JP2001210862A - Gallium nitride semiconductor light emitting element - Google Patents

Gallium nitride semiconductor light emitting element

Info

Publication number
JP2001210862A
JP2001210862A JP2000014447A JP2000014447A JP2001210862A JP 2001210862 A JP2001210862 A JP 2001210862A JP 2000014447 A JP2000014447 A JP 2000014447A JP 2000014447 A JP2000014447 A JP 2000014447A JP 2001210862 A JP2001210862 A JP 2001210862A
Authority
JP
Japan
Prior art keywords
light emitting
gallium nitride
semiconductor light
layer
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000014447A
Other languages
Japanese (ja)
Other versions
JP3335975B2 (en
Inventor
Shigekazu Tokuji
重和 徳寺
Koji Noguchi
幸治 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2000014447A priority Critical patent/JP3335975B2/en
Publication of JP2001210862A publication Critical patent/JP2001210862A/en
Application granted granted Critical
Publication of JP3335975B2 publication Critical patent/JP3335975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gallium nitride semiconductor light emitting element whose leak current is small, whose operation voltage is low, which is superior in light emitting efficiency and whose reproducibility is high. SOLUTION: In the gallium nitride semiconductor light emitting element having PN junction, a cap layer 500 constituted of an Mg doped BGaN semiconductor is formed on an active layer 400.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード、
レーザーダイオード等に利用される窒化ガリウム系半導
体発光素子に関する。
The present invention relates to a light emitting diode,
The present invention relates to a gallium nitride based semiconductor light emitting device used for a laser diode or the like.

【0002】[0002]

【従来の技術】窒化ガリウム系半導体(GaN系半導
体)は、かねてから困難であった青色発光を実現して発
光ダイオード素子に用いられるものである。この種の窒
化ガリウム系半導体では、活性層を形成した後にP型A
lGaN半導体層からなるキャップ層を形成し、その上
にP型GaN半導体層を形成していた。P型AlGaN
半導体層からなるキャップ層を形成することは、発光効
率の向上に資するものである。
2. Description of the Related Art Gallium nitride-based semiconductors (GaN-based semiconductors) are used for light-emitting diode devices by realizing blue light emission which has been difficult for a long time. In this type of gallium nitride-based semiconductor, a P-type A
A cap layer composed of an lGaN semiconductor layer was formed, and a P-type GaN semiconductor layer was formed thereon. P-type AlGaN
Forming a cap layer made of a semiconductor layer contributes to improvement of luminous efficiency.

【0003】[0003]

【発明が解決しようとする課題】しかし、P型AlGa
N半導体層中のAl濃度を小さくするとリーク電流が増
加し、Al濃度を大きくすると動作電圧が増大するとい
う傾向がある。
However, P-type AlGa
When the Al concentration in the N semiconductor layer is reduced, the leak current tends to increase, and when the Al concentration is increased, the operating voltage tends to increase.

【0004】また、Al原子の供給源として通常使用さ
れるトリメチルアルミニウムは、気相中でN原子供給源
であるアンモニアと反応するため、AlGaN半導体層
中のAlとGaとの割合を再現性よく制御するのは困難
という問題点もある。
Also, trimethyl aluminum, which is generally used as a source of Al atoms, reacts with ammonia, which is a source of N atoms, in the gas phase, so that the ratio of Al and Ga in the AlGaN semiconductor layer can be reproducibly measured. There is also a problem that it is difficult to control.

【0005】本発明は、上記事情に鑑みて創案されたも
ので、リーク電流が小さく動作電圧が低く、かつ発光効
率に優れ、再現性の高い窒化ガリウム系半導体発光素子
を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a gallium nitride based semiconductor light emitting device having a small leakage current, a low operating voltage, excellent luminous efficiency, and high reproducibility. I have.

【0006】[0006]

【課題を解決するための手段】本発明に係る窒化ガリウ
ム系半導体発光素子は、PN接合を有する窒化ガリウム
系半導体発光素子であって、活性層の上にMgドープB
GaN半導体からなるキャップ層が形成されている。
A gallium nitride based semiconductor light emitting device according to the present invention is a gallium nitride based semiconductor light emitting device having a PN junction, wherein an Mg doped B
A cap layer made of a GaN semiconductor is formed.

【0007】[0007]

【発明の実施の形態】図1は本発明の実施の形態に係る
窒化ガリウム系半導体発光素子の概略的断面図である。
FIG. 1 is a schematic sectional view of a gallium nitride based semiconductor light emitting device according to an embodiment of the present invention.

