JP2001205083A - Catalyst for hydrogenating aromatic compound in hydrocarbon oil and manufacturing method therefor - Google Patents

Catalyst for hydrogenating aromatic compound in hydrocarbon oil and manufacturing method therefor

Info

Publication number
JP2001205083A
JP2001205083A JP2000013163A JP2000013163A JP2001205083A JP 2001205083 A JP2001205083 A JP 2001205083A JP 2000013163 A JP2000013163 A JP 2000013163A JP 2000013163 A JP2000013163 A JP 2000013163A JP 2001205083 A JP2001205083 A JP 2001205083A
Authority
JP
Japan
Prior art keywords
catalyst
magnesia
silica
oxide
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000013163A
Other languages
Japanese (ja)
Other versions
JP3844044B2 (en
Inventor
Toshio Yamaguchi
敏男 山口
Takashi Matsuda
高志 松田
Yuuki Kanai
勇樹 金井
Eiji Yokozuka
英治 横塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000013163A priority Critical patent/JP3844044B2/en
Publication of JP2001205083A publication Critical patent/JP2001205083A/en
Application granted granted Critical
Publication of JP3844044B2 publication Critical patent/JP3844044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for hydrogenating an aromatic compound in a hydrocarbon oil containing a sulfur compound, etc., and provide a manufacturing method for the catalyst. SOLUTION: This catalyst for hydrogenating an aromatic compound in a hydrocarbon oil comprises a catalyst carrier oxide consisting of silica/magnesia and at least one selected from a platinum metal group, and is porously molded. In addition, the carrier is molded after adding silica-magnesia hydrate powder obtained by pulverizing a silica-magnesia hydrate gel containing 25-50 wt.% of magnesia in terms of oxide to the hydrate gel and further, kneading the hydrate gel with the hydrate powder. Then, the mixture is dried and baked to obtain the carrier. The catalyst is manufactured by carrying at least one of a metallic salt solution selected from the platinum metal group and drying/ baking it or by adding the hydrate powder made up of the silica magnesia obtained by pulverizing the gel and at least one of the metallic salt solution selected from the platinum metal group and kneading/molding and further, baking the molding after drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化水素油中の芳香
族化合物の水素化処理用触媒に関し、特に炭化水素油中
に含まれている芳香族炭化水素化合物の水素化処理にお
いて、水素化分解の割合が低く、かつ硫黄化合物などの
耐被毒性に優れ、水素化活性が高い水素化処理用触媒お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil, and more particularly to a hydrocracking method for hydrotreating an aromatic hydrocarbon compound contained in a hydrocarbon oil. The present invention relates to a hydrotreating catalyst having a low ratio of, a high resistance to poisoning of sulfur compounds and the like, and a high hydrogenation activity, and a method for producing the same.

【0002】[0002]

【従来の技術】従来ディーゼルエンジンの燃料油である
軽油は、原油の常圧蒸留によって得られる特定の沸点範
囲の直留軽油留分を水素化脱硫・脱窒素処理を施して得
られた軽油留分からなる軽油を主とし、それに減圧蒸留
によって得られる軽油留分をブレンドして調製されてい
る。しかしながら軽油留分は原油中に限られた量しか含
まれておらず、原油が年々重質化しているため、原油中
の直留軽油留分の量が少なくなる傾向にある。そこで重
質油を分解あるいは水素化分解・脱硫して軽油留分に転
化することも行われている。また軽油は、ディーゼルエ
ンジンの増加に伴い軽油に対する需要が大きくなるとい
った要因もあり、近い将来には軽油の供給量が不足する
ことが予想されている。
2. Description of the Related Art Diesel oil, which is the fuel oil of conventional diesel engines, is obtained by subjecting a straight-run gas oil fraction having a specific boiling point obtained by atmospheric distillation of crude oil to hydrodesulfurization and denitrification. It is prepared by blending a light oil fraction consisting mainly of a light oil and a light oil fraction obtained by vacuum distillation. However, the gas oil fraction contains only a limited amount in the crude oil, and the crude oil is becoming heavier year by year. Therefore, the amount of the straight gas oil fraction in the crude oil tends to decrease. Therefore, heavy oil is cracked or hydrocracked / desulfurized to convert it into a gas oil fraction. In addition, light oil demand is expected to increase with the increase in diesel engines, and it is expected that the supply of light oil will run short in the near future.

【0003】原油から得られる直留軽油留分の不足に対
処し、軽油の需要の増大に応ずる1つの方法は、直留軽
油留分にブレンドするブレンド油の生産量を増やすこと
である。そこで接触分解装置から得られる特定の沸点範
囲の軽質分解軽油が、軽油用の新たなブレンド油の原料
油として注目されてきている。しかし軽質分解軽油は多
くの芳香族炭化水素成分を含有しているため、そのまま
の性状で直留軽油留分にブレンドすると、芳香族炭化水
素化合物の含有率が増し、ブレンド軽油のセタン価が大
きく低下する。またディーゼルエンジンの排ガス中のパ
ティキュレートは芳香族炭化水素化合物の一部が不完全
燃焼することによって発生する微細粒子状の大気汚染物
質であって、環境保全の立場から問題となり、燃料軽油
中の芳香族炭化水素化合物の含有量を現在以上に削減す
る法律が制定されることが予想される。そこで軽質分解
軽油をブレンド油として用いるためには、軽質分解軽油
に接触水素化処理を施して、芳香族炭化水素化合物の含
有量を低減することが望ましい。
[0003] One way to address the shortage of straight gas oil fractions obtained from crude oil and to meet the increasing demand for gas oils is to increase the production of blended oils blended with the straight gas oil fraction. Therefore, light cracked gas oil having a specific boiling point range obtained from a catalytic cracking unit has been receiving attention as a raw material oil for a new blended oil for gas oil. However, since light cracked gas oil contains many aromatic hydrocarbon components, blending it with a straight-run gas oil fraction with the same properties increases the content of aromatic hydrocarbon compounds and increases the cetane number of the blended gas oil. descend. Particulates in the exhaust gas of diesel engines are fine particulate air pollutants generated by incomplete combustion of some of the aromatic hydrocarbon compounds, and pose a problem from the standpoint of environmental conservation. It is expected that laws will be enacted to further reduce the content of aromatic hydrocarbon compounds. Therefore, in order to use lightly cracked light oil as a blended oil, it is desirable to reduce the content of aromatic hydrocarbon compounds by subjecting lightly cracked light oil to catalytic hydrogenation.

【0004】軽質分解軽油は直留軽油留分に比べて硫黄
化合物の含有量は少ないものの、それらが水素化処理さ
れて生成する硫化水素が、芳香族炭化水素化合物の水素
化反応を阻害するとともに触媒上の活性点を被毒し、活
性劣化を引き起こす原因となることもあり、軽質分解軽
油の水素化処理触媒の条件としては、芳香族炭化水素化
合物に対する高い水素化活性と耐硫黄性、さらには脱硫
性能をも有することが重要である。水素化処理用触媒の
中で周期律表第VIII族貴金属をアルミナなどの担体に担
持した触媒は、一般に水素化活性が高く有力な触媒では
あるが、炭化水素油中の硫黄化合物などによって被毒を
受け、早期に失活してしまうという欠点がある。この欠
点を改善するために担体中にゼオライトなどを含む触媒
を用いて水素化処理を施す試みが行われている。しかし
ながらゼオライトは水素化分解反応に対しては高活性な
触媒であるが、目的とする軽質分解軽油の水素化処理に
おいて水素化分解反応が同時に起こると、軽油留分の収
率が減少するためできるだけ水素化分解活性を抑制する
必要がある。
[0004] Although light cracked gas oil has a lower content of sulfur compounds than straight-run gas oil fractions, hydrogen sulfide generated by hydrotreating them inhibits the hydrogenation reaction of aromatic hydrocarbon compounds. Poisoning of active points on the catalyst may cause deterioration of the activity. Conditions for hydrotreating light cracked gas oil include high hydrogenation activity and aromatic resistance to aromatic hydrocarbon compounds, and It is important to have desulfurization performance. Among the hydrotreating catalysts, catalysts in which a noble metal of Group VIII of the periodic table is supported on a carrier such as alumina are generally powerful catalysts with high hydrogenation activity, but are poisoned by sulfur compounds in hydrocarbon oils. As a result, there is a disadvantage that it is deactivated early. In order to remedy this drawback, attempts have been made to carry out hydrotreatment using a catalyst containing zeolite or the like in a carrier. However, zeolites are highly active catalysts for hydrocracking reactions.However, if hydrocracking reactions occur simultaneously in the hydrotreatment of the target light cracked gas oil, the yield of the gas oil fraction decreases. It is necessary to suppress the hydrocracking activity.

【0005】特開昭64−66292号公報には、単位
格子の長さが24.20〜24.30オングストロー
ム、シリカ/アルミナ比が少なくとも25のY型ゼオラ
イトに周期律表第VIII族貴金属を担持した触媒を用いて
水素化処理を行う方法が開示されている。しかしながら
この方法では原料油中に含まれている硫黄化合物などに
より触媒が被毒され、依然として芳香族化合物の水素化
活性が不十分であり、水素化分解反応が生じて生成油の
収率が低下するという欠点があった。
JP-A-64-66292 discloses that a noble metal belonging to Group VIII of the periodic table is supported on a Y-type zeolite having a unit cell length of 24.20 to 24.30 angstroms and a silica / alumina ratio of at least 25. There is disclosed a method for performing a hydrotreating process using a prepared catalyst. However, in this method, the catalyst is poisoned by sulfur compounds contained in the feedstock oil, the hydrogenation activity of the aromatic compounds is still insufficient, and the hydrocracking reaction occurs to lower the yield of the produced oil. Had the disadvantage of doing so.

【0006】また特開平8−283746号公報には、
ケイ素、マグネシウムを主成分とする結晶性粘土鉱物か
らなる担体に周期律表第VIII族金属を担持した触媒およ
び該触媒を用いた水素化処理方法が開示されている。し
かしこの方法では水素化分解を抑制し生成油の収率を高
める効果は得られているが芳香族化合物の水素化活性は
依然として不十分であり、低濃度の硫黄化合物などが含
まれる原料油に対しての水素化活性は良好ではあるもの
の、高濃度の硫黄化合物などが含まれている原料油の芳
香族化合物の水素化処理効果については何ら記載されて
いない。
Japanese Patent Application Laid-Open No. 8-283746 discloses that
Disclosed are a catalyst in which a group VIII metal of the periodic table is supported on a carrier made of a crystalline clay mineral containing silicon and magnesium as a main component, and a hydrotreating method using the catalyst. However, this method has the effect of suppressing hydrocracking and increasing the yield of product oil, but the hydrogenation activity of aromatic compounds is still insufficient, and the feedstock oil containing low concentrations of sulfur compounds etc. Although its hydrogenation activity is good, it does not disclose any effect of hydrotreating aromatic compounds of a feedstock oil containing a high concentration of sulfur compounds.

【0007】さらに特表平8−509999号公報に
は、1.3nmより大きい直径を有する孔を持つ結晶性
非層状アルミノシリケートに周期律表第VIII族金属を担
持した触媒および該触媒を用いた水素化処理方法が開示
されている。しかしこの方法では硫黄化合物などが著し
く低い原料油に対しては生成油の収率と芳香族化合物の
水素化活性は高める効果は得られているものの、高濃度
の硫黄化合物などが含まれている原料油の芳香族化合物
の水素化処理効果については何ら記載されていない。
Further, Japanese Patent Application Laid-Open No. Hei 8-509999 discloses a catalyst in which a group VIII metal of the periodic table is supported on a crystalline non-layered aluminosilicate having pores having a diameter larger than 1.3 nm, and the catalyst is used. A hydrotreating method is disclosed. However, in this method, although the yield of the produced oil and the hydrogenation activity of the aromatic compound are increased with respect to the raw material oil having extremely low sulfur compounds, the sulfur compound is contained at a high concentration. There is no description on the effect of hydrotreating aromatic compounds in the feedstock.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたものであり、その目的とするところは、硫
黄化合物などを含んだ炭化水素油、特に軽油留分を水素
化処理して芳香族化合物の含有率を低減させるのに適す
る硫黄化合物などに対する耐性が高く、水素化活性が高
く、かつ生成油の収率が高い性能を具備し、さらに触媒
の製造工程を簡略化することができる炭化水素油中の芳
香族化合物の水素化処理用触媒およびその製造方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to hydrotreat a hydrocarbon oil containing a sulfur compound or the like, particularly a light oil fraction. It has high resistance to sulfur compounds and the like suitable for reducing the content of aromatic compounds, has high hydrogenation activity, and has high performance in the yield of product oil, and further simplifies the catalyst production process. An object of the present invention is to provide a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明は前記課題を解決
して前記目的を達成するため鋭意研究を重ねた結果、シ
リカ−マグネシアからなる酸化物を主成分とする触媒を
用いることにより、炭化水素油中の芳香族化合物の含有
率を低減させるのに適した水素化反応活性が高く、硫黄
化合物などに対する耐性が高く、かつ生成油の収率が高
い触媒およびその製造方法を見出し本発明を完成するに
至った。
Means for Solving the Problems According to the present invention, as a result of intensive studies to solve the above-mentioned problems and to achieve the above-mentioned objects, carbonization by using a catalyst containing silica-magnesia as the main component has been carried out. The present invention has found a catalyst having a high hydrogenation reaction activity suitable for reducing the content of aromatic compounds in hydrogen oil, a high resistance to sulfur compounds and the like, and a high production oil yield and a method for producing the same. It was completed.

【0010】すなわち本発明の第1の実施態様に係る炭
化水素油中の芳香族化合物の水素化処理用触媒は、シリ
カ−マグネシアからなる酸化物と、活性成分としての周
期律表第VIII族貴金属の中から選ばれた1種または2種
以上とからなり、かつ多孔質に形成されてなることを特
徴とするものであり、前記シリカ−マグネシアからなる
酸化物中のマグネシアの含有量が酸化物換算で25〜5
0重量%の範囲であり、また前記シリカ−マグネシアか
らなる酸化物中には、シリカとマグネシア以外の無機酸
化物成分を含まず、さらに水銀圧入法で測定した全細孔
容積が0.1〜0.5ミリリットル/gの範囲であり、
100nm以上の細孔容積が0.1〜0.25ミリリッ
トル/gの範囲であり、2000nm以上の細孔容積が
0.05〜0.2ミリリットル/gの範囲である細孔特
性を有するとともに、窒素ガス吸着BET法で250m
/g以上の比表面積を有するものであり、さらにまた
前記シリカ−マグネシアからなる酸化物に対する周期律
表第VIII族貴金属の添加量が金属元素に換算して0.1
〜2重量%であることを特徴とする。
That is, the catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to the first embodiment of the present invention comprises an oxide composed of silica-magnesia and a noble metal of Group VIII of the periodic table as an active component. Wherein the magnesia content of the silica-magnesia oxide is less than or equal to one or more selected from the group consisting of: 25 to 5 in conversion
0% by weight, and the oxide composed of silica and magnesia contains no inorganic oxide components other than silica and magnesia, and has a total pore volume of 0.1 to 10 measured by a mercury intrusion method. In the range of 0.5 ml / g,
It has pore characteristics in which the pore volume of 100 nm or more is in the range of 0.1 to 0.25 ml / g, and the pore volume of 2000 nm or more is in the range of 0.05 to 0.2 ml / g, 250m by nitrogen gas adsorption BET method
2 / g or more, and the addition amount of the Group VIII noble metal in the periodic table to the silica-magnesia oxide is 0.1% in terms of metal element.
~ 2% by weight.

【0011】また本発明の第2実施態様に係る炭化水素
油中の芳香族化合物の水素化処理用触媒の製造方法は、
シリカ−マグネシアからなる酸化物触媒担体に、活性成
分として周期律表第VIII族貴金属の中から選ばれた1種
または2種以上の金属塩溶液を担持し、乾燥後焼成する
ことを特徴とするものであり、また前記マグネシアを酸
化物換算で25〜50重量%含むシリカ−マグネシア水
和物ゲルに、該ゲルを粉化させたシリカ−マグネシア水
和物粉体を加えて、捏和して成型し、乾燥した後焼成し
て得られるシリカとマグネシア以外の無機酸化物成分を
含まないシリカ−マグネシアからなる酸化物触媒担体
に、活性成分として周期律表第VIII族貴金属の中から選
ばれた1種または2種以上の金属塩溶液を担持し、乾燥
後焼成し、さらにはその細孔特性を、水銀圧入法で測定
した全細孔容積が0.1〜0.5ミリリットル/gの範
囲とし、100nm以上の細孔容積が0.1〜0.25
ミリリットル/gの範囲とし、2000nm以上の細孔
容積が0.05〜0.2ミリリットル/gの範囲とし、
かつ窒素ガス吸着BET法で測定した比表面積が250
/g以上としたシリカとマグネシア以外の無機酸化
物成分を含まない触媒を調製したことを特徴とする。
A method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to a second embodiment of the present invention comprises:
It is characterized in that one or more metal salt solutions selected from noble metals of Group VIII of the periodic table are supported as active components on an oxide catalyst carrier composed of silica-magnesia, and dried and calcined. The silica-magnesia hydrate gel containing 25 to 50% by weight of magnesia in terms of oxide is mixed with silica-magnesia hydrate powder obtained by pulverizing the gel and kneaded. Molded, dried and calcined silica obtained by baking and containing no inorganic oxide components other than magnesia-Oxide catalyst carrier consisting of magnesia, selected from the noble metals of Group VIII of the Periodic Table as active components One or two or more metal salt solutions are supported, dried and calcined, and the pore characteristics of the solution are in the range of 0.1 to 0.5 ml / g as measured by a mercury intrusion method. 100 nm or less Pore volume of 0.1 to 0.25
And the pore volume of 2000 nm or more is in the range of 0.05 to 0.2 ml / g.
And a specific surface area of 250 measured by a nitrogen gas adsorption BET method.
It is characterized in that a catalyst containing no inorganic oxide component other than silica and magnesia having m 2 / g or more was prepared.

【0012】さらに本発明の第3の実施態様に係る炭化
水素油中の芳香族化合物の水素化処理用触媒の製造方法
は、シリカ−マグネシアからなる水和物に活性成分とし
て周期律表第VIII族貴金属の中から選ばれた1種または
2種以上の金属塩溶液を混練し、乾燥後焼成することを
特徴とするものであり、また前記マグネシアを酸化物換
算で25〜50重量%含むシリカ−マグネシア水和物の
ゲルに、該ゲルを粉化させたシリカ−マグネシアからな
る水和物粉体と周期律表第VIII族貴金属の中から選ばれ
た1種または2種以上の金属塩溶液とを加えて混練し、
捏和して成型し、乾燥後焼成し、さらにはその細孔特性
を、水銀圧入法で測定した全細孔容積が0.1〜0.5
ミリリットル/gの範囲とし、100nm以上の細孔容
積が0.1〜0.25ミリリットル/gの範囲とし、2
000nm以上の細孔容積が0.05〜0.2ミリリッ
トル/gの範囲とし、かつ窒素ガス吸着BET法で測定
した比表面積が250m/g以上としたシリカとマグ
ネシア以外の無機酸化物成分を含まない触媒を調製した
ことを特徴とする。
Further, according to a third embodiment of the present invention, there is provided a method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil, comprising the steps of: preparing a hydrate comprising silica-magnesia as an active ingredient; One or more metal salt solutions selected from group noble metals are kneaded, dried and calcined, and silica containing 25 to 50% by weight of magnesia in terms of oxide. -A magnesia hydrate gel, a silica-magnesia hydrate powder obtained by pulverizing the gel, and a solution of one or more metal salts selected from noble metals of Group VIII of the Periodic Table. And knead with
Kneaded, molded, dried and fired, and the pore characteristics of which were measured by a mercury intrusion method to a total pore volume of 0.1 to 0.5.
And the pore volume of 100 nm or more is in the range of 0.1 to 0.25 ml / g.
Inorganic oxide components other than silica and magnesia having a pore volume of 000 nm or more in a range of 0.05 to 0.2 ml / g and a specific surface area of 250 m 2 / g or more measured by a nitrogen gas adsorption BET method. It is characterized in that a catalyst containing no catalyst is prepared.

【0013】そして本発明の第2および第3の実施態様
において、シリカ−マグネシアからなる酸化物に対して
周期律表第VIII族貴金属の中から選ばれた1種または2
種以上の金属塩溶液を金属元素に換算して0.1〜2重
量%添加し、乾燥後焼成することを特徴とするものであ
る。
In the second and third embodiments of the present invention, the oxide of silica-magnesia may be selected from one or two selected from the group VIII noble metals of the periodic table.
It is characterized by adding 0.1 to 2% by weight of a metal salt solution of at least one kind in terms of a metal element, drying and firing.

【0014】[0014]

【発明の実施の形態】本発明に係るシリカ−マグネシア
からなる酸化物と、活性成分としての周期律表第VIII族
貴金属の中から選ばれた1種または2種以上とからな
り、かつ多孔質に形成されてなる水素化処理用触媒は、
要約すると以下の2つの工程により製造される。すなわ
ち、シリカ−マグネシアからなる酸化物触媒担体を用
いるものであって、マグネシアの含有量が酸化物換算で
25〜50重量%の範囲であるシリカ−マグネシア水和
物ゲルに該ゲルを粉化させたシリカ−マグネシア水和物
粉体を加えて、捏和して成型し、乾燥した後焼成して得
られたシリカとマグネシア以外の無機酸化物成分を含ま
ないシリカ−マグネシアからなる酸化物触媒担体に、活
性成分として周期律表第VIII族貴金属の中から選ばれた
1種または2種以上の金属塩溶液を担持し、乾燥後焼成
するものである。
BEST MODE FOR CARRYING OUT THE INVENTION A silica-magnesia oxide according to the present invention and one or more selected from noble metals of Group VIII of the Periodic Table as active ingredients, and a porous material The hydrotreating catalyst formed in
In summary, it is manufactured by the following two steps. That is, an oxide catalyst carrier comprising silica-magnesia is used, and the gel is powdered into a silica-magnesia hydrate gel having a magnesia content in the range of 25 to 50% by weight in terms of oxide. Silica-magnesia hydrate powder is added, kneaded, molded, dried and calcined, and an oxide catalyst carrier comprising silica-magnesia containing no inorganic oxide components other than magnesia. And one or more metal salt solutions selected from the Group VIII noble metals of the periodic table as active ingredients, dried, and fired.

【0015】シリカ−マグネシアからなる水和物のマ
グネシアの含有量が酸化物換算で25〜50重量%の範
囲であるシリカ−マグネシア水和物のゲルに、該ゲルを
粉化させたシリカ−マグネシアからなる水和物粉体と周
期律表第VIII族貴金属の中から選ばれた1種または2種
以上の金属塩溶液とを加えて加熱ジャケット付きニーダ
ーなどにより混練し、捏和して成型し、乾燥後焼成する
ものである。前記した2つの工程において、マグネシア
の含有量が酸化物換算で25〜50重量%の範囲である
シリカ−マグネシア水和物ゲルおよびシリカ−マグネシ
ア水和物粉体を製造する方法としては、一般的な共沈
法、沈着法、ゾル−ゲル法などの方法で製造し得るもの
で、例えば珪酸ナトリウム水溶液と、酸化物にした時に
MgOとして25〜50重量%の範囲になる量の塩化マ
グネシウム水溶液とを混合し、加水分解し、生成したシ
リカ−マグネシア水和物スラリーを濾過・洗浄し、濾過
する方法によってシリカ−マグネシア水和物ゲルを製造
することができる。また該シリカ−マグネシア水和物ゲ
ルに水を加えてペースト化した後、噴霧乾燥、凍結乾
燥、あるいはシリカ−マグネシア水和物ゲルを乾燥し、
粉砕することにより平均粒径が5〜20μmの範囲のシ
リカ−マグネシア水和物粉体を製造することができる。
[0015] A silica-magnesia hydrate gel obtained by pulverizing the gel into a silica-magnesia hydrate gel having a magnesia content of 25 to 50% by weight in terms of oxide in terms of oxides. Hydrate powder and one or two or more metal salt solutions selected from Group VIII noble metals of the periodic table are added, kneaded with a kneader equipped with a heating jacket, kneaded and molded. And baking after drying. In the above two steps, as a method for producing a silica-magnesia hydrate gel and a silica-magnesia hydrate powder having a magnesia content in the range of 25 to 50% by weight in terms of oxide, a general method is used. For example, an aqueous solution of sodium silicate and an aqueous solution of magnesium chloride in an amount ranging from 25 to 50% by weight as MgO when converted to an oxide. Is mixed, hydrolyzed, and the resulting silica-magnesia hydrate slurry is filtered, washed, and filtered to produce a silica-magnesia hydrate gel. Further, after adding water to the silica-magnesia hydrate gel to form a paste, spray drying, freeze drying, or drying the silica-magnesia hydrate gel,
By crushing, a silica-magnesia hydrate powder having an average particle size in the range of 5 to 20 μm can be produced.

【0016】そしてシリカ−マグネシア水和物ゲルを製
造する際に使用するシリカ原料としては、1号珪酸ナト
リウム溶液、2号珪酸ナトリウム溶液、3号珪酸ナトリ
ウム溶液、四塩化珪素溶液などの水可溶性塩類が挙げら
れ、またマグネシア原料としては、塩化マグネシウム、
硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウ
ムなどの水可溶性塩類が挙げられる。さらに前記にお
ける触媒担体の調製のための乾燥温度およびの混練後
の乾燥温度は、得られる触媒担体または触媒が均等に乾
燥される限り特に問題はなく、効率性や簡便性の点から
80〜120℃の範囲の温度で乾燥すればよく、また同
じく焼成温度は400〜600℃の範囲とすることがよ
く、その理由は400℃未満では酸化物状態にならず、
一方600℃を超える温度で焼成すると得られる触媒の
比表面積が著しく減少してしまうからである。そして本
発明においてシリカとマグネシア以外の無機酸化物成分
を含まないシリカ−マグネシアからなる酸化物とは、シ
リカとマグネシア水和物を製造する際に用いる原料中に
含まれている微量の無機物質以外のことを定義するもの
であり、マトリックスとしてアルミナ、チタニア、ジル
コニア、シリカ−アルミナ、ゼオライト、粘土鉱物など
の無機酸化物成分を含まないものであり、これらの無機
酸化物を含むと、脱芳香族活性および脱硫・脱窒素活性
が低下してしまうからである。
The silica raw material used for producing the silica-magnesia hydrate gel includes water-soluble salts such as No. 1 sodium silicate solution, No. 2 sodium silicate solution, No. 3 sodium silicate solution and silicon tetrachloride solution. And magnesia raw materials include magnesium chloride,
And water-soluble salts such as magnesium sulfate, magnesium nitrate, and magnesium acetate. Further, the drying temperature for the preparation of the catalyst carrier and the drying temperature after kneading are not particularly limited as long as the obtained catalyst carrier or catalyst is uniformly dried, and from the viewpoint of efficiency and simplicity, 80 to 120. It may be dried at a temperature in the range of ° C., and similarly, the firing temperature may be in the range of 400 to 600 ° C., because the oxide state does not occur below 400 ° C.
On the other hand, if it is calcined at a temperature exceeding 600 ° C., the specific surface area of the obtained catalyst will be significantly reduced. In the present invention, the silica and magnesia-free oxide containing no inorganic oxide components other than silica and magnesia are the silica and magnesia hydrate other than the trace inorganic substances contained in the raw materials used in producing the hydrate. The matrix does not contain an inorganic oxide component such as alumina, titania, zirconia, silica-alumina, zeolite, and clay mineral as a matrix. This is because the activity and the desulfurization / denitrification activity are reduced.

【0017】つぎに前記との工程について詳述する
と、まず前記の工程により水素化処理用触媒を製造す
るに際しては、シリカ−マグネシア水和物ゲルに前記シ
リカ−マグネシア水和物粉体を加えて、捏和して得られ
た可塑化物を所望の形状に成型し、乾燥して400〜6
00℃で通常2時間焼成してシリカ−マグネシアからな
る酸化物触媒担体を調製する。ここでシリカ−マグネシ
ア水和物ゲルにシリカ−マグネシア水和物粉体を加える
理由は、一次粒子で網目構造に形成されているシリカ−
マグネシア水和物ゲルに、一次粒子が凝集、集合により
形成される二次粒子以上のシリカ−マグネシア水和物粉
体を添加することにより、100nm以上の細孔を有す
る多孔質に形成させることが可能となり、得られた触媒
の後述する細孔特性の範囲を満足させることができるか
らである。ついで前記のように調製された触媒担体に活
性成分として周期律表第VIII族貴金属の中から選ばれた
1種または2種以上を触媒重量当り金属元素に換算して
0.1〜2重量%になるように担持し、乾燥した後焼成
する。
Next, the above steps will be described in detail. First, when producing a hydrotreating catalyst by the above steps, the silica-magnesia hydrate powder is added to a silica-magnesia hydrate gel. , Kneading the plasticized product obtained into a desired shape, drying and drying
Calcination is usually performed at 00 ° C. for 2 hours to prepare an oxide catalyst carrier comprising silica-magnesia. Here, the reason for adding the silica-magnesia hydrate powder to the silica-magnesia hydrate gel is that silica-magnesia hydrate powder formed of a primary particle in a network structure is used.
By adding silica-magnesia hydrate powder of secondary particles or more formed by aggregation and aggregation of primary particles to magnesia hydrate gel, it can be formed into a porous material having pores of 100 nm or more. This is because it becomes possible to satisfy the range of the pore characteristics described below of the obtained catalyst. Then, one or two or more selected from the Group VIII noble metals of the periodic table as active ingredients are added to the catalyst carrier prepared as described above in an amount of 0.1 to 2% by weight in terms of metal element per catalyst weight. And then fired after drying.

【0018】そして前記において用いられる周期律表
第VIII族貴金属の金属塩溶液としては、硝酸塩、塩化
物、酢酸塩、アンミン錯体などの水可溶性のものであれ
ば如何なる塩でもよく、また活性金属の担持方法として
はイオン交換法、含浸法、気相法などの公知の触媒調製
法の中で代表的な含浸法により担持することが簡便であ
り、担持後は活性成分を触媒担体に固定化するために乾
燥、焼成処理を施す。この際の乾燥温度は得られる触媒
が均等に乾燥される限り特に問題はなく、効率性や簡便
性の点から前記と同様に80〜120℃範囲の温度で乾
燥すればよい。また焼成温度は担持された活性成分が凝
集したり、相変化を起こしたりして、変化を生じること
があるので、通常350〜600℃、好ましくは400
〜500℃の温度範囲とすることが好ましい。
The metal salt solution of the noble metal of Group VIII of the Periodic Table used in the above may be any water-soluble salt such as nitrate, chloride, acetate, ammine complex, etc. As a loading method, it is convenient to carry out the loading by a typical impregnation method among known catalyst preparation methods such as an ion exchange method, an impregnation method, and a gas phase method. After the loading, the active component is immobilized on the catalyst carrier. Drying and baking. The drying temperature at this time is not particularly limited as long as the obtained catalyst is uniformly dried, and may be dried at a temperature in the range of 80 to 120 ° C. in the same manner as described above from the viewpoint of efficiency and simplicity. The calcination temperature is usually 350 to 600 ° C., preferably 400 ° C., since the carried active component may change due to aggregation or phase change.
It is preferable to set the temperature in the range of -500 ° C.

【0019】一方前記の工程により水素化処理用触媒
を製造するに際しては、シリカ−マグネシア水和物ゲル
に、前記シリカ−マグネシア水和物粉体と、金属元素に
換算して0.1〜2重量%含有するように活性成分とし
て周期律表第VIII族貴金属の中から選ばれた1種または
2種以上の金属塩溶液とを加えて、捏和して得られた可
塑化物を所望の形状に成型し、乾燥して400〜600
℃で通常2時間焼成する。ここでシリカ−マグネシア水
和物ゲルにシリカ−マグネシア水和物粉体を加える理由
は、前記と同様に一次粒子で網目構造に形成されてい
るシリカ−マグネシア水和物ゲルに、一次粒子が凝集、
集合により形成される二次粒子以上のシリカ−マグネシ
ア水和物粉体を添加することによって、100nm以上
の細孔を有する多孔質に形成させることが可能となり、
得られた触媒の後述する細孔特性の範囲を満足させるこ
とができるからである。
On the other hand, when the hydrotreating catalyst is produced by the above-mentioned process, the silica-magnesia hydrate gel is mixed with the silica-magnesia hydrate powder in an amount of 0.1 to 2 in terms of a metal element. A plasticized product obtained by adding one or more metal salt solutions selected from noble metals of Group VIII of the Periodic Table as an active ingredient so as to contain the same by weight and kneading the resulting mixture into a desired shape. And dried to 400-600
Firing at 2 ° C. for usually 2 hours. Here, the reason why the silica-magnesia hydrate powder is added to the silica-magnesia hydrate gel is that the primary particles are agglomerated in the silica-magnesia hydrate gel formed of a primary particle in a network structure as described above. ,
By adding silica-magnesia hydrate powder of secondary particles or more formed by aggregation, it becomes possible to form a porous material having pores of 100 nm or more,
This is because the range of the pore characteristics described below of the obtained catalyst can be satisfied.

【0020】そして前記において用いられる周期律表
第VIII族貴金属の金属塩溶液としても、硝酸塩、塩化
物、酢酸塩、アンミン錯体などの水可溶性のものであれ
ば如何なる塩でもよい。なおいずれの場合においてもシ
リカ−マグネシア水和物粉体の添加量についてはシリカ
−マグネシア水和物粉体を製造する方法によって異なる
が、例えばシリカ−マグネシア水和物ゲルを乾燥し、粉
砕したシリカ−マグネシア水和物粉体を用いるのであれ
ば酸化物換算で20〜70重量%の範囲で加えることが
好ましい。また活性成分として周期律表第VIII族貴金属
の中から選ばれた1種または2種以上を金属元素に換算
して0.1〜2重量%になるよう担持もしくは含有する
ように添加する理由は、活性金属の添加量が0.1重量
%未満では活性金属に起因する効果を発現させるには不
十分であり、一方2重量%を超えて添加してもさらなる
触媒活性の向上を得ることができないからである。
The metal salt solution of a noble metal of Group VIII of the periodic table used in the above may be any water-soluble salt such as nitrate, chloride, acetate, ammine complex and the like. In any case, the amount of the silica-magnesia hydrate powder to be added varies depending on the method for producing the silica-magnesia hydrate powder.For example, silica-magnesia hydrate gel is dried and pulverized silica. If magnesia hydrate powder is used, it is preferably added in the range of 20 to 70% by weight in terms of oxide. The reason for adding one or more selected from the Group VIII noble metals of the periodic table as an active ingredient so as to be supported or contained in an amount of 0.1 to 2% by weight in terms of a metal element is as follows. If the amount of the active metal is less than 0.1% by weight, the effect due to the active metal is insufficient to exhibit the effect. On the other hand, if the amount exceeds 2% by weight, further improvement in the catalytic activity can be obtained. Because you can't.

【0021】そして本発明の水素化処理触媒の形状は円
筒状、三つ葉状、四葉状、球状など所望の形状を適宜選
択することができる。このようにして得られた本発明に
係る水素化処理用の触媒の細孔特性は、水銀圧入法で測
定した全細孔容積が0.1〜0.5ミリリットル/gの
範囲であり、100nm以上の細孔容積が0.1〜0.
25ミリリットル/gの範囲であり、2000nm以上
の細孔容積が0.05〜0.2ミリリットル/gであ
り、好ましくは全細孔容積が0.15〜0.3ミリリッ
トル/gの範囲であり、100nm以上の細孔容積が
0.1〜0.2ミリリットル/gの範囲であり、200
0nm以上の細孔容積が0.05〜0.15ミリリット
ル/gであって、さらに窒素ガス吸着BET法で測定し
た比表面積は250m/g以上である。
The shape of the hydrotreating catalyst of the present invention can be appropriately selected from desired shapes such as cylindrical, three-lobe, four-lobe and spherical. The pore characteristics of the hydrotreating catalyst according to the present invention thus obtained have a total pore volume in the range of 0.1 to 0.5 ml / g as measured by a mercury intrusion method and a pore size of 100 nm. The above pore volume is 0.1 to 0.1.
25 ml / g, the pore volume of 2000 nm or more is 0.05-0.2 ml / g, preferably the total pore volume is 0.15-0.3 ml / g. , The pore volume of 100 nm or more is in the range of 0.1 to 0.2 ml / g;
The pore volume of 0 nm or more is 0.05 to 0.15 ml / g, and the specific surface area measured by the nitrogen gas adsorption BET method is 250 m 2 / g or more.

【0022】前記触媒の細孔特性が前記範囲下限値未満
のときは反応物質がシリカ−マグネシアの微細細孔まで
侵入できずに、ひいては触媒の水素化活性の効果が得ら
れず、逆に上限値を超えると触媒の機械的強度が著しく
低下し工業触媒としての特性が失われるからである。な
お工業触媒の機械的強度としては、触媒の大きさ、形状
にもよるが、一般的には1.5mmの円筒状のもので
1.0kg/mm程度以上は必要である。また窒素ガス
吸着BET法で測定した比表面積を250m/g以上
とする理由は、触媒の有効比表面積が250m/g未
満であると細孔の内表面積が減少し、ひいては後述する
活性金属の分散度が低下して触媒反応が効率よく進行し
なくなるからである。
When the pore characteristics of the catalyst are less than the lower limit of the range, the reactants cannot penetrate into the fine pores of silica-magnesia, and the effect of the hydrogenation activity of the catalyst cannot be obtained. If it exceeds the value, the mechanical strength of the catalyst is remarkably reduced, and the characteristics as an industrial catalyst are lost. The mechanical strength of the industrial catalyst depends on the size and shape of the catalyst, but generally needs to be about 1.5 kg / mm for a 1.5 mm cylindrical one. The reason why the specific surface area measured by the nitrogen gas adsorption BET method is 250 m 2 / g or more is that if the effective specific surface area of the catalyst is less than 250 m 2 / g, the internal surface area of the pores decreases, and consequently the active metal This is because the degree of dispersion of the catalyst decreases and the catalytic reaction does not proceed efficiently.

【0023】そして本発明において用いられた活性成分
は周期律表第VIII族貴金属の中から選ばれるルテニウ
ム、ロジウム、パラジウム、プラチナであり、好ましく
はパラジウム、プラチナである。これらの貴金属は単独
でもよいが混合して用いてもよく、特にパラジウム、プ
ラチナを混合して用いることが好適である。なお本発明
においてシリカ−マグネシアからなる酸化物においてマ
グネシアの含有量を酸化物換算で25〜50重量%の範
囲とする理由は、この範囲外においてはシリカ−マグネ
シアの持つ固体酸量が減少および/または固体塩基量が
増大することになり、本発明の目的である水素化処理用
触媒として十分な機能が発現できないためではないかと
推測している。
The active ingredient used in the present invention is ruthenium, rhodium, palladium or platinum, preferably palladium or platinum, selected from the noble metals of Group VIII of the periodic table. These noble metals may be used alone or in combination, and it is particularly preferable to use a mixture of palladium and platinum. In the present invention, the reason for setting the content of magnesia in the oxide of silica-magnesia in the range of 25 to 50% by weight in terms of oxide is that outside this range, the amount of solid acid of silica-magnesia decreases and / or Alternatively, it is presumed that the amount of the solid base is increased, so that a sufficient function as the hydrotreating catalyst, which is the object of the present invention, cannot be exhibited.

【0024】このようにして得られた本発明に係る水素
化処理用触媒は炭化水素油中に含まれている芳香族炭化
水素化合物の水素化活性が高く、かつ硫黄化合物などの
被毒性に優れている。かかる効果は本発明による触媒が
特定の細孔構造と高い比表面積を有しているため、目的
の反応が効率よく促進するためではないかと推定され
る。
The hydrotreating catalyst according to the present invention thus obtained has a high hydrogenation activity for aromatic hydrocarbon compounds contained in hydrocarbon oil and is excellent in poisoning of sulfur compounds and the like. ing. It is presumed that such an effect is because the catalyst according to the present invention has a specific pore structure and a high specific surface area, so that the intended reaction is efficiently promoted.

【0025】[0025]

【実施例】以下本発明の具体的な例を実施例および比較
例とともに詳細に説明する。但し、本発明は実施例の範
囲に限定されるものでない。 [実施例1] (触媒担体の調製)内容積100リットルの撹拌機付き
ステンレス製反応槽に、水25リットルとMgOとして
5.3重量%濃度の塩化マグネシウム溶液16450ミ
リリットルとを反応槽内に入れ、60℃まで加温して保
持し、撹拌しながらSiOとして9.2重量%濃度の
珪酸ナトリウム溶液17500ミリリットルを全量滴下
した後、さらに20重量%濃度の水酸化ナトリウム溶液
を7200ミリリットル加えて、pH10.8のシリカ
−マグネシア水和物スラリーを得た。
EXAMPLES Hereinafter, specific examples of the present invention will be described in detail along with examples and comparative examples. However, the present invention is not limited to the scope of the embodiments. [Example 1] (Preparation of catalyst carrier) 25 liters of water and 16450 ml of 5.3 wt% magnesium chloride solution as MgO were placed in a 100 liter stainless steel reactor equipped with a stirrer. After heating and maintaining the mixture at 60 ° C. and stirring, a total of 17500 ml of a 9.2% by weight sodium silicate solution was added dropwise as SiO 2 while stirring, and 7200 ml of a 20% by weight sodium hydroxide solution were further added. A silica-magnesia hydrate slurry having a pH of 10.8 was obtained.

【0026】つぎに該スラリーを30分間熟成した後、
NaOとして0.2重量%以下になるまで濾過・洗浄
してMgOとして35.1重量%含むシリカ−マグネシ
ア水和物ゲルを得た。つぎに該シリカ−マグネシア水和
物ゲルの一部を110℃の温度で15時間乾燥後、粉砕
し平均粒径10μmのシリカ−マグネシア水和物粉体を
得た。そして前記シリカ−マグネシア水和物ゲル118
4g(SiO−MgOとして180g)とシリカ−マ
グネシア水和物粉体208g(SiO−MgOとして
180g)とを加熱ジャケット付きニーダー中で十分可
塑化するまで混練し、ついでこの可塑化物を押出し成型
機で成型し、110℃の温度で15時間乾燥後、電気炉
で600℃にて2時間焼成して直径1.2mmのシリカ
−マグネシア触媒担体1′を調製した。
Next, after aging the slurry for 30 minutes,
Na 2 O as a 35.1 wt% including silica as MgO filtering and washing to until 0.2 wt% or less - to give magnesia hydrate gel. Next, a part of the silica-magnesia hydrate gel was dried at a temperature of 110 ° C. for 15 hours and pulverized to obtain a silica-magnesia hydrate powder having an average particle diameter of 10 μm. And the silica-magnesia hydrate gel 118
4 g (180 g as SiO 2 -MgO) and 208 g of silica-magnesia hydrate powder (180 g as SiO 2 -MgO) are kneaded in a kneader equipped with a heating jacket until sufficiently plasticized, and then the plasticized product is extruded. After molding at a temperature of 110 ° C. for 15 hours, the mixture was fired at 600 ° C. for 2 hours in an electric furnace to prepare a silica-magnesia catalyst support 1 ′ having a diameter of 1.2 mm.

【0027】(触媒の調製)Ptとして5.5重量%含
むテトラアンミン硝酸白金溶液を5.51gとPdとし
て4.7重量%含むテトラアンミン硝酸パラジウム溶液
15.04gとを十分かぎ混ぜて混合し、触媒担体の吸
水量に見合う液量になるように水で液量を調節した含浸
液を、100gの前記シリカ−マグネシア触媒担体1′
に含浸させ、熟成後110℃の温度で15時間乾燥後、
電気炉で500℃にて2時間焼成して触媒1(実施例
1)を得た。なお得られた触媒1における活性金属の担
持量はPtとして0.3重量%、Pdとして0.7重量
%であった。得られた触媒1について、水銀圧入法によ
り求めた細孔特性と窒素ガス吸着によるBET法により
求めた比表面積および触媒1の組成について下記する表
1に示す。
(Preparation of catalyst) 5.51 g of a tetraammineplatinum nitrate solution containing 5.5% by weight of Pt and 15.04 g of a tetraammine palladium nitrate solution containing 4.7% by weight of Pd were thoroughly mixed and mixed. 100 g of the silica-magnesia catalyst support 1 ′ was charged with 100 g of the impregnating liquid whose volume was adjusted with water so as to have a liquid volume corresponding to the water absorption of the support.
After aging, dried at a temperature of 110 ° C. for 15 hours,
It was calcined at 500 ° C. for 2 hours in an electric furnace to obtain Catalyst 1 (Example 1). The amount of active metal carried in the obtained catalyst 1 was 0.3% by weight as Pt and 0.7% by weight as Pd. The obtained catalyst 1 is shown in Table 1 below for the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET method by nitrogen gas adsorption, and the composition of the catalyst 1.

【0028】(触媒の性能評価)また得られた実施例1
の触媒1について、触媒充填量15ミリリットルの固定
床流通反応装置を用い、硫黄濃度519ppm、窒素濃
度:101ppm、全芳香族:30.3重量%、多環芳
香族:6.1重量%の性状の直留軽油を用い、反応条件
は反応圧力:5.0Mpa、水素/オイル比:600N
l/l、液空間速度(LHSV):2.0hr−1、反
応温度:320℃で行い、反応開始から50時間後の処
理油中の脱芳香族率、ナフサ留分量および脱硫・脱窒素
反応活性を求め、その結果を下記する表2に示す。
(Evaluation of Catalyst Performance) Example 1 Obtained
Using a fixed bed flow reactor with a catalyst loading of 15 ml, the catalyst 1 of No. 1 had a sulfur concentration of 519 ppm, a nitrogen concentration of 101 ppm, total aromatics: 30.3% by weight, and polycyclic aromatics: 6.1% by weight. The reaction conditions were as follows: reaction pressure: 5.0 Mpa, hydrogen / oil ratio: 600 N
1 / l, liquid hourly space velocity (LHSV): 2.0 hr −1 , reaction temperature: 320 ° C., dearomatization ratio in treated oil 50 hours after the start of the reaction, naphtha fraction, desulfurization / denitrification reaction The activity was determined and the results are shown in Table 2 below.

【0029】[実施例2、3] (触媒担体の調製)実施例1の触媒担体の調製におい
て、シリカ−マグネシア水和物ゲルに加えるシリカ−マ
グネシア水和物粉体の添加量を酸化物換算でそれぞれ2
5重量%、60重量%と代えたこと以外は実施例1の触
媒担体の調製と同様な手順により触媒担体2′、触媒担
体3′を調製した。
[Examples 2 and 3] (Preparation of catalyst carrier) In the preparation of the catalyst carrier of Example 1, the amount of silica-magnesia hydrate powder added to the silica-magnesia hydrate gel was calculated in terms of oxide. With 2 each
Catalyst carrier 2 'and catalyst carrier 3' were prepared in the same manner as in the preparation of the catalyst carrier of Example 1 except that the amounts were changed to 5% by weight and 60% by weight.

【0030】(触媒の調製)このようにして得られた触
媒担体2′、3′を使用したこと以外は実施例1の触媒
の調製と同様な手順により触媒2(実施例2)、触媒3
(実施例3)を得た。得られた触媒2と3について水銀
圧入法により求めた細孔特性と窒素ガス吸着によるBE
T吸着法により求めた比表面積および触媒の組成につい
て下記する表1に併せて示す。
(Preparation of Catalyst) Catalyst 2 (Example 2) and Catalyst 3 were prepared in the same manner as in the preparation of the catalyst of Example 1 except that the thus obtained catalyst carriers 2 'and 3' were used.
(Example 3) was obtained. The pore characteristics of the catalysts 2 and 3 obtained by the mercury intrusion method and BE by nitrogen gas adsorption
The specific surface area and the composition of the catalyst determined by the T adsorption method are shown in Table 1 below.

【0031】(触媒の性能評価)実施例1の触媒の性能
評価と同様にして触媒2、触媒3の各評価を行い、その
結果を下記する表2に併せて示す。
(Evaluation of Catalyst Performance) Each evaluation of the catalysts 2 and 3 was carried out in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 2 below.

【0032】[実施例4、5] (触媒担体の調製)実施例1の触媒担体の調製におい
て、反応槽に滴下するSiOとして9.2重量%濃度
の珪酸ナトリウム溶液の滴下量をSiOとして75重
量%、50重量%生成するように代えたこと以外は実施
例1の触媒担体の調製と同様な手順により触媒担体
4′、触媒担体5′を調製した。
[0032] [Examples 4 and 5] In the preparation of the catalyst carrier (catalyst preparation of the support) Example 1, SiO dropping amount of sodium silicate solution 9.2% strength by weight as SiO 2 to be dropped into the reaction vessel 2 Catalyst carrier 4 'and catalyst carrier 5' were prepared in the same manner as in the preparation of the catalyst carrier of Example 1 except that the catalyst carrier was changed to 75% by weight and 50% by weight.

【0033】(触媒の調製)このようにして得られた触
媒担体4′、5′を使用したこと以外は実施例1の触媒
の調製と同様な手順により触媒4(実施例4)、触媒5
(実施例5)を得た。得られた触媒4と5について水銀
圧入法により求めた細孔特性と窒素ガス吸着によるBE
T吸着法により求めた比表面積および触媒の組成につい
て下記する表1に併せて示す。
(Preparation of Catalyst) Catalyst 4 (Example 4) and Catalyst 5 were prepared in the same manner as in the preparation of the catalyst of Example 1 except that the catalyst carriers 4 'and 5' thus obtained were used.
(Example 5) was obtained. The pore characteristics of the catalysts 4 and 5 obtained by the mercury intrusion method and BE by nitrogen gas adsorption
The specific surface area and the composition of the catalyst determined by the T adsorption method are shown in Table 1 below.

【0034】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして触媒4、触媒5の各評価を行い、
その結果を下記する表2に併せて示す。
(Evaluation of Performance of Catalyst) Each evaluation of the catalysts 4 and 5 was performed in the same manner as in the performance evaluation of the catalyst of Example 1.
The results are shown in Table 2 below.

【0035】[実施例6] (触媒の調製)実施例1の触媒の調製において、触媒担
体として実施例1の触媒担体1′を使用し、かつ活性成
分の金属塩溶液の種類をへキサクロロ白金酸と硝酸パラ
ジウムに代えたこと以外は実施例1の触媒の調製と同様
な手順により触媒6(実施例6)を得た。得られた触媒
6について水銀圧入法により求めた細孔特性と窒素ガス
吸着によるBET吸着法により求めた比表面積および触
媒の組成について下記する表1に併せて示す。
Example 6 (Preparation of catalyst) In the preparation of the catalyst of Example 1, the catalyst carrier 1 'of Example 1 was used as the catalyst carrier, and the type of the metal salt solution of the active ingredient was changed to hexachloroplatinum. Catalyst 6 (Example 6) was obtained by the same procedure as in the preparation of the catalyst of Example 1 except that the acid was replaced with palladium nitrate. Table 1 below shows the pore characteristics of the catalyst 6 obtained by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the composition of the catalyst.

【0036】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして触媒6の各評価を行い、その結果
を下記する表2に併せて示す。
(Evaluation of Catalyst Performance) Each evaluation of the catalyst 6 was performed in the same manner as in the performance evaluation of the catalyst of Example 1, and the results are shown in Table 2 below.

【0037】[実施例7] (触媒担体の調製)実施例1の触媒担体の調製におい
て、シリカ−マグネシア水和物ゲルの一部に水を加えス
ラリー化した後、噴霧乾燥して得られたシリカ−マグネ
シア水和物粉体を使用したこと以外は実施例1の触媒担
体の調製と同様な手順により触媒担体7′を調製した。
[Example 7] (Preparation of catalyst carrier) In the preparation of the catalyst carrier of Example 1, water was added to a part of the silica-magnesia hydrate gel to form a slurry, followed by spray drying. A catalyst carrier 7 'was prepared in the same manner as in the preparation of the catalyst carrier of Example 1, except that the silica-magnesia hydrate powder was used.

【0038】(触媒の調製)このようにして得られた触
媒担体7′を使用したこと以外は実施例1の触媒の調製
と同様な手順により触媒7(実施例7)を得た。得られ
た触媒7について水銀圧入法により求めた細孔特性と窒
素ガス吸着によるBET吸着法により求めた比表面積お
よび触媒の組成について下記する表1に併せて示す。
(Preparation of catalyst) Catalyst 7 (Example 7) was obtained by the same procedure as in the preparation of the catalyst of Example 1 except that the catalyst carrier 7 'thus obtained was used. The pore characteristics of the catalyst 7 obtained by the mercury intrusion method, the specific surface area obtained by the BET adsorption method using nitrogen gas adsorption, and the composition of the catalyst are shown in Table 1 below.

【0039】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして触媒7の各評価を行い、その結果
を下記する表2に併せて示す。
(Evaluation of Catalyst Performance) Each evaluation of the catalyst 7 was carried out in the same manner as in the evaluation of the performance of the catalyst of Example 1, and the results are shown in Table 2 below.

【0040】[実施例8、9] (触媒の調製)実施例1の触媒の調製において、触媒担
体として実施例3の触媒担体3′を使用し、かつ活性金
属の担持量がそれぞれPtとして0.15重量%および
Pdとして0.35重量%、Ptとして0.6重量%お
よびPdとして1.40重量%となるように代えたこと
以外は実施例1の触媒の調製と同様な手順により触媒8
(実施例8)、触媒9(実施例9)を得た。得られた触
媒8および9について水銀圧入法により求めた細孔特性
と窒素ガス吸着によるBET吸着法により求めた比表面
積および触媒の組成について下記する表1に併せて示
す。
[Examples 8 and 9] (Preparation of catalyst) In the preparation of the catalyst of Example 1, the catalyst carrier 3 'of Example 3 was used as the catalyst carrier, and the amount of active metal supported was 0 as Pt. The catalyst was prepared in the same manner as in the preparation of the catalyst of Example 1, except that the catalyst was changed so as to be 0.15% by weight, 0.35% by weight as Pd, 0.6% by weight as Pt, and 1.40% by weight as Pd. 8
(Example 8) and a catalyst 9 (Example 9) were obtained. Table 1 below shows the pore characteristics of the catalysts 8 and 9 obtained by the mercury intrusion method, the specific surface area obtained by the BET adsorption method using nitrogen gas adsorption, and the composition of the catalyst.

【0041】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして触媒8、9の各評価を行い、その
結果を下記する表2に併せて示す。
(Evaluation of Catalyst Performance) Each of the catalysts 8 and 9 was evaluated in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 2 below.

【0042】[比較例1、2] (触媒担体の調製)実施例1の触媒担体の調製におい
て、シリカ−マグネシア水和物ゲルに加えるシリカ−マ
グネシア水和物粉体の添加量を酸化物換算でそれぞれ1
0重量%、80重量%と代えたこと以外は実施例1の触
媒担体の調製と同様にして触媒担体10′、触媒担体1
1′を調製した。
Comparative Examples 1 and 2 (Preparation of Catalyst Carrier) In the preparation of the catalyst carrier of Example 1, the amount of silica-magnesia hydrate powder added to the silica-magnesia hydrate gel was calculated in terms of oxide. And each one
The catalyst carrier 10 'and the catalyst carrier 1 were prepared in the same manner as in the preparation of the catalyst carrier of Example 1 except that the carrier was replaced with 0% by weight and 80% by weight.
1 'was prepared.

【0043】(触媒の調製)このようにして得られた触
媒担体10′、11′を使用したこと以外は実施例1の
触媒の調製と同様な手順により触媒10(比較例1)、
触媒11(比較例2)を得た。得られた触媒10、11
について水銀圧入法により求めた細孔特性と窒素ガス吸
着によるBET吸着法により求めた比表面積および触媒
の組成について下記する表1に併せて示す。
(Preparation of catalyst) The catalyst 10 (Comparative Example 1) was prepared in the same manner as in the preparation of the catalyst of Example 1 except that the catalyst carriers 10 'and 11' thus obtained were used.
Catalyst 11 (Comparative Example 2) was obtained. Catalysts 10 and 11 obtained
Table 1 below shows the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the composition of the catalyst.

【0044】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして触媒10、11の各評価を行い、
その結果を下記する表2に併せて示す。
(Evaluation of Catalyst Performance) Each evaluation of the catalysts 10 and 11 was carried out in the same manner as in the performance evaluation of the catalyst of Example 1.
The results are shown in Table 2 below.

【0045】[比較例3] (触媒担体の調製)実施例1の触媒担体の調製におい
て、焼成温度を750℃とした以外は実施例1の触媒担
体の調製と同様の手順により触媒担体12′を調製し
た。
[Comparative Example 3] (Preparation of catalyst carrier) The catalyst carrier 12 'was prepared in the same manner as in the preparation of the catalyst carrier of Example 1, except that the calcination temperature was changed to 750 ° C. Was prepared.

【0046】(触媒の調製)得られた触媒担体12′を
使用したこと以外は実施例1の触媒の調製と同様な手順
により触媒12(比較例3)を得た。得られた触媒12
について水銀圧入法により求めた細孔特性と窒素ガス吸
着によるBET吸着法により求めた比表面積および触媒
の組成について下記する表1に併せて示す。
(Preparation of Catalyst) Catalyst 12 (Comparative Example 3) was obtained in the same manner as in the preparation of the catalyst of Example 1, except that the obtained catalyst carrier 12 'was used. The resulting catalyst 12
Table 1 below shows the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the composition of the catalyst.

【0047】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表2に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 2 below.

【0048】[比較例4、5] (触媒担体の調製)実施例1の触媒担体の調製におい
て、反応槽に滴下するSiOとして9.2重量%濃度
の珪酸ナトリウム溶液の滴下量をそれぞれSiOとし
て85重量%、40重量%生成するように代えたこと以
外は実施例1の触媒担体の調製と同様な手順により触媒
担体13′、触媒担体14′を調製した。
Comparative Examples 4 and 5 (Preparation of Catalyst Carrier) In the preparation of the catalyst carrier of Example 1, the amount of the 9.2 wt% sodium silicate solution added dropwise to the reaction vessel was changed to SiO 2. A catalyst carrier 13 'and a catalyst carrier 14' were prepared in the same manner as in the preparation of the catalyst carrier of Example 1, except that 85% by weight and 40% by weight of Compound No. 2 were produced.

【0049】(触媒の調製)得られた触媒担体13′、
14′を使用したこと以外は実施例1の触媒の調製と同
様な手順により触媒13(比較例4)、触媒14(比較
例5)を得た。得られた触媒13、14について水銀圧
入法により求めた細孔特性と窒素ガス吸着によるBET
吸着法により求めた比表面積および触媒の組成について
下記する表1に併せて示す。
(Preparation of catalyst) The resulting catalyst carrier 13 ',
Catalyst 13 (Comparative Example 4) and Catalyst 14 (Comparative Example 5) were obtained in the same procedure as in the preparation of the catalyst of Example 1 except that 14 'was used. The pore characteristics of the catalysts 13 and 14 obtained by the mercury intrusion method and the BET by nitrogen gas adsorption
The specific surface area and the composition of the catalyst determined by the adsorption method are shown in Table 1 below.

【0050】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表2に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as in the performance evaluation of the catalyst of Example 1, and the results are shown in Table 2 below.

【0051】[比較例6] (触媒担体の調製)比較例1の触媒担体の調製におい
て、シリカ−マグネシァ水和物ゲルに、それぞれシリカ
−マグネシア水和物粉体を酸化物換算で50重量%とコ
ンディア社製アルミナ水和物粉体を酸化物換算で5重量
%加えたこと以外は、実施例1の触媒担体の調製と同様
にして触媒担体15′を調製した。
Comparative Example 6 (Preparation of Catalyst Carrier) In the preparation of the catalyst carrier of Comparative Example 1, 50% by weight of silica-magnesia hydrate powder was added to silica-magnesia hydrate gel in terms of oxide. A catalyst support 15 'was prepared in the same manner as in the preparation of the catalyst support of Example 1, except that 5% by weight of an alumina hydrate powder manufactured by Condia Co., Ltd. were added in terms of oxide.

【0052】(触媒の調製)得られた触媒担体15′を
使用したこと以外は実施例1の触媒の調製と同様な手順
により触媒15(比較例6)を得た。得られた触媒15
について水銀圧入法により求めた細孔特性と窒素ガス吸
着によるBET吸着法により求めた比表面積および触媒
の組成について下記する表1に併せて示す。
(Preparation of catalyst) A catalyst 15 (Comparative Example 6) was obtained in the same procedure as in the preparation of the catalyst of Example 1, except that the obtained catalyst carrier 15 'was used. Catalyst 15 obtained
Table 1 below shows the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the composition of the catalyst.

【0053】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表2に併せて示す。
(Evaluation of the performance of the catalyst) The performance was evaluated in the same manner as that of the catalyst of Example 1, and the results are shown in Table 2 below.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 上記表1および表2から分る通り、実施例1〜9の触媒
1〜9は触媒のシリカ−マグネシア組成および触媒の細
孔特性ならびに比表面積や活性金属担持量に関して、い
ずれも本発明の範囲を満足するものであり、高い脱芳香
族活性と高い脱硫・脱窒素活性を示すことが認められ
た。
[Table 2] As can be seen from Tables 1 and 2 above, the catalysts 1 to 9 of Examples 1 to 9 are all within the scope of the present invention with respect to the silica-magnesia composition of the catalyst, the pore characteristics of the catalyst, the specific surface area and the amount of active metal carried. Was satisfied, and high dearomatic activity and high desulfurization / denitrification activity were confirmed.

【0056】これに対して比較例1と2の触媒10と1
1は触媒のシリカ−マグネシア組成および触媒の比表面
積や活性金属の担持量は本発明の範囲に入るものの、触
媒の細孔特性である全細孔容積、100nm、2000
nmの細孔容積が小さいかあるいは大きい触媒であり、
脱芳香族活性および脱硫・脱窒素活性が低い値を示して
いた。
On the other hand, the catalysts 10 and 1 of Comparative Examples 1 and 2
1 indicates that the silica-magnesia composition of the catalyst, the specific surface area of the catalyst, and the amount of active metal supported are within the scope of the present invention, but the total pore volume, 100 nm, 2000 nm, which is the pore characteristic of the catalyst.
a catalyst with a small or large pore volume of nm,
The dearomatization activity and desulfurization / denitrification activity showed low values.

【0057】つぎに比較例3の触媒12は触媒のシリカ
−マグネシア組成および触媒の細孔特性や活性金属の担
持量は本発明の範囲に入るものの、触媒の比表面積が小
さい触媒であり、脱芳香族活性および脱硫・脱窒素活性
が低い値を示していた。そしてさらに比較例4、5の触
媒13、14は、触媒の細孔特性および比表面積や活性
金属の担持量は本発明の範囲に入るものの、触媒のシリ
カ−マグネシア組成が本発明の範囲外の触媒であり、脱
芳香族活性および脱硫・脱窒素活性が低い値を示してい
た。
Next, the catalyst 12 of Comparative Example 3 is a catalyst having a small specific surface area of the catalyst, although the silica-magnesia composition of the catalyst, the pore characteristics of the catalyst and the amount of active metal supported are within the scope of the present invention. The aromatic activity and the desulfurization / denitrification activities showed low values. Further, the catalysts 13 and 14 of Comparative Examples 4 and 5 have the silica-magnesia composition of the catalyst outside the range of the present invention, although the pore characteristics and the specific surface area of the catalyst and the amount of active metal supported fall within the range of the present invention. It was a catalyst and showed low values of dearomatic activity and desulfurization / denitrification activity.

【0058】またさらに比較例6の触媒15は、触媒の
細孔特性および比表面積や活性金属の担持量は本発明の
範囲に入るものの、触媒中にアルミナが含まれる触媒で
あり、脱芳香族活性および脱硫・脱窒素活性が低い値を
示していた。また本発明のシリカ−マグネシア加水分解
方法で製造したシリカ−マグネシアを原料として用いる
ことで処理油中のナフサ留分量が少ないことから水素化
分解を抑制していることも明らかであった。
Further, the catalyst 15 of Comparative Example 6 is a catalyst in which alumina is contained in the catalyst, although the pore characteristics and specific surface area of the catalyst and the amount of active metal supported are within the scope of the present invention. Activity and desulfurization / denitrification activities showed low values. It was also apparent that hydrocracking was suppressed by using the silica-magnesia produced by the silica-magnesia hydrolysis method of the present invention as a raw material, since the amount of naphtha fraction in the treated oil was small.

【0059】[実施例10] (触媒の調製)実施例1と同様の手順でシリカ−マグネ
シア水和物ゲルとシリカ−マグネシア水和物粉体とを得
た。そして得られたシリカ−マグネシア水和物ゲル11
84g(SiO−MgOとして180g)と、シリカ
−マグネシア水和物粉体208g(SiO−MgOと
して180g)と、Ptとして5.5重量%含むテトラ
アンミン硝酸白金溶液を19.84gおよびPdとして
4.7重量%含むテトラアンミン硝酸パラジウムを5
4.14gとを加熱ジャケット付きニーダー中で十分可
塑化するまで混練し、ついでこの可塑化物を押出し成型
機で成型し、110℃の温度で15時間乾燥後、電気炉
で500℃にて2時間焼成して直径1.2mmのシリカ
−マグネシア触媒16(実施例10)を得た。得られた
触媒16について、実施例1と同様に水銀圧入法により
求めた細孔特性と窒素ガス吸着によるBET吸着法によ
り求めた比表面積および触媒組成について下記する表3
に示す。
Example 10 (Preparation of catalyst) A silica-magnesia hydrate gel and a silica-magnesia hydrate powder were obtained in the same procedure as in Example 1. And the obtained silica-magnesia hydrate gel 11
84 g (180 g as SiO 2 -MgO), 208 g of silica-magnesia hydrate powder (180 g as SiO 2 -MgO), 19.84 g of a tetraammineplatinum nitrate solution containing 5.5% by weight as Pt, and 4 g as Pd 5% by weight of tetraammine palladium nitrate containing 0.7% by weight
4.14 g was kneaded in a kneader equipped with a heating jacket until it was sufficiently plasticized, then the plasticized product was molded by an extruder, dried at a temperature of 110 ° C. for 15 hours, and then heated at 500 ° C. for 2 hours in an electric furnace. By calcining, a silica-magnesia catalyst 16 (Example 10) having a diameter of 1.2 mm was obtained. About the obtained catalyst 16, the following Table 3 shows the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition as in Example 1.
Shown in

【0060】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に示す。
(Evaluation of the performance of the catalyst) The performance was evaluated in the same manner as in the evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0061】[実施例11、12] (触媒の調製)実施例10の触媒の調製において、シリ
カ−マグネシア水和物ゲルに加えるシリカ−マグネシア
水和物粉体の添加量を酸化物換算でそれぞれ30重量
%、60重量%と代えたこと以外は、実施例10の触媒
の調製と同様な手順により触媒17(実施例11)、触
媒18(実施例12)を調製した。得られた触媒17、
18について、水銀圧入法により求めた細孔特性と窒素
ガス吸着によるBET吸着法により求めた比表面積およ
び触媒組成について下記する表3に併せて示す。
Examples 11 and 12 (Preparation of catalyst) In the preparation of the catalyst of Example 10, the amount of silica-magnesia hydrate powder added to the silica-magnesia hydrate gel was calculated in terms of oxides. Catalyst 17 (Example 11) and Catalyst 18 (Example 12) were prepared by the same procedure as in the preparation of the catalyst of Example 10, except that the weight was changed to 30% by weight and 60% by weight. The resulting catalyst 17,
Regarding No. 18, the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition are also shown in Table 3 below.

【0062】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of the performance of the catalyst) The performance was evaluated in the same manner as in the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0063】[実施例13、14] (触媒の調製)実施例10の触媒の調製において、反応
槽に滴下するSiOとして9.2重量%濃度の珪酸ナ
トリウム溶液の滴下量をそれぞれSiOとして75重
量%、50重量%生成するように代えたこと以外は実施
例10の触媒の調製と同様な手順により触媒19(実施
例13)、触媒20(実施例14)を得た。得られた触
媒19および20について、水銀圧入法により求めた細
孔特性と窒素ガス吸着によるBET吸着法により求めた
比表面積および触媒組成について下記する表3に併せて
示す。
[0063] In preparation of the catalyst of Example 13, 14] (Preparation of Catalyst) Example 10, the drop amount of sodium silicate solution 9.2% strength by weight as SiO 2 to be dropped into the reaction vessel as respective SiO 2 Catalyst 19 (Example 13) and Catalyst 20 (Example 14) were obtained by the same procedure as in the preparation of the catalyst of Example 10 except that the production was changed to 75% by weight and 50% by weight. Table 3 below shows the pore characteristics of the catalysts 19 and 20 obtained by the mercury intrusion method, the specific surface area and the catalyst composition obtained by the BET adsorption method using nitrogen gas adsorption.

【0064】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0065】[実施例15] (触媒の調製)実施例10の触媒の調製において、シリ
カ−マグネシア水和物ゲルとシリカ−マグネシア水和物
粉体を加える活性成分の金属塩溶液の種類をへキサクロ
ロ白金酸と硝酸パラジウムに代えたこと以外は実施例1
0の触媒の調製と同様な手順により触媒21(実施例1
5)を調製した。得られた触媒21について、水銀圧入
法により求めた細孔特性と窒素ガス吸着によるBET吸
着法により求めた比表面積および触媒組成について下記
する表3に併せて示す。
[Example 15] (Preparation of catalyst) In the preparation of the catalyst of Example 10, the type of the metal salt solution of the active ingredient to which silica-magnesia hydrate gel and silica-magnesia hydrate powder were added was changed. Example 1 except that xachloroplatinic acid and palladium nitrate were replaced
Catalyst 21 (Example 1)
5) was prepared. The obtained catalyst 21 is shown in Table 3 below for the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition.

【0066】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0067】[実施例16] (触媒の調製)実施例10の触媒の調製において、シリ
カ−マグネシア水和物ゲルの一部に水を加えスラリー化
した後、噴霧乾燥して得られたシリカ−マグネシア水和
物粉体を使用したこと以外は実施例10の触媒の調製と
同様な手順により触媒22(実施例16)を調製した。
得られた触媒22について、水銀圧入法により求めた細
孔特性と窒素ガス吸着によるBET吸着法により求めた
比表面積および触媒組成について下記する表3に併せて
示す。
[Example 16] (Preparation of catalyst) In the preparation of the catalyst of Example 10, silica was obtained by adding water to a part of the silica-magnesia hydrate gel to form a slurry, followed by spray drying. Catalyst 22 (Example 16) was prepared in the same manner as in the preparation of the catalyst in Example 10, except that magnesia hydrate powder was used.
Table 3 below shows the pore characteristics of the obtained catalyst 22 obtained by the mercury intrusion method, the specific surface area obtained by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition.

【0068】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0069】[実施例17、18] (触媒の調製)実施例10の触媒の調製において、シリ
カ−マグネシア水和物ゲルとシリカ−マグネシア水和物
粉体に加える活性金属量をそれぞれPtとして0.15
重量%およびPdとして0.35重量%、Ptとして
0.6重量%およびPdとして1.40重量%と代えた
こと以外は実施例10の触媒の調製と同様な手順により
触媒23(実施例17)、触媒24(実施例18)を調
製した。得られた触媒23、24について、水銀圧入法
により求めた細孔特性と窒素ガス吸着によるBET吸着
法により求めた比表面積および触媒組成について下記す
る表3に併せて示す。
[Examples 17 and 18] (Preparation of catalyst) In the preparation of the catalyst of Example 10, the amount of active metal added to the silica-magnesia hydrate gel and the silica-magnesia hydrate powder was 0 as Pt, respectively. .15
Catalyst 23 (Example 17) was prepared in the same manner as in the preparation of the catalyst of Example 10 except that the weight% and Pd were changed to 0.35% by weight, Pt to 0.6% by weight and Pd to 1.40% by weight. ) And catalyst 24 (Example 18). The obtained catalysts 23 and 24 are shown in Table 3 below together with the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition.

【0070】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0071】[比較例7、8] (触媒の調製)実施例10の触媒の調製において、シリ
カ−マグネシア水和物ゲルに加えるシリカ−マグネシア
水和物粉体の添加量を酸化物換算でそれぞれ10重量
%、80重量%と代えたこと以外は実施例10の触媒の
調製と同様にして触媒25(比較例7)、触媒26(比
較例8)を調製した。得られた触媒25および26につ
いて、水銀圧入法により求めた細孔特性と窒素ガス吸着
によるBET吸着法により求めた比表面積および触媒組
成について下記する表3に併せて示す。
Comparative Examples 7 and 8 (Preparation of Catalyst) In the preparation of the catalyst of Example 10, the amount of silica-magnesia hydrate powder added to the silica-magnesia hydrate gel was calculated in terms of oxide. Catalyst 25 (Comparative Example 7) and Catalyst 26 (Comparative Example 8) were prepared in the same manner as in the preparation of the catalyst of Example 10, except that the amounts were changed to 10% by weight and 80% by weight. Table 3 below shows the pore characteristics of the catalysts 25 and 26 obtained by the mercury intrusion method, the specific surface area and the catalyst composition obtained by the BET adsorption method using nitrogen gas adsorption.

【0072】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0073】[比較例9](触媒の調製)実施例10の
触媒の調製において、焼成温度を750℃に代えたこと
以外は実施例10の触媒の調製と同様な手順により触媒
27(比較例9)を調製した。得られた触媒27につい
て、水銀圧入法により求めた細孔特性と窒素ガス吸着に
よるBET吸着法により求めた比表面積および触媒組成
について下記する表3に併せて示す。
[Comparative Example 9] (Preparation of catalyst) Catalyst 27 (Comparative Example) was prepared in the same manner as in the preparation of the catalyst of Example 10 except that the calcination temperature was changed to 750 ° C. 9) was prepared. Table 3 below shows the pore characteristics of the obtained catalyst 27 obtained by the mercury intrusion method, the specific surface area obtained by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition.

【0074】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0075】[比較例10、11] (触媒の調製)実施例10の触媒の調製において、反応
槽に滴下するSiOとして9.2重量%濃度の珪酸ナ
トリウム溶液の滴下量をそれぞれSiOとして85重
量%、40重量%生成するように代えたこと以外は実施
例10の触媒の調製と同様な手順により触媒28(比較
例10)、触媒29(比較例11)を調製した。得られ
た触媒28および29について、水銀圧入法により求め
た細孔特性と窒素ガス吸着によるBET吸着法により求
めた比表面積および触媒組成について下記する表3に併
せて示す。
[0075] In the preparation of the catalysts of Comparative Examples 10 and 11] (Preparation of Catalyst) Example 10, the drop amount of sodium silicate solution 9.2% strength by weight as SiO 2 to be dropped into the reaction vessel as respective SiO 2 Catalyst 28 (Comparative Example 10) and Catalyst 29 (Comparative Example 11) were prepared by the same procedure as in the preparation of the catalyst of Example 10, except that the amounts were changed to 85% by weight and 40% by weight, respectively. Table 3 below shows the pore characteristics of the catalysts 28 and 29 obtained by the mercury intrusion method, the specific surface area and the catalyst composition obtained by the BET adsorption method using nitrogen gas adsorption.

【0076】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Performance of Catalyst) Performance evaluation was performed in the same manner as the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0077】[比較例12] (触媒の調製)比較例7の触媒の調製と同様にして得た
シリカ−マグネシア水和物ゲルにシリカ−マグネシア水
和物粉体とコンディア社製アルミナ水和物粉体を酸化物
換算でそれぞれ5重量%加えたこと以外は、実施例10
の触媒の調製と同様にして触媒30(比較例12)を調
製した。得られた触媒30について、水銀圧入法により
求めた細孔特性と窒素ガス吸着によるBET吸着法によ
り求めた比表面積および触媒組成について下記する表3
に併せて示す。
Comparative Example 12 (Preparation of Catalyst) Silica-magnesia hydrate gel obtained in the same manner as in the preparation of the catalyst of Comparative Example 7 was mixed with silica-magnesia hydrate powder and alumina hydrate manufactured by Condia. Example 10 except that powder was added at 5% by weight in terms of oxide.
Catalyst 30 (Comparative Example 12) was prepared in the same manner as in the preparation of the catalyst (1). For the obtained catalyst 30, the following Table 3 shows the pore characteristics determined by the mercury intrusion method, the specific surface area determined by the BET adsorption method using nitrogen gas adsorption, and the catalyst composition.
Are shown together.

【0078】(触媒の性能評価)また実施例1の触媒の
性能評価と同様にして性能評価を行い、その結果を下記
する表4に併せて示す。
(Evaluation of Catalyst Performance) Further, performance evaluation was performed in the same manner as in the performance evaluation of the catalyst of Example 1, and the results are shown in Table 4 below.

【0079】[0079]

【表3】 [Table 3]

【0080】[0080]

【表4】 [Table 4]

【0081】上記表3および表4から分る通り、実施例
10〜18の触媒16〜24はシリカ−マグネシア組成
および触媒の細孔特性ならびに比表面積や活性金属の含
有量に関して、いずれも本発明の範囲を満足するもので
あり、高い脱芳香族活性と高い脱硫・脱窒素活性を示す
ことが認められた。
As can be seen from Tables 3 and 4, all of the catalysts 16 to 24 of Examples 10 to 18 were prepared according to the present invention with respect to the silica-magnesia composition, the pore characteristics of the catalyst, the specific surface area and the content of the active metal. Was satisfied, and high dearomatic activity and high desulfurization / denitrification activity were confirmed.

【0082】これに対して比較例7と8の触媒25と2
6はシリカ−マグネシア組成および触媒の比表面積や活
性金属の含有量は本発明の範囲に入るものの、触媒の細
孔特性である全細孔容積、100nm、2000nmの
細孔容積が小さいかあるいは大きい触媒であり、脱芳香
族活性および脱硫・脱窒素活性が低い値を示していた。
つぎに比較例9の触媒27は触媒のシリカ−マグネシア
組成および細孔特性や活性金属の含有量は本発明の範囲
に入るものの、触媒の比表面積が小さい触媒であり、脱
芳香族活性および脱硫・脱窒素活性が低い値を示してい
た。
On the other hand, the catalysts 25 and 2 of Comparative Examples 7 and 8
No. 6 shows that the silica-magnesia composition, the specific surface area of the catalyst and the content of the active metal fall within the scope of the present invention, but the total pore volume, that is, the pore volume of 100 nm and 2000 nm, which are the pore characteristics of the catalyst, is small or large. It was a catalyst and showed low values of dearomatic activity and desulfurization / denitrification activity.
Next, the catalyst 27 of Comparative Example 9 is a catalyst having a small specific surface area, although the silica-magnesia composition and the pore characteristics and the content of the active metal of the catalyst fall within the scope of the present invention. -The denitrification activity showed a low value.

【0083】そしてさらに比較例10、11の触媒2
8、29は、触媒の細孔特性および比表面積や活性金属
の担持量は本発明の範囲に入るものの、シリカ−マグネ
シア組成が範囲外の触媒であり、脱芳香族活性および脱
硫・脱窒素活性が低い値を示していた。
Further, the catalysts 2 of Comparative Examples 10 and 11
Nos. 8 and 29 are catalysts whose silica-magnesia composition is out of the range, although the pore characteristics and specific surface area of the catalyst and the amount of active metal supported are within the scope of the present invention. Showed a low value.

【0084】またさらに比較例12の触媒30は、触媒
の細孔特性および比表面積や活性金属の含有量は本発明
の範囲に入るものの、アルミナが含まれている触媒であ
り、脱芳香族活性および脱硫・脱窒素活性が低い値を示
していた。
Further, the catalyst 30 of Comparative Example 12 is a catalyst containing alumina although the pore characteristics, specific surface area and active metal content of the catalyst fall within the scope of the present invention. And the desulfurization / denitrification activity showed a low value.

【0085】また本発明のシリカ−マグネシア加水分解
方法で製造したシリカ−マグネシアを原料として用いる
ことで処理油中のナフサ留分量が少ないことから水素化
分解を抑制していることも明らかである。
It is also clear that the use of silica-magnesia produced by the silica-magnesia hydrolysis method of the present invention as a raw material suppresses hydrocracking because the amount of naphtha fraction in the treated oil is small.

【0086】[0086]

【発明の効果】以上述べた通り本発明による水素化処理
用の触媒を用いることにより、硫黄化合物などを含んだ
炭化水素油中の芳香族炭化水素化合物を水素化する脱芳
香族活性が高く、水素化分解の割合が低く、また硫黄化
合物・窒素化合物に対する活性に優れた炭化水素油の水
素化処理を行うことができるものである。
As described above, by using the hydrotreating catalyst according to the present invention, the dearomatic activity for hydrogenating aromatic hydrocarbon compounds in hydrocarbon oil containing sulfur compounds and the like is high, It can hydrotreat a hydrocarbon oil having a low rate of hydrocracking and having excellent activity against sulfur compounds and nitrogen compounds.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 45/52 C10G 45/52 // B01J 21/14 B01J 21/14 M 32/00 32/00 C07B 61/00 300 C07B 61/00 300 (72)発明者 金井 勇樹 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 横塚 英治 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 Fターム(参考) 4G069 AA03 AA08 AA12 BA02A BA02B BA06A BA06B BA20A BA20B BB02A BB02B BC69A BC72B BC75A CC02 DA06 EA02Y EB18Y EC03X EC03Y EC06X EC06Y EC18X EC18Y FA02 FB06 FB07 FB14 FB15 FB30 FB57 FB65 FC08 4H006 AA02 AC11 BA06 BA33 BA81 BC10 BC11 BC18 BE20 4H029 CA00 DA00 4H039 CA40 CB10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10G 45/52 C10G 45/52 // B01J 21/14 B01J 21/14 M 32/00 32/00 C07B 61 / 00 300 C07B 61/00 300 (72) Inventor Yuki Kanai 3-18-5, China, Ichikawa, Chiba Prefecture Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Eiji Yokozuka 3-18, China, Ichikawa, Chiba −5 Sumitomo Metal Mining Co., Ltd. Central Research Laboratory F-term (reference) 4G069 AA03 AA08 AA12 BA02A BA02B BA06A BA06B BA20A BA20B BB02A BB02B BC69A BC72B BC75A CC02 DA06 EA02Y EB18Y EC03X EC03Y EC06FB EC07Y EC18FB14 AA02 AC11 BA06 BA33 BA81 BC10 BC11 BC18 BE20 4H029 CA00 DA00 4H039 CA40 CB10

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素油中の芳香族化合物の水素化処
理用触媒であって、シリカ−マグネシアからなる酸化物
と、活性成分としての周期律表第VIII族貴金属の中から
選ばれた1種または2種以上とからなり、かつ多孔質に
形成されてなることを特徴とする水素化処理用触媒。
1. A catalyst for hydrotreating an aromatic compound in a hydrocarbon oil, comprising: an oxide comprising silica-magnesia; and a noble metal selected from Group VIII noble metals of the Periodic Table as an active ingredient. A hydrotreating catalyst comprising a kind or two or more kinds and formed porous.
【請求項2】 シリカ−マグネシアからなる酸化物中の
マグネシアの含有量が酸化物換算で25〜50重量%の
範囲であることを特徴とする請求項1記載の炭化水素油
中の芳香族化合物の水素化処理用触媒。
2. The aromatic compound in a hydrocarbon oil according to claim 1, wherein the content of magnesia in the silica-magnesia oxide is in the range of 25 to 50% by weight in terms of oxide. For hydrotreating.
【請求項3】 シリカ−マグネシアからなる酸化物中に
は、シリカとマグネシア以外の無機酸化物成分を含まな
いことを特徴とする請求項1または2記載の炭化水素油
中の芳香族化合物の水素化処理用触媒。
3. The hydrogen of an aromatic compound in a hydrocarbon oil according to claim 1, wherein the oxide composed of silica and magnesia does not contain an inorganic oxide component other than silica and magnesia. Catalyst for chemical treatment.
【請求項4】 水銀圧入法で測定した全細孔容積が0.
1〜0.5ミリリットル/gの範囲であり、100nm
以上の細孔容積が0.1〜0.25ミリリットル/gの
範囲であり、2000nm以上の細孔容積が0.05〜
0.2ミリリットル/gの範囲である細孔特性を有する
ことを特徴とする請求項1〜3のいずれか1項記載の炭
化水素油中の芳香族化合物の水素化処理用触媒。
4. The total pore volume measured by the mercury intrusion method is 0.
In the range of 1-0.5 ml / g, 100 nm
The above pore volume is in the range of 0.1 to 0.25 ml / g, and the pore volume of 2000 nm or more is 0.05 to
The catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to any one of claims 1 to 3, wherein the catalyst has pore characteristics in a range of 0.2 ml / g.
【請求項5】 窒素ガス吸着BET法で250m/g
以上の比表面積を有することを特徴とする請求項1〜4
のいずれか1項記載の炭化水素油中の芳香族化合物の水
素化処理用触媒。
5. 250 m 2 / g by nitrogen gas adsorption BET method
5. It has the above specific surface area.
The catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to any one of the above.
【請求項6】 シリカ−マグネシアからなる酸化物に対
する周期律表第VIII族貴金属の添加量が金属元素に換算
して0.1〜2重量%であることを特徴とする請求項1
〜5のいずれか1項記載の炭化水素油中の芳香族化合物
の水素化処理用触媒。
6. The addition amount of a noble metal of Group VIII of the Periodic Table to the oxide comprising silica-magnesia is 0.1 to 2% by weight in terms of a metal element.
The catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to any one of claims 1 to 5.
【請求項7】 シリカ−マグネシアからなる酸化物触媒
担体に、活性成分として周期律表第VIII族貴金属の中か
ら選ばれた1種または2種以上の金属塩溶液を担持し、
乾燥後焼成することを特徴とする炭化水素油中の芳香族
化合物の水素化処理用触媒の製造方法。
7. An oxide catalyst carrier comprising silica-magnesia, on which one or more metal salt solutions selected from noble metals of Group VIII of the periodic table as an active ingredient are supported,
A method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil, comprising calcining after drying.
【請求項8】 マグネシアを酸化物換算で25〜50重
量%含むシリカ−マグネシア水和物ゲルに、該ゲルを粉
化させたシリカ−マグネシア水和物粉体を加えて、捏和
して成型し、乾燥した後焼成して得られるシリカとマグ
ネシア以外の無機酸化物成分を含まないシリカ−マグネ
シアからなる酸化物触媒担体に、活性成分として周期律
表第VIII族貴金属の中から選ばれた1種または2種以上
の金属塩溶液を担持し、乾燥後焼成することを特徴とす
る請求項7記載の炭化水素油中の芳香族化合物の水素化
処理用触媒の製造方法。
8. A silica-magnesia hydrate gel containing 25 to 50% by weight of magnesia in terms of oxides is mixed with powdered silica-magnesia hydrate powder obtained by powdering the gel, and the mixture is kneaded and molded. An oxide catalyst carrier comprising silica and magnesia containing no inorganic oxide components other than silica and magnesia obtained by drying and then firing is used as an active component. The method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to claim 7, wherein one or more metal salt solutions are supported, dried and calcined.
【請求項9】 マグネシアを酸化物換算で25〜50重
量%含むシリカ−マグネシア水和物ゲルに、該ゲルを粉
化させたシリカ−マグネシア水和物粉体を加えて、捏和
して成型し、乾燥した後焼成して得られるシリカとマグ
ネシア以外の無機酸化物成分を含まないシリカ−マグネ
シアからなる酸化物触媒担体に、活性成分として周期律
表第VIII族貴金属の中から選ばれた1種または2種以上
の金属塩溶液を担持し、乾燥後焼成し、その細孔特性
を、水銀圧入法で測定した全細孔容積が0.1〜0.5
ミリリットル/gの範囲とし、100nm以上の細孔容
積が0.1〜0.25ミリリットル/gの範囲とし、2
000nm以上の細孔容積が0.05〜0.2ミリリッ
トル/gの範囲とし、かつ窒素ガス吸着BET法で測定
した比表面積が250m/g以上としたシリカとマグ
ネシア以外の無機酸化物成分を含まない触媒を調製した
ことを特徴とする請求項7または8記載の炭化水素油中
の芳香族化合物の水素化処理用触媒の製造方法。
9. A silica-magnesia hydrate gel containing 25 to 50% by weight of magnesia in terms of oxides is mixed with powdered silica-magnesia hydrate powder, and the mixture is kneaded and molded. An oxide catalyst carrier comprising silica and magnesia containing no inorganic oxide components other than silica and magnesia obtained by drying and then firing is used as an active component. One or two or more metal salt solutions are supported, dried and calcined, and the pore characteristics thereof are determined by a mercury porosimetry.
And the pore volume of 100 nm or more is in the range of 0.1 to 0.25 ml / g.
Inorganic oxide components other than silica and magnesia having a pore volume of 000 nm or more in a range of 0.05 to 0.2 ml / g and a specific surface area of 250 m 2 / g or more measured by a nitrogen gas adsorption BET method. The method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to claim 7 or 8, wherein a catalyst containing no hydrocarbon is prepared.
【請求項10】 シリカ−マグネシアからなる水和物に
活性成分として周期律表第VIII族貴金属の中から選ばれ
た1種または2種以上の金属塩溶液を混練し、乾燥後焼
成することを特徴とする炭化水素油中の芳香族化合物の
水素化処理用触媒の製造方法。
10. A method comprising kneading a hydrate comprising silica-magnesia with one or more metal salt solutions selected from noble metals of Group VIII of the Periodic Table as an active ingredient, drying and calcining. A method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil.
【請求項11】 マグネシアの含有量を酸化物換算で2
5〜50重量%含むシリカ−マグネシア水和物のゲル
に、該ゲルを粉化させたシリカ−マグネシアからなる水
和物粉体と周期律表第VIII族貴金属の中から選ばれた1
種または2種以上の金属塩溶液とを加えて混練し、捏和
して成型し、乾燥後焼成することを特徴とする請求項1
0記載の炭化水素油中の芳香族化合物の水素化処理用触
媒の製造方法。
11. A magnesia content of 2 in terms of oxide.
A silica-magnesia hydrate gel containing 5 to 50% by weight is prepared by adding silica-magnesia hydrate powder obtained by pulverizing the gel and a noble metal selected from Group VIII noble metals of the periodic table.
2. A seed or two or more kinds of metal salt solutions are added, kneaded, kneaded, molded, dried and fired.
0. The method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to 0.
【請求項12】 マグネシアを酸化物換算で25〜50
重量%含むシリカ−マグネシア水和物のゲルに、該ゲル
を粉化させたシリカ−マグネシアからなる水和物粉体と
周期律表第VIII族貴金属の中から選ばれた1種または2
種以上の金属塩溶液とを加えて混練し、捏和して成型
し、乾燥後焼成し、その細孔特性を、水銀圧入法で測定
した全細孔容積が0.1〜0.5ミリリットル/gの範
囲とし、100nm以上の細孔容積が0.1〜0.25
ミリリットル/gの範囲とし、2000nm以上の細孔
容積が0.05〜0.2ミリリットル/gの範囲とし、
かつ窒素ガス吸着BET法で測定した比表面積が250
/g以上としたシリカとマグネシア以外の無機酸化
物成分を含まない触媒を調製したことを特徴とする請求
項10または11記載の炭化水素油中の芳香族化合物の
水素化処理用触媒の製造方法。
12. Magnesia is converted to an oxide in the range of 25 to 50.
Weight% of silica-magnesia hydrate gel, powdered silica-magnesia hydrate powder and one or two selected from the group VIII noble metals of the periodic table.
More than one kind of metal salt solution is added and kneaded, kneaded, molded, dried and fired, and the pore characteristics thereof are determined by mercury intrusion method. / G in the range of 0.1 to 0.25.
And the pore volume of 2000 nm or more is in the range of 0.05 to 0.2 ml / g.
And a specific surface area of 250 measured by a nitrogen gas adsorption BET method.
m 2 / g or more and silica and non-magnesia inorganic oxide component, characterized in that to prepare a catalyst containing no claim 10 or 11, wherein the aromatic compound in hydrocarbon oil hydroprocessing catalyst Production method.
【請求項13】 シリカ−マグネシアからなる酸化物に
対して周期律表第VIII族貴金属の中から選ばれた1種ま
たは2種以上の金属塩溶液を金属元素に換算して0.1
〜2重量%添加し、乾燥後焼成することを特徴とする請
求項7〜12のいずれか1項記載の炭化水素油中の芳香
族化合物の水素化処理用触媒の製造方法。
13. An oxide composed of silica and magnesia, wherein one or two or more metal salt solutions selected from Group VIII noble metals of the periodic table are converted to a metal element in an amount of 0.1 to 0.1%.
The method for producing a catalyst for hydrotreating an aromatic compound in a hydrocarbon oil according to any one of claims 7 to 12, wherein the catalyst is added, and dried and calcined.
JP2000013163A 2000-01-21 2000-01-21 Catalyst for hydrotreating aromatic compounds in hydrocarbon oil and process for producing the same Expired - Fee Related JP3844044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013163A JP3844044B2 (en) 2000-01-21 2000-01-21 Catalyst for hydrotreating aromatic compounds in hydrocarbon oil and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013163A JP3844044B2 (en) 2000-01-21 2000-01-21 Catalyst for hydrotreating aromatic compounds in hydrocarbon oil and process for producing the same

Publications (2)

Publication Number Publication Date
JP2001205083A true JP2001205083A (en) 2001-07-31
JP3844044B2 JP3844044B2 (en) 2006-11-08

Family

ID=18540790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013163A Expired - Fee Related JP3844044B2 (en) 2000-01-21 2000-01-21 Catalyst for hydrotreating aromatic compounds in hydrocarbon oil and process for producing the same

Country Status (1)

Country Link
JP (1) JP3844044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524993B2 (en) 2001-05-29 2003-02-25 Sumitomo Metal Mining Co., Ltd. Hydrogenation catalyst for aromatic hydrocarbons contained in hydrocarbon oils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524993B2 (en) 2001-05-29 2003-02-25 Sumitomo Metal Mining Co., Ltd. Hydrogenation catalyst for aromatic hydrocarbons contained in hydrocarbon oils

Also Published As

Publication number Publication date
JP3844044B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3786007B2 (en) Catalyst for hydrotreating aromatic compounds in hydrocarbon oils
JP3764758B2 (en) Production of silica-alumina supports, production of hydrogenation catalysts using them, and their use for aromatic hydrogenation
US5439860A (en) Catalyst system for combined hydrotreating and hydrocracking and a process for upgrading hydrocarbonaceous feedstocks
JP5547923B2 (en) Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same
CA1124704A (en) Catalyst and method of preparation
KR101412895B1 (en) A sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
JP5537780B2 (en) Light oil composition
JP2001205083A (en) Catalyst for hydrogenating aromatic compound in hydrocarbon oil and manufacturing method therefor
CN113908846A (en) Hydrocracking catalyst, and preparation method and application thereof
JP4485625B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
JP2001205084A (en) Catalyst for hydrogenating aromatic compound in hydrocarbon oil
JPH0626673B2 (en) Catalyst with hydrodesulfurization and hydrodegradability
JP3512326B2 (en) Hydroprocessing of gas oil
JP2762371B2 (en) Method for producing catalyst carrier and method for producing catalyst for hydrocarbon treatment using the carrier
JP3770679B2 (en) Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method
JP2003047847A (en) Catalyst for hydrogenation treatment of hydrocarbon oil and method of producing the same
JP2001353444A (en) Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JPH0628738B2 (en) Hydrodesulfurization / hydrocracking catalyst
JPH11179208A (en) Catalyst for hydrogenation of hydrocarbon oil
JPH0555188B2 (en)
JPH06262084A (en) Hydrocracking catalyst of hydrocarbon oil
JPH08183961A (en) Hydrogenation of light oil
JPH09225304A (en) Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil
JPH07136516A (en) Production of catalyst for hydrogenating, desulfurizing and denitrifying hydrocarbonaceous oil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees