオン交換器の組合せ例、図3は活性炭層、中空糸
型ナノろ過膜モジュール、逆浸透膜モジュールとイオン
交換器の組合せ例を示している。これらは、純水製造器
の場合の一例であり、中空糸型ナノろ過膜の供給側、お
よび/または、中空糸型ナノろ過膜モジュールと逆浸透
膜モジュールの間に加圧手段、例えばポンプを設置すれ
ば純水製造装置となる。
In the present invention, the ion exchanger is for removing ions dissolved in water, and is usually made of an ion exchange resin. The form, material, etc. are not particularly limited. Further, the configuration may be such that only the ion exchanger is mounted on the case, or the configuration may be mounted in the same container as the hollow fiber type nanofiltration membrane module or the reverse osmosis membrane module. If the ion removal performance of the water treated with the hollow fiber nanofiltration membrane and the reverse osmosis membrane is not sufficient, such as when the ion concentration of raw water is high, an ion exchanger may be installed on the permeate side of the reverse osmosis membrane module. Preferably, it is not necessary to install it when it is not necessary. these,
An example of the combination is shown in FIGS. 1 shows an example of a reverse osmosis membrane module and a hollow fiber type nanofiltration membrane module alone, FIG. 2 shows an example of a combination of a hollow fiber type nanofiltration membrane module, a reverse osmosis membrane module and an ion exchanger, and FIG. 3 shows an activated carbon layer and a hollow fiber. 1 shows an example of a combination of a nanofiltration membrane module, a reverse osmosis membrane module, and an ion exchanger. These are examples of a pure water production device, and a pressurizing means such as a pump is provided between the supply side of the hollow fiber type nanofiltration membrane and / or between the hollow fiber type nanofiltration membrane module and the reverse osmosis membrane module. If installed, it becomes a pure water production device.

【0016】本発明において、中空糸膜とは選択透過性
を有する中空糸状の分離膜であり、外圧型、内圧型いず
れでもかまわない。有効膜面積が大きくなる外圧型が好
ましい。
In the present invention, the hollow fiber membrane is a hollow fiber-shaped separation membrane having selective permeability, and may be either an external pressure type or an internal pressure type. An external pressure type having a large effective film area is preferable.

【0017】本発明において、複合中空糸膜とは、多孔
質中空糸支持膜の外表面及び/または内表面に多孔質中
空糸支持膜とは異なる素材からなる分離活性層を設けた
ものである。外表面、内表面いずれの表面に分離活性層
を設けたものでもかまわないが、有効膜面積が大きくな
る外表面に設けたものが好ましい。
In the present invention, the composite hollow fiber membrane is a porous hollow fiber support membrane having an outer surface and / or an inner surface provided with a separation active layer made of a material different from that of the porous hollow fiber support membrane. . The separation active layer may be provided on either the outer surface or the inner surface, but is preferably provided on the outer surface where the effective film area is increased.

【0018】本発明における加圧手段とは、純水製造器
に供給する供給水を加圧する手段であり、ポンプが一例
としてあげられる。本発明における純水製造器は水道水
圧で使用できることが望ましいが、必要に応じて上記加
圧手段を設けて純水製造装置として使用することが可能
である。また、この場合に、ポンプの入り口側に必要に
応じてタンク等を設けることもできる。
The pressurizing means in the present invention is means for pressurizing the supply water supplied to the pure water producing device, and a pump is mentioned as an example. It is desirable that the pure water producing device in the present invention can be used with tap water pressure, but it is possible to provide the above-mentioned pressurizing means as needed and use it as a pure water producing device. In this case, a tank or the like may be provided on the inlet side of the pump as needed.

【0019】本発明における純水製造器は、付加機能と
して、紫外線殺菌装置などの殺菌手段等を別途設けるこ
とも可能である。また、抗菌部材を用いたり、透過水を
一時的に溜めるタンクなどを設けてもよい。
The pure water producing device of the present invention can be provided with a sterilizing means such as an ultraviolet sterilizing device as an additional function. Further, an antibacterial member may be used, or a tank for temporarily storing permeated water may be provided.

【0020】[0020]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれらの実施例により何ら制限されるものでは
ない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples.

【0021】実施例1 ポリスルホン20重量部、トリエチレングリコ- ル4重
量部、N,N−ジメチルアセトアミド(DMAc)7
5.5重量部、ラウリルベンゼンスルホン酸ナトリウム
0.5重量部からなる製膜原液を、チュ−ブインオリフ
ィス型紡糸ノズルを用いて外周部から、DMAc30重
量部、水70重量部からなる芯液を内周部から、それぞ
れ同時に押し出し、6cmの空気中を走行した後、DM
Ac5重量部、水95重量部からなる凝固液中に15m
/minの速度で引き取り、水洗工程を経て、中空糸型
多孔質支持体(外径350μm/内径200μm)を得
た。該多孔質支持体を、ピペラジン2重量部、トリエチ
レンジアミン1重量部、ラウリルベンゼンスルホン酸ナ
トリウム0.07重量部からなるアミン水溶液中に1分
間接触させ、該多孔質支持体を引き上げた後、余分なア
ミン水溶液を液切りし、トリメシン酸クロリド1 重量部
を含むヘキサン溶液、フッ素系溶媒(フロリナ−ト F
C−70、住友3M社製)、1重量部酢酸水溶液に順次
接触させることで、該多孔質支持体の外表面にポリアミ
ド薄膜を形成させた複合中空糸膜を得た。この複合中空
糸膜の透水量、シュクロース、CaCl2 の除去率を測
定した結果、透水量、シュクロース、CaCl2 の除去
率はそれぞれ0.25m3 /m2/日、95.7%、8
9.5%であった。なお、この複合中空糸膜の性能は次
のようにして求めた。上記複合中空糸膜を用いた膜面積
132cm2 のミニモジュ−ルを作製し、このミニモジ
ュールに対し、温度25゜C、pH6にてCaCl 2
500g/m3 水溶液を複合中空糸膜の外側に操作圧力
0.3MPaで供給して脱塩を行い、60分後に測定を
開始し透過水の単位膜面積あたりの透水量、塩濃度を測
定した。この場合の回収率すなわち供給水流量に対する
透過水流量の割合は5%以下と十分に小さいものであっ
た。同様に、温度25゜C、pH6にて、シュクロース
(分子量342)100gを100リットルの純水に溶
解した水溶液を複合中空糸膜の外側に操作圧力0.3M
Paで供給して分画実験を行い、60分後に測定を開始
し透過水の単位膜面積あたりの透水量、シュクロース濃
度を測定した。この場合の回収率すなわち供給水流量に
対する透過水流量の割合は5%以下と十分に小さいもの
であった。除去率は下記、(3)式で定義される。
Example 1 20 parts by weight of polysulfone, quadruple of triethylene glycol
Parts, N, N-dimethylacetamide (DMAc) 7
5.5 parts by weight, sodium laurylbenzenesulfonate
A film-forming stock solution consisting of 0.5 parts by weight was added to a tube in orifice.
DMAc 30-fold from the outer periphery using a
Core liquid consisting of water and 70 parts by weight of water
At the same time, and after traveling in the air of 6 cm, DM
15m in a coagulation liquid consisting of 5 parts by weight of Ac and 95 parts by weight of water
/ Min speed, and after washing process, hollow fiber type
Obtain porous support (outside diameter 350μm / inside diameter 200μm)
Was. The porous support was prepared by adding 2 parts by weight of piperazine,
1 part by weight of diamine, laurylbenzenesulfonic acid
1 minute in an aqueous amine solution consisting of 0.07 parts by weight of thorium
Contact, and pull up the porous support.
Drain the aqueous solution of min and add 1 part by weight of trimesic acid chloride.
Solution containing fluorinated solvent (Fluorinert F
C-70, manufactured by Sumitomo 3M) 1 part by weight acetic acid aqueous solution
By contact, the outer surface of the porous support is
A composite hollow fiber membrane having a thin film formed thereon was obtained. This composite hollow
Permeability of thread membrane, sucrose, CaClTwoRemoval rate
As a result, water permeability, sucrose, CaClTwoRemoval
Rate is 0.25m eachThree/ MTwo/ Day, 95.7%, 8
It was 9.5%. The performance of this composite hollow fiber membrane is as follows.
I asked as follows. Membrane area using the above composite hollow fiber membrane
132cmTwoA mini-module
At 25 ° C and pH6. Twoof
500g / mThreeOperating pressure of aqueous solution outside composite hollow fiber membrane
Desalting is performed by supplying at 0.3 MPa, and measurement is performed after 60 minutes.
Start and measure the amount of permeate per unit membrane area and salt concentration
Specified. In this case, the recovery rate,
The percentage of permeate flow rate is 5% or less, which is sufficiently small.
Was. Similarly, at a temperature of 25 ° C. and pH 6, sucrose
(Molecular weight 342) Dissolve 100g in 100L pure water
An operating pressure of 0.3 M is applied to the outside of the composite hollow fiber membrane.
Perform fractionation experiment by supplying with Pa and start measurement after 60 minutes
Permeate per unit membrane area, sucrose concentration
The degree was measured. In this case, the recovery rate,
The ratio of the permeate flow rate to 5% or less is sufficiently small
Met. The removal rate is defined by the following equation (3).

【数1】 (Equation 1)

【0022】これらの複合中空糸膜24,800本を多
孔質芯管の回りにほぼ円筒状の束に配置して、ケースに
装着し両端を樹脂で固化し、片端部を切断し中空糸膜を
開口させ、膜モジュールとした。この中空糸型ナノろ過
膜モジュールを用いて、0.1重量%のシュクロース水
溶液を使用し供給圧力0.3MPa、温度25℃、pH
6の条件で性能評価したところ、回収率50%での透水
量は2.0m 3 /日、溶質除去率は93.0%であっ
た。
24,800 of these composite hollow fiber membranes are arranged in a substantially cylindrical bundle around a porous core tube, mounted on a case, solidified with resin at both ends, and cut at one end to form a hollow fiber membrane. Was opened to form a membrane module. Using this hollow fiber type nanofiltration membrane module, a supply pressure of 0.3 MPa, a temperature of 25 ° C., and a pH of 0.1% by weight sucrose aqueous solution are used.
When the performance was evaluated under the conditions of No. 6, the water permeation rate at a recovery rate of 50% was 2.0 m 3 / day, and the solute removal rate was 93.0%.

【0023】この中空糸型ナノろ過膜モジュールに温度
25゜C、pH6にてCaCl2 の500g/m3 水溶
液を供給水口に操作圧力0.3MPaで供給して脱塩を
行い、透過水の塩濃度を電気伝導度にて測定した。この
場合の回収率、すなわち中空糸型ナノろ過膜モジュール
への供給水流量に対する透過水流量の割合は50%と8
0%であり、それぞれの塩除去率は、80.7%、6
6.4%であった。
A 500 g / m 3 aqueous solution of CaCl 2 was supplied to the hollow fiber type nanofiltration membrane module at a temperature of 25 ° C. and a pH of 6 at an operating pressure of 0.3 MPa to a water supply port to perform desalination. The concentration was measured by electric conductivity. In this case, the recovery rate, that is, the ratio of the permeated water flow rate to the supplied water flow rate to the hollow fiber type nanofiltration membrane module is 50% and 8%.
0%, and the respective salt removal rates were 80.7% and 6%.
6.4%.

【0024】この中空糸型ナノろ過膜モジュールの供給
水口に活性炭層を連通し、透過水口にポンプの吸引側を
接続し、透過水を0.6MPaに昇圧して、逆浸透膜モ
ジュールの供給口に供給できるようにし、逆浸透膜モジ
ュールの透過水口の後段に孔径0.5μmのメンブレン
フィルターを設置して純水製造装置とした。水道水のラ
インに直結して水道水圧約0.25MPa、水温25℃
で、純水製造を実施した。非透過水流量をバルブで調節
して、中空糸型ナノろ過膜モジュールの回収率を80%
に調整し、同様に逆浸透膜モジュールの回収率を75%
に調整した。処理水量は1.2m3 /日で、処理水の導
電率は2μS/cmであった。原水の導電率は150μ
S/cmであった。なお、総合の回収率は60%で、原
水の供給水量は2m3 /日であった。
An activated carbon layer is connected to the supply water port of the hollow fiber type nanofiltration membrane module, the suction side of the pump is connected to the permeate water port, and the pressure of the permeate is increased to 0.6 MPa. And a membrane filter having a pore diameter of 0.5 μm was installed downstream of the permeated water port of the reverse osmosis membrane module to obtain a pure water production apparatus. Directly connected to the tap water line, tap water pressure about 0.25MPa, water temperature 25 ° C
Then, pure water production was carried out. Adjust the non-permeate flow rate with a valve to increase the recovery rate of the hollow fiber type nanofiltration membrane module to 80%.
And set the recovery rate of the reverse osmosis membrane module to 75%.
Was adjusted. The treated water amount was 1.2 m 3 / day, and the conductivity of the treated water was 2 μS / cm. Raw water conductivity is 150μ
S / cm. The overall recovery rate was 60%, and the amount of raw water supplied was 2 m 3 / day.

【0025】ここで用いた逆浸透膜モジュールは三酢酸
セルロース中空糸型逆浸透膜からなる外圧型中空糸膜モ
ジュール(東洋紡績(株)製HKC3023V)であ
る。この逆浸透膜膜モジュールに温度25゜C、pH6
にてCaCl2 の500g/m 3 水溶液を供給水口に操
作圧力0.3MPaで供給して脱塩を行い、透過水の塩
濃度を電気伝導度にて測定した。この場合の回収率は2
0%、50%、80%であり、それぞれの塩除去率は、
99.0%、98.4%、95.9%であった。
The reverse osmosis membrane module used here was triacetic acid.
External pressure type hollow fiber membrane model consisting of cellulose hollow fiber type reverse osmosis membrane
Joule (HKC3023V manufactured by Toyobo Co., Ltd.)
You. The reverse osmosis membrane module is set at a temperature of 25 ° C and a pH of 6
At CaClTwo500g / m ThreeOperate the aqueous solution to the feed port
Desalting is performed by supplying at an operating pressure of 0.3 MPa,
The concentration was measured by electric conductivity. The recovery rate in this case is 2
0%, 50%, 80%, and the respective salt removal rates are:
99.0%, 98.4% and 95.9%.

【0026】比較例1 分画孔径が5μmのプレフィルターの後に実施例1と同
様の逆浸透膜モジュールを接続し、その透過水側にイオ
ン交換樹脂を設置した。逆浸透膜モジュールの供給側に
ポンプを設けて、0.6MPaの圧力で水道水を供給
し、純水製造を実施した。処理水量は1.2m3 /日
で、処理水の導電率は2μS/cmであった。原水の導
電率は150μS/cmであった。スケール析出の恐れ
があるため、逆浸透膜モジュールの回収率は50%に設
定した。なお、総合の回収率は50%で、原水の供給水
量は2.4m3 /日と大きくなった。
Comparative Example 1 A reverse osmosis membrane module similar to that of Example 1 was connected after a prefilter having a fractionation pore size of 5 μm, and an ion exchange resin was provided on the permeated water side. A pump was provided on the supply side of the reverse osmosis membrane module, and tap water was supplied at a pressure of 0.6 MPa to produce pure water. The treated water amount was 1.2 m 3 / day, and the conductivity of the treated water was 2 μS / cm. The conductivity of the raw water was 150 μS / cm. The recovery rate of the reverse osmosis membrane module was set to 50% because of the possibility of scale deposition. The overall recovery was 50%, and the amount of raw water supplied increased to 2.4 m 3 / day.

【0027】[0027]

【発明の効果】本発明の純水製造器及び純水製造装置に
よれば、中空糸型ナノろ過膜モジュールを設けているた
め、従来の逆浸透膜モジュールとイオン交換器を用いた
純水製造器に比べ、逆浸透膜モジュールの回収率を大き
く設定でき、かつ後段のイオン交換器が不要又は、負荷
の大幅低減が可能となる。さらには、中空糸型ナノろ過
膜モジュールが逆浸透膜モジュールの前処理フィルター
の役割も果たすことで、従来の前処理フィルターの省略
また簡略化が可能となる。
According to the pure water producing apparatus and the pure water producing apparatus of the present invention, since the hollow fiber type nanofiltration membrane module is provided, the pure water production using the conventional reverse osmosis membrane module and the ion exchanger is performed. The recovery rate of the reverse osmosis membrane module can be set to be larger than that of the reactor, and the subsequent ion exchanger is not required or the load can be significantly reduced. Further, the hollow fiber type nanofiltration membrane module also serves as a pretreatment filter of the reverse osmosis membrane module, so that the conventional pretreatment filter can be omitted or simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水製造装置で、逆浸透膜モジュー
ル、中空糸型ナノろ過膜モジュール単独の一例の簡単な
構成図を示す。
FIG. 1 shows a simple configuration diagram of one example of a reverse osmosis membrane module and a hollow fiber type nanofiltration membrane module alone in the pure water production apparatus of the present invention.

【図2】本発明の純水製造装置で、逆浸透膜モジュー
ル、中空糸型ナノろ過膜モジュールとイオン交換器の組
合せの一例の簡単な構成図を示す。
FIG. 2 shows a simple configuration diagram of an example of a combination of a reverse osmosis membrane module, a hollow fiber type nanofiltration membrane module and an ion exchanger in the pure water production apparatus of the present invention.

【図3】本発明の純水製造装置で、逆浸透膜モジュー
ル、中空糸型ナノろ過膜モジュール、イオン交換器と活
性炭層の組合せの一例の簡単な構成図を示す。
FIG. 3 shows a simple configuration diagram of an example of a combination of a reverse osmosis membrane module, a hollow fiber type nanofiltration membrane module, an ion exchanger and an activated carbon layer in the pure water production apparatus of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 63/02 B01D 63/02 69/12 69/12 C02F 1/28 C02F 1/28 F 1/42 1/42 A Fターム(参考) 4D006 GA02 GA03 GA18 HA19 HA77 JA13Z JA53Z JB05 JB08 KA01 KA12 KA52 KA55 KA57 KA72 KB11 KB12 KB14 KC22 KD09 KD19 MA01 MA06 MA08 MB02 MB05 MB06 MC18 MC18X MC54 NA04 PA01 PA05 PB06 PB70 PC03 PC31 PC38 4D024 AA03 AB04 AB11 AB15 BA02 CA13 DB03 DB05 DB10 DB19 4D025 AA03 AB07 AB19 AB38 BA07 BB18 DA03 DA04 DA05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B01D 63/02 B01D 63/02 69/12 69/12 C02F 1/28 C02F 1/28 F 1/42 1 / 42 A F term (reference) 4D006 GA02 GA03 GA18 HA19 HA77 JA13Z JA53Z JB05 JB08 KA01 KA12 KA52 KA55 KA57 KA72 KB11 KB12 KB14 KC22 KD09 KD19 MA01 MA06 MA08 MB02 MB05 MB06 MC18 MC18X MC54 NA04 PA01 PC05 P03B03 PC03 AB11 AB15 BA02 CA13 DB03 DB05 DB10 DB19 4D025 AA03 AB07 AB19 AB38 BA07 BB18 DA03 DA04 DA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透膜モジュールを用いる純水製造器
おいて、該逆浸透膜モジュールの前段に中空糸型ナノろ
過膜モジュールを設けることを特徴とする純水製造器。
1. A pure water producing apparatus using a reverse osmosis membrane module, wherein a hollow fiber type nanofiltration membrane module is provided in front of the reverse osmosis membrane module.
【請求項2】 水道栓やポンプの吐出口に接続可能な原
水流入口部を有し、該原水流入口部は中空糸型ナノろ過
膜モジュールの供給水口に連通しており、該中空糸型ナ
ノろ過膜モジュールの透過水口、非透過水口にそれぞれ
連通する透過水取り出し口部、非透過水排出口部を有
し、非透過水口には回収率調整手段を設けており、該透
過水取り出し口部は逆浸透膜モジュールの供給水口に連
通している請求項1に記載の純水製造器。
2. A raw water inlet port which can be connected to a tap or a discharge port of a pump, wherein the raw water inlet port communicates with a supply water port of a hollow fiber type nanofiltration membrane module. The permeate outlet and the non-permeate outlet of the nanofiltration membrane module are respectively connected to the permeate outlet and the non-permeate outlet, and the non-permeate outlet is provided with a recovery rate adjusting means. The pure water production device according to claim 1, wherein the unit communicates with a supply water port of the reverse osmosis membrane module.
【請求項3】 原水、および/または、中空糸型ナノろ
過膜モジュールの透過水を処理する活性炭層を設けてい
る請求項1または2に記載の純水製造器。
3. The pure water production device according to claim 1, further comprising an activated carbon layer for treating raw water and / or permeated water of the hollow fiber type nanofiltration membrane module.
【請求項4】 中空糸型ナノろ過膜モジュールの供給
水、および/または、逆浸透膜モジュールの透過水を処
理するイオン交換器を設けている請求項1ないし3に記
載のいずれかの純水製造器。
4. The pure water according to any one of claims 1 to 3, further comprising an ion exchanger for treating water supplied from the hollow fiber type nanofiltration membrane module and / or permeated water from the reverse osmosis membrane module. Manufacturing equipment.
【請求項5】 中空糸膜が複合中空糸膜である請求項1
ないし4のいずれかに記載の純水製造器。
5. The hollow fiber membrane according to claim 1, wherein the hollow fiber membrane is a composite hollow fiber membrane.
5. The pure water production device according to any one of items 1 to 4.
【請求項6】 請求項1ないし5のいずれかに記載の純
水製造器を有する純水製造装置であって、該純水製造器
の原水流入口部、および/または、中空糸型ナノろ過膜
モジュールと逆浸透膜モジュールの間に加圧水が供給で
きる加圧手段を設けたことを特徴とする純水製造装置。
6. A pure water producing apparatus having the pure water producing device according to claim 1, wherein the raw water inflow portion of the pure water producing device and / or the hollow fiber type nanofiltration are provided. A pure water production apparatus, comprising a pressurizing means capable of supplying pressurized water between a membrane module and a reverse osmosis membrane module.
JP2000030890A 2000-02-08 2000-02-08 Water cleaning unit and water cleaning equipment Pending JP2001219164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030890A JP2001219164A (en) 2000-02-08 2000-02-08 Water cleaning unit and water cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030890A JP2001219164A (en) 2000-02-08 2000-02-08 Water cleaning unit and water cleaning equipment

Publications (1)

Publication Number Publication Date
JP2001219164A true JP2001219164A (en) 2001-08-14

Family

ID=18555840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030890A Pending JP2001219164A (en) 2000-02-08 2000-02-08 Water cleaning unit and water cleaning equipment

Country Status (1)

Country Link
JP (1) JP2001219164A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302333A (en) * 2007-06-11 2008-12-18 Hitachi Plant Technologies Ltd Method and apparatus for production of fresh water
JP2011056412A (en) * 2009-09-10 2011-03-24 Toshiba Corp Membrane filtration system
JP2011511258A (en) * 2008-02-05 2011-04-07 エボニック デグサ ゲーエムベーハー Absorption refrigerator
JP2011212628A (en) * 2010-04-01 2011-10-27 Mitsubishi Rayon Cleansui Co Ltd Purified water producing apparatus
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
JP2017042764A (en) * 2012-07-25 2017-03-02 コーロン インダストリーズ インク Filtration system including pressure type hollow fiber membrane module
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302333A (en) * 2007-06-11 2008-12-18 Hitachi Plant Technologies Ltd Method and apparatus for production of fresh water
JP2011511258A (en) * 2008-02-05 2011-04-07 エボニック デグサ ゲーエムベーハー Absorption refrigerator
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
JP2011056412A (en) * 2009-09-10 2011-03-24 Toshiba Corp Membrane filtration system
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
JP2011212628A (en) * 2010-04-01 2011-10-27 Mitsubishi Rayon Cleansui Co Ltd Purified water producing apparatus
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
JP2017042764A (en) * 2012-07-25 2017-03-02 コーロン インダストリーズ インク Filtration system including pressure type hollow fiber membrane module
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures

Similar Documents

Publication Publication Date Title
JP2001219164A (en) Water cleaning unit and water cleaning equipment
EP0966319B1 (en) Portable reverse osmosis unit for producing drinking water
EP1140705B1 (en) Method and apparatus for microfiltration
WO2020179594A1 (en) Zero liquid discharge system
JPH05154356A (en) Membrane filter module
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP2003080246A (en) Apparatus and method for treating water
JPH1066971A (en) Pure water producing device and production of pure water
JP2001113274A (en) Desalting method
JPH10249332A (en) Water purifier and water purifying device
KR100331996B1 (en) Tankless domestic water purifier of reverse osmosis type
JP2001212562A (en) Pure water maker and pure water making apparatus
JP3838689B2 (en) Water treatment system
JPH09220564A (en) Removal of boron in reverse osmosis seawater desalting
CN212832953U (en) Concentration system
WO2021049621A1 (en) Concentration system
JP2000350928A (en) Composite diaphragm, composite diaphragm module and its manufacture
JP2009274021A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device
JP2001000970A (en) High-degree treatment of wastewater using membrane module
JP2004082020A (en) Operation method of hollow fiber membrane module
JP2002001069A (en) Method for producing pure water
JPH0417219Y2 (en)
US20230035831A1 (en) Hollow fiber membrane systems and methods
WO2023026815A1 (en) Forward osmosis treatment method and forward osmosis treatment device
JP2000350927A (en) Composite semipermeable membrane module