【0008】本発明の実施の形態に係る窒化ガリウム系
半導体発光素子は、PN接合を有する窒化ガリウム系半
導体発光素子であって、活性層400の上にMgドープ
BGaN半導体からなるキャップ層500が形成されて
いる。
The gallium nitride based semiconductor light emitting device according to the embodiment of the present invention is a gallium nitride based semiconductor light emitting device having a PN junction, wherein a cap layer 500 made of Mg-doped BGaN semiconductor is formed on an active layer 400. Have been.

【0009】かかる窒化ガリウム系半導体発光素子は、
以下のような製造工程で製造される。
The gallium nitride based semiconductor light emitting device is
It is manufactured by the following manufacturing process.

【0010】まず、サファイア基板100にサーマルク
リーニングを施す。すなわち、減圧MOCVD装置(減
圧気相成長装置)内で水素を供給しながら、サファイア
基板100を1050℃に加熱することでクリーニング
するのである。
First, the sapphire substrate 100 is subjected to thermal cleaning. That is, the cleaning is performed by heating the sapphire substrate 100 to 1050 ° C. while supplying hydrogen in a reduced pressure MOCVD apparatus (a reduced pressure vapor phase growth apparatus).

【0011】次に、サファイア基板100の温度を51
0℃にまで低下させ、窒素、水素をキャリアガスとして
アンモニア、トリメチルアルミニウムを供給してサファ
イア基板100の表面に低温AlNバッファ層200を
形成する。このAlNバッファ層200は約200Åで
ある。
Next, the temperature of the sapphire substrate 100 is set to 51
The temperature is lowered to 0 ° C., and ammonia and trimethylaluminum are supplied using nitrogen and hydrogen as carrier gases to form a low-temperature AlN buffer layer 200 on the surface of the sapphire substrate 100. This AlN buffer layer 200 is about 200 °.

【0012】次に、サファイア基板100の温度を10
00℃に上昇させて、前記キャリアガスを用いてアンモ
ニア、トリメチルガリウムを流す。この時、同時にN型
不純物としてのシリコンを用いてN型GaN半導体層と
してのSiドープGaN半導体層300を約1.2μm
成長させる。
Next, the temperature of the sapphire substrate 100 is set to 10
The temperature is raised to 00 ° C., and ammonia and trimethylgallium are flowed using the carrier gas. At this time, the silicon-doped GaN semiconductor layer 300 as the N-type GaN semiconductor layer was simultaneously formed using silicon as the N-type impurity by about 1.2 μm.
Let it grow.

【0013】次に、サファイア基板100の温度を約7
30℃に下降させ、トリメチルインジウムを断続的に流
しつつ、InGaNの多重量子井戸(MQW)からなる
活性層400をSiドープGaN層300の上に約40
0Å成長させる。
Next, the temperature of the sapphire substrate 100 is set to about 7
The temperature is lowered to 30 ° C., and the active layer 400 made of InGaN multiple quantum wells (MQW) is placed on the Si-doped GaN layer 300 by about 40 minutes while intermittently flowing trimethylindium.
Grow 0 °.

【0014】さらに、サファイア基板100の温度を9
00℃に上昇させ、マグネシウムをドーピングしたBG
aN半導体層であるキャップ層500を前記活性層40
0の上に成長させる。このキャップ層500は約100
Åの厚さである。また、このキャップ層500における
Bの含有率は2%である。
Further, the temperature of the sapphire substrate 100 is set to 9
BG doped with magnesium raised to 00 ° C
The cap layer 500, which is an aN semiconductor layer, is
Grow on zero. This cap layer 500 is about 100
厚 thickness. The content of B in the cap layer 500 is 2%.

【0015】次に、サファイア基板100の温度を85
0℃に下降させ、キャリアガスに不純物としてマグネシ
ウムを加え、P型GaN半導体層としてのMgドープG
aN半導体層600を約0.2μm成長させる。
Next, the temperature of the sapphire substrate 100 is set to 85.
The temperature was lowered to 0 ° C., magnesium was added as an impurity to the carrier gas, and Mg-doped G was used as a P-type GaN semiconductor layer.
The aN semiconductor layer 600 is grown to about 0.2 μm.

【0016】次に、サファイア基板100の温度を80
0℃にし、減圧MOCVD装置内の圧力を6650Pa
(50torr)とする。これと同時に、アンモニア等
の水素を含む混合ガスの雰囲気から、速やかに減圧MO
CVD装置内の雰囲気を不活性ガスである窒素ガスに切
り替える。
Next, the temperature of the sapphire substrate 100 is set to 80
0 ° C., and the pressure in the reduced pressure MOCVD apparatus was 6650 Pa
(50 torr). At the same time, the atmosphere of the mixed gas containing hydrogen such as ammonia is rapidly reduced in pressure
The atmosphere in the CVD apparatus is switched to nitrogen gas which is an inert gas.

【0017】そして、キャリアガスとして窒素ガスを用
い、トリメチルジンクを流して、膜厚が数十ÅのZn膜
700を形成する。そして、このままの状態、すなわち
窒素雰囲気下でサファイア基板100の温度を約100
℃以下にまで低下させる。
Then, using a nitrogen gas as a carrier gas and flowing trimethyl zinc, a Zn film 700 having a thickness of several tens of degrees is formed. Then, the temperature of the sapphire substrate 100 is set to about 100 in this state, that is, in a nitrogen atmosphere.
To below ℃.

【0018】この後、真空蒸着装置にZn膜700まで
が形成されたサファイア基板100を入れ、SnO2
10%のITOを電子銃で加熱、蒸発させて膜厚が約
0.5μmの電流拡散層としてのITO膜800をZn
膜700の上に形成する。この際のサファイア基板10
0の温度は200℃にした。
After that, the sapphire substrate 100 on which the Zn film 700 is formed is put into a vacuum deposition apparatus, and ITO containing 10% of SnO 2 is heated and evaporated by an electron gun to obtain a current diffusion layer having a thickness of about 0.5 μm. The ITO film 800 as a layer is Zn
It is formed over the film 700. Sapphire substrate 10 at this time
The temperature of 0 was 200 ° C.

【0019】次に、ITO膜800の一部をドライエッ
チングし、SiドープGaN層300の一部を露出させ
る。この露出したSiドープGaN半導体層300にN
型電極910を、前記ITO膜800の一部にP型電極
920を形成する。この両電極910、920は、Ti
/Au薄膜を約500Å/5000Å程度蒸着したもの
である。
Next, a part of the ITO film 800 is dry-etched to expose a part of the Si-doped GaN layer 300. The exposed Si-doped GaN semiconductor layer 300
A P-type electrode 920 is formed on a part of the ITO film 800 as a P-type electrode 910. Both electrodes 910 and 920 are made of Ti
/ Au thin film deposited by about 500/5000 °.

【0020】このようにして製造された窒化ガリウム系
半導体発光素子は、20mAの電流で動作電圧が3.6
Vと十分に低く、発光効率もMgドープP型AlGaN
半導体層をキャップ層として使用した従来の窒化ガリウ
ム系半導体発光素子と遜色がないことが確認された。ま
た、リーク電流も5Vで10μA以下と実用上問題のな
いレベルになっていることが確認された。
The gallium nitride based semiconductor light emitting device manufactured in this way has an operating voltage of 3.6 at a current of 20 mA.
V, sufficiently low, and luminous efficiency is Mg-doped P-type AlGaN
It was confirmed that there was no inferiority to a conventional gallium nitride based semiconductor light emitting device using a semiconductor layer as a cap layer. Also, it was confirmed that the leak current was 10 μA or less at 5 V, which is a level that poses no practical problem.

【0021】なお、上述した実施の形態では、電流拡散
層としてのITO膜800を真空蒸着法で形成している
が、このITO膜800を形成しなくとも、Ni/Au
薄膜又はAuGe/Au薄膜を半透明補助電極として用
いれば、光の外部取り出し効率は多少は落ちるが従来と
同等の窒化ガリウム系半導体発光素子を形成すことが可
能である。
In the above-described embodiment, the ITO film 800 as a current diffusion layer is formed by a vacuum deposition method. However, even if the ITO film 800 is not formed, Ni / Au
If a thin film or an AuGe / Au thin film is used as the translucent auxiliary electrode, it is possible to form a gallium nitride based semiconductor light emitting device equivalent to the conventional one, although the light extraction efficiency is slightly reduced.

【0022】[0022]

【発明の効果】本発明に係る窒化ガリウム系半導体発光
素子は、PN接合を有する窒化ガリウム系半導体発光素
子において、活性層の上にMgドープBGaN半導体か
らなるキャップ層が形成されている。
According to the gallium nitride based semiconductor light emitting device of the present invention, in the gallium nitride based semiconductor light emitting device having a PN junction, a cap layer made of Mg-doped BGaN semiconductor is formed on the active layer.

【0023】このような窒化ガリウム系半導体発光素子
は、20mAの電流で動作電圧が3.6Vと十分に低
く、発光効率も従来のものと遜色がないことが確認され
た。また、リーク電流も5Vで10μA以下と実用上問
題のないレベルになっていることが確認された。さら
に、再現性が高い窒化ガリウム系半導体発光素子とする
ことができた。
Such a gallium nitride based semiconductor light emitting device has a sufficiently low operating voltage of 3.6 V at a current of 20 mA, and it has been confirmed that the luminous efficiency is comparable to that of the conventional device. Also, it was confirmed that the leak current was 10 μA or less at 5 V, which is a level that poses no practical problem. Further, a gallium nitride based semiconductor light emitting device having high reproducibility was obtained.

【0024】また、前記MgドープBGaN半導体から
なるキャップ層のBの含有率は、以下の表1からも判明
するように、0.1%以上5.0%以下が望ましく、キ
ャップ層の厚さは以下の表2からも判明するように、1
0Å以上200Å以下であることが望ましい。
The content of B in the cap layer made of the Mg-doped BGaN semiconductor is desirably 0.1% or more and 5.0% or less, as can be seen from Table 1 below. Is 1 as can be seen from Table 2 below.
Desirably, it is 0 ° or more and 200 ° or less.

【0025】表1 厚さが100ÅのMgドープBGaN半導体からなるキ
ャップ層のBの含有率の違いによるリーク電流と動作電
圧との違い B(%) リーク電流(μA) 動作電圧(V) 0.1 100 3.2 1.0 5 3.4 2.0 2 3.6 5.0 0 4.5
Table 1 Difference between leakage current and operating voltage due to difference in B content in cap layer made of Mg-doped BGaN semiconductor having a thickness of 100 ° B (%) Leak current (μA) Operating voltage (V) 1 100 3.2 1.05 3.4 2.0 2 3.6 5.0 0 0 4.5

【0026】表2 Bの含有率が1%のMgドープBGaN半導体からなる
キャップ層の膜厚の違いによるリーク電流と動作電圧と
の違い
Table 2 Difference between leakage current and operating voltage due to difference in thickness of cap layer made of Mg-doped BGaN semiconductor containing 1% of B

【0027】Bの含有率が0.1%以下であるとリーク
電流が大きくなり、5%以上であると結晶性が悪化する
ため動作電圧が上昇し、ひいては発光効率も悪化するこ
とが確認された。また、キャップ層の厚さが10Å以下
であるとリーク電流が大きくなり、200Å以上である
と動作電圧が上昇し発光効率が悪化する傾向が確認され
た。この理論的な理由の詳細には不明な点があるが、B
とGaとの原子の大きさの違いに起因し、良好な結晶を
得るためにの臨界組成や臨界膜厚があるものと考えられ
る。
When the B content is less than 0.1%, the leakage current is increased, and when it is more than 5%, the crystallinity is deteriorated, so that the operating voltage is increased and the luminous efficiency is also deteriorated. Was. Also, it was confirmed that when the thickness of the cap layer was 10 ° or less, the leak current increased, and when the thickness was 200 ° or more, the operating voltage increased and the luminous efficiency tended to deteriorate. The details of this theoretical reason are unclear, but B
It is considered that there is a critical composition and a critical film thickness for obtaining a good crystal due to the difference in the size of atoms between Ga and Ga.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る窒化ガリウム系半導
体発光素子の概略的断面図である。
FIG. 1 is a schematic sectional view of a gallium nitride based semiconductor light emitting device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 サファイア基板 200 AlNバッファ層 300 SiドープGaN層 400 活性層 500 キャップ層 600 MgドープGaN層 700 Zn層 800 N型電極 900 P型電極 Reference Signs List 100 sapphire substrate 200 AlN buffer layer 300 Si-doped GaN layer 400 active layer 500 cap layer 600 Mg-doped GaN layer 700 Zn layer 800 N-type electrode 900 P-type electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA03 AA08 AA41 CA34 CA40 CA46 CA49 5F073 AA42 AA74 AA89 CA07 CB05 DA05 DA24 EA07 EA23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA03 AA08 AA41 CA34 CA40 CA46 CA49 5F073 AA42 AA74 AA89 CA07 CB05 DA05 DA24 EA07 EA23

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 PN接合を有する窒化ガリウム系半導体
発光素子において、活性層の上にMgドープBGaN半
導体からなるキャップ層が形成されていることを特徴と
する窒化ガリウム系半導体発光素子。
1. A gallium nitride based semiconductor light emitting device having a PN junction, wherein a cap layer made of a Mg-doped BGaN semiconductor is formed on an active layer.
【請求項2】 前記MgドープBGaN半導体からなる
キャップ層のBの含有率は0.1%以上5.0%以下で
あり、キャップ層の厚さは10Å以上200Å以下であ
ることを特徴とする請求項1記載の窒化ガリウム系半導
体発光素子。
2. The B content of the cap layer made of the Mg-doped BGaN semiconductor is 0.1% or more and 5.0% or less, and the thickness of the cap layer is 10 ° or more and 200 ° or less. The gallium nitride based semiconductor light emitting device according to claim 1.
JP2000014447A 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device Expired - Fee Related JP3335975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014447A JP3335975B2 (en) 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014447A JP3335975B2 (en) 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001210862A true JP2001210862A (en) 2001-08-03
JP3335975B2 JP3335975B2 (en) 2002-10-21

Family

ID=18541902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014447A Expired - Fee Related JP3335975B2 (en) 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3335975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959489A (en) * 2011-12-07 2014-07-30 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic semiconductor chip
CN109509817A (en) * 2018-10-31 2019-03-22 华灿光电(苏州)有限公司 A kind of LED epitaxial slice and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150956A (en) * 1998-11-18 2000-05-30 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2000196194A (en) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd Semiconductor light-emitting device
JP2000332295A (en) * 1999-05-24 2000-11-30 Sanyo Electric Co Ltd Light emitting element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150956A (en) * 1998-11-18 2000-05-30 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2000196194A (en) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd Semiconductor light-emitting device
JP2000332295A (en) * 1999-05-24 2000-11-30 Sanyo Electric Co Ltd Light emitting element and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959489A (en) * 2011-12-07 2014-07-30 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic semiconductor chip
JP2015500565A (en) * 2011-12-07 2015-01-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chip
US9735319B2 (en) 2011-12-07 2017-08-15 Osram Opto Semiconductors Gmbh Radiation emitting or receiving optoelectronic semiconductor chip
CN109509817A (en) * 2018-10-31 2019-03-22 华灿光电(苏州)有限公司 A kind of LED epitaxial slice and preparation method thereof
CN109509817B (en) * 2018-10-31 2021-10-08 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Also Published As

Publication number Publication date
JP3335975B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
JP4135550B2 (en) Semiconductor light emitting device
KR100998540B1 (en) ?-nitride semiconductor light emitting device
JP3394488B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
US8716048B2 (en) Light emitting device and method for manufacturing the same
JP2001308380A (en) Gallium nitride semiconductor light-emitting element
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JP3741528B2 (en) Method for manufacturing gallium nitride based semiconductor device
JP3683560B2 (en) Gallium nitride semiconductor light emitting device and method of manufacturing the same
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JPH11354843A (en) Fabrication of group iii nitride quantum dot structure and use thereof
JP3403665B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3335975B2 (en) Gallium nitride based semiconductor light emitting device
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
JPH11346035A (en) Manufacture of gallium nitride family compound semiconductor light emitting device
US20140027770A1 (en) Semiconductor laminate and process for production thereof, and semiconductor element
JP2000091630A (en) Gallium nitride-based compound semiconductor light emitting element
JP2950316B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP2003179263A (en) Gallium nitride semiconductor light emitting element
JP2737053B2 (en) Gallium nitride based compound semiconductor light emitting device
KR20010102795A (en) GaN-BASED LIGHT EMITTING DIODE WITH MODIFIED P-TYPE ELECTRODE AND MANUFACTURING METHOD THEREOF
CN115458656A (en) GaN single-chip white light emitting tube with p-NiO as cover layer and preparation method thereof
JP2002313738A (en) Method for forming p-type nitride compound semiconductor, and semiconductor device
JP2009272316A (en) Nitride-based semiconductor element and manufacturing method thereof
JPH0878726A (en) Group iii nitride semiconductor light emitting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees