JP2001210983A - Thermal resistance controlling apparatus - Google Patents

Thermal resistance controlling apparatus

Info

Publication number
JP2001210983A
JP2001210983A JP2000014990A JP2000014990A JP2001210983A JP 2001210983 A JP2001210983 A JP 2001210983A JP 2000014990 A JP2000014990 A JP 2000014990A JP 2000014990 A JP2000014990 A JP 2000014990A JP 2001210983 A JP2001210983 A JP 2001210983A
Authority
JP
Japan
Prior art keywords
heat
thermal resistance
mounting portion
good heat
heat conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000014990A
Other languages
Japanese (ja)
Other versions
JP3567839B2 (en
Inventor
Tsutomu Murayama
勉 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000014990A priority Critical patent/JP3567839B2/en
Publication of JP2001210983A publication Critical patent/JP2001210983A/en
Application granted granted Critical
Publication of JP3567839B2 publication Critical patent/JP3567839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermal resistance controlling apparatus wherein its thermal resistance can be made small and its radiating capability is excellent. SOLUTION: A thermal resistance controlling apparatus 1 is a box-type structure which has a heating element attaching portion 10, a heat sink attaching portion 20, a supporting structure 30a connected respectively with the attaching portions 10, 20 via heat insulators 31a, 31b, and a supporting structure 30b connected respectively with the attaching portions 10, 20 via heat insulators 31c, 31d. A radiating passage 6 is the one surrounded by fillers 7, 7a and opposite surface portions to each other 11, 21 which come into contact respectively with the attaching portion 10 and with the attaching portion 20. A controller 4 controls a driving portion 5. The driving portion 5 moves a shaft 42. The shaft 42 is connected with a good heat conductor 44 via a heat insulator 43. The good heat conductor 44 moves in the radiating passage 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱抵抗制御装置に関
し、特に放熱径路における各材料の割合を電気的に変え
ることにより熱抵抗を制御する熱抵抗制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal resistance control device, and more particularly to a thermal resistance control device for controlling thermal resistance by electrically changing the ratio of each material in a heat radiation path.

【0002】[0002]

【従来の技術】一般に、電子機器や精密機器(以下、単
に機器と略す)においては、それらの動作時および非動
作時の高温側および低温側の温度範囲が規定されること
が多い。特に人工衛星等の宇宙機に搭載される機器にお
いて、宇宙機の外表面に太陽光が入射する場合と入射し
ない場合とで、その高温側、低温側ともに熱的に厳しい
条件となる。近年、ミッションの多様化、コンピュータ
の高性能化に伴い、機器の発熱量が大きく増加してい
る。こうした熱的に厳しい機器は通常、機器側の熱放射
面または衛星構体側の放熱体取付部までの放熱経路にお
ける熱抵抗をできるだけ小さくするように機器を取り付
け、機器の温度が高温側の許容温度範囲内になるように
している。しかし、衛星の軌道やミッションに伴う衛星
の姿勢変更によっては放熱量の方が大きく増大し、高温
側の対策のために機器が冷却過剰になり、機器の温度が
低温側の許容温度範囲内に収まるようにヒータを取り付
けて暖める場合がある。これらは放熱経路の熱抵抗が一
定となっているために生じる問題である。放熱経路の熱
抵抗を制御することで高温時には熱抵抗の値を小さくし
て機器からの放熱を大きくし、低温時には熱抵抗の値を
大きくして機器からの放熱を小さくすることができれ
ば、保温用のヒータが必要なくなるとともに、衛星に必
要な電力を減らすことができる。
2. Description of the Related Art In general, in electronic equipment and precision equipment (hereinafter simply referred to as equipment), a temperature range on a high temperature side and a low temperature side during operation and non-operation thereof are often defined. Particularly, in a device mounted on a spacecraft such as an artificial satellite, when the sunlight is incident on the outer surface of the spacecraft and when it is not incident, both the high-temperature side and the low-temperature side have severe thermal conditions. In recent years, with the diversification of missions and higher performance of computers, the amount of heat generated by devices has increased significantly. For such thermally severe equipment, equipment is usually mounted so that the thermal resistance in the heat radiation surface on the equipment side or the heat radiation path to the radiator mounting part on the satellite structure is as small as possible, and the temperature of the equipment is higher than the allowable temperature on the high temperature side. It is within the range. However, the amount of heat radiation increases greatly due to the satellite's orbit and the attitude change of the satellite accompanying the mission, the equipment becomes excessively cooled due to measures on the high temperature side, and the temperature of the equipment falls within the allowable temperature range on the low temperature side. In some cases, a heater is attached to make it fit. These are problems that occur because the heat resistance of the heat radiation path is constant. By controlling the thermal resistance of the heat dissipation path, it is possible to reduce the value of the thermal resistance at high temperatures to increase the heat radiation from the device, and to increase the value of the thermal resistance at low temperatures to reduce the heat radiation from the device. In addition to eliminating the need for a heater for the satellite, the power required for the satellite can be reduced.

【0003】このような熱抵抗制御技術の一例として、
特開平05−251595号公報記載の「可変熱抵抗装
置」が知られている。
As an example of such a thermal resistance control technique,
A "variable heat resistance device" described in Japanese Patent Application Laid-Open No. 05-251595 is known.

【0004】この公報に記載された可変熱抵抗装置は、
圧電素子の発生力を利用して電気的に熱抵抗を変化させ
る装置であり、放熱経路にある2つの熱伝導体間の接触
面に圧電素子を配置し、圧電素子に印加する電圧により
熱伝導体を加圧し、これら熱伝導体間の熱抵抗を変化さ
せる技術が記載されている。
[0004] The variable thermal resistance device described in this publication is
A device that changes the thermal resistance electrically using the force generated by a piezoelectric element. A piezoelectric element is placed on the contact surface between two heat conductors in the heat dissipation path, and heat conduction is performed by applying a voltage to the piezoelectric element. Techniques are described that press the body and change the thermal resistance between these heat conductors.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の熱抵抗
制御装置は、熱を放熱したいときに圧電素子からの発熱
量は大きくなり、放熱するためにさらに熱を発生させて
いることになるので、熱抵抗値を小さい状態で維持する
ためには、常に圧電素子に最大電圧を加えつづけなけれ
ばならないという欠点を有している。
In the above-described conventional thermal resistance control device, the amount of heat generated from the piezoelectric element increases when heat is to be radiated, and further heat is generated to radiate the heat. In addition, in order to keep the thermal resistance value small, there is a disadvantage that the maximum voltage must be constantly applied to the piezoelectric element.

【0006】また、圧電素子の発生力はそのまま接触圧
にはならずに熱伝導体を変形させるために使われてしま
う。一般に熱伝導率のよい物質としては銅やアルミニウ
ムなどの金属が挙げられ、これらの熱抵抗を小さくする
ためにはできるだけ厚い金属にしなければならないが、
そのような金属を変形させるには大きな力が必要とな
る。小さい力で変形を行うためには厚さの薄い部分を設
ける必要があるが、その部分では熱抵抗が大きくなり、
金属の熱伝導率の良さを活かせない。より多くの力を発
生させるために圧電素子を多量に用いれば、その分可変
熱抵抗装置からの発熱量が増大する。一方、放熱シート
のような変形しやすい物質の熱伝導率は金属とは数桁以
上悪い性能のものしか存在しないため、全体としては熱
抵抗を小さくできない。従って、熱抵抗を小さくするこ
とが困難なため放熱能力の増大に対応できない構造にな
るという欠点を有している。
Further, the force generated by the piezoelectric element is not used as it is as the contact pressure, but is used to deform the heat conductor. In general, metals having good thermal conductivity include metals such as copper and aluminum, and in order to reduce their thermal resistance, the metal must be as thick as possible.
Large forces are required to deform such metals. In order to deform with a small force, it is necessary to provide a thin part, but in that part the thermal resistance increases,
Do not take advantage of the good thermal conductivity of metals. If a large amount of piezoelectric elements are used to generate more force, the amount of heat generated from the variable thermal resistance device increases accordingly. On the other hand, the heat conductivity of a substance that is easily deformed, such as a heat-dissipating sheet, has a performance that is several orders of magnitude worse than that of a metal, so that the thermal resistance cannot be reduced as a whole. Therefore, there is a drawback that the structure cannot cope with an increase in the heat radiation capability because it is difficult to reduce the thermal resistance.

【0007】本発明の目的は、熱抵抗を小さくでき放熱
能力に優れた熱抵抗制御装置を提供することにある。
An object of the present invention is to provide a thermal resistance control device which can reduce thermal resistance and has excellent heat dissipation capability.

【0008】[0008]

【課題を解決するための手段】本発明の熱抵抗制御装置
は、発熱体と放熱体との間の放熱径路にあって、この放
熱径路を移動する良熱伝導体の位置を外部から電気的に
駆動制御し、前記良熱伝導体の前記放熱径路に対する占
有率を変化させることで、前記放熱径路の熱抵抗を制御
することを特徴としている。
A thermal resistance control device according to the present invention is provided on a heat radiating path between a heating element and a heat radiating element. The heat resistance of the heat radiating path is controlled by changing the occupancy of the good heat conductor with respect to the heat radiating path.

【0009】発熱体取付部と、放熱体取付部と、これら
取付部と第1、第2の断熱材および第3、第4の断熱材
を介して接続した第1の支持構造物および第2の支持構
造物とを備えた箱型の構造体であって、前記第1の支持
構造物側に充填された第1の充填材と、前記第2の支持
構造物側に充填された第2の充填材と、これら第1、第
2の充填材および前記発熱体取付部と接触する第1の対
面部および前記放熱体取付部と接触する第2の対面部と
に囲まれた放熱径路と、この放熱径路を移動する良熱伝
導体と、この良熱伝導体と第5の断熱材を介して接続し
たシャフトと、このシャフトを移動させる駆動部と、こ
の駆動部を制御するコントローラとを備えたことを特徴
としている。
[0009] A heating element mounting portion, a heat dissipating member mounting portion, a first support structure and a second supporting structure connected to these mounting portions via first, second heat insulating materials, and third and fourth heat insulating materials. A box-shaped structure comprising: a first filler filled on the first support structure side; and a second filler filled on the second support structure side. And a heat-radiating path surrounded by the first and second fillers, and a first facing portion in contact with the heating element mounting portion and a second facing portion in contact with the heat-radiating member mounting portion. A good heat conductor moving along the heat radiation path, a shaft connected to the good heat conductor via a fifth heat insulating material, a drive unit for moving the shaft, and a controller for controlling the drive unit. It is characterized by having.

【0010】前記コントローラから前記駆動部へ指令を
出すと、前記シャフトに前記第5の断熱材を介して取り
付けられた前記良熱伝導体が前記放熱径路の間を移動
し、これにより前記放熱径路に占める前記良熱伝導体の
割合を変化させ、前記放熱径路に対し前記良熱伝導体の
占有率がもっとも大きくなるようにすることで前記放熱
径路の熱抵抗を小さくし、前記放熱径路に対し前記良熱
伝導体の占有率がもっとも小さくなるようにすることで
前記放熱径路の熱抵抗を大きくすることを特徴としてい
る。
When a command is issued from the controller to the drive section, the good heat conductor attached to the shaft via the fifth heat insulating material moves between the heat radiation paths. By changing the ratio of the good heat conductor to the heat dissipation path, the thermal resistance of the heat dissipation path is reduced by making the occupancy of the good heat conductor the largest with respect to the heat dissipation path. The heat resistance of the heat radiation path is increased by minimizing the occupancy of the good heat conductor.

【0011】前記放熱径路との前記第1、第2の対面部
以外の前記発熱体取付部および前記放熱体取付部と前記
第1の充填材の接触面に第1、第2の断熱層を、同様に
前記放熱径路との前記第1、第2の対面部以外の前記発
熱体取付部および前記放熱体取付部と前記第2の充填材
の接触面に第3、第4の断熱層を設けたことを特徴とし
ている。
[0011] First and second heat insulating layers are provided on the heat-generating body mounting portion other than the first and second facing portions with the heat-radiating path and on the contact surface between the heat-radiating body mounting portion and the first filler. Similarly, a third heat insulating layer and a fourth heat insulating layer are provided on the heat-generating body mounting portion other than the first and second facing portions with the heat-radiating path and on the contact surface between the heat-radiating body mounting portion and the second filler. It is characterized by having been provided.

【0012】前記発熱体取付部と前記放熱体取付部とが
前記第1、第2、第3および第4の断熱材を介さずに直
接第1、第2の支持構造物によって取り付けられている
ことを特徴としている。
The heat-generating body mounting portion and the heat-radiating body mounting portion are directly mounted by first and second support structures without interposing the first, second, third and fourth heat insulating materials. It is characterized by:

【0013】前記第1の支持構造物にばねによる第1の
圧縮展開機構を設け、前記第2の支持構造物に第2の圧
縮展開機構を設け、これら第1、第2の圧縮展開機構は
前記発熱体取付部と前記良熱伝導体との隙間および前記
放熱体取付部と前記良熱伝導体との隙間をそれぞれ小さ
くし、接触面圧を生じさせることを特徴としている。
The first support structure is provided with a first compression / expansion mechanism using a spring, and the second support structure is provided with a second compression / expansion mechanism. These first and second compression / expansion mechanisms are provided. A gap between the heating element mounting portion and the good heat conductor and a gap between the heat radiating member mounting portion and the good heat conductor are reduced to generate a contact surface pressure.

【0014】前記良熱伝導体がくさび型の良熱伝導体で
あり、前記発熱体取付部の形状も前記くさび型の良熱伝
導体の形状に合うように作られていることを特徴として
いる。
[0014] The good heat conductor is a wedge-shaped good heat conductor, and the shape of the heating element mounting portion is made to match the shape of the wedge-shaped good heat conductor. .

【0015】前記良熱伝導体がくさび型の良熱伝導体で
あり、前記放熱体取付部の形状も前記くさび型の良熱伝
導体の形状に合うように作られていることを特徴として
いる。
[0015] The good heat conductor is a wedge-shaped good heat conductor, and the shape of the radiator mounting portion is also made to match the shape of the wedge-shaped good heat conductor. .

【0016】また、前記第1、第2の充填材を除去し、
前記発熱体取付部と前記良熱伝導体および前記放熱体取
付部と前記良熱伝導体との間の隙間での熱放射による熱
結合を特徴としている。
Further, the first and second fillers are removed,
It is characterized by thermal coupling by heat radiation in the gap between the heating element mounting portion and the good heat conductor and the gap between the heat radiating member mounting portion and the good heat conductor.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0018】図1は本発明の熱抵抗制御装置の原理図で
ある。
FIG. 1 is a principle diagram of a thermal resistance control device according to the present invention.

【0019】図1を参照すると、熱抵抗制御装置1は発
熱体2と放熱体3との間に取り付けられる。熱抵抗制御
装置1は、放熱経路に1つあるいは複数の材料を使用
し、放熱経路における各材料の占める割合を変化させる
ことにより、熱抵抗を電気的に制御するものである。
Referring to FIG. 1, a thermal resistance control device 1 is mounted between a heat generator 2 and a heat radiator 3. The thermal resistance control device 1 electrically controls thermal resistance by using one or a plurality of materials for a heat radiation path and changing the ratio of each material in the heat radiation path.

【0020】図2は本発明の熱抵抗制御装置の一つの実
施の形態を示すブロック図である。
FIG. 2 is a block diagram showing one embodiment of the thermal resistance control device of the present invention.

【0021】図2に示す本実施の形態は、発熱体取付部
10と、放熱体取付部20と、これら取付部と断熱材3
1a,31bおよび断熱材31c,31dを介して接続
した支持構造物30aおよび支持構造物30bとを備え
た箱型の構造体であって、支持構造物30a側に充填さ
れた充填材7と、支持構造物30b側に充填された充填
材7aと、これら充填材7,7aおよび発熱体取付部1
0と接触する対面部11および放熱体取付部20と接触
する対面部21とに囲まれた放熱径路6と、この放熱径
路6を移動する良熱伝導体44と、この良熱伝導体44
と断熱材43を介して接続したシャフト42と、このシ
ャフト42を移動させる駆動部5と、駆動部5を制御す
るコントローラ4とから構成されている。なお、充填材
7,7aは同一であってもよい。つまり、しきりがなく
1つの領域を形成していてもよい。
In this embodiment shown in FIG. 2, a heating element mounting portion 10, a heat radiating member mounting portion 20, these mounting portions and a heat insulating material 3 are provided.
A box-shaped structure including a supporting structure 30a and a supporting structure 30b connected via 1a, 31b and heat insulating materials 31c, 31d, and a filler 7 filled on the supporting structure 30a side; Filler 7a filled on the support structure 30b side, these fillers 7, 7a and the heating element mounting portion 1
0, the heat radiating path 6 surrounded by the facing part 21 that contacts the radiator mounting part 20, the good heat conductor 44 moving along the heat radiating path 6, and the good heat conductor 44.
A drive unit 5 for moving the shaft 42, and a controller 4 for controlling the drive unit 5. Note that the fillers 7 and 7a may be the same. That is, one region may be formed without any limitation.

【0022】動作原理は、コントローラ4から駆動部5
へ指令を出すと、シャフト42に断熱材43を介して取
り付けられた良熱伝導体44が放熱経路6の間を移動す
る。
The operation principle is as follows.
When a command is issued, the good heat conductor 44 attached to the shaft 42 via the heat insulating material 43 moves between the heat radiation paths 6.

【0023】これにより放熱経路6に占める良熱伝導体
44の割合を変化させることができる。発熱体取付部1
0と放熱体取付部20との間の熱抵抗は、放熱経路6に
占める良熱伝導体44の占める割合によって変化するこ
とから、発熱体取付部10と放熱体取付部20との間の
熱抵抗を電気的に制御することができる。
Thus, the ratio of the good heat conductor 44 in the heat radiation path 6 can be changed. Heating element mounting part 1
Since the thermal resistance between the heat radiator mounting portion 20 and the heat radiator mounting portion 20 changes depending on the ratio of the good heat conductor 44 occupying the heat radiating path 6, the heat resistance between the heat radiating member mounting portion 10 and the heat radiator mounting portion 20 varies. The resistance can be controlled electrically.

【0024】つまり、熱抵抗制御装置1は放熱経路6に
占める良熱伝導体44の割合を変化させることにより熱
抵抗を電気的に制御するものである。良熱伝導体44は
断熱材43を介してシャフト42に取り付けられてい
る。断熱材43は熱伝導率ができるだけ小さいものが望
ましい。それは熱抵抗制御装置1において熱抵抗を最小
にする際、シャフト42を介して外部から熱が流入する
のを防ぎ、また熱抵抗の評価の際にシャフト42を介す
る熱の出入りが外乱となるのを防ぐためである。シャフ
ト42の位置はコントローラ4からの指令により駆動部
5によって制御される。良熱伝導体44は発熱体取付部
10と放熱体取付部20との間に配置されている。ここ
で発熱体取付部10は図1に示す発熱体2そのものであ
ってもよく、また放熱体取付部20は放熱体3そのもの
であってもよい。
That is, the thermal resistance control device 1 electrically controls the thermal resistance by changing the ratio of the good heat conductor 44 occupying the heat radiating path 6. The good heat conductor 44 is attached to the shaft 42 via a heat insulating material 43. It is desirable that the heat insulating material 43 has as small a thermal conductivity as possible. That is, when the thermal resistance is minimized in the thermal resistance control device 1, heat is prevented from flowing in from the outside via the shaft 42, and when the thermal resistance is evaluated, the flow of heat through the shaft 42 becomes a disturbance. It is to prevent. The position of the shaft 42 is controlled by the drive unit 5 according to a command from the controller 4. The good heat conductor 44 is disposed between the heating element mounting portion 10 and the heat radiating member mounting portion 20. Here, the heating element mounting portion 10 may be the heating element 2 itself shown in FIG. 1, and the radiator mounting portion 20 may be the radiator 3 itself.

【0025】発熱体取付部10と放熱体取付部20は、
断熱材31a,31bと支持構造物30aおよび断熱材
31c,31dと支持構造物30bを介して取り付けら
れている。シャフト42が支持構造物30bを貫通する
部分は、発熱体取付部10、放熱体取付部20および断
熱材31c,31d、支持構造物30bにより囲まれる
部分に満たされた充填材7aがある場合に、熱抵抗制御
装置1の外部に熱が流出しないように密閉できるような
シール材32が取り付けられている。
The heating element mounting portion 10 and the heat radiating member mounting portion 20
The heat insulating materials 31a and 31b and the support structure 30a are attached via the heat insulating materials 31c and 31d and the support structure 30b. The portion through which the shaft 42 penetrates the support structure 30b is determined when the heating element mounting portion 10, the radiator mounting portion 20, the heat insulating materials 31c and 31d, and the filler 7a filled in the portion surrounded by the support structure 30b are present. In addition, a seal member 32 is attached so as to be able to seal so that heat does not flow out of the thermal resistance control device 1.

【0026】また熱抵抗制御装置1は、発熱体取付部1
0、放熱体取付部20、断熱材31a,31b,31
c,31dおよび支持構造物30a,30bにより囲ま
れる箱型構造とすることで、機器取付面としての機械的
強度・剛性を高めている。発熱体取付部10は発熱体取
付面12から良熱伝導体44との対面部11へと向かう
放熱経路6の熱抵抗が小さくなるように肉厚の形状であ
るが、支持構造物30a,30bへと向かう部分は熱抵
抗が大きくなるよう薄肉形状としている。同様に放熱体
取付部20も良熱伝導体44との対面部21から放熱体
取付面22へと向かう放熱経路6の熱抵抗が小さくなる
よう肉厚の形状であるが、支持構造物30a,30bへ
と向かう部分は熱抵抗が大きくなるよう薄肉形状として
いる。
The thermal resistance control device 1 includes a heating element mounting portion 1.
0, radiator mounting portion 20, heat insulating materials 31a, 31b, 31
By adopting a box-shaped structure surrounded by c, 31d and the support structures 30a, 30b, the mechanical strength and rigidity as a device mounting surface are increased. The heating element mounting portion 10 is thick so as to reduce the thermal resistance of the heat radiation path 6 from the heating element mounting surface 12 to the facing portion 11 with the good heat conductor 44, but the supporting structures 30a, 30b The portion heading toward has a thin-walled shape to increase the thermal resistance. Similarly, the radiator mounting portion 20 is also thick so that the thermal resistance of the heat radiating path 6 from the facing portion 21 to the radiator mounting surface 22 to the radiator mounting surface 22 is reduced. The portion toward 30b has a thin shape so as to increase the thermal resistance.

【0027】従って、発熱体取付部10の熱のほとんど
は良熱伝導体44を介して放熱体取付部20へと伝わ
る。発熱体取付部10と良熱伝導体44および放熱体取
付部20と良熱伝導体44のそれぞれの隙間は、良熱伝
導体44が移動に支障がない範囲においてできるだけ小
さいことが望ましい。これは熱抵抗制御装置1の放熱能
力をできるだけ高めるためである。発熱体取付部10、
放熱体取付部20および断熱材31a,31b,31
c,31d、支持構造物30a,30bにより囲まれる
部分には、発熱体取付部10と良熱伝導体44および放
熱体取付部20と良熱伝導体44のそれぞれの隙間の熱
抵抗を小さくするように充填材7,7aが挿入されてい
る。充填材7,7aとしては、気体、液体およびゲル状
物質があげられるが、材質として熱伝導率が高く、良熱
伝導体44が可動し易いよう粘性の小さい材料が望まし
い。
Therefore, most of the heat of the heating element mounting portion 10 is transmitted to the heat radiating member mounting portion 20 through the good heat conductor 44. It is desirable that the gaps between the heating element mounting portion 10 and the good heat conductor 44 and between the heat dissipating member mounting portion 20 and the good heat conductor 44 be as small as possible within a range where the good heat conductor 44 does not hinder movement. This is to increase the heat radiation capability of the thermal resistance control device 1 as much as possible. Heating element mounting part 10,
Heat radiator mounting portion 20 and heat insulating materials 31a, 31b, 31
In portions surrounded by c and 31d and the support structures 30a and 30b, the thermal resistance of the gap between the heating element mounting portion 10 and the good heat conductor 44 and the gap between the heat radiating member mounting portion 20 and the good heat conductor 44 is reduced. As described above, the fillers 7, 7a are inserted. Examples of the fillers 7 and 7a include a gas, a liquid, and a gel-like substance, and a material having a high thermal conductivity and a small viscosity is preferable so that the good heat conductor 44 can be easily moved.

【0028】なお上述の通り、1つの熱抵抗制御装置1
に対して1つの良熱伝導体44を配置した場合について
説明したが、良熱伝導体44の数に制限はない。熱抵抗
制御装置1についての寸法についても、寸法による制約
はなく、必要な放熱量が多い場合には寸法を大きくする
ことによって放熱能力を調整することができる。
As described above, one thermal resistance control device 1
Although the case where one good heat conductor 44 is arranged has been described, the number of good heat conductors 44 is not limited. The dimensions of the thermal resistance control device 1 are not limited by the dimensions, and when the required amount of heat radiation is large, the heat radiation capability can be adjusted by increasing the size.

【0029】また、良熱伝導体44の形状は直方体の場
合について説明したが、良熱伝導体44の形状に制約は
ない。さらにまた、充填材7,7aがあるものとして説
明したが、充填材7,7aがない場合についても発熱体
取付部10と良熱伝導体44および放熱体取付部20と
良熱伝導体44それぞれの隙間は十分小さく放射による
熱結合が期待できることから、充填材7,7aの有無に
よる制約はない。
Although the shape of the good heat conductor 44 has been described as a rectangular parallelepiped, the shape of the good heat conductor 44 is not limited. Furthermore, although the description has been made assuming that the fillers 7 and 7a are present, the heating element mounting portion 10 and the good heat conductor 44, and the radiator mounting portion 20 and the good heat conductor 44 respectively when the fillers 7 and 7a are not provided. Is sufficiently small and thermal coupling by radiation can be expected, so there is no restriction due to the presence or absence of the fillers 7 and 7a.

【0030】図3は図2の実施の形態の熱抵抗が小さい
場合の動作を説明する図である。
FIG. 3 is a diagram for explaining the operation of the embodiment of FIG. 2 when the thermal resistance is small.

【0031】また、図4は図2の実施の形態の熱抵抗が
大きい場合の動作を説明する図である。
FIG. 4 is a diagram for explaining the operation of the embodiment shown in FIG. 2 when the thermal resistance is large.

【0032】なお、図3,図4において図2に示す構成
要素に対応するものは同一の参照数字または符号を付
し、その説明を省略する。
In FIGS. 3 and 4, components corresponding to those shown in FIG. 2 are denoted by the same reference numerals or symbols, and description thereof will be omitted.

【0033】図3を参照して、熱抵抗制御装置1の熱抵
抗を小さくする場合の動作について説明すると、コント
ローラ4の指令により駆動部5がシャフト42の位置を
変化させて、放熱経路6のうち良熱伝導体44の占有率
がもっとも大きくなるようにする。このときシャフト4
2のすべての位置の中で最も放熱径路6の熱抵抗が小さ
くなる。
Referring to FIG. 3, the operation in the case where the thermal resistance of the thermal resistance control device 1 is reduced will be described. Of these, the occupation ratio of the good heat conductor 44 is set to be the largest. At this time, the shaft 4
2, the heat resistance of the heat radiation path 6 is the smallest.

【0034】次に図4を参照して、熱抵抗制御装置1の
熱抵抗を大きくする場合の動作について説明すると、コ
ントローラ4の指令により駆動部5がシャフト42の位
置を変化させて、放熱経路6のうち良熱伝導体44の占
有率がもっとも小さくなるようにする。このときシャフ
ト42のすべての位置の中で最も放熱径路6の熱抵抗が
大きくなる。
Next, with reference to FIG. 4, the operation when the thermal resistance of the thermal resistance control device 1 is increased will be described. 6 so that the occupation ratio of the good heat conductor 44 is minimized. At this time, the heat resistance of the heat radiation path 6 is the largest among all the positions of the shaft 42.

【0035】図5は本発明の熱抵抗制御装置の第二の実
施の形態を示すブロック図である。
FIG. 5 is a block diagram showing a second embodiment of the thermal resistance control device according to the present invention.

【0036】なお、図5において図2に示す構成要素に
対応するものは同一の参照数字または符号を付し、その
説明を省略する。
In FIG. 5, components corresponding to those shown in FIG. 2 are denoted by the same reference numerals or symbols, and description thereof will be omitted.

【0037】図5を参照すると、放熱径路6との対面部
11,21以外の発熱体取付部10と充填材7の接触面
および放熱体取付部20と充填材7の接触面にそれぞれ
断熱層8a,8bが、同様に放熱径路6との対面部1
1,21以外の発熱体取付部10と充填材7aの接触面
および放熱体取付部20と充填材7aの接触面にそれぞ
れ断熱層8c,8dが設けられている。充填材7,7a
があると、放熱経路6以外からも充填材7,7aを介し
て発熱体取付部10と放熱体取付部20の間で熱の出入
りが生じるため、熱抵抗制御装置1の熱抵抗の上限値が
低下する。そこで断熱層8a〜8dを設けることによ
り、熱抵抗制御装置1の熱抵抗の上限値を大きくするこ
とができる。
Referring to FIG. 5, a heat insulating layer is provided on the contact surface between the heat generator mounting portion 10 and the filler 7 and the contact surface between the heat radiator mounting portion 20 and the filler 7 other than the facing portions 11 and 21 with the heat radiation path 6. 8a and 8b are likewise the facing portion 1 with the heat radiation path 6.
Heat insulating layers 8c and 8d are provided on the contact surface between the heating element mounting portion 10 and the filler 7a other than the contact members 1 and 21 and the contact surface between the heat radiating member mounting portion 20 and the filler 7a, respectively. Filler 7, 7a
When heat is present, heat flows in and out of the heat-generating member mounting portion 10 and the heat-radiating member mounting portion 20 from other than the heat radiation path 6 via the fillers 7 and 7a. Decrease. Therefore, by providing the heat insulating layers 8a to 8d, the upper limit of the thermal resistance of the thermal resistance control device 1 can be increased.

【0038】図6は本発明の熱抵抗制御装置の第三の実
施の形態を示すブロック図である。
FIG. 6 is a block diagram showing a third embodiment of the thermal resistance control device of the present invention.

【0039】なお、図6において図2に示す構成要素に
対応するものは同一の参照数字または符号を付し、その
説明を省略する。
In FIG. 6, components corresponding to those shown in FIG. 2 are denoted by the same reference numerals or symbols, and description thereof will be omitted.

【0040】図6を参照すると、発熱体取付部10と放
熱体取付部20が断熱材を介さずに直接支持構造物30
a,30bによって取り付けられている。断熱材31a
〜31dを介さないことにより、支持構造物30a,3
0bからの熱の出入りを積極的に利用することができ
る。熱抵抗制御装置1の熱抵抗の上限値が低下すること
になるが、下限値をより低くすることができるため、大
きな発熱機器に対応することができる。また支持構造物
30a,30bとしては銅やアルミニウム等の金属の使
用が考えられ、熱抵抗制御装置1の強度・剛性をさらに
高めることができる。
Referring to FIG. 6, the heat-generating body mounting portion 10 and the heat-radiating body mounting portion 20 are directly connected to the support structure 30 without any heat insulating material.
a, 30b. Insulation material 31a
Through the support structures 30a, 3d.
The inflow and outflow of heat from Ob can be positively utilized. Although the upper limit value of the thermal resistance of the thermal resistance control device 1 is reduced, the lower limit value can be further reduced, so that it is possible to cope with a large heating device. Further, it is conceivable to use a metal such as copper or aluminum as the support structures 30a and 30b, and the strength and rigidity of the thermal resistance control device 1 can be further increased.

【0041】図7は本発明の熱抵抗制御装置の第四の実
施の形態を示すブロック図である。
FIG. 7 is a block diagram showing a fourth embodiment of the thermal resistance control device according to the present invention.

【0042】なお、図7において図2に示す構成要素に
対応するものは同一の参照数字または符号を付し、その
説明を省略する。
In FIG. 7, components corresponding to those shown in FIG. 2 are denoted by the same reference numerals or symbols, and description thereof will be omitted.

【0043】図7を参照すると、支持構造物30aにば
ね等による圧縮展開機構9aが設けられ、支持構造物3
0bにばね等による圧縮展開機構9bが設けられてい
る。圧縮展開機構9a,9bの圧縮機構は発熱体取付部
10と良熱伝導体44との隙間および放熱体取付部20
と良熱伝導体44との隙間をそれぞれ小さくし、接触面
圧を生じさせるためのものである。図2の例では発熱体
取付部10と良熱伝導体44および放熱体取付部20と
良熱伝導体44それぞれの間の熱の出入りは、充填材
7,7aまたは放射を介して行われるが、接触面圧を生
じさせることにより発熱体取付部10と良熱伝導体44
および放熱体取付部20と良熱伝導体44それぞれの間
の熱抵抗を低くすることができる。一方、圧縮展開機構
9a,9bの展開機構は熱抵抗制御装置1の熱抵抗の値
を変化させる際に、良熱伝導体44が可動しやすいよう
にするためのものである。圧縮展開機構9a,9bは通
常圧縮側に働くようにすることで、熱抵抗の値を変化さ
せるとき以外では消費電力が発生しないようにすること
ができる。
Referring to FIG. 7, the support structure 30a is provided with a compression / deployment mechanism 9a using a spring or the like.
0b is provided with a compression / expansion mechanism 9b using a spring or the like. The compression mechanism of the compression / expansion mechanisms 9a and 9b includes a gap between the heating element mounting portion 10 and the good heat conductor 44 and a heat radiating member mounting portion 20.
The purpose of this is to reduce the gap between the heat conductor and the good heat conductor 44 to generate a contact surface pressure. In the example of FIG. 2, heat flows in and out of the heating element mounting portion 10 and the good heat conductor 44, and heat flows between the heat radiating member mounting portion 20 and the good heat conductor 44, respectively, through the fillers 7, 7a or radiation. , The heat generating element mounting portion 10 and the good heat conductor 44
In addition, the thermal resistance between the radiator mounting portion 20 and the good heat conductor 44 can be reduced. On the other hand, the expansion mechanisms of the compression / expansion mechanisms 9a and 9b are provided to facilitate movement of the good heat conductor 44 when changing the value of the thermal resistance of the thermal resistance controller 1. The compression / expansion mechanisms 9a and 9b normally operate on the compression side, so that power consumption can be prevented from occurring except when the value of the thermal resistance is changed.

【0044】図8は本発明の熱抵抗制御装置の第五の実
施の形態を示すブロック図である。
FIG. 8 is a block diagram showing a fifth embodiment of the thermal resistance control device of the present invention.

【0045】なお、図8において図2に示す構成要素に
対応するものは同一の参照数字または符号を付し、その
説明を省略する。
In FIG. 8, components corresponding to those shown in FIG. 2 are denoted by the same reference numerals or symbols, and description thereof is omitted.

【0046】図8を参照すると、良熱伝導体がくさび型
良熱伝導体45になっており、また発熱体取付部10側
の形状もくさび型良熱伝導体45の形状に合うように作
られている。この場合、くさび型良熱伝導体45の割合
ではなく、発熱体取付部10と放熱体取付部20との間
にあるくさび型良熱伝導体45の大きさを変えることに
より熱抵抗を制御するものである。
Referring to FIG. 8, the good heat conductor is a wedge-shaped good heat conductor 45, and the shape of the heating element mounting portion 10 side is made to match the shape of the wedge-shaped good heat conductor 45. Have been. In this case, the thermal resistance is controlled by changing the size of the wedge-shaped good heat conductor 45 between the heating element mounting portion 10 and the radiator mounting portion 20, instead of the ratio of the wedge-shaped good heat conductor 45. Things.

【0047】なお、くさび型良熱伝導体45の形状に発
熱体取付部10側の形状を合せたが、放熱体取付部20
側の形状を合せるようにしても同じである。
Although the shape of the heating element mounting portion 10 is matched to the shape of the wedge-shaped good heat conductor 45,
The same is true even if the shapes on the sides are matched.

【0048】[0048]

【発明の効果】以上説明したように、本発明の熱抵抗制
御装置は、熱抵抗の制御を良熱伝導体の位置制御に置き
換えることで、外部からの電気的な良熱伝導体位置制御
により熱抵抗を制御できるという効果を有している。
As described above, the thermal resistance control device of the present invention replaces the control of thermal resistance with the position control of a good heat conductor, thereby controlling the position of an external good heat conductor. This has the effect that the thermal resistance can be controlled.

【0049】また、熱抵抗の抵抗値を変化させるときの
み駆動装置を動かす電力が必要であり、いかなる位置状
態においても熱抵抗を維持するための消費電力は必要な
いので、熱抵抗を制御させて運用する際の電力を低減さ
せるという効果を有している。
Further, power for operating the driving device is required only when the resistance value of the thermal resistance is changed, and power consumption for maintaining the thermal resistance in any position state is not required. This has the effect of reducing the power used during operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱抵抗制御装置の原理図である。FIG. 1 is a principle diagram of a thermal resistance control device of the present invention.

【図2】本発明の熱抵抗制御装置の一つの実施の形態を
示すブロック図である。
FIG. 2 is a block diagram showing one embodiment of the thermal resistance control device of the present invention.

【図3】図2の実施の形態の熱抵抗が小さい場合の動作
を説明する図である。
FIG. 3 is a diagram illustrating an operation when the thermal resistance of the embodiment of FIG. 2 is small.

【図4】図2の実施の形態の熱抵抗が大きい場合の動作
を説明する図である。
FIG. 4 is a diagram illustrating an operation of the embodiment of FIG. 2 when the thermal resistance is large.

【図5】本発明の熱抵抗制御装置の第二の実施の形態を
示すブロック図である。
FIG. 5 is a block diagram showing a second embodiment of the thermal resistance control device of the present invention.

【図6】本発明の熱抵抗制御装置の第三の実施の形態を
示すブロック図である。
FIG. 6 is a block diagram showing a third embodiment of the thermal resistance control device of the present invention.

【図7】本発明の熱抵抗制御装置の第四の実施の形態を
示すブロック図である。
FIG. 7 is a block diagram showing a fourth embodiment of the thermal resistance control device of the present invention.

【図8】本発明の熱抵抗制御装置の第五の実施の形態を
示すブロック図である。
FIG. 8 is a block diagram showing a fifth embodiment of the thermal resistance control device of the present invention.

【符号の説明】[Explanation of symbols]

1 熱抵抗制御装置 2 発熱体 3 放熱体 4 コントローラ 5 駆動部 6 放熱径路 7,7a 充填材 8a,8b,8c,8d 断熱層 9a,9b 圧縮展開機構 10 発熱体取付部 11 対面部 12 発熱体取付面 20 放熱体取付部 21 対面部 22 放熱体取付面 30a,30b 支持構造物 31a,31b,31c,31d 断熱材 32 シール材 42 シャフト 43 断熱材 44 良熱伝導体 45 くさび型良熱伝導体 DESCRIPTION OF SYMBOLS 1 Thermal resistance control apparatus 2 Heating element 3 Heat radiating element 4 Controller 5 Drive part 6 Heat radiating path 7, 7a Filler 8a, 8b, 8c, 8d Heat insulating layer 9a, 9b Compression / expansion mechanism 10 Heating element mounting part 11 Face part 12 Heating element Mounting surface 20 Heat radiator mounting portion 21 Facing portion 22 Heat radiator mounting surface 30a, 30b Support structure 31a, 31b, 31c, 31d Heat insulating material 32 Sealing material 42 Shaft 43 Heat insulating material 44 Good heat conductor 45 Wedge type good heat conductor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 発熱体と放熱体との間の放熱径路にあっ
て、この放熱径路を移動する良熱伝導体の位置を外部か
ら電気的に駆動制御し、前記良熱伝導体の前記放熱径路
に対する占有率を変化させることで、前記放熱径路の熱
抵抗を制御することを特徴とする熱抵抗制御装置。
1. A heat radiation path between a heating element and a heat radiator, wherein a position of a good heat conductor moving in the heat radiation path is electrically controlled from the outside to control the heat radiation of the good heat conductor. A thermal resistance control device, wherein the thermal resistance of the heat radiating path is controlled by changing the occupation ratio of the heat radiating path.
【請求項2】 発熱体取付部と、放熱体取付部と、これ
ら取付部と第1、第2の断熱材および第3、第4の断熱
材を介して接続した第1の支持構造物および第2の支持
構造物とを備えた箱型の構造体であって、 前記第1の支持構造物側に充填された第1の充填材と、
前記第2の支持構造物側に充填された第2の充填材と、
これら第1、第2の充填材および前記発熱体取付部と接
触する第1の対面部および前記放熱体取付部と接触する
第2の対面部とに囲まれた放熱径路と、この放熱径路を
移動する良熱伝導体と、この良熱伝導体と第5の断熱材
を介して接続したシャフトと、このシャフトを移動させ
る駆動部と、この駆動部を制御するコントローラとを備
えたことを特徴とする熱抵抗制御装置。
2. A heating element mounting portion, a heat radiating member mounting portion, a first support structure connected to these mounting portions via first, second heat insulating materials, and third and fourth heat insulating materials. A box-shaped structure provided with a second support structure, wherein a first filler filled on the first support structure side;
A second filler filled on the second support structure side;
A heat radiation path surrounded by the first facing portion in contact with the first and second fillers and the heating element mounting portion and the second facing portion in contact with the heat radiating member mounting portion; A good heat conductor that moves, a shaft connected to the good heat conductor via a fifth heat insulating material, a drive unit that moves the shaft, and a controller that controls the drive unit are provided. Thermal resistance control device.
【請求項3】 前記コントローラから前記駆動部へ指令
を出すと、前記シャフトに前記第5の断熱材を介して取
り付けられた前記良熱伝導体が前記放熱径路の間を移動
し、これにより前記放熱径路に占める前記良熱伝導体の
割合を変化させ、前記放熱径路に対し前記良熱伝導体の
占有率がもっとも大きくなるようにすることで前記放熱
径路の熱抵抗を小さくし、前記放熱径路に対し前記良熱
伝導体の占有率がもっとも小さくなるようにすることで
前記放熱径路の熱抵抗を大きくすることを特徴とする請
求項3記載の熱抵抗制御装置。
3. When a command is issued from the controller to the drive unit, the good heat conductor attached to the shaft via the fifth heat insulating material moves between the heat radiation paths. The thermal resistance of the heat radiation path is reduced by changing the ratio of the good heat conductor to the heat radiation path so that the ratio of the good heat conductor to the heat radiation path is maximized. 4. The thermal resistance control device according to claim 3, wherein the thermal resistance of the heat radiation path is increased by minimizing the occupancy of the good heat conductor.
【請求項4】 前記放熱径路との前記第1、第2の対面
部以外の前記発熱体取付部および前記放熱体取付部と前
記第1の充填材の接触面に第1、第2の断熱層を、同様
に前記放熱径路との前記第1、第2の対面部以外の前記
発熱体取付部および前記放熱体取付部と前記第2の充填
材の接触面に第3、第4の断熱層を設けたことを特徴と
する請求項2又は請求項3記載の熱抵抗制御装置。
4. A first and a second heat insulating member on the heat-generating body mounting portion other than the first and second facing portions with the heat-radiating path and on a contact surface between the heat-radiating body mounting portion and the first filler. Similarly, third and fourth heat insulating layers are provided on the heating element mounting portion other than the first and second facing portions with the heat radiation path and on the contact surface between the heat radiating member mounting portion and the second filler. The thermal resistance control device according to claim 2 or 3, wherein a layer is provided.
【請求項5】 前記発熱体取付部と前記放熱体取付部と
が前記第1、第2、第3および第4の断熱材を介さずに
直接第1、第2の支持構造物によって取り付けられてい
ることを特徴とする請求項2又は請求項3記載の熱抵抗
制御装置。
5. The heating element mounting portion and the heat radiating member mounting portion are directly mounted by first and second support structures without interposing the first, second, third, and fourth heat insulating materials. The thermal resistance control device according to claim 2 or 3, wherein
【請求項6】 前記第1の支持構造物にばねによる第1
の圧縮展開機構を設け、前記第2の支持構造物に第2の
圧縮展開機構を設け、これら第1、第2の圧縮展開機構
は前記発熱体取付部と前記良熱伝導体との隙間および前
記放熱体取付部と前記良熱伝導体との隙間をそれぞれ小
さくし、接触面圧を生じさせることを特徴とする請求項
2又は請求項3記載の熱抵抗制御装置。
6. The first support structure is provided with a first spring structure.
The second support structure is provided with a second compression / expansion mechanism, and the first and second compression / expansion mechanisms are provided with a gap between the heating element mounting portion and the good heat conductor. The thermal resistance control device according to claim 2 or 3, wherein a gap between the heat radiator mounting portion and the good heat conductor is reduced to generate a contact surface pressure.
【請求項7】 前記良熱伝導体がくさび型の良熱伝導体
であり、前記発熱体取付部の形状も前記くさび型の良熱
伝導体の形状に合うように作られていることを特徴とす
る請求項2又は請求項3記載の熱抵抗制御装置。
7. The wedge-shaped good heat conductor, wherein the good heat conductor is a wedge-shaped good heat conductor, and the shape of the heating element mounting portion is made to match the shape of the wedge-shaped good heat conductor. The thermal resistance control device according to claim 2 or 3, wherein
【請求項8】 前記良熱伝導体がくさび型の良熱伝導体
であり、前記放熱体取付部の形状も前記くさび型の良熱
伝導体の形状に合うように作られていることを特徴とす
る請求項2又は請求項3記載の熱抵抗制御装置。
8. The wedge-shaped good heat conductor, wherein the good heat conductor is a wedge-shaped good heat conductor, and the shape of the radiator mounting portion is also made to match the shape of the wedge-shaped good heat conductor. The thermal resistance control device according to claim 2 or 3, wherein
【請求項9】 請求項2〜請求項8のいずれか1項記載
の熱抵抗制御装置から、前記第1、第2の充填材を除去
し、前記発熱体取付部と前記良熱伝導体および前記放熱
体取付部と前記良熱伝導体との間の隙間での熱放射によ
る熱結合を備えたことを特徴とする熱抵抗制御装置。
9. The heat resistance control device according to claim 2, wherein the first and second fillers are removed, and the heating element mounting portion, the good heat conductor, A thermal resistance control device comprising thermal coupling by heat radiation in a gap between the radiator mounting portion and the good heat conductor.
JP2000014990A 2000-01-24 2000-01-24 Thermal resistance control device Expired - Fee Related JP3567839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014990A JP3567839B2 (en) 2000-01-24 2000-01-24 Thermal resistance control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014990A JP3567839B2 (en) 2000-01-24 2000-01-24 Thermal resistance control device

Publications (2)

Publication Number Publication Date
JP2001210983A true JP2001210983A (en) 2001-08-03
JP3567839B2 JP3567839B2 (en) 2004-09-22

Family

ID=18542361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014990A Expired - Fee Related JP3567839B2 (en) 2000-01-24 2000-01-24 Thermal resistance control device

Country Status (1)

Country Link
JP (1) JP3567839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229130B2 (en) 2018-02-09 2022-01-18 Zte Corporation Heat-insulation device and electronic product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229130B2 (en) 2018-02-09 2022-01-18 Zte Corporation Heat-insulation device and electronic product

Also Published As

Publication number Publication date
JP3567839B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP5007296B2 (en) Power module base
Snyder et al. Hot spot cooling using embedded thermoelectric coolers
US5751062A (en) Cooling device of multi-chip module
US20060000226A1 (en) Thermal transfer device and system and method incorporating same
KR101017452B1 (en) Semiconductor package
US9392728B2 (en) Automatic in situ coolant flow control in LFT heat exchanger
EP3509099B1 (en) Thermal heatsink
US10054375B2 (en) Self-adjusting cooling module
US11895810B2 (en) Cooling arrangement
US20210212236A1 (en) Phase-change mechanically deformable cooling device
JP2004179534A (en) Semiconductor integrated circuit device and chip thereof
JP2002353386A (en) Electronic device provided with dew condensation prevention structure
JP3567839B2 (en) Thermal resistance control device
JP2002159161A (en) Motor integrated with amplifier
JP4486785B2 (en) Cooling system
JP4144616B2 (en) Sheet fluid circulation device
JPH08204070A (en) Electronic part cooling structure
JP2000332175A (en) Heat sink with fin
JP2001230584A (en) Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element
JP2002093960A (en) Cooling structure of multichip module and its manufacturing method
JP3726743B2 (en) Thermal resistance control device
JP5480123B2 (en) Heat dissipation structure
US20230225088A1 (en) Thermal coupling element
JP7328664B2 (en) thermoelectric converter
KR102103139B1 (en) Cool and hot package using thermoelectric device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees