JP2001208485A - Condenser - Google Patents

Condenser

Info

Publication number
JP2001208485A
JP2001208485A JP2000021817A JP2000021817A JP2001208485A JP 2001208485 A JP2001208485 A JP 2001208485A JP 2000021817 A JP2000021817 A JP 2000021817A JP 2000021817 A JP2000021817 A JP 2000021817A JP 2001208485 A JP2001208485 A JP 2001208485A
Authority
JP
Japan
Prior art keywords
steam
passage
working medium
cooling
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000021817A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Taniguchi
弘芳 谷口
Tsuneo Endo
恒雄 遠藤
Tsutomu Takahashi
勤 高橋
Taizo Kitamura
泰三 北村
孝至 ▲高▼沢
Takashi Takazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000021817A priority Critical patent/JP2001208485A/en
Priority to EP01946932A priority patent/EP1251323A4/en
Priority to US10/182,196 priority patent/US6843309B2/en
Priority to PCT/JP2001/000491 priority patent/WO2001055660A1/en
Publication of JP2001208485A publication Critical patent/JP2001208485A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a steam passage of a cooling unit from being blocked by water generated in the steam passage. SOLUTION: A condenser 4 comprises a cooling unit 12 for converting steam into water which has a plurality of steam passages 37 therein, a blower 64 for sucking water generated in the steam passages 37, and a recovering unit 33 for receiving the sucked water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,気相状態の作動媒
体を液相状態に変換する凝縮器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for converting a working medium in a gas phase into a liquid phase.

【0002】[0002]

【従来の技術】従来,この種の凝縮器として,多数の狭
い空気等の冷却媒体用通路および多数の狭い蒸気通路を
交互に配列した冷却部を備えたものが知られている。
2. Description of the Related Art Heretofore, as this type of condenser, there has been known a condenser having a cooling section in which a number of narrow passages for a cooling medium such as air and a number of narrow steam passages are alternately arranged.

【0003】[0003]

【発明が解決しようとする課題】しかしながら蒸気通路
が狭い場合には,その通路内で生じた液相状態の作動媒
体,例えば水がその表面張力等の要因によって通路を塞
ぎ,その結果,冷却部における水蒸気の流通量が少なく
なるため凝縮性能が低下する,といった不具合を招来す
るおそれがある。
However, when the steam passage is narrow, the working medium in a liquid phase, for example, water, generated in the passage, blocks the passage due to factors such as surface tension. In such a case, there is a possibility that the flow rate of water vapor in the fuel cell is reduced, and condensing performance is reduced.

【0004】[0004]

【課題を解決するための手段】本発明は,冷却部の通路
内で生じた液相状態の作動媒体がその通路を塞ぐのを防
止し得るようにした前記凝縮器を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a condenser capable of preventing a working medium in a liquid phase generated in a passage of a cooling unit from blocking the passage. I do.

【0005】前記目的を達成するため本発明によれば,
気相状態の作動媒体を液相状態に変換すべく,複数の作
動媒体用通路を有する冷却部と,前記作動媒体用通路内
で生じた前記液相状態の作動媒体をその通路から吸出す
吸引手段と,前記吸出された前記液相状態の作動媒体を
受容する回収部とを有する凝縮器が提供される。
[0005] To achieve the above object, according to the present invention,
A cooling section having a plurality of working medium passages for converting the working medium in a gaseous state into a liquid state, and a suction for sucking the working medium in a liquid state generated in the working medium passages through the passages; Means and a condenser for receiving the sucked working medium in the liquid phase are provided.

【0006】前記のように構成すると,液相状態の作動
媒体を通路内から強制的に排出し得るので,冷却部にお
ける気相状態の作動媒体の流通量を維持して本来の凝縮
性能を確保することができる。
With the above construction, the working medium in the liquid phase can be forcibly discharged from the inside of the passage, so that the flow rate of the working medium in the gas phase in the cooling unit is maintained and the original condensation performance is secured. can do.

【0007】[0007]

【発明の実施の形態】図1に示すランキンサイクルシス
テムRは,内燃機関1が発生する排気ガスを用いて,高
圧状態の液体,例えば水(液相状態の作動媒体)から温
度上昇を図られた高圧状態の水蒸気(気相状態の作動媒
体),つまり高温高圧蒸気を発生する蒸発器2と,その
高温高圧蒸気の膨脹によって出力を発生する膨脹器3
と,その膨脹器3から排出される,前記膨脹により温度
および圧力が降下した蒸気,つまり降温降圧蒸気を液化
して水を生じる凝縮器4と,その凝縮器4からの水を蒸
発器2に加圧供給する供給ポンプ5とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A Rankine cycle system R shown in FIG. 1 uses an exhaust gas generated by an internal combustion engine 1 to raise the temperature of a high-pressure liquid, for example, water (a working medium in a liquid phase). Evaporator 2 that generates high-pressure steam (ie, a working medium in a gaseous state), that is, high-temperature high-pressure steam, and an expander 3 that generates an output by expanding the high-temperature high-pressure steam.
And a condenser 4, which is discharged from the expander 3 and has a reduced temperature and pressure due to the expansion, that is, a condenser 4 that liquefies the temperature-reduced pressure-reduced steam to produce water, and the water from the condenser 4 is supplied to the evaporator 2. And a supply pump 5 for supplying pressure.

【0008】図2において,膨脹器3は,そのケーシン
グ6の一端側の中心部に略水平な高温高圧蒸気用導入管
7を有し,またケーシング6の他端側の上部に複数の降
温降圧蒸気用導出孔8を有すると共に,中心部に略水平
な出力軸9を有する。凝縮器4は,各導出孔8からの降
温降圧蒸気を受容し得るように膨脹器3に取付けられ
る。
In FIG. 2, the expander 3 has a substantially horizontal high-temperature and high-pressure steam inlet pipe 7 at the center of one end of a casing 6 thereof, and a plurality of temperature-reducing and pressure reducing pipes at the upper end of the other end of the casing 6. It has a steam outlet hole 8 and a substantially horizontal output shaft 9 at the center. The condenser 4 is attached to the expander 3 so as to receive the temperature-reduced pressure-reduced steam from each outlet 8.

【0009】凝縮器4は円筒形ハウジング10を備え,
そのハウジング10の大径筒部11内に降温降圧蒸気を
水に変換する冷却部12を有する。その冷却部12は,
ステンレス鋼,Al等の金属材料よりなる複数の環状パ
ネル13を重ね合せた中空円柱状をなし,中心部に各環
状パネル13の孔部14による蒸気導入孔15を有す
る。その蒸気導入孔15の中心線は出力軸9の軸線に合
致する。
The condenser 4 has a cylindrical housing 10.
The large diameter cylindrical portion 11 of the housing 10 has a cooling unit 12 for converting the temperature-reduced pressure-reduced steam into water. The cooling unit 12
It has a hollow cylindrical shape in which a plurality of annular panels 13 made of a metal material such as stainless steel, Al, etc. are overlapped, and has a steam introduction hole 15 formed by a hole 14 in each annular panel 13 at the center. The center line of the steam introduction hole 15 coincides with the axis of the output shaft 9.

【0010】冷却部12の膨脹器3側の環状端面に,蒸
気ガイド筒16の一端に存する環状端板17と,その端
板17の外周に存するフランジ18とが対向し,そのフ
ランジ18の外周部が冷却部12と一体化されている。
端板17の孔部19は蒸気導入孔15に合致する。蒸気
ガイド筒16の他端に存するフランジ20は大径筒部1
1の一端に存するフランジ21と重ね合わされて複数の
ボルト22により膨脹器3のフランジ23に固着され
る。これにより膨脹器3の各降温降圧蒸気用導出孔8が
蒸気ガイド筒16内に臨む。
An annular end plate 17 at one end of the steam guide tube 16 and a flange 18 at the outer periphery of the end plate 17 face the annular end surface of the cooling unit 12 on the expander 3 side. The unit is integrated with the cooling unit 12.
The hole 19 of the end plate 17 matches the steam introduction hole 15. The flange 20 at the other end of the steam guide tube 16 is a large-diameter tube portion 1.
One is overlapped with the flange 21 at one end, and is fixed to the flange 23 of the expander 3 by a plurality of bolts 22. As a result, each of the temperature-reduced and reduced-pressure steam outlet holes 8 of the expander 3 faces the inside of the steam guide tube 16.

【0011】ハウジング10は,その大径筒部11の他
端側に配設された分割型小径筒部24を有し,その小径
筒部24のフランジ25が冷却部12の環状端面に対向
し,その外周部が冷却部12と一体化されている。
The housing 10 has a divided small-diameter tube portion 24 disposed on the other end of the large-diameter tube portion 11, and a flange 25 of the small-diameter tube portion 24 faces the annular end surface of the cooling unit 12. , Its outer periphery is integrated with the cooling unit 12.

【0012】膨脹器3の出力軸9にスプライン結合部2
6を介して伝動軸27が取付けられ,その伝動軸27は
冷却部12の蒸気導入孔15および小径筒部24の端壁
28を貫通して外部に突出すると共にその端壁28に軸
受29を介して回転可能に支持される。端壁28におい
て,軸受29よりも外側に存する軸挿通孔30と伝動軸
27間をシールする2つのシールリング31が伝動軸2
7に取付けられる。
The output shaft 9 of the expander 3 is connected to the spline connection 2.
6, a transmission shaft 27 is mounted, and the transmission shaft 27 penetrates through the steam introduction hole 15 of the cooling unit 12 and the end wall 28 of the small-diameter cylindrical portion 24 to protrude to the outside, and has a bearing 29 on the end wall 28. It is rotatably supported through. In the end wall 28, two seal rings 31 for sealing between the shaft insertion hole 30 and the transmission shaft 27 existing outside the bearing 29 are formed.
7 is attached.

【0013】図3,4も参照して,ハウジング10内下
部に,伝動軸27と平行に延びる固定のガイド管32
と,そのガイド管32内に摺動自在に嵌合されて降温降
圧蒸気の冷却によって生じた水を回収する回収部として
の回収管33とが配設される。回収管33の膨脹器3側
の端部は閉鎖されているが,その反対側の端部は開放さ
れている。ガイド管32内周面および回収管33外周面
間にキー34およびキー溝35よりなる回収管用回止め
手段が設けられている。
Referring also to FIGS. 3 and 4, a fixed guide tube 32 extending parallel to the transmission shaft 27 is provided in the lower portion of the housing 10.
And a collection pipe 33 slidably fitted in the guide pipe 32 and collecting water generated by cooling the temperature-reduced and reduced-pressure steam. The end of the recovery pipe 33 on the expander 3 side is closed, but the opposite end is open. Between the inner peripheral surface of the guide tube 32 and the outer peripheral surface of the collection tube 33, there is provided a collecting tube detent means comprising a key 34 and a key groove 35.

【0014】図4,5に示すように,冷却部12におけ
る各環状パネル13は,プレス加工による凸条群36を
有し,2枚1組の環状パネル13の相対向する凸条群3
6をろう接することによって,それらパネル13間に複
数のパイプ状蒸気通路(作動媒体用通路)37が形成さ
れる。両環状パネル13の孔部14周りは,上部を開放
された2つの円弧状凸条38のろう接によってシールさ
れ,またそれら円弧状凸条38の両端部間に蒸気導入孔
15の上部に連通する蒸気通路37の入口39が形成さ
れる。両環状パネル13の外周部は,略全周に亘ってヘ
ミング加工とろう接との併用によってシールされている
が,下部側で,且つ入口39を二等分する直径上に位置
する切欠き部40においてヘミング部41は分断されて
いる。切欠き部40の周辺部分42は,ガイド管32の
軸線方向に所定の間隔で形成された複数の溝43の1つ
に嵌込まれてろう接されている。これにより切欠き部4
0の内周面がガイド管32の内周面に合致して,両環状
パネル13による蒸気通路37の出口44がガイド管3
2内に臨む。
As shown in FIGS. 4 and 5, each annular panel 13 in the cooling section 12 has a group of ridges 36 formed by press working.
By brazing 6, a plurality of pipe-like steam passages (working medium passages) 37 are formed between the panels 13. The periphery of the hole 14 of both annular panels 13 is sealed by brazing of two arc-shaped ridges 38 whose upper parts are open, and communicates with the upper part of the steam introduction hole 15 between both ends of the arc-shaped ridges 38. An inlet 39 of the steam passage 37 is formed. The outer peripheral portions of both annular panels 13 are sealed over substantially the entire periphery by a combination of hemming and brazing, but are provided with cutouts located on the lower side and on the diameter that bisects the inlet 39. At 40, the hemming portion 41 is divided. The peripheral portion 42 of the notch 40 is fitted into one of a plurality of grooves 43 formed at a predetermined interval in the axial direction of the guide tube 32 and brazed. Thereby, the notch 4
0 coincides with the inner peripheral surface of the guide tube 32, and the outlet 44 of the steam passage 37 formed by the annular panels 13 is connected to the guide tube 3.
Face in 2.

【0015】冷却部12における膨脹器3側の端部では
1枚の環状パネル13と,環状端板17およびフランジ
18との協働により蒸気通路37が形成され,また小径
筒部24側の端部では1枚の環状パネル13と,フラン
ジ25およびその内周側の隔壁45との協働により蒸気
通路37が形成されている。各ヘミング部41は,冷却
部12の母線方向に延びる櫛形間隔調整板46の各溝4
7に嵌込まれており(図12も参照),この間隔調整板
46は冷却部12の周方向に所定の間隔で複数配設され
ている。
At the end of the cooling unit 12 on the side of the expander 3, a steam passage 37 is formed by the cooperation of one annular panel 13, the annular end plate 17 and the flange 18, and the end on the side of the small-diameter cylinder 24. In the portion, a steam passage 37 is formed by cooperation of one annular panel 13, the flange 25 and the partition wall 45 on the inner peripheral side thereof. Each hemming part 41 is provided with a corresponding one of the grooves 4 of the comb-shaped spacing adjusting plate 46 extending in the generatrix direction of the cooling part 12.
7 (see also FIG. 12), and a plurality of the interval adjusting plates 46 are provided at predetermined intervals in the circumferential direction of the cooling unit 12.

【0016】図5に示すように各蒸気通路37は,入口
39からパネル半径上を上方へ延びる1つの上昇路48
と,その上昇路48から互いに逆方向に,且つ周方向に
分岐する複数の分岐路49と,各分岐路49の下部側に
連なる複数の下降路50と,各下降路50の下部側に連
なる複数の集束路51と,それら集束路51が集まる出
口44とよりなる。
As shown in FIG. 5, each steam passage 37 has one rising path 48 extending upward from the inlet 39 over the panel radius.
A plurality of branch paths 49 branching in the opposite and circumferential directions from the ascending path 48, a plurality of descending paths 50 connected to the lower side of each branch path 49, and a plurality of descending paths 50 connected to the lower side of each descending path 50. It comprises a plurality of focusing paths 51 and an outlet 44 at which the focusing paths 51 converge.

【0017】各蒸気通路37の出口44を形成する場
合,図6に示すようにガイド管32の溝43に,全外周
部をヘミング加工された両環状パネル13の集束路51
側を嵌込んでヘミング部41の一部およびその近傍部分
をガイド管32内に突出させ,次いで両環状パネル13
をガイド管32の溝43内面にろう接する。その後,両
環状パネル13におけるガイド管32の内部に突出して
いる部分52を切除すると,前記切欠き部40が形成さ
れ,そこに出口44が開口する。
When the outlets 44 of the steam passages 37 are formed, as shown in FIG. 6, the converging paths 51 of the annular panels 13 whose entire outer peripheral portions are hemmed are formed in the grooves 43 of the guide tube 32.
And a portion of the hemming portion 41 and a portion in the vicinity thereof protrude into the guide tube 32.
Is brazed to the inner surface of the groove 43 of the guide tube 32. Thereafter, when the portion 52 of each of the annular panels 13 protruding into the guide tube 32 is cut off, the cutout portion 40 is formed, and the outlet 44 is opened there.

【0018】この場合,図8に示すように溝43は,両
環状パネルBと嵌合する幅広部43aと,その幅広部4
3aの底面に開口して,ヘミング部41と嵌合する幅狭
部43bとを有し,これにより出口44周りを確実にシ
ールすると共に各環状パネル13とガイド管32との接
合強度を高めることができる。
In this case, as shown in FIG. 8, the groove 43 has a wide portion 43a to be fitted to both annular panels B and a wide portion 4a.
3a has a narrow portion 43b which is open to the bottom surface and fits with the hemming portion 41, thereby securely sealing around the outlet 44 and increasing the bonding strength between each annular panel 13 and the guide tube 32. Can be.

【0019】図4,9に示すように,冷却媒体用通路と
しての冷却用空気通路54は,相隣る両蒸気通路37間
に形成されている,つまり各蒸気通路54を形成し,且
つ相対向する2枚の環状パネル13間の隙間である。空
気通路54を確保するため両環状パネル13には互いに
衝合する複数の小凸起55が設けられている。空気通路
54の入口56は,ハウジング10における大径筒部1
1の下部膨出部分57に存する管部58により形成さ
れ,一方,出口59は蒸気通路37を形成する両環状パ
ネル13の上部側において,相隣る両ヘミング部41間
に在る。空気通路54を形成する2枚の環状パネル13
において,その孔部14の内周縁部はヘミング加工とろ
う接との併用によって接合されており,このヘミング部
60によるシール作用によって冷却用空気流の蒸気通路
37への進入および蒸気の空気通路54への漏出がそれ
ぞれ防止される。大径筒部11はその上部に,各出口5
9を覆う排気フード61を有する。また冷却部12外周
面において,排気フード61および下部膨出部分57間
は一対のサイドパネル62によりシールされている。
As shown in FIGS. 4 and 9, a cooling air passage 54 as a cooling medium passage is formed between two adjacent steam passages 37, that is, forms each steam passage 54, and This is a gap between two facing annular panels 13. In order to secure the air passage 54, the annular panels 13 are provided with a plurality of small protrusions 55 that abut against each other. The inlet 56 of the air passage 54 is connected to the large-diameter cylindrical portion 1 of the housing 10.
The outlet 59 is located between the adjacent hemming portions 41 on the upper side of the annular panels 13 forming the vapor passage 37, while the outlet portion 59 is formed by the tube portion 58 existing in the lower bulging portion 57. Two annular panels 13 forming an air passage 54
In this case, the inner peripheral edge of the hole portion 14 is joined by a combination of hemming and brazing, and the sealing action of the hemming portion 60 allows the cooling air flow to enter the steam passage 37 and the steam air passage 54. To each other is prevented. The large-diameter cylindrical portion 11 has an outlet 5
9 is provided. Further, on the outer peripheral surface of the cooling unit 12, the space between the exhaust hood 61 and the lower bulging portion 57 is sealed by a pair of side panels 62.

【0020】前記のように蒸気通路37を形成する両環
状パネル13の外周部をヘミング加工とろう接との併用
によって接合すると,両外周部間の開きを防止して空気
抵抗の減少を図り,これにより凝縮器4の圧力損失を低
減することができる。
When the outer peripheral portions of the two annular panels 13 forming the steam passage 37 are joined together by hemming and brazing as described above, the opening between the outer peripheral portions is prevented to reduce the air resistance, Thereby, the pressure loss of the condenser 4 can be reduced.

【0021】蒸気の凝縮熱伝達係数は空気対流の熱伝達
係数に比べてはるかに大きいため,冷却部12のコンパ
クト化を図るためには,蒸気通路37の冷却面の面積を
小さく,一方,空気通路54の冷却面の面積を大きくと
ることにより両冷却面の熱抵抗を同等にすることが必要
である。そこで,相隣る両パネル13の凸条群36を互
いに接合して蒸気通路37をパイプ形状に独立して形成
し,一方,空気通路54は相隣る両パネル13間を一定
間隔に保持し,対面する両パネル13が接触しない構造
として,空気通路54の冷却面の面積を蒸気通路37の
それよりも大にしたものである。
Since the condensation heat transfer coefficient of steam is much larger than the heat transfer coefficient of air convection, in order to make the cooling section 12 compact, the area of the cooling surface of the steam passage 37 is reduced. It is necessary to make the thermal resistance of both cooling surfaces equal by increasing the area of the cooling surface of the passage 54. Therefore, the ridge groups 36 of the adjacent panels 13 are joined to each other to form the steam passage 37 independently in a pipe shape, while the air passage 54 holds the adjacent panels 13 at a constant interval. The structure in which the two panels 13 facing each other do not contact each other is such that the area of the cooling surface of the air passage 54 is larger than that of the steam passage 37.

【0022】図2,3に明示するように,複数の蒸気通
路37の出口44を,同数の複数のグループに分けたと
き,各グループの複数の出口44は,回収管33の大径
管部53にその軸線方向に沿って等間隔に形成された周
方向に延びる複数のスロット状連通孔63の1つと間欠
的に連通するようになっている。
2 and 3, when the outlets 44 of the plurality of steam passages 37 are divided into a plurality of groups of the same number, the plurality of outlets 44 of each group 53 intermittently communicates with one of a plurality of circumferentially extending slot-shaped communication holes 63 formed at equal intervals along the axial direction.

【0023】図2,3,10に示すようにハウジング1
0の小径筒部24内に蒸気通路37内で生じた水を,そ
の通路37内から出口44および連通孔63を経て強制
的に吸出す吸引手段としてのブロア64が配設されてい
る。
As shown in FIGS.
A blower 64 is disposed in the small-diameter cylindrical portion 24 as suction means for forcibly sucking water generated in the steam passage 37 from the passage 37 through the outlet 44 and the communication hole 63.

【0024】そのブロア64は,伝動軸27の軸線aか
らεだけ変位した位置に中心線cを有する円筒型ケーシ
ング65と,そのケーシング65内に収容されると共に
伝動軸27にスプライン結合部66を介して取り付けら
れたロータ67と,そのロータ67の複数の放射方向溝
68に摺動自在に嵌込まれた複数のベーン69とよりな
る。ケーシング65は円筒形本体70と,その本体70
に対して着脱自在の蓋体71とよりなり,その本体70
は隔壁45に存する中心筒部72の端壁部分73に複数
のボルト74によって取付られている。
The blower 64 includes a cylindrical casing 65 having a center line c at a position displaced by ε from the axis a of the transmission shaft 27, and a spline coupling portion 66 housed in the casing 65 and connected to the transmission shaft 27. And a plurality of vanes 69 slidably fitted in a plurality of radial grooves 68 of the rotor 67. The casing 65 includes a cylindrical main body 70 and the main body 70.
And a lid 71 which is detachable from the main body.
Is attached to the end wall portion 73 of the central cylindrical portion 72 in the partition wall 45 by a plurality of bolts 74.

【0025】ケーシング65の下部に吸引口75が設け
られ,その吸引口75が,ガイド管32に設けられた導
管76,ガイド管32内周面および回収管33における
大径管部53と一体化された小径管部77外周面間の筒
状空間78,小径管部77の複数の通孔79およびその
内部を経て回収管33の大径管部53内に連通する。一
方,ケーシング65の上部に排出口80が設けられ,そ
の排出口80は小径筒部24内および隔壁45の中心筒
部72における周壁部分81に形成された通孔82を介
して冷却部12の蒸気導入孔15に連通する。
A suction port 75 is provided at a lower portion of the casing 65, and the suction port 75 is integrated with the conduit 76 provided in the guide tube 32, the inner peripheral surface of the guide tube 32, and the large-diameter tube portion 53 in the recovery tube 33. The cylindrical space 78 between the outer peripheral surfaces of the small-diameter tube portion 77, the plurality of through holes 79 of the small-diameter tube portion 77, and the inside thereof communicate with the large-diameter tube portion 53 of the collection tube 33. On the other hand, a discharge port 80 is provided at an upper portion of the casing 65, and the discharge port 80 is provided through a through hole 82 formed in the small-diameter cylindrical portion 24 and the peripheral wall portion 81 in the central cylindrical portion 72 of the partition wall 45. It communicates with the steam introduction hole 15.

【0026】小径筒部24の端壁28下部に,小径管部
77の往復動を許容する孔部83が形成され,その孔部
83を囲むように,端壁28,ガイド管32等を構成要
素とする水タンク84が配設されている。回収管33の
小径管部77内は,前記通孔79および前記筒状空間7
8を介してガイド管32の周壁に形成された水タンク8
4の入口85aに連通し,また水タンク84の出口85
bは供給ポンプ5の吸込み口に接続される。
A hole 83 is formed below the end wall 28 of the small-diameter tube portion 24 to allow the small-diameter tube portion 77 to reciprocate. The end wall 28, the guide tube 32 and the like are formed so as to surround the hole 83. A water tank 84 as an element is provided. The inside of the small-diameter pipe portion 77 of the collection pipe 33 includes the through hole 79 and the cylindrical space 7.
Water tank 8 formed on the peripheral wall of guide tube 32 through
4 and an outlet 85 of the water tank 84.
b is connected to the suction port of the supply pump 5.

【0027】回収管33の大径管部53に存する各連通
孔63を各グループの複数の蒸気通路37の出口44に
順次連通させるべく,回収管33の大径管部53をガイ
ド管32内で往復動させるための駆動機構が次のように
設けられている。
The large-diameter pipe portion 53 of the recovery pipe 33 is inserted into the guide pipe 32 so that the communication holes 63 in the large-diameter pipe section 53 of the recovery pipe 33 are sequentially communicated with the outlets 44 of the plurality of steam passages 37 of each group. A driving mechanism for reciprocating the motor is provided as follows.

【0028】即ち,ブロア64におけるロータ67の中
心部に,蓋体71の中心孔86から突出するボス部87
が設けられ,そのボス部87に大径ギヤ88がスプライ
ン結合部89を介して取付けられる。回収管33の小径
管部77にギヤ保持筒90が回転可能に嵌込まれてお
り,その一対のフランジ状部分91間においてギヤ保持
筒90にスプライン結合部92を介して小径ギヤ93が
取付けられ,その小径ギヤ93は大径ギヤ88に噛合っ
ている。それらフランジ状部分91は,ガイド管32端
面および端壁28下部内面の環状突出部94端面間に保
持されている。小径管部77の外周面に,図11に展開
して明示するようにカム溝95が形成され,またそのカ
ム溝95に係合するピン96がギヤ保持筒90内周面に
形成された,軸線方向の溝97に保持される。カム溝9
5の両山形部98間の距離が回収管33のストロークで
あり,このストロークの範囲内に存する,つまり1つの
グループの複数の出口44に1つの連通孔63が順次連
通する。
That is, a boss 87 projecting from a center hole 86 of the lid 71 is provided at the center of the rotor 67 in the blower 64.
And a large-diameter gear 88 is attached to the boss portion 87 via a spline coupling portion 89. A gear holding cylinder 90 is rotatably fitted into the small diameter pipe portion 77 of the collection pipe 33, and a small diameter gear 93 is attached to the gear holding cylinder 90 via a spline coupling portion 92 between the pair of flange-like portions 91. The small-diameter gear 93 meshes with the large-diameter gear 88. The flange-like portions 91 are held between the end faces of the guide tube 32 and the end faces of the annular projecting portions 94 on the inner surface below the end wall 28. A cam groove 95 is formed on the outer peripheral surface of the small-diameter tube portion 77 as shown in FIG. 11 as a development, and a pin 96 engaging with the cam groove 95 is formed on the inner peripheral surface of the gear holding cylinder 90. It is held in an axial groove 97. Cam groove 9
The distance between the two chevron portions 98 of No. 5 is the stroke of the recovery pipe 33, which is within the range of this stroke, that is, one communication hole 63 communicates sequentially with the plurality of outlets 44 of one group.

【0029】前記構成において,膨脹器3の作動により
その出力軸9が回転すると,伝動軸27を介してブロア
64が作動すると共に大径ギヤ88が回転する。この大
径ギヤ88の回転により小径ギヤ93が回転するので,
ピン96およびカム溝95を介して回収管33が往復動
し,各グループの複数の蒸気通路37の出口44が回収
管33の各連通孔63を介して回収管33内と間欠的に
連通し,各出口44に吸引力が作用する。
In the above configuration, when the output shaft 9 rotates by the operation of the expander 3, the blower 64 operates via the transmission shaft 27 and the large-diameter gear 88 rotates. The rotation of the large-diameter gear 88 causes the small-diameter gear 93 to rotate.
The collecting pipe 33 reciprocates via the pin 96 and the cam groove 95, and the outlets 44 of the plurality of steam passages 37 of each group intermittently communicate with the inside of the collecting pipe 33 through the respective communication holes 63 of the collecting pipe 33. , A suction force acts on each outlet 44.

【0030】膨脹器3の各導出孔8から排出された降温
降圧蒸気は蒸気ガイド筒16内を経て冷却部12の蒸気
導入孔15内に至り,そこから各蒸気通路37内に,そ
の入口39から進入する。降温降圧蒸気は,各蒸気通路
37の上昇路48および複数の分岐路49を経て複数の
下降路50に至り,主としてその下降路50にて複数の
空気通路54を流通する冷却風により冷却されて水とな
る。その水はブロア64による吸引力によって各蒸気通
路37の出口44から強制的に吸出されて各連通孔63
を経て回収管33の大径管部53内に溜る。大径管部5
3内の貯水量が既定量を超えると,水は,小径管部7
7,その通孔79および筒状空間78を経て水タンク8
4にその入口85aより流入する。
The temperature-reduced pressure-reduced steam discharged from each outlet hole 8 of the expander 3 passes through the steam guide tube 16 to the steam inlet hole 15 of the cooling unit 12, and from there to each steam passage 37 and its inlet 39. Enter from. The temperature-reduced pressure-reduced steam reaches a plurality of descending paths 50 via an ascending path 48 and a plurality of branch paths 49 of each steam path 37, and is cooled mainly by the cooling air flowing through the plurality of air paths 54 in the descending path 50. It becomes water. The water is forcibly sucked from the outlets 44 of the steam passages 37 by the suction force of the blower 64, and the communication holes 63.
And collects in the large-diameter tube portion 53 of the collection tube 33. Large diameter pipe 5
When the amount of water stored in 3 exceeds the predetermined amount, water is
7, the water tank 8 through the through hole 79 and the cylindrical space 78
4 from the inlet 85a.

【0031】このように,各蒸気通路37内から,そこ
で生じた水を強制的に排出すると,冷却部12における
降温降圧蒸気の流通量を維持することが可能となり,こ
れにより所期の凝縮性能を確保することができる。
As described above, when the water generated therefrom is forcibly discharged from each steam passage 37, it is possible to maintain the flow rate of the temperature-reduced and reduced-pressure steam in the cooling unit 12, thereby achieving the desired condensation performance. Can be secured.

【0032】未凝縮蒸気が生じた場合,それは,回収管
33の大径管部53内の空間による気液分離作用によっ
て水と分離され,ブロア64の吸引力で小径管部77,
その通孔79,筒状空間78,導管76を経て吸引口7
5からブロア64内に吸込まれる。そして,ブロア64
のベーン69による送り作用で排出口80から小径筒部
24内および隔壁45の通孔82を経て冷却部12の蒸
気導入孔15に至り,そこから蒸気通路37内に再び戻
されて液化される。これによりランキンサイクルシステ
ムRにおける作動媒体としての水の減少を回避して必要
水量を確保することができる。
When uncondensed vapor is generated, it is separated from water by the gas-liquid separation effect of the space in the large-diameter tube portion 53 of the recovery tube 33, and the small-diameter tube portion 77,
The suction port 7 passes through the through hole 79, the cylindrical space 78, and the conduit 76.
5 is sucked into the blower 64. And blower 64
From the outlet 80 to the steam inlet 15 of the cooling part 12 through the through-hole 82 in the small-diameter cylindrical portion 24 and the partition wall 45, and is returned to the steam passage 37 from there to be liquefied. . As a result, it is possible to avoid a decrease in water as a working medium in the Rankine cycle system R and to secure a necessary water amount.

【0033】冷却部12の熱伝導性,表面処理性,軽量
化,リサイクル性等を考慮して,各パネル13を,Al
系材料(純AlおよびAl合金を含む)より構成する
と,降温降圧蒸気,つまり,水蒸気とAl系材料との化
学反応によって非凝縮性ガスである水素が発生し,この
水素の大部分は水によって蒸気通路37外に排出される
が,その一部が狭い蒸気通路37内に滞溜し,その結
果,降温降圧蒸気に対する冷却作用が滞溜水素によって
妨げられるおそれがある。この実施例においては,水素
が発生した場合には,その水素を,冷却部12,回収管
33,ブロア64および冷却部12の経路で循環させて
蒸気通路37内における滞溜を防止することができる。
In consideration of the thermal conductivity, surface treatment, weight reduction, recyclability, etc. of the cooling unit 12, each panel 13 is made of aluminum.
When it is composed of a system material (including pure Al and Al alloy), hydrogen, which is a non-condensable gas, is generated by a temperature-reduced pressure-reducing steam, that is, a chemical reaction between water vapor and the Al material, and most of the hydrogen is generated by water. Although discharged out of the steam passage 37, a part thereof stays in the narrow steam passage 37, and as a result, there is a possibility that the cooling effect on the temperature-reduced and reduced-pressure steam is hindered by the retained hydrogen. In this embodiment, when hydrogen is generated, the hydrogen can be circulated through the cooling unit 12, the recovery pipe 33, the blower 64, and the cooling unit 12 to prevent accumulation in the steam passage 37. it can.

【0034】また蒸気通路37からの水の強制排出によ
り,冷却部12における相隣る両パネル13間の間隔を
極力狭くしても水の滞溜を回避することができ,これに
より冷却部12の小型化を図って,車両用ランキンサイ
クルシステムRにおける凝縮器4の車載性を向上させる
ことができる。
Further, due to the forced discharge of water from the steam passage 37, even if the space between the adjacent panels 13 in the cooling unit 12 is made as small as possible, water accumulation can be avoided. Of the condenser 4 in the vehicle Rankine cycle system R can be improved.

【0035】さらに,各グループの複数の蒸気通路37
の出口44と回収管33の各連通孔63とを間欠的に連
通させるようにしたので,ブロア64として低容量のも
のを用いても各出口63には大きな吸引力を作用させる
ことができ,これにより省エネルギを図ることができ
る。この省エネルギ化は,ブロア64の動力源として膨
脹器3の出力を利用するので,特に有効である。
Further, a plurality of steam passages 37 of each group
The outlet 44 and the communication holes 63 of the collection pipe 33 are intermittently connected, so that a large suction force can be applied to each outlet 63 even if a low-capacity blower 64 is used. Thereby, energy can be saved. This energy saving is particularly effective because the output of the expander 3 is used as the power source of the blower 64.

【0036】さらにまた,膨脹器3のフランジ23の投
影面内に,円筒形冷却部12およびブロア64を収める
と共に冷却部12の降温降圧蒸気用蒸気導入孔15をそ
の中心線周りに設けたので,膨脹器3およびブロア64
付凝縮器4よりなる組立体のコンパクト化を図ることが
できる。
Furthermore, since the cylindrical cooling section 12 and the blower 64 are accommodated in the projection plane of the flange 23 of the expander 3, and the cooling section 12 is provided with the steam introduction hole 15 for temperature-reduced pressure reduction steam around its center line. , Inflator 3 and blower 64
It is possible to reduce the size of the assembly including the attached condenser 4.

【0037】図12は冷却部12の他例を示す。この例
は,空気通路54を形成する相隣る両パネル13間に間
隔調整用板ばね99を介在させた状態で,パネル13お
よび板ばね99よりなる積層体を所定の治具に設置して
ヘミング部41および衝合する両凸条群36間をそれぞ
れろう接したものである。
FIG. 12 shows another example of the cooling unit 12. In this example, a laminated body composed of the panel 13 and the leaf spring 99 is set on a predetermined jig in a state where a spacing spring 99 is interposed between the adjacent panels 13 forming the air passage 54. The hemming portion 41 and the abutting double ridges 36 are brazed.

【0038】これにより各ヘミング部41および両凸条
群36間等を板ばね99の弾発力を以て接触させた状態
で確実に接合して,その強度および信頼性を向上させ,
また空気通路54の間隔を所定値に保つことができる。
この場合,ヘミング加工に先立ってその被加工部に設置
された2つのろう材をヘミング加工によるU字形部分u
の両対向内面と,それの間に存する平板状部分pの対向
面間にそれぞれ挟みつけておくと,各ヘミング部41の
ろう接作業を容易にし,また接合強度を高めることがで
きる。これは各ヘミング部60についても同じである。
As a result, the hemming portions 41 and the ridges 36 are securely joined in a state where they are brought into contact with the elastic force of the leaf spring 99, thereby improving the strength and reliability.
Further, the interval between the air passages 54 can be maintained at a predetermined value.
In this case, prior to the hemming process, the two brazing materials installed in the processed portion are U-shaped portions u by the hemming process.
By sandwiching between the two opposing inner surfaces and the opposing surfaces of the flat plate portion p located therebetween, the soldering work of each hemming portion 41 can be facilitated and the joining strength can be increased. This is the same for each hemming unit 60.

【0039】この例では,環状パネル13として,相隣
る蒸気通路37の分岐路49がジグザグに配置されるよ
うに凸条群36の配列位置を異にする二種のものが用い
られている。このような環状パネル13を用いた冷却部
12の全体構造は図13の通りである。
In this example, two types of annular panels 13 having different arrangement positions of the ridge groups 36 are used so that the branch passages 49 of the adjacent steam passages 37 are arranged in a zigzag manner. . The overall structure of the cooling unit 12 using such an annular panel 13 is as shown in FIG.

【0040】[0040]

【発明の効果】本発明によれば前記のように構成するこ
とによって,冷却部の通路内で生じた液相状態の作動媒
体がその通路を塞ぐことを防止して所期の凝縮性能を確
保することが可能な凝縮器を提供することができる。
According to the present invention, the above configuration prevents the working medium in the liquid phase generated in the passage of the cooling unit from blocking the passage, thereby securing the desired condensation performance. Capable of providing a condenser.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ランキンサイクルシステムの説明図である。FIG. 1 is an explanatory diagram of a Rankine cycle system.

【図2】凝縮器の縦断正面図である。FIG. 2 is a vertical sectional front view of the condenser.

【図3】図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2;

【図4】冷却部および回収部の構造の一例を示す説明図
である。
FIG. 4 is an explanatory diagram illustrating an example of a structure of a cooling unit and a collecting unit.

【図5】図2の5−5線断面図で,図4の5−5線断面
図に相当する。
5 is a sectional view taken along line 5-5 of FIG. 2 and corresponds to a sectional view taken along line 5-5 of FIG. 4;

【図6】ガイド管の溝に環状パネルの一部を嵌めた状態
を示す断面図である。
FIG. 6 is a cross-sectional view showing a state where a part of an annular panel is fitted in a groove of a guide tube.

【図7】環状パネルにおける,ガイド管の内部に突出し
ている部分を切除した状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state where a portion of the annular panel protruding into the guide tube is cut away.

【図8】図7の8矢視図である。8 is a view taken in the direction of arrow 8 in FIG. 7;

【図9】図2の9−9線断面図で,図4の9−9線断面
図に相当する。
9 is a sectional view taken along line 9-9 of FIG. 2 and corresponds to a sectional view taken along line 9-9 of FIG. 4;

【図10】図2の10−10線断面図である。FIG. 10 is a sectional view taken along line 10-10 of FIG. 2;

【図11】カム溝の展開図である。FIG. 11 is a development view of a cam groove.

【図12】冷却部の他例の要部断面図である。FIG. 12 is a sectional view of a main part of another example of the cooling unit.

【図13】冷却部および回収部の構造の他例を示す説明
図である。
FIG. 13 is an explanatory diagram showing another example of the structure of the cooling unit and the collecting unit.

【符号の説明】[Explanation of symbols]

12 冷却部 33 回収管(回収部) 37 蒸気通路 39 入口 44 出口 64 ブロア(吸引手段) 12 Cooling part 33 Recovery pipe (Recovery part) 37 Steam passage 39 Inlet 44 Outlet 64 Blower (suction means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 勤 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 北村 泰三 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 ▲高▼沢 孝至 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3G081 BA20 BD03 DA07  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsutomu Takahashi 1-4-1, Chuo, Wako, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Taizo Kitamura 1-4-1, Chuo, Wako, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Inventor ▲ Takashi Takashi 1-4-1 Chuo, Wako-shi, Saitama F-term inside Honda R & D Co., Ltd. 3G081 BA20 BD03 DA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相状態の作動媒体を液相状態に変換す
べく,複数の作動媒体用通路(37)を有する冷却部
(12)と,前記作動媒体用通路(37)内で生じた前
記液相状態の作動媒体をその通路から吸出す吸引手段
(64)と,前記吸出された前記液相状態の作動媒体を
受容する回収部(33)とを有することを特徴とする凝
縮器。
1. A cooling section (12) having a plurality of working medium passages (37) and a cooling medium formed in the working medium passages (37) for converting a working medium in a gaseous state into a liquid state. A condenser comprising suction means (64) for sucking the liquid-phase working medium from the passage, and a collecting part (33) for receiving the sucked liquid-phase working medium.
【請求項2】 前記吸引手段(64)の吸引側は前記作
動媒体用通路(37)の出口(44)側に連通し,また
その排出側は前記作動媒体用通路(37)の入口(3
9)側に連通する,請求項1記載の凝縮器。
2. A suction side of the suction means (64) communicates with an outlet (44) side of the working medium passage (37), and a discharge side thereof has an inlet (3) of the working medium passage (37).
The condenser according to claim 1, which communicates with the side (9).
JP2000021817A 2000-01-26 2000-01-26 Condenser Pending JP2001208485A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000021817A JP2001208485A (en) 2000-01-26 2000-01-26 Condenser
EP01946932A EP1251323A4 (en) 2000-01-26 2001-01-25 Condenser
US10/182,196 US6843309B2 (en) 2000-01-26 2001-01-25 Condenser
PCT/JP2001/000491 WO2001055660A1 (en) 2000-01-26 2001-01-25 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021817A JP2001208485A (en) 2000-01-26 2000-01-26 Condenser

Publications (1)

Publication Number Publication Date
JP2001208485A true JP2001208485A (en) 2001-08-03

Family

ID=18548180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021817A Pending JP2001208485A (en) 2000-01-26 2000-01-26 Condenser

Country Status (4)

Country Link
US (1) US6843309B2 (en)
EP (1) EP1251323A4 (en)
JP (1) JP2001208485A (en)
WO (1) WO2001055660A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798204B2 (en) * 2004-09-14 2010-09-21 Cyclone Power Technologies, Inc. Centrifugal condenser
US7954335B2 (en) * 2008-03-25 2011-06-07 Water Generating Systems LLC Atmospheric water harvesters with variable pre-cooling
US8627673B2 (en) * 2008-03-25 2014-01-14 Water Generating Systems LLC Atmospheric water harvesters

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE325159C (en) * 1920-09-10 Einar Morterud capacitor
US3686867A (en) * 1971-03-08 1972-08-29 Francis R Hull Regenerative ranking cycle power plant
US4224797A (en) * 1977-05-09 1980-09-30 Kelly Donald A Variable speed, condensing steam turbine and power system
JPS628570U (en) 1985-06-25 1987-01-19
JPH0678868B2 (en) 1987-02-17 1994-10-05 株式会社荏原製作所 Control method for high voltage capacitors
US4818475A (en) * 1988-02-12 1989-04-04 General Electric Company Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
JPH02298762A (en) * 1989-05-13 1990-12-11 Nippondenso Co Ltd Refrigerator
JPH04116346A (en) 1990-09-05 1992-04-16 Hisaka Works Ltd Condenser
US5255635A (en) * 1990-12-17 1993-10-26 Volkswagen Ag Evaporative cooling system for an internal combustion engine having a coolant equalizing tank
US6332321B1 (en) * 1992-11-09 2001-12-25 Ormat Industries Ltd. Apparatus for augmenting power produced from gas turbines
JPH10111029A (en) * 1996-10-04 1998-04-28 Sanyo Electric Co Ltd Vapor compression refrigerator
JPH10185458A (en) 1996-12-19 1998-07-14 Meidensha Corp Controller for air-cooled high pressure condenser

Also Published As

Publication number Publication date
EP1251323A1 (en) 2002-10-23
WO2001055660A1 (en) 2001-08-02
US20030089488A1 (en) 2003-05-15
EP1251323A4 (en) 2005-03-30
US6843309B2 (en) 2005-01-18

Similar Documents

Publication Publication Date Title
JP5509466B2 (en) Finned cylindrical heat exchanger
AU2017228277B2 (en) Rotary heat exchanger
JPH06109397A (en) High pressure-resistant long-life heat exchanger made of aluminum
US20150308295A1 (en) Evaporator
US5092398A (en) Automotive parallel flow type heat exchanger
US20040003916A1 (en) Unit cell U-plate-fin crossflow heat exchanger
JP2001208485A (en) Condenser
EP1455062B1 (en) Heat exchange device
EP1447537A1 (en) Heat exchanger
US20070107885A1 (en) Heat exchanger with integral shell and tube plates
EP1455061B1 (en) Heat exchange device
EP4006476A1 (en) Heat exchanger
US20140216687A1 (en) Corrugated Tube Regenerator for an Expansion Engine
JPH0336497A (en) Heat exchanger
GB2379730A (en) A plate heat exchanger for a glycol/water circuit and refrigerant circuit of a motor vehicle
RU2052757C1 (en) Heat exchanger
CN110886623A (en) Scroll expander
JP2971685B2 (en) Heat exchanger and method of manufacturing the same
WO2016195022A1 (en) Heat utilizing device
JP2004245473A (en) Evaporator
JPH0988501A (en) Screw turbine and binary generating device therewith
CN2260302Y (en) Circulating flowing type heat-exchange apparatus
JPH0343549B2 (en)
JPH09222267A (en) Receiver type heat exchanger
JPH10153358A (en) Stacked type heat exchanger