JP2001215077A - Defrost controller, method for controlling and refrigerator - Google Patents

Defrost controller, method for controlling and refrigerator

Info

Publication number
JP2001215077A
JP2001215077A JP2000024553A JP2000024553A JP2001215077A JP 2001215077 A JP2001215077 A JP 2001215077A JP 2000024553 A JP2000024553 A JP 2000024553A JP 2000024553 A JP2000024553 A JP 2000024553A JP 2001215077 A JP2001215077 A JP 2001215077A
Authority
JP
Japan
Prior art keywords
evaporator
defrost
defrosting
frost
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000024553A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakamura
英幸 中村
Akinobu Takemoto
明伸 竹本
Toru Kobayashi
亨 小林
Hirokazu Nakamura
浩和 中村
Shiyouichi Kano
奨一 加納
Hideki Yoshida
英樹 吉田
Koichi Shibata
耕一 柴田
Seiji Kubo
誠司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000024553A priority Critical patent/JP2001215077A/en
Publication of JP2001215077A publication Critical patent/JP2001215077A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Landscapes

  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of not defrost of an evaporator due to a decrease in a cooling efficiency of the evaporator by frosting when frosted according to an integrated time of a compressor and a wasteful power consumption due to a defrosting operation for a predetermined time even by a small frost. SOLUTION: Temperature detectors of two systems are mounted at the evaporator, and the defrosting operation is controlled by judging an actually frosted state according to their temperature difference. The lapse of a predetermined cooling time is confirmed (S2) during the operation of the compressor (S1). When the temperature difference of the two systems is a predetermined value or less or a predetermined defrosting period interval or more by judging the difference (S3), a power supply to the defrosting heater 7 is started (S4). Then, a set temperature or higher of the evaporator is confirmed by a sensor (S5). The power supply to the heater 7 is finished (S6), and the operation is returned to the cooling operation. Since the defrosting control is conducted by the actually frosted state of the evaporator, wasteful power consumption can be reduced, and a sound indoor temperature management can be conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は除霜制御装置と制御
方法および冷蔵庫に係り、特に、冷蔵庫などの除霜機能
を必要とする冷凍システムに好適な除霜間隔の制御に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrost control device and control method and a refrigerator, and more particularly to a control of a defrost interval suitable for a refrigeration system requiring a defrost function such as a refrigerator.

【0002】[0002]

【従来の技術】従来、例えば冷蔵庫などでは、圧縮機お
よびファンモータが運転すると庫内の冷気が循環され、
その冷気に含まれる水蒸気等は最終的に霜となって蒸発
器に徐々に付着する。
2. Description of the Related Art Conventionally, in a refrigerator or the like, when a compressor and a fan motor operate, cool air in a refrigerator is circulated,
Water vapor and the like contained in the cool air eventually become frost and gradually adhere to the evaporator.

【0003】このように霜の付着した冷蔵庫は、冷却負
荷の量や扉開閉の回数等により、着霜量の増加傾向はマ
チマチだが、着霜量が多いと蒸発器と庫内循環冷気との
熱交換効率が低下していくという問題を有している。
[0003] In a refrigerator to which frost adheres as described above, the amount of frost formation tends to increase depending on the amount of cooling load and the number of times the door is opened and closed. There is a problem that the heat exchange efficiency decreases.

【0004】そのため、一般には、圧縮機の運転時間を
積算していき、この積算時間が予め定められた設定時間
(例えば8時間)に達したときに、除霜ヒータが通電さ
れ蒸発器を加熱し、蒸発器に付着した霜の除去を行うよ
うになっている。
[0004] Therefore, generally, the operating time of the compressor is accumulated, and when the accumulated time reaches a predetermined time (for example, 8 hours), the defrost heater is energized to heat the evaporator. Then, frost adhering to the evaporator is removed.

【0005】その後は、蒸発器温度センサが所定の除霜
終了温度、通常は蒸発器に付着した霜が全て融解され終
わったと思われる設定温度、に達すれば、除霜ヒータの
通電を終了させ、通常の冷却運転に戻るようになってい
る。
After that, when the evaporator temperature sensor reaches a predetermined defrost end temperature, usually a set temperature at which all the frost adhering to the evaporator is considered to have been completely melted, the energization of the defrost heater is terminated, It returns to the normal cooling operation.

【0006】上記の除霜間隔の制御動作は、除霜終了
後、まず通常運転を開始し、圧縮機の運転積算時間が予
め定められた設定時間に達したか否かの判定を行う。そ
こで、設定時間に達したならば蒸発器に霜が十分に付着
したと判断し除霜動作に移る。この種の制御方式に関連
する例として、特開昭60−30975号公報がある。
In the control operation of the defrosting interval, after the defrosting is completed, the normal operation is first started, and it is determined whether or not the cumulative operation time of the compressor has reached a predetermined set time. Therefore, when the set time has been reached, it is determined that frost has sufficiently adhered to the evaporator, and the operation proceeds to the defrosting operation. JP-A-60-30975 discloses an example related to this type of control method.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術では、圧
縮機の運転が低回転数であろうが高回転数であろうが、
また、扉開閉があろうがなかろうが、圧縮機の運転積算
時間が予め定められた設定時間に達した時点で除霜運転
を開始する。
In the above prior art, whether the operation of the compressor is low or high,
Also, regardless of whether the door is opened or closed, the defrosting operation is started when the cumulative operation time of the compressor reaches a predetermined set time.

【0008】しかし、例えばインバータ装置により圧縮
機の回転数が可変の場合、一般的に圧縮機が低回転数で
運転しているということは、軽負荷(外気低温低湿、庫
内食品少、扉開閉回数少)のときであり、蒸発器への着
霜進行速度は比較的遅い。
However, for example, when the rotation speed of the compressor is variable by the inverter device, the fact that the compressor is operating at a low rotation speed generally means that the compressor is operated under a light load (outside air, low temperature and low humidity, low food in the refrigerator, door in the refrigerator, etc.). (The number of times of opening / closing is small), and the progress rate of frost formation on the evaporator is relatively slow.

【0009】一方、圧縮機が高回転数で運転していると
いうことは、高負荷(外気高温高湿、庫内食品多、扉開
閉回数多)のときであり、庫内を循環する冷気の水分量
が多くなり、蒸発器への着霜進行速度が早い。
On the other hand, when the compressor is operating at a high rotation speed, it means that the compressor is under a high load (high temperature and humidity of the outside air, many foods in the refrigerator, many times of door opening / closing), and the cooling air circulating in the refrigerator is high. The amount of water increases, and the speed of frost formation on the evaporator is high.

【0010】したがって、圧縮機運転積算時間を短めに
設定すると、圧縮機が高回転数で運転しているときや、
扉開閉回数が多いときは適切な除霜間隔となるが、圧縮
機が低回転数で運転しているときや、扉開閉回数が少な
いときは、着霜量が少なくまだ除霜を行う必要がないの
に除霜を行うことになり、無駄な電力を消費し、また、
庫内温度の上昇により保存食品へ悪影響を与えるなどの
問題が生じる。
Therefore, if the compressor operation integration time is set to be short, when the compressor is operating at a high rotation speed,
When the number of times of opening and closing the door is large, the appropriate defrost interval is set.However, when the compressor is operating at a low rotation speed or when the number of times of opening and closing the door is small, the amount of frost is small and it is necessary to still perform defrosting. Without the need to use defrost, waste power,
Problems arise such as an adverse effect on the preserved food due to an increase in the temperature in the refrigerator.

【0011】また、圧縮機運転積算時間を長めに設定す
ると、圧縮機が低回転数で運転しているときや、扉開閉
回数が少ないときは適切な除霜間隔となるが、圧縮機が
高回転数で運転しているときや、扉開閉回数が多いとき
は、着霜量が多いのに除霜を開始しないので、蒸発器と
庫内循環冷気との熱交換率が低下し、庫内温度上昇によ
る保存食品への悪影響や、冷却不足による消費電力の増
加などの問題が生じる。
[0011] When the accumulated operation time of the compressor is set to be longer, an appropriate defrosting interval is obtained when the compressor is operating at a low rotation speed or when the number of times of opening and closing the door is small. When operating at a rotational speed or when the number of times of opening and closing the door is large, defrosting does not start even though the amount of frost is large, so the heat exchange rate between the evaporator and the circulating cold air in the refrigerator decreases, and the Problems such as an adverse effect on stored food due to a rise in temperature and an increase in power consumption due to insufficient cooling occur.

【0012】本発明の目的は、上記従来技術が有する問
題点を解決するためになされたもので、蒸発器の除霜を
最適なときに行うことにより、冷蔵庫などの冷凍システ
ムにおいて、保存食品への悪影響を防止し、消費電力量
の低減を図ることである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above. By performing defrosting of an evaporator at an optimum time, it is possible to store food in a refrigeration system such as a refrigerator. To reduce the power consumption.

【0013】[0013]

【課題を解決するための手段】上記目的は、冷凍サイク
ルの蒸発器に付着した霜を検知する着霜検知手段と、蒸
発器に付着した霜を取り除く除霜手段と、着霜検知手段
からの信号に基づいて除霜手段の動作を制御する除霜制
御手段とを備えてなる除霜制御装置によって達成され
る。本発明によれば、蒸発器の実際の着霜量に基づく除
霜運転の制御ができる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a frost detecting means for detecting frost adhering to an evaporator of a refrigeration cycle, a defrosting means for removing frost adhering to an evaporator, and a frost detecting means. This is achieved by a defrost control device that includes a defrost control unit that controls the operation of the defrost unit based on a signal. According to the present invention, it is possible to control the defrosting operation based on the actual amount of frost formed on the evaporator.

【0014】本発明は、冷蔵庫などの冷凍サイクルに適
用され、蒸発器本体温度と蒸発器周辺の冷気温度との温
度差に基づいて、蒸発器の着霜状態を検知する。例え
ば、着霜検知手段として、蒸発器自身の温度を検出する
第1の系統と、蒸発器の周囲の冷気温度を検出する第2
の系統とからなる温度検出素子を設置することにより、
2系統の検出温度の温度差から着霜状態が判断可能とな
る。また、複数の着霜検知手段を適宜配設することによ
り、きめの細かい除霜制御ができる。
The present invention is applied to a refrigerating cycle of a refrigerator or the like, and detects a frost formation state of an evaporator based on a temperature difference between an evaporator body temperature and a cool air temperature around the evaporator. For example, a first system for detecting the temperature of the evaporator itself and a second system for detecting the temperature of cool air around the evaporator are provided as frost detection means.
By installing a temperature detection element consisting of
The frost formation state can be determined from the temperature difference between the detected temperatures of the two systems. In addition, by appropriately arranging a plurality of frost detection means, fine defrost control can be performed.

【0015】本発明の制御方法は、蒸発器本体と蒸発器
周辺との温度差が所定値以下になったときに、蒸発器に
付着した霜の除霜を開始する。もちろん、蒸発器を備え
た冷凍サイクルの運転が所定時間経過したとき、または
蒸発器が所定温度以下のとき、あるいは、温度差が所定
値以上の場合でも、あらかじめ定められた除霜周期時間
が経過したときに、上記除霜運転を開始してもよい。
According to the control method of the present invention, when the temperature difference between the evaporator main body and the periphery of the evaporator becomes equal to or less than a predetermined value, defrosting of frost adhering to the evaporator is started. Of course, when the operation of the refrigeration cycle including the evaporator has elapsed for a predetermined time, or when the evaporator has a temperature equal to or lower than a predetermined temperature, or when the temperature difference is equal to or higher than a predetermined value, the predetermined defrost cycle time elapses. Then, the defrosting operation may be started.

【0016】さらに、本発明によれば、蒸発器本体また
は蒸発器周辺の温度が、あらかじめ定めた所定値に達し
たときに、蒸発器の除霜を終了させることにより、効率
的で無駄のない除霜運転の制御ができる。
Further, according to the present invention, the defrosting of the evaporator is terminated when the temperature of the evaporator body or the temperature around the evaporator reaches a predetermined value, so that the evaporator is efficient and wasteful. Defrosting operation can be controlled.

【0017】さらに、本発明の目的は、上記除霜制御装
置を備えた冷蔵庫のほかにも、圧縮機の運転回転数およ
び扉開閉の回数に基づいて、次の除霜開始までの圧縮機
の運転積算時間を変化させる制御部を備えた冷蔵庫によ
っても達成される。
Still another object of the present invention is to provide, in addition to a refrigerator equipped with the above-described defrost control device, a compressor which is operated until the next defrost is started based on the operating speed of the compressor and the number of times the door is opened and closed. This is also achieved by a refrigerator provided with a control unit that changes the integrated operation time.

【0018】すなわち、除霜終了後から一定時間経過毎
に圧縮機の運転回転数を検出し、運転回転数毎に予め定
められた重み付け係数値を積算し、積算値が所定の値に
達したときに、次の除霜を開始する制御部を設けること
により、過去の種々のデータに基づく効率的な除霜運転
が可能となる。
That is, the operating speed of the compressor is detected every predetermined time after the completion of defrosting, and a predetermined weighting coefficient value is integrated for each operating speed, and the integrated value reaches a predetermined value. Sometimes, by providing the control unit that starts the next defrost, an efficient defrost operation based on various past data can be performed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。最初に、本発明の除霜制御装置
を装着した冷蔵庫の一例を説明する。図7は本実施形態
の縦断面図である。冷蔵庫本体1は冷凍室2および冷蔵
室3を有し、さらに、圧縮機4および蒸発器5を備えて
いる。
Embodiments of the present invention will be described below with reference to the drawings. First, an example of a refrigerator equipped with the defrost control device of the present invention will be described. FIG. 7 is a longitudinal sectional view of the present embodiment. The refrigerator main body 1 has a freezer compartment 2 and a refrigerator compartment 3, and further includes a compressor 4 and an evaporator 5.

【0020】冷凍室2には蒸発器5付近の温度を検出す
る蒸発器温度検出センサ6と、蒸発器5に付着した霜を
除去するため蒸発器近辺に設けられた除霜ヒータ7とを
具備し、庫内に冷気を循環させるための庫内冷気循環用
ファン8と、庫内冷気循環用ファンを駆動させるための
ファンモータ9とを備えている。
The freezing compartment 2 is provided with an evaporator temperature detecting sensor 6 for detecting a temperature near the evaporator 5 and a defrost heater 7 provided near the evaporator for removing frost adhering to the evaporator 5. In addition, a cool air circulation fan 8 for circulating cool air in the refrigerator and a fan motor 9 for driving the cool air circulation fan in the refrigerator are provided.

【0021】この蒸発器5に、2系統の温度検出素子の
検出温度により着霜の状態を判断する着霜検知器11が
設置されている。この着霜検知器11は、図5に示すよ
うに、蒸発器5の冷却パイプ5aに装着してある。そし
て、着霜検知器11の情報に基づいて冷却運転や除霜運
転等の制御を行う制御装置20を備えている。
The evaporator 5 is provided with a frost detector 11 for judging the state of frost based on the temperatures detected by the two temperature detecting elements. This frost detector 11 is mounted on the cooling pipe 5a of the evaporator 5, as shown in FIG. Further, a control device 20 for controlling a cooling operation, a defrosting operation, and the like based on information of the frost formation detector 11 is provided.

【0022】図5に示すように、着霜検知器11は2系
統の温度検出素子11a,11bを有し、1つの温度検
出素子11bは蒸発器5自身の温度Tcを検出し、もう
1つの温度検出素子11aは蒸発器5の周囲の冷気温度
Tdを検出するようになっている。
As shown in FIG. 5, the frost detector 11 has two temperature detecting elements 11a and 11b. One temperature detecting element 11b detects the temperature Tc of the evaporator 5 itself and the other temperature detecting element 11b. The temperature detecting element 11a detects a cool air temperature Td around the evaporator 5.

【0023】ここで、蒸発器5周囲の冷気温度Tdは、
庫内の空気と熱交換された冷気を検知するものなので、
蒸発器5自身の温度Tcよりも通常は高温になる。すな
わち、圧縮機4およびファンモータ9が駆動している場
合、蒸発器5の着霜が少ないときは、着霜検知器11の
2系統の検出温度の温度差(Td−Tc)は大きくな
る。
Here, the cool air temperature Td around the evaporator 5 is:
Because it detects cold air that has been heat exchanged with the air in the refrigerator,
Usually, the temperature is higher than the temperature Tc of the evaporator 5 itself. That is, when the compressor 4 and the fan motor 9 are driven and the frost formation on the evaporator 5 is small, the temperature difference (Td-Tc) between the detected temperatures of the two systems of the frost formation detector 11 increases.

【0024】逆に、蒸発器5の着霜が多いときは、温度
検出素子11aは霜により塞がれるので、冷却パイプ5
aの温度を検出することになり、温度検出素子11bと
ほぼ同じ温度を検出することになる。そのため、着霜検
知器11の2系統の検出温度の温度差(Td−Tc)は
小さくなる。
Conversely, when the evaporator 5 has a lot of frost, the temperature detecting element 11a is blocked by the frost.
This means that the temperature of a is detected, and the same temperature as that of the temperature detecting element 11b is detected. Therefore, the temperature difference (Td-Tc) between the detected temperatures of the two systems of the frost detector 11 becomes smaller.

【0025】上記のような構造の冷蔵庫においては、圧
縮機4およびファンモータ9が運転されると庫内の冷気
が循環されるが、その冷気中の水分は最終的に霜となっ
て蒸発器5に徐々に付着していく。
In the refrigerator having the above-described structure, when the compressor 4 and the fan motor 9 are operated, cool air in the refrigerator is circulated, but the water in the cool air eventually becomes frost and evaporator. 5 gradually adheres.

【0026】本例では、庫内負荷の量や扉の開閉の回数
等により、蒸発器5への着霜量は変化するが、圧縮機4
の運転積算時間が所定の値に達するか、着霜検知器11
が除霜が必要と判断したときに、圧縮機4およびファン
モータ9の運転を止め、除霜ヒータ7が通電されて蒸発
器5を加熱し、蒸発器5に付着した霜の除去を行う。
In the present embodiment, the amount of frost on the evaporator 5 varies depending on the amount of internal load, the number of times the door is opened and closed, and the like.
If the accumulated operation time of the vehicle reaches a predetermined value,
When it is determined that defrosting is necessary, the operation of the compressor 4 and the fan motor 9 is stopped, the defrosting heater 7 is energized to heat the evaporator 5, and the frost adhering to the evaporator 5 is removed.

【0027】その後、蒸発器温度検出センサ6が所定の
除霜終了温度(蒸発器5に付着した霜が全て融解され終
わったと思われる温度に設定しておく)に達すれば、除
霜ヒータ7への通電を終了させ、通常の冷却運転に戻る
ようになっている。
Thereafter, when the evaporator temperature detecting sensor 6 reaches a predetermined defrost end temperature (set to a temperature at which all the frost adhering to the evaporator 5 is considered to have been melted), the defrost heater 7 is turned on. Is terminated, and the operation returns to the normal cooling operation.

【0028】ここでは、着霜検知器11は庫内を冷却し
た冷気が蒸発器5へ戻る部位、すなわち蒸発器5の戻り
冷気入口部位へ取り付けている。これは、霜は高温高湿
の戻り冷気が最初にあたる蒸発器5の戻り冷気入口部へ
付着しやすいからである。
Here, the frost detector 11 is attached to a portion where the cool air that has cooled the inside of the refrigerator returns to the evaporator 5, that is, to a return cool air inlet portion of the evaporator 5. This is because the frost easily adheres to the return cold air inlet of the evaporator 5 where the high temperature and high humidity return cold air comes first.

【0029】以下では、本発明における冷蔵庫の除霜制
御動作の一例を、図1のフローチャートを参照して説明
する。まず、ステップS1で圧縮機の冷却運転を確認
し、ステップS2で圧縮機4およびファンモータ9が駆
動後、所定時間を経過したかどうかを確認する。
Hereinafter, an example of the defrosting control operation of the refrigerator according to the present invention will be described with reference to the flowchart of FIG. First, the cooling operation of the compressor is checked in step S1, and whether a predetermined time has elapsed after the compressor 4 and the fan motor 9 are driven is checked in step S2.

【0030】ステップS2で所定時間経過を確認した
ら、ステップS3で着霜検知器11の2系統の検出温度
の温度差を判断し、その温度差が所定値以下になった場
合、あるいは、あらかじめ決められていた除霜周期間隔
(例えば、圧縮機4の運転積算時間)以上になった場
合、次のステップ4に移る。
After confirming that a predetermined time has elapsed in step S2, a temperature difference between the detected temperatures of the two systems of the frost detector 11 is determined in step S3, and when the temperature difference becomes equal to or less than a predetermined value, or in advance. If it is equal to or longer than the set defrost cycle interval (for example, the cumulative operation time of the compressor 4), the process proceeds to the next step 4.

【0031】ステップS4では、圧縮機4およびファン
モータ9の運転を止め、除霜ヒータ7への通電を開始す
る。なお、ここで、着霜検知器11の温度差による判断
だけでなく、時間によって除霜を開始するようにしたの
は、着霜検知器11の誤判断による誤動作を防止するた
めである。
In step S4, the operation of the compressor 4 and the fan motor 9 is stopped, and the power supply to the defrost heater 7 is started. Here, the reason why the defrosting is started not only based on the temperature difference of the frost formation detector 11 but also with time is to prevent malfunction due to erroneous determination of the frost formation detector 11.

【0032】次に、ステップS5において、蒸発器温度
検出センサ6が、蒸発器5に付着した霜が全て融解され
終わったと思われる設定温度以上に達したか否かの監視
を行う。そして設定温度以上になったのであれば、ステ
ップS6に移り除霜ヒータ7への通電を終了させ、通常
の冷却運転に戻るようになる。
Next, in step S5, the evaporator temperature detection sensor 6 monitors whether or not the frost adhering to the evaporator 5 has reached a set temperature at which it is considered that all the frost has been completely melted. If the temperature has become equal to or higher than the set temperature, the process proceeds to step S6, in which the power supply to the defrost heater 7 is terminated, and the operation returns to the normal cooling operation.

【0033】以上の除霜運転の制御において、例えば、
圧縮機運転積算時間などによる除霜周期間隔は設定せ
ず、着霜検知器11による蒸発器5の実際の着霜量の判
断のみで、除霜運転を行うことももちろん可能である。
In the control of the above defrosting operation, for example,
It is of course possible to perform the defrosting operation only by determining the actual amount of frost formed on the evaporator 5 by the frost detector 11 without setting the defrost cycle interval based on the accumulated operation time of the compressor.

【0034】図2は、本発明における除霜制御動作の別
の例をフローチャートに示したものである。本例は、図
7で示した冷蔵庫において、蒸発器5に着霜検知器11
を2組以上装着したものである。これは、例えば、蒸発
器5の左右に各1個づつ装着し、蒸発器5の着霜分布に
偏りが生じても、着霜していることを確実に判断できる
ようにしたものである。
FIG. 2 is a flowchart showing another example of the defrost control operation according to the present invention. In this example, in the refrigerator shown in FIG.
Are installed in two or more sets. This is, for example, one by one mounted on each of the left and right sides of the evaporator 5, so that even if the frost distribution of the evaporator 5 is biased, it is possible to reliably determine that frost is formed.

【0035】図2に示すように、冷却運転中に(ステッ
プS11)、圧縮機4およびファンモータ9の駆動後の
所定時間経過を確認し(ステップS12)、まず、着霜
検知器11の2組以上ある2系統の検出温度の温度差を
判断する(ステップS13)。
As shown in FIG. 2, during the cooling operation (step S11), it is confirmed that a predetermined time has elapsed after the compressor 4 and the fan motor 9 have been driven (step S12). The temperature difference between the detected temperatures of the two or more pairs of systems is determined (step S13).

【0036】その2組以上の温度差のうち、いずれか1
つでも所定値以下になった場合、圧縮機4およびファン
モータ9の運転を止め、除霜ヒータ7への通電を開始す
る(ステップS14)。
Any one of the two or more sets of temperature differences
If at least one falls below the predetermined value, the operation of the compressor 4 and the fan motor 9 is stopped, and the energization of the defrost heater 7 is started (step S14).

【0037】次に、蒸発器温度検出センサ6が、所定の
温度以上に達したか否かの監視を行う(ステップS1
5)。そして、所定の温度以上になったのであれば、除
霜ヒータ7への通電を終了させ(ステップS16)、通
常の冷却運転に戻るようになる。
Next, it is monitored whether or not the evaporator temperature detecting sensor 6 has reached a predetermined temperature or higher (step S1).
5). Then, when the temperature becomes equal to or higher than the predetermined temperature, the power supply to the defrost heater 7 is terminated (step S16), and the operation returns to the normal cooling operation.

【0038】また、除霜を開始後、着霜検知器11の2
系統の検出温度のうち、一方あるいは両方の検出温度
が、蒸発器5に付着した霜が全て融解され終わったと思
われる所定温度以上に達したときに、除霜ヒータ7への
通電を終了させ、通常の冷却運転に戻るように制御すれ
ば、蒸発器温度検出センサ6の機能を兼ねることになる
ので、従来用いていた蒸発器温度検出センサ6を省略で
きる。
After the start of defrosting, the frost formation detector 11
When one or both of the detection temperatures of the system reach a predetermined temperature or higher at which it is considered that all the frost attached to the evaporator 5 has been completely melted, the power supply to the defrost heater 7 is terminated, If control is performed so as to return to the normal cooling operation, the function of the evaporator temperature detection sensor 6 is also achieved, so that the conventionally used evaporator temperature detection sensor 6 can be omitted.

【0039】以上の制御で、図1のステップS2、およ
び図2のステップS12で、所定時間(5分)後に2つ
の温度検出素子の温度差を測定するようにしたのは、圧
縮機4を冷却運転してから、蒸発器5が充分に冷えるま
でに所定の時間が必要だからである。
In the above control, the temperature difference between the two temperature detecting elements is measured after a predetermined time (5 minutes) in step S2 of FIG. 1 and step S12 of FIG. This is because a predetermined time is required after the cooling operation until the evaporator 5 is sufficiently cooled.

【0040】ここでは、その時間の経過を待ち、この待
ち時間は装置全体に関係し、外気温度によっても変化す
るので、それらの条件によって、運転中に待ち時間を調
整するのが望ましい。
Here, the elapse of the time is waited, and this wait time is related to the entire apparatus and varies depending on the outside air temperature. Therefore, it is desirable to adjust the wait time during operation according to these conditions.

【0041】図3および図4は、それぞれ本発明におけ
る除霜制御動作のさらに別の例をフローチャートに示し
たものである。着霜検知器11が1組の場合を図3に、
2組以上の場合を図4に示している。
FIGS. 3 and 4 are flowcharts each showing still another example of the defrosting control operation in the present invention. FIG. 3 shows a case where the frost detector 11 is one set.
The case of two or more sets is shown in FIG.

【0042】これらの制御例が、図1および図2の例と
相違する点は、前述の例では、ステップS2またはS3
のように、所定の待ち時間を設定していたが、本例で
は、待ち時間の設定に代えて、蒸発器の温度変化を計測
するようにした点である。
The difference between these control examples from the examples of FIGS. 1 and 2 is that in the above-described example, the control is performed in step S2 or S3.
As described above, the predetermined waiting time is set, but in this example, the temperature change of the evaporator is measured instead of setting the waiting time.

【0043】すなわち、図3および図4に示すように、
ステップS22とステップS32で、所定の時間待つか
わりに、蒸発器5に設置した蒸発器温度検出センサ6や
温度検出素子11bを利用して、蒸発器の温度が所定温
度以下に低下した後、次のステップに移るようにした。
That is, as shown in FIGS. 3 and 4,
In steps S22 and S32, instead of waiting for a predetermined time, the temperature of the evaporator is reduced to a predetermined temperature or less by using the evaporator temperature detection sensor 6 and the temperature detection element 11b installed in the evaporator 5, and To move to the next step.

【0044】なお、ステップS22またはS32におけ
る所定温度は、冷凍サイクルに依存して温度を決定すれ
ばよいが、家庭用の冷凍冷蔵庫ではマイナス25℃程度
とすればよい。その他のステップは図1または図2の例
と同じであり、効果も同様なのでその説明を省略する。
The predetermined temperature in step S22 or S32 may be determined depending on the refrigeration cycle, but may be set to about minus 25 ° C. in a home refrigerator. The other steps are the same as those in the example of FIG. 1 or FIG.

【0045】ここで、本発明の原理である2系統の温度
検出素子をもつ着霜検知器の、温度検出状態を説明す
る。圧縮機運転時および停止時における着霜検知器の温
度変化は、図6に示すようになる。
Here, the temperature detection state of the frost formation detector having two temperature detection elements according to the principle of the present invention will be described. FIG. 6 shows the temperature change of the frost detector during the operation and the stop of the compressor.

【0046】図5に示した温度検出素子を、蒸発器の冷
却パイプに配置した場合、図6に示すように、着霜量が
少ないときは、蒸発器本体(温度検出素子11a)とそ
の近辺(温度検出素子11b)では、図中左側に示すよ
うに温度差がある。逆に温度差があるときは、着霜量が
少ないものと判断できる。
When the temperature detecting element shown in FIG. 5 is arranged in the cooling pipe of the evaporator, as shown in FIG. 6, when the amount of frost is small, the evaporator main body (temperature detecting element 11a) and its vicinity are provided. (Temperature detecting element 11b) has a temperature difference as shown on the left side in the figure. Conversely, when there is a temperature difference, it can be determined that the amount of frost is small.

【0047】また、温度検出素子11a、11bに霜が
付着すると、両者の検出温度は、図中右側のように、殆
ど温度差がなくなる。つまり、2系統の温度差がなくな
った場合は、着霜量が多いものと判断できる。
When frost adheres to the temperature detecting elements 11a and 11b, there is almost no difference between the detected temperatures of the two as shown in the right side of the figure. That is, when the temperature difference between the two systems disappears, it can be determined that the amount of frost is large.

【0048】以上の実施形態によれば、蒸発器への実際
の着霜状態を判断して除霜を実行するので、無駄な除霜
運転を防止できるため消費電力が低減し、また、無駄に
蒸発器を加熱することがないので、庫内温度を上昇させ
過ぎることもない。
According to the above-described embodiment, defrosting is executed by determining the actual state of frost formation on the evaporator, so that useless defrosting operation can be prevented, so that power consumption is reduced and wasteful defrosting is performed. Since the evaporator is not heated, the internal temperature does not rise too much.

【0049】次に、圧縮機の運転積算時間によって、冷
蔵庫の除霜を制御する例を、図8および図9を用いて説
明する。なお、図7に示した実施形態と同一構造部分に
は同一符号を付す。
Next, an example of controlling the defrosting of the refrigerator based on the cumulative operation time of the compressor will be described with reference to FIGS. The same components as those in the embodiment shown in FIG. 7 are denoted by the same reference numerals.

【0050】図9において、圧縮機4およびファンモー
タ9が運転すると庫内の冷気が循環されるが、その冷気
中の水分は最終的に霜となって蒸発器5に徐々に付着し
ていく。このとき、庫内負荷の量や扉の開閉の回数等に
より、蒸発器5への着霜量は変化する。
In FIG. 9, when the compressor 4 and the fan motor 9 are operated, the cool air in the refrigerator is circulated, and the water in the cool air eventually becomes frost and gradually adheres to the evaporator 5. . At this time, the amount of frost on the evaporator 5 changes depending on the amount of internal load, the number of times the door is opened and closed, and the like.

【0051】本例では、圧縮機4の運転積算時間が所定
の値に達すると、圧縮機4およびファンモータ9の運転
を止め、除霜ヒータ7が通電されて蒸発器5を加熱し、
蒸発器5に付着した霜の除去を行う。
In this example, when the accumulated operation time of the compressor 4 reaches a predetermined value, the operation of the compressor 4 and the fan motor 9 is stopped, the defrost heater 7 is energized, and the evaporator 5 is heated.
The frost adhering to the evaporator 5 is removed.

【0052】その後、蒸発器温度検出センサ6が、蒸発
器5に付着した霜が全て融解され終わったと思われる所
定の除霜終了温度に達すれば、除霜ヒータ7への通電を
終了させ、通常の冷却運転に戻るようになっている。
Thereafter, when the evaporator temperature detection sensor 6 reaches a predetermined defrost end temperature at which it is considered that all the frost attached to the evaporator 5 has been completely melted, the energization of the defrost heater 7 is terminated. The operation returns to the cooling operation.

【0053】上記の除霜制御動作をフローチャートに示
したのが図8である。冷却運転中、まず、圧縮機の運転
積算時間が所定に時間に達したか否かの判断を行う(ス
テップS41)。
FIG. 8 is a flowchart showing the above defrosting control operation. During the cooling operation, first, it is determined whether or not the cumulative operation time of the compressor has reached a predetermined time (step S41).

【0054】次いで、所定の時間に達していたならば、
除霜ヒータ7への通電を開始する(ステップS42)。
そして、蒸発器温度検出センサ6が所定の温度に達した
か否かの判定を行う(ステップS43)。
Next, if the predetermined time has been reached,
Power supply to the defrost heater 7 is started (step S42).
Then, it is determined whether or not the evaporator temperature detection sensor 6 has reached a predetermined temperature (step S43).

【0055】そこで、所定の温度に達していたならば、
蒸発器5が十分に加熱され、蒸発器に付着した霜が全て
融解したと判断して除霜ヒータの通電を終了する(ステ
ップS44)。こうして除霜動作が終了し、通常運転に
戻る。
Then, if the predetermined temperature has been reached,
It is determined that the evaporator 5 has been sufficiently heated, and that all the frost attached to the evaporator has been melted, and the energization of the defrost heater is terminated (step S44). Thus, the defrosting operation is completed, and the operation returns to the normal operation.

【0056】蒸発器周囲に生じる霜の量は、外気温度や
湿度、蒸発器周囲温度、冷蔵庫の場合は庫内の食品貯蔵
量等によって差が生ずるものである。したがって、着霜
量に関係なく一定の時間周期で除霜を行うと、着霜量が
少なくても除霜が行われることになる。
The amount of frost generated around the evaporator varies depending on the outside air temperature and humidity, the temperature around the evaporator, and in the case of a refrigerator, the amount of food stored in the refrigerator. Therefore, if defrosting is performed at a constant time cycle regardless of the amount of frost, the defrost will be performed even if the amount of frost is small.

【0057】逆に、着霜量が多いにも拘らず、定められ
た除霜周期時間にならなければ除霜が行われない場合が
あり、このようなときは、着霜により蒸発器の冷却効率
が低下するため、庫内温度が上昇する恐れが生じる。
Conversely, there is a case where the defrosting is not performed unless the predetermined defrost cycle time is reached even though the amount of frost is large. In such a case, the evaporator is cooled by the frost. Since the efficiency is reduced, there is a possibility that the internal temperature increases.

【0058】したがって、前述の本発明の除霜制御装置
によれば、実際の着霜量に基づいて、冷却および除霜運
転を制御するので、このような不具合が防止され、効率
的な運転が実施でき、消費電力の低減と健全な庫内温度
の保持が可能となる。
Therefore, according to the above-described defrost control device of the present invention, since the cooling and defrosting operations are controlled based on the actual amount of frost, such problems are prevented, and efficient operation is achieved. As a result, power consumption can be reduced and a healthy internal temperature can be maintained.

【0059】次に、本発明の目的を達成する冷蔵庫の他
の実施形態を、図10および図11を参照して説明す
る。図10は本実施形態の除霜間隔制御方式の一例を示
すフローチャート、図11は本実施形態の冷蔵庫の縦断
面図である。
Next, another embodiment of the refrigerator which achieves the object of the present invention will be described with reference to FIGS. FIG. 10 is a flowchart illustrating an example of a defrost interval control method according to the present embodiment, and FIG. 11 is a longitudinal sectional view of the refrigerator according to the present embodiment.

【0060】本例の冷蔵庫本体51は冷凍室52および
冷蔵室53を持ち、圧縮機54は、供給される電源周波
数をインバータ装置により可変にして、運転回転数を可
変にしたものである。例えば、2400、3000、3
600回転/分で運転する。
The refrigerator main body 51 of this embodiment has a freezer compartment 52 and a refrigeration compartment 53, and the compressor 54 has a variable power supply frequency made variable by an inverter device to make the operating speed variable. For example, 2400, 3000, 3
Operate at 600 rpm.

【0061】庫内を冷却する蒸発器55の付近には、温
度を検出する蒸発器温度センサ56が設けられ、蒸発器
55に付着した霜を除去するため、蒸発器付近に除霜ヒ
ータ57、さらに、庫内に冷気を循環させるための庫内
冷却用ファン58、庫内冷却用ファン58を駆動させる
ためのファンモータ59などが設置されている。
An evaporator temperature sensor 56 for detecting the temperature is provided in the vicinity of the evaporator 55 for cooling the inside of the refrigerator, and a defrost heater 57 is provided near the evaporator in order to remove frost attached to the evaporator 55. Further, a cooling fan 58 for circulating cool air in the refrigerator, a fan motor 59 for driving the cooling fan 58 in the refrigerator, and the like are provided.

【0062】さらに、マイクロコンピュータを主体とし
た制御装置70によって、圧縮機運転積算時間や、扉ス
イッチ71からの入力で、扉開閉回数をカウントし、こ
れらの情報に基づいて冷却運転や除霜運転等の制御を行
うようになっている。
Further, the controller 70 mainly composed of a microcomputer counts the number of times the door is opened and closed based on the accumulated operation time of the compressor and the input from the door switch 71. Based on the information, the cooling operation and the defrosting operation are performed. And so on.

【0063】本例の冷蔵庫でも、圧縮機54およびファ
ンモータ59が運転すると庫内の冷気が循環され、その
冷気に含まれる水蒸気等は最終的に霜となって蒸発器5
5に徐々に付着し、このとき、冷却負荷の量や扉開閉の
回数等により、着霜量の増加傾向はマチマチだが、着霜
量が多いと蒸発器55と庫内循環冷気との熱交換効率が
低下していくのは、前述した他の例と同様である。
Also in the refrigerator of this embodiment, when the compressor 54 and the fan motor 59 are operated, the cool air in the refrigerator is circulated, and the steam and the like contained in the cool air eventually become frost and become the evaporator 5.
At this time, the frost formation amount tends to increase due to the amount of the cooling load and the number of times the door is opened and closed. The efficiency decreases as in the other examples described above.

【0064】本実施形態では、以下に説明する除霜間隔
制御方式に従って除霜間隔を決定し、除霜ヒータ57に
より蒸発器55を加熱し、付着した霜を除去した後、蒸
発器温度センサ56によって、蒸発器55に付着した霜
が全て融解され終わったと思われる所定の除霜終了温度
を検知して、除霜ヒータ57の通電を終了させ、通常の
冷却運転に戻るようになっている。
In the present embodiment, the defrost interval is determined according to the defrost interval control method described below, the evaporator 55 is heated by the defrost heater 57 to remove the attached frost, and then the evaporator temperature sensor 56 Accordingly, a predetermined defrost end temperature at which it is considered that all the frost attached to the evaporator 55 has been completely melted is detected, the energization of the defrost heater 57 is terminated, and the operation returns to the normal cooling operation.

【0065】図10は、本冷蔵庫の除霜間隔制御方式の
一例を示すフローチャートである。重み付け係数積算値
Tの初期値を0に設定し(ステップS51)、次に重み
付け係数値の検出設定時間(例えば、検出は一分毎に行
う)に達したか否かの判定を行う(ステップS52)。
そして、検出設定時間に達していれば、次に進み、。前
回の除霜運転開始時からの扉開閉操作の有無を判定する
(ステップS53)。
FIG. 10 is a flowchart showing an example of a defrosting interval control method of the refrigerator. The initial value of the weighting coefficient integrated value T is set to 0 (step S51), and then it is determined whether or not the detection setting time of the weighting coefficient value (for example, detection is performed every minute) has been reached (step S51). S52).
Then, if the detection set time has been reached, proceed to the next step. It is determined whether a door opening / closing operation has been performed since the start of the previous defrosting operation (step S53).

【0066】前回の除霜運転開始時から扉開閉操作があ
った場合、ステップS54、ステップS56、ステップ
S58、ステップS60で、それぞれ圧縮機回転数が0
(停止)、2400、3000、3600回転/分かの
判定を行い、予め決められた重み付け係数値Kの値を
0、75、100、125の中から選択する。
If the door opening / closing operation has been performed since the start of the previous defrosting operation, the compressor speed is set to 0 in steps S54, S56, S58, and S60.
(Stop) It is determined whether the rotation is 2400, 3000, or 3600 rpm, and the value of the predetermined weighting coefficient K is selected from 0, 75, 100, and 125.

【0067】ここで、重み付け係数値Kは、圧縮機回転
数が高いときほど大きな値に設定しておく。次に、〔重
み付け係数積算値T+重み付け係数値K〕を行い、重み
付け係数積算値Tを改めて計算する(ステップS7
0)。
Here, the weighting coefficient value K is set to a larger value as the rotational speed of the compressor is higher. Next, [weighted coefficient integrated value T + weighted coefficient value K] is performed, and the weighted coefficient integrated value T is calculated again (step S7).
0).

【0068】次に、Tの値が予め決められた値(例えば
60000以上)に達したか否かの判定を行う(ステッ
プS71)。達していれば、ステップS72で除霜運転
を開始し、達していなければステップS2へ戻る。
Next, it is determined whether or not the value of T has reached a predetermined value (for example, 60000 or more) (step S71). If it has reached, the defrosting operation is started in step S72, and if not, the process returns to step S2.

【0069】前回の除霜運転開始時から扉開閉操作無し
を継続している場合、ステップS12、ステップS1
4、ステップS16、ステップS18で、それぞれ圧縮
機回転数が0(停止)、2400、3000、3600
回転/分かの判定を行い、予め決められた重み付け係数
値Kの値を0、25、75、100の中から選択する。
If the door opening / closing operation has not been performed since the start of the previous defrosting operation, step S12, step S1
4. In steps S16 and S18, the compressor rotation speed is 0 (stop), 2400, 3000, and 3600, respectively.
It is determined whether the rotation / minute or not, and the value of the predetermined weighting coefficient value K is selected from 0, 25, 75, and 100.

【0070】ここで、重み付け係数値Kは、回転数が高
いとき程大きな値に設定しておくのは、扉開閉があった
場合のときと同様だが、同じ回転数で比べると、扉開閉
操作があった場合よりも、扉開閉操作無しを継続してい
る場合のときのKを、小さな値に設定している。
Here, the weighting coefficient value K is set to a larger value as the rotation speed is higher, as in the case where the door is opened and closed. K is set to a smaller value when no door opening / closing operation is continued than when there is an error.

【0071】次に、ステップS20へ進み、〔重み付け
係数積算値T+重み付け係数値K〕を行い、重み付け係
数積算値Tを改めて計算する。次に、ステップS21へ
進み、Tの値が予め決められた値(例えば60000以
上)に達したか否かの判定を行う。
Next, the process proceeds to step S20, where [weighted coefficient integrated value T + weighted coefficient value K] is performed, and the weighted coefficient integrated value T is calculated again. Next, the process proceeds to step S21 to determine whether the value of T has reached a predetermined value (for example, 60000 or more).

【0072】達していればステップS22へ進み除霜運
転を開始する。達していなければステップS2へ戻る。
なお、除霜運転を開始したところでスタートに戻り、同
じ処理をくり返す。
If it has reached, the process proceeds to step S22 to start the defrosting operation. If not, the process returns to step S2.
When the defrosting operation is started, the process returns to the start, and the same processing is repeated.

【0073】このような制御方式にすることにより、圧
縮機の運転回転数および扉開閉操作の有無に応じて、予
め定められた重み付け係数積算値に達する時間が、圧縮
機の運転回転数が高いときや扉開閉操作がある場合は短
めに、例えば、途中で扉開閉操作が有り、3600回転
/分で運転し続けた場合は、圧縮機の運転積算時間が8
時間で除霜運転を行う。
With such a control method, the time required to reach a predetermined weighting coefficient integrated value in accordance with the operating speed of the compressor and the presence / absence of the door opening / closing operation increases the operating speed of the compressor. When there is a door opening / closing operation at a short time, for example, when the door opening / closing operation is performed halfway and the operation is continuously performed at 3600 rpm, the accumulated operation time of the compressor is 8 hours.
Perform defrosting operation in time.

【0074】また、圧縮機の運転回転数が低いときや扉
開閉操作が無い場合は長めに、例えば、扉開閉操作が無
く、2400回転/分で運転し続けた場合は、圧縮機の
運転積算時間が40時間で除霜運転を行うようにする。
また、圧縮機の運転回転数が変化していれば、中間的な
積算時間で除霜運転を行うことが可能なので、適正時間
にて除霜運転を実施できる。
Further, when the operation speed of the compressor is low or when there is no door opening / closing operation, the operation time of the compressor is long, for example, when there is no door opening / closing operation and the operation is continued at 2400 rpm. The defrosting operation is performed for 40 hours.
Further, if the operating speed of the compressor changes, the defrosting operation can be performed in an intermediate integrated time, so that the defrosting operation can be performed in an appropriate time.

【0075】なお、本実施形態の圧縮機の運転回転数
は、2400、3000、3600回転/分の3段階と
した例であるが、可変回転数の段階が増えた場合は、そ
れに応じて重み付け係数値Kを細かく設定すればよい。
Although the operating speed of the compressor of this embodiment is an example of three stages of 2400, 3000 and 3600 revolutions / minute, when the number of stages of the variable speed is increased, the weight is accordingly adjusted. What is necessary is just to set the coefficient value K finely.

【0076】また、本実施形態では図10に示すよう
に、前回の除霜運転開始時から扉開閉操作があったか、
あるいは、なかったかのみで重み付け係数値Kを与えて
いるが、例えば、扉開閉操作が1回か2回かあるいはN
回かという判定を、図中ステップS3で行い、別々の重
み付け係数値Kを与えれば、よりきめ細かい除霜間隔制
御が行える。
In this embodiment, as shown in FIG. 10, whether the door opening / closing operation has been performed since the previous start of the defrosting operation is determined.
Alternatively, the weighting coefficient value K is given only depending on whether the door opening / closing operation has been performed once or twice or N.
If the determination is made in step S3 in the figure and different weighting coefficient values K are given, finer defrost interval control can be performed.

【0077】本実施形態の冷蔵庫によれば、圧縮機の運
転回転数が高いときや扉開閉操作がある場合、すなわ
ち、蒸発器への着霜進行速度が早い場合は除霜間隔を短
めに、圧縮機の運転回転数が低いときや扉開閉操作が無
い場合、すなわち、蒸発器への着霜進行速度が遅い場合
は除霜間隔を長めに制御する除霜制御方式を備えたの
で、無用な除霜運転を行い無駄な電力を消費するという
問題や庫内温度の上昇により保存食品へ悪影響を与える
という問題のない冷蔵庫を顧客に提供できるという効果
がある。
According to the refrigerator of the present embodiment, when the operating speed of the compressor is high or when the door is opened / closed, that is, when the speed of frost formation on the evaporator is high, the defrost interval is shortened. When the operating speed of the compressor is low or when there is no door opening / closing operation, that is, when the frost formation speed on the evaporator is low, the defrosting control system that controls the defrosting interval longer is provided. This has the effect of providing the customer with a refrigerator that does not have the problem of consuming wasteful power by performing the defrosting operation or the problem of adversely affecting the stored food due to an increase in the internal temperature.

【0078】なお、本発明は、上述のいくつかの実施形
態に限定されるものではない。前述の図5および図6を
用いて説明した本発明の除霜制御装置または方法と、図
10および図11を用いて説明した本発明の除霜制御方
式とを組み合わせ、さらにきめの細かい制御を行うこと
も可能である。
The present invention is not limited to the above-described embodiments. The defrost control device or method of the present invention described with reference to FIGS. 5 and 6 described above is combined with the defrost control method of the present invention described with reference to FIGS. It is also possible to do.

【0079】[0079]

【発明の効果】以上説明したように、本発明によれば、
冷蔵庫などの冷凍サイクルで、蒸発器への実際の着霜状
態に基づいて、あるいは、圧縮機の運転回転数や扉開閉
操作の回数に基づいて除霜運転を行うので、蒸発器の除
霜を効率的に実施でき、保存食品への悪影響を防止し、
かつ、消費電力量の低減を図ることができる。
As described above, according to the present invention,
In a refrigeration cycle such as a refrigerator, the defrosting operation is performed based on the actual state of frost on the evaporator, or based on the number of rotations of the compressor and the number of door opening / closing operations. Can be implemented efficiently, prevent adverse effects on preserved foods,
In addition, power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の除霜制御方法の一例を示すフローチャ
ート図である。
FIG. 1 is a flowchart illustrating an example of a defrost control method according to the present invention.

【図2】本発明の除霜制御方法の別の例を示すフローチ
ャート図である。
FIG. 2 is a flowchart illustrating another example of the defrosting control method of the present invention.

【図3】本発明の除霜制御方法のさらに別の例を示すフ
ローチャート図である。
FIG. 3 is a flowchart illustrating yet another example of the defrost control method of the present invention.

【図4】本発明の除霜制御方法のさらに別の例を示すフ
ローチャート図である。
FIG. 4 is a flowchart illustrating yet another example of the defrost control method of the present invention.

【図5】本発明の除霜制御装置の着霜検知器の装着例を
示す図である。
FIG. 5 is a diagram showing an example of mounting a frost detector of the defrost control device of the present invention.

【図6】本発明における圧縮機運転時および停止時の着
霜検知器の温度変化図である。
FIG. 6 is a diagram illustrating a temperature change of the frost detector during operation and stop of the compressor according to the present invention.

【図7】本発明の除霜制御装置を装着した冷蔵庫の一例
を示す概略縦断面図である。
FIG. 7 is a schematic longitudinal sectional view showing an example of a refrigerator equipped with the defrost control device of the present invention.

【図8】圧縮機の運転積算時間に基づく冷蔵庫の除霜制
御例を示すフローチャート図である。
FIG. 8 is a flowchart illustrating an example of defrost control of the refrigerator based on the cumulative operation time of the compressor.

【図9】図8で説明した冷蔵庫の概略縦断面図である。FIG. 9 is a schematic longitudinal sectional view of the refrigerator described in FIG.

【図10】本発明の冷蔵庫の除霜間隔制御方式を示すフ
ローチャート図である。
FIG. 10 is a flowchart illustrating a defrosting interval control method for a refrigerator according to the present invention.

【図11】図10で説明した冷蔵庫の概略側断面図であ
る。
FIG. 11 is a schematic sectional side view of the refrigerator described in FIG. 10;

【符号の説明】[Explanation of symbols]

1、51 冷蔵庫本体 2、52 冷凍室 3、53 冷蔵室 4、54 圧縮機 5、55 蒸発器 5a 冷却パイプ 6、56 蒸発器温度検出センサ 7、57 除霜ヒータ 8、58 庫内冷気循環用ファン 9、59 ファンモータ 10、20、60、70 制御装置 11 着霜検知器 11a、11b 温度検出素子 71 扉スイッチ 1,51 Refrigerator body 2,52 Freezer compartment 3,53 Refrigerator compartment 4,54 Compressor 5,55 Evaporator 5a Cooling pipe 6,56 Evaporator temperature detection sensor 7,57 Defrost heater 8,58 For cold air circulation in the compartment Fan 9, 59 Fan motor 10, 20, 60, 70 Control device 11 Frost detector 11a, 11b Temperature detecting element 71 Door switch

フロントページの続き (72)発明者 小林 亨 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 中村 浩和 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 加納 奨一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 吉田 英樹 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 柴田 耕一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 久保 誠司 栃木県下都賀郡大平町大字富田709番地の 2 株式会社日立栃木エレクトロニクス内 Fターム(参考) 3L046 AA02 BA01 CA06 FB02 GA03 GA04 GA06 GB01 JA11 JA15 LA01 LA22 MA01 MA02 MA03 MA04 Continued on the front page (72) Inventor Tohru Kobayashi 800, Tomita, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Inside the Cooling Division, Hitachi, Ltd. Within business division (72) Inventor Shoichi Kano 800, Tomita, Oda-machi, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Within the cooling division of Hitachi, Ltd. (72) Inventor Koichi Shibata 800, Tomita, Odai-machi, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Within the Cooling and Refrigerating Business Dept., Hitachi, Ltd. F term (reference) 3L046 AA02 BA01 CA06 FB02 GA03 GA04 GA06 GB01 JA11 JA15 LA01 LA22 MA01 MA02 MA03 MA04

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルの蒸発器に付着した霜を検
知する着霜検知手段と、前記蒸発器に付着した霜を取り
除く除霜手段と、前記着霜検知手段からの信号に基づい
て前記除霜手段の動作を制御する除霜制御手段とを備え
てなる除霜制御装置。
1. A frost detecting means for detecting frost adhering to an evaporator of a refrigeration cycle, a defrosting means for removing frost adhering to the evaporator, and the defrosting means based on a signal from the frost detecting means. A defrost control device comprising: defrost control means for controlling the operation of the frost means.
【請求項2】 圧縮機、凝縮器、減圧器、蒸発器を有す
る冷凍サイクルによって冷却された冷気を庫内に循環さ
せる冷気送風ファンと、前記蒸発器に付着した霜を除去
させる除霜ヒータと、前記圧縮機や冷気送風ファンおよ
び除霜ヒータの運転を制御する運転制御手段とを備えた
除霜制御装置において、前記蒸発器本体温度と前記蒸発
器周辺の冷気温度との温度差に基づいて、前記蒸発器の
着霜状態を検知する着霜検知手段を備えたことを特徴と
する除霜制御装置。
2. A cooling air blower fan for circulating cool air cooled by a refrigeration cycle having a compressor, a condenser, a decompressor, and an evaporator in a refrigerator, and a defrost heater for removing frost attached to the evaporator. An operation control unit for controlling the operation of the compressor, the cool air blower fan, and the defrost heater; A defrosting control device comprising a frosting detection means for detecting a frosting state of the evaporator.
【請求項3】 前記着霜検知手段は、前記蒸発器自身の
温度を検出する第1の系統と、前記蒸発器の周囲の冷気
温度を検出する第2の系統とからなる温度検出素子を備
えてなる請求項1または2に記載の除霜制御装置。
3. The frost detection means includes a temperature detection element including a first system for detecting a temperature of the evaporator itself and a second system for detecting a cool air temperature around the evaporator. The defrost control device according to claim 1 or 2, wherein
【請求項4】 前記着霜検知手段が前記蒸発器に2組以
上装着され、少なくとも1組の温度差が設定値以下にな
ったときは、前記圧縮機および冷気送風ファンの駆動を
停止し、前記除霜ヒータへ通電して除霜を開始する請求
項1、2または3に記載の除霜制御装置。
4. When two or more sets of the frost detection means are mounted on the evaporator, and when at least one set of temperature difference is equal to or less than a set value, the driving of the compressor and the cool air blowing fan is stopped, 4. The defrost control device according to claim 1, wherein the defrost heater is energized to start defrost. 5.
【請求項5】 蒸発器本体と蒸発器周辺との温度差が所
定値以下になったときに、前記蒸発器に付着した霜の除
霜を開始する除霜制御方法。
5. A defrost control method for starting defrost of frost adhering to the evaporator when a temperature difference between the evaporator main body and the periphery of the evaporator becomes equal to or less than a predetermined value.
【請求項6】 前記蒸発器を備えた冷凍サイクルの運転
が所定時間経過したとき、または前記蒸発器が所定温度
以下のときに、前記蒸発器に付着した霜の除霜を開始す
る請求項5に記載の除霜制御方法。
6. Defrosting of frost adhering to the evaporator is started when a predetermined time has elapsed in the operation of the refrigeration cycle including the evaporator or when the evaporator is at or below a predetermined temperature. The defrost control method described in 1.
【請求項7】 前記温度差が所定値以上の場合でも、あ
らかじめ定められた除霜周期時間を経過したときに、前
記蒸発器に付着した霜の除霜を開始する請求項5または
6に記載の除霜制御方法。
7. The defrosting apparatus according to claim 5, wherein, even when the temperature difference is equal to or more than a predetermined value, defrosting of the frost attached to the evaporator is started when a predetermined defrost cycle time has elapsed. Defrost control method.
【請求項8】 前記蒸発器本体または前記蒸発器周辺の
温度が、あらかじめ定めた所定値に達したときに、前記
蒸発器の除霜を終了させる請求項5、6または7に記載
の除霜制御方法。
8. The defrost according to claim 5, 6 or 7, wherein the defrosting of the evaporator is terminated when the temperature around the evaporator main body or around the evaporator reaches a predetermined value. Control method.
【請求項9】 請求項1ないし4のうちいずれかに記載
の除霜制御装置を備えてなる冷蔵庫。
9. A refrigerator comprising the defrost control device according to claim 1. Description:
【請求項10】 圧縮機の運転回転数および扉開閉の回
数に基づいて、次の除霜開始までの圧縮機の運転積算時
間を変化させる制御部を備えた冷蔵庫。
10. A refrigerator provided with a control unit for changing the cumulative operation time of the compressor until the start of the next defrost based on the operation speed of the compressor and the number of times the door is opened and closed.
【請求項11】 前記制御部は、除霜終了後から一定時
間経過毎に圧縮機の運転回転数を検出し、前記運転回転
数毎に予め定められた重み付け係数値を積算し、前記積
算値が所定の値に達したときに、次の除霜を開始するも
のである請求項10に記載の冷蔵庫。
11. The control unit detects an operating speed of the compressor every predetermined time after completion of the defrosting operation, integrates a predetermined weighting coefficient value for each operating speed, and calculates the integrated value. The refrigerator according to claim 10, wherein the next defrosting is started when the temperature reaches a predetermined value.
【請求項12】 前記重み付け係数値は、圧縮機の運転
回転数が低いほど小さい値に設定されてなる請求項10
または11に記載の冷蔵庫。
12. The weighting coefficient value is set to a smaller value as the operating speed of the compressor is lower.
Or the refrigerator according to 11.
【請求項13】 前記重み付け係数値は、除霜開始後、
扉の開閉操作が無い状態を継続しているときの重み付け
係数値と、扉の開閉操作が有った後の重み付け係数値と
が区別され、前者の重み付け係数値が後者の重み付け係
数値よりも小さい値に設定されてなる請求項10、11
または12に記載の冷蔵庫。
13. The weighting coefficient value after the start of defrosting
The weighting coefficient value when the state where the door opening / closing operation is not continued and the weighting coefficient value after the door opening / closing operation are performed are distinguished, and the former weighting coefficient value is greater than the latter weighting coefficient value. 12. The method according to claim 10, wherein the value is set to a small value.
Or the refrigerator according to 12.
JP2000024553A 2000-02-02 2000-02-02 Defrost controller, method for controlling and refrigerator Pending JP2001215077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024553A JP2001215077A (en) 2000-02-02 2000-02-02 Defrost controller, method for controlling and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024553A JP2001215077A (en) 2000-02-02 2000-02-02 Defrost controller, method for controlling and refrigerator

Publications (1)

Publication Number Publication Date
JP2001215077A true JP2001215077A (en) 2001-08-10

Family

ID=18550517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024553A Pending JP2001215077A (en) 2000-02-02 2000-02-02 Defrost controller, method for controlling and refrigerator

Country Status (1)

Country Link
JP (1) JP2001215077A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397701B1 (en) * 2001-07-30 2003-09-13 주식회사 대우일렉트로닉스 Method for controlling defrost in an invertor refrigerator
WO2004088222A1 (en) * 2003-04-04 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device and operating method for the same
JP2009008281A (en) * 2007-06-26 2009-01-15 Toshiba Corp Refrigerator
JP2011231991A (en) * 2010-04-28 2011-11-17 Semitec Corp Frost formation detector and frost formation determining device
JP2013061113A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigerator
JP2013088081A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Refrigerator
JP2013145079A (en) * 2012-01-13 2013-07-25 Mitsubishi Electric Corp Refrigerator
CN103868310A (en) * 2012-12-10 2014-06-18 Lg电子株式会社 Refrigerator and method for operating the same
RU2556716C1 (en) * 2011-06-27 2015-07-20 Арчелык Аноним Ширкети Cooling device preventing freezing of food products positioned inside fresh products chamber
JP2015143579A (en) * 2014-01-31 2015-08-06 株式会社東芝 refrigerator
CN106524420A (en) * 2016-11-25 2017-03-22 重庆美的通用制冷设备有限公司 Air-conditioner and defrosting method and defrosting device thereof
CN109282430A (en) * 2018-10-09 2019-01-29 珠海格力电器股份有限公司 A method of detection control air-conditioner defrosting
CN110940135A (en) * 2019-12-09 2020-03-31 珠海格力电器股份有限公司 Refrigerator and defrosting detection device and defrosting control method thereof
US10739278B2 (en) 2015-11-18 2020-08-11 Emage Vision Pte. Ltd Contact lens defect inspection using UV illumination
CN112432320A (en) * 2020-04-30 2021-03-02 杭州三花研究院有限公司 Control method for preventing frosting of air conditioning system, controller of control method and air conditioning system
CN113654297A (en) * 2021-08-19 2021-11-16 珠海格力电器股份有限公司 Refrigerator deodorizer control method and device and refrigerator
CN113758121A (en) * 2020-06-05 2021-12-07 青岛海尔电冰箱有限公司 Defrosting control method for refrigerator
CN115031469A (en) * 2022-04-25 2022-09-09 海信(山东)冰箱有限公司 Refrigerator and defrosting control method thereof
CN115143685A (en) * 2022-07-12 2022-10-04 珠海格力电器股份有限公司 Defrosting control method and refrigeration equipment
CN115468363A (en) * 2022-09-23 2022-12-13 珠海格力电器股份有限公司 Refrigerator, defrosting control method and storage medium

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397701B1 (en) * 2001-07-30 2003-09-13 주식회사 대우일렉트로닉스 Method for controlling defrost in an invertor refrigerator
WO2004088222A1 (en) * 2003-04-04 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device and operating method for the same
JP2009008281A (en) * 2007-06-26 2009-01-15 Toshiba Corp Refrigerator
JP2011231991A (en) * 2010-04-28 2011-11-17 Semitec Corp Frost formation detector and frost formation determining device
RU2556716C1 (en) * 2011-06-27 2015-07-20 Арчелык Аноним Ширкети Cooling device preventing freezing of food products positioned inside fresh products chamber
JP2013061113A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigerator
JP2013088081A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Refrigerator
JP2013145079A (en) * 2012-01-13 2013-07-25 Mitsubishi Electric Corp Refrigerator
CN103868310A (en) * 2012-12-10 2014-06-18 Lg电子株式会社 Refrigerator and method for operating the same
CN103868310B (en) * 2012-12-10 2018-08-07 Lg电子株式会社 Refrigerator and its operating method
JP2015143579A (en) * 2014-01-31 2015-08-06 株式会社東芝 refrigerator
US10739278B2 (en) 2015-11-18 2020-08-11 Emage Vision Pte. Ltd Contact lens defect inspection using UV illumination
CN106524420A (en) * 2016-11-25 2017-03-22 重庆美的通用制冷设备有限公司 Air-conditioner and defrosting method and defrosting device thereof
CN106524420B (en) * 2016-11-25 2019-03-15 重庆美的通用制冷设备有限公司 A kind of air conditioner and its Defrost method and defroster
CN109282430A (en) * 2018-10-09 2019-01-29 珠海格力电器股份有限公司 A method of detection control air-conditioner defrosting
CN109282430B (en) * 2018-10-09 2020-04-07 珠海格力电器股份有限公司 Method for detecting and controlling defrosting of air conditioner
CN110940135A (en) * 2019-12-09 2020-03-31 珠海格力电器股份有限公司 Refrigerator and defrosting detection device and defrosting control method thereof
CN112432320A (en) * 2020-04-30 2021-03-02 杭州三花研究院有限公司 Control method for preventing frosting of air conditioning system, controller of control method and air conditioning system
CN113758121A (en) * 2020-06-05 2021-12-07 青岛海尔电冰箱有限公司 Defrosting control method for refrigerator
CN113654297A (en) * 2021-08-19 2021-11-16 珠海格力电器股份有限公司 Refrigerator deodorizer control method and device and refrigerator
CN115031469A (en) * 2022-04-25 2022-09-09 海信(山东)冰箱有限公司 Refrigerator and defrosting control method thereof
CN115143685A (en) * 2022-07-12 2022-10-04 珠海格力电器股份有限公司 Defrosting control method and refrigeration equipment
CN115468363A (en) * 2022-09-23 2022-12-13 珠海格力电器股份有限公司 Refrigerator, defrosting control method and storage medium
CN115468363B (en) * 2022-09-23 2023-08-29 珠海格力电器股份有限公司 Refrigerator, defrosting control method and storage medium

Similar Documents

Publication Publication Date Title
JP2001215077A (en) Defrost controller, method for controlling and refrigerator
US5564286A (en) Refrigerator defrost control apparatus and method
US6205800B1 (en) Microprocessor controlled demand defrost for a cooled enclosure
CA2409732A1 (en) Reduced energy refrigerator defrost method and apparatus
JP2902607B2 (en) Quick cooling control method for refrigerator
JP3320082B2 (en) Refrigerator control device
KR0142739B1 (en) Defrosting device for a refrigerator
JP5105276B2 (en) refrigerator
JP3716593B2 (en) refrigerator
JP5722160B2 (en) Cooling storage
JPH11257719A (en) Method of controlling air conditioner, and its device
JP3066147B2 (en) Showcase defrost control method
JP3903237B2 (en) Cold storage
KR100213718B1 (en) Method for removing frost of a refrigerator
JPH11201621A (en) Refrigerator
JP3611961B2 (en) refrigerator
JP4185836B2 (en) Refrigerator operation control method
KR0172090B1 (en) Defrosting driving method of a refrigerator and its apparatus
JP3313452B2 (en) Showcase defrost controller
KR100597680B1 (en) Control method of defrosting a evaporator for a refrigerator
JP2008309400A (en) Refrigerator
JPH10292967A (en) Freezer refrigerator
JP3372157B2 (en) Refrigerator defrost control device
JPH10227555A (en) Controlling for refrigerator
EP1175585B1 (en) Microprocessor controlled demand defrost for a cooled enclosure