JPH09225304A - Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil - Google Patents

Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil

Info

Publication number
JPH09225304A
JPH09225304A JP30875596A JP30875596A JPH09225304A JP H09225304 A JPH09225304 A JP H09225304A JP 30875596 A JP30875596 A JP 30875596A JP 30875596 A JP30875596 A JP 30875596A JP H09225304 A JPH09225304 A JP H09225304A
Authority
JP
Japan
Prior art keywords
catalyst
oil
mass
platinum
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30875596A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kato
勝博 加藤
Etsuo Suzuki
悦夫 鈴木
Kazuo Idei
一夫 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP30875596A priority Critical patent/JPH09225304A/en
Publication of JPH09225304A publication Critical patent/JPH09225304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst suitable for hydrogenation treatment of hydrocarbon oil, especially, a light oil fraction to reduce the content of an aromatic compd. and to hydrogenate the light oil fraction by using this catalyst. SOLUTION: This catalyst is based on alumina and obtained by supporting 0.1-8mass% (in terms of metal) of platinum on a carrier composed of a non- alumina type inorg. oxide or by supporting 0.1-2 mass % (in terms of oxide) of either one of an alkaline metal and an alkaline earth metal thereon in addition to 0.1-8mass% (in terms of metal) of platinum on a catalyst basis. This catalyst is used in the hydrogenation reaction of hydrocarbon oil to make it possible to reduce the content of an aromatic compd. in hydrocarbon oil. The reaction condition at a time of the hydrogenation treatment of light oil using this catalyst is set so that hydrogen partial pressure is 3-10MPa and temp. is 200-400 deg.C and liquid spatial velocity is 0.1-5.0hr<-1> to perform catalytic reaction of a light oil fraction containing an aromatic compd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油の水素
化反応に使用し、炭化水素油の芳香族化合物含有率及び
硫黄含有率を低減させる触媒及びその触媒を使用した軽
油の水素化処理方法に関し、更に詳細には、芳香族化合
物、特に1環芳香族化合物に対する高い水素化活性と高
い耐硫黄性を合わせ持ち、かつ高い脱硫性能をも有する
触媒及びその触媒を使用して低い硫黄含有率及び低い芳
香族化合物含有率の軽油ブレンド基材を製造する方法に
関するものである。
TECHNICAL FIELD The present invention relates to a catalyst used in a hydrogenation reaction of a hydrocarbon oil to reduce the aromatic compound content and the sulfur content of the hydrocarbon oil, and a gas oil hydrotreatment using the catalyst. More specifically, the present invention relates to a catalyst having high hydrogenation activity for aromatic compounds, particularly monocyclic aromatic compounds and high sulfur resistance, and also having high desulfurization performance, and a low sulfur content using the catalyst. And a low aromatics content gas oil blend base stock.

【0002】[0002]

【従来の技術】内燃機関として多用されているディーゼ
ルエンジンは、原油の常圧蒸留によって得られる特定の
沸点範囲の直留軽油留分、又はその直留軽油留分に水素
化処理を施した得た軽油留分からなる軽油、或いはそれ
ら軽油留分を主基材とし、それに他のソースから得た軽
油留分をブレンドして得た軽油を燃料としている。ディ
ーゼルエンジンに適する軽油直留留分は、原油単位量当
たり限られた量しか原油に含まれておらず、しかも入手
できる原油が年々重質化しているため、益々原油中の軽
油直留留分の含有量が少なくなる傾向にある。そこで、
軽油留分の必要量を確保するために、重質油を分解し
て、軽油基材に転化することも行われている。一方、軽
油の需要は、ディーゼルエンジン車の増加に伴う軽油の
需要増大といった要因もあって、益々増大する傾向にな
り、近い将来、軽油の供給量が大幅に不足することが予
想される。
2. Description of the Related Art A diesel engine, which is widely used as an internal combustion engine, has a straight-cut light oil fraction having a specific boiling range obtained by atmospheric distillation of crude oil, or a straight-cut light oil fraction obtained by subjecting a straight-cut light oil fraction to a hydrotreatment. A fuel oil is a gas oil consisting of a gas oil fraction, or a gas oil obtained by blending a gas oil fraction obtained from another source with a gas oil as a main base material. The diesel oil straight-cut fraction suitable for diesel engines contains only a limited amount of crude oil per unit amount of crude oil, and the available crude oil is becoming heavier year by year. Content tends to decrease. Therefore,
In order to secure the necessary amount of light oil fraction, heavy oil is also decomposed and converted into light oil base material. On the other hand, the demand for light oil tends to increase more and more due to factors such as an increase in demand for light oil with an increase in diesel engine vehicles, and it is expected that the supply amount of light oil will be significantly short in the near future.

【0003】原油から直留留分として得られる軽油留分
の不足に対処し、軽油の需要増大に応ずる一つの方法
は、直留軽油留分にブレンドするブレンド基材の生産量
を増やすことである。そこで、接触分解装置から得られ
る特定の沸点範囲の軽質分解系軽油(Light Cycle Oil
、以下、LCOと略記する)が、軽油用の新たなブレ
ンド基材ための原料油として注目されている。それは、
軽油留分とは逆に、LCOが、上述した原油の重質化に
より余剰傾向にあり、留分の需給バランスから言って、
ブレンド基材に転用するのが望ましい留分であるからで
ある。
One method of coping with the shortage of light oil fraction obtained from crude oil as straight run fraction and responding to the increasing demand for light oil is to increase the production amount of the blend base material blended with the straight run light oil fraction. is there. Therefore, a light cracking light oil (Light Cycle Oil) with a specific boiling range obtained from a catalytic cracker
, Hereinafter, abbreviated as LCO) has attracted attention as a feedstock for a new blend base material for light oil. that is,
Contrary to the light oil fraction, the LCO tends to be in excess due to the above-mentioned heavy crude oil, and from the balance of supply and demand of the fraction,
This is because it is a desirable fraction to be diverted to a blend base material.

【0004】しかし、LCOは多量の芳香族成分を含有
しているため、LCOをそのままの性状で直留軽油留分
にブレンドすると、芳香族化合物の含有率が増大して、
そのブレンド軽油のセタン価が低下し、軽油としての品
質低下が心配される。また、芳香族化合物の含有率が高
いために、ブレンド軽油をディーゼルエンジンの燃料と
して使用した際、パティキュレートの発生量が著しく増
加することが懸念される。パティキュレートは、芳香族
化合物の一部が不完全燃焼することによって発生する微
細粒子状の大気汚染物質であって、大気中への大量のパ
ティキュレートの排出は、環境保全上、重大な問題を引
き起こすことになる。その上、LCOは、独特の着色を
呈しており、これをそのまま軽油のブレンド基材として
用いると製品軽油の色相面での品質が問題となる。
However, since LCO contains a large amount of aromatic components, if LCO is blended with a straight-run light oil fraction in the same state, the content of aromatic compounds increases,
The cetane number of the blended light oil is lowered, and there is concern that the quality of the blended light oil will deteriorate. Further, since the content of the aromatic compound is high, it is feared that when the blended light oil is used as a fuel for a diesel engine, the amount of generated particulates remarkably increases. Particulates are air pollutants in the form of fine particles generated by incomplete combustion of some aromatic compounds. Emission of a large amount of particulates into the atmosphere poses a serious problem for environmental protection. Will cause it. In addition, LCO has a unique coloring, and if this is used as it is as a blending base of light oil, the quality of the light oil of the product in terms of hue becomes a problem.

【0005】そこで、LCOをブレンド基材として使用
するために、LCOに接触水素化処理を施し、LCO中
の芳香族化合物の含有量を低減する試みがなされてい
る。
Therefore, in order to use LCO as a blend base material, attempts have been made to reduce the content of aromatic compounds in LCO by subjecting LCO to catalytic hydrogenation treatment.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の方法に
よってLCOを水素化処理しようとすると、以下のよう
な問題点が生じる。第1には、芳香族化合物の水素化反
応速度は、3環>2環>1環の順で芳香族化合物の環数
が少ないほど遅いと言うことである。更に言えば、多環
芳香族化合物を逐次的に水素化して最終のナフテン類に
転化する過程において、1環芳香族化合物を水素化反応
させてナフテン類に転化する反応が律速段階になり、2
環以上の芳香族化合物の減少が1環の芳香族化合物の増
加を招き、LCO中の全芳香族化合物の含有量は、あま
り低減しないと言う結果になる。また、反応平衡的に
は、水素化反応は圧力が高い程有利になるので、低圧の
水素分圧条件になればなる程、水素化反応は進行し難く
なる。この反応平衡上の制約は、通常の軽油留分の水素
化脱硫反応の水素圧条件にも及ぶ。従って、比較的低い
水素分圧で軽油留分の水素化脱硫処理を行う際、現在一
般に使用されている触媒を使うと、硫黄化合物の水素化
反応或いは水素化分解反応等により脱硫処理することは
できるが、芳香族化合物を水素化することは困難であ
る。
However, when the LCO is hydrotreated by the conventional method, the following problems occur. First, the hydrogenation reaction rate of an aromatic compound is slower as the number of aromatic compound rings decreases in the order of 3 rings> 2 rings> 1 ring. Furthermore, in the process of sequentially hydrogenating a polycyclic aromatic compound to convert it to the final naphthenes, the reaction of hydrogenating a 1-ring aromatic compound to convert it to a naphthene becomes a rate-determining step.
A decrease in aromatic compounds having more than one ring leads to an increase in aromatic compounds having one ring, which results in that the content of all aromatic compounds in the LCO does not decrease so much. Further, in terms of reaction equilibrium, the higher the pressure, the more advantageous the hydrogenation reaction becomes. Therefore, the lower the hydrogen partial pressure condition, the more difficult the hydrogenation reaction proceeds. This restriction on the reaction equilibrium extends to the hydrogen pressure conditions for the usual hydrodesulfurization reaction of light oil fractions. Therefore, when performing hydrodesulfurization of gas oil fractions at a relatively low hydrogen partial pressure, it is possible to perform desulfurization by hydrogenation reaction or hydrocracking reaction of sulfur compounds by using a catalyst currently generally used. However, it is difficult to hydrogenate aromatic compounds.

【0007】第2には、LCOに比較的多量に含有され
ている硫黄化合物、若しくは、それらが水素化処理され
て生成する硫化水素が、芳香族化合物の水素化反応を阻
害するとともに、触媒上の活性点を被毒し、活性劣化を
引き起こす原因になることである。しかも、製油所で通
常得られるLCOは、直留軽油留分に比べて、全硫黄化
合物含量は少ないものの、今後強化される規制値以上の
含有率で硫黄分を含むものが多い。例えば、97年以降
日本国内では、軽油の硫黄含有率は0.05質量%以下
に規制されている。従って、LCOの性状によっては、
或いは生成油に要求される規格によっては、生成油中の
硫黄分を規格に要求されるレベルまで更に引き下げる必
要がある。その上、LCOは、高沸点の難脱硫性硫黄化
合物(例えば、4,6−ジメチルジベンゾチオフェン)
の含有率が高いために、LCOの脱硫処理は、直留軽油
留分と同等、或いはそれ以上に厳しい条件下の深度脱硫
を必要とする。よって、触媒には、この難脱硫性硫黄化
合物を水素化処理して除去できる、効率的、効果的な水
素化(脱硫)性能が要求される。
Secondly, the sulfur compound contained in the LCO in a relatively large amount, or hydrogen sulfide produced by the hydrogenation of the sulfur compound, inhibits the hydrogenation reaction of the aromatic compound and also causes a catalyst failure. The poisoning of the active sites of the above causes the deterioration of the activity. Moreover, although LCO normally obtained at refineries has a lower total sulfur compound content than the straight-run light oil fraction, it often contains a sulfur content at a content rate higher than the regulated value which will be strengthened in the future. For example, since 1997, the sulfur content of light oil has been restricted to 0.05% by mass or less in Japan. Therefore, depending on the properties of the LCO,
Alternatively, depending on the specifications required for the produced oil, it is necessary to further reduce the sulfur content in the produced oil to the level required by the specifications. In addition, LCO is a high-boiling, hardly desulfurizable sulfur compound (for example, 4,6-dimethyldibenzothiophene).
Due to its high content of L, the desulfurization treatment of LCO requires deep desulfurization under conditions severer than those of straight-run gas oil fractions. Therefore, the catalyst is required to have an efficient and effective hydrogenation (desulfurization) performance capable of hydrotreating and removing the hardly desulfurizable sulfur compound.

【0008】従って、LCOを水素化処理して芳香族化
合物を低減し、LCOを軽油留分のブレンド基材として
使用するために必要となる、LCOの水素化処理用触媒
の条件は、1環芳香族化合物に対する高い水素化活性
と、耐硫黄性を合わせ持ち、更に難脱硫性硫黄化合物を
水素化処理して除去できる高い脱硫性能をも有すること
である。
Therefore, the condition of the LCO hydrotreating catalyst, which is necessary in order to reduce the aromatic compounds by hydrotreating the LCO and to use the LCO as a blend base material of the light oil fraction, is 1 ring. It has a high hydrogenation activity for aromatic compounds and a high sulfur resistance, and further has a high desulfurization performance capable of removing a difficult desulfurization sulfur compound by hydrogenation.

【0009】一方、従来、LCOの水素化処理用触媒と
して試みられてきた触媒は、2種類に大別される。その
一つは、軽質油の水素化処理に使用された水素化処理用
触媒であり、活性金属種に貴金属などが用いられてい
る。他の一つは、周期律表の第VIA族金属−第VIII族金
属系触媒、例えば、アルミナ担体を使用したCoMo系
やNiMo系などの水素化脱硫用触媒である。
On the other hand, the catalysts that have hitherto been tried as catalysts for hydrotreating LCO are roughly classified into two types. One of them is a hydrotreating catalyst used for hydrotreating light oil, and a precious metal or the like is used as an active metal species. The other one is a Group VIA metal-Group VIII metal-based catalyst of the periodic table, for example, a CoMo-based or NiMo-based hydrodesulfurization catalyst using an alumina carrier.

【0010】しかし、従来の水素化処理用触媒は、ニッ
ケル、パラジウム等の耐硫黄性が乏しい金属種を触媒の
活性成分として含有しているために、原料油中に含まれ
る硫黄化合物分が数ppm以下という低硫黄雰囲気下で
しか有効に機能しない。従って、硫黄化合物含有量がそ
れより高いLCOの水素化処理に従来の水素化処理用触
媒を使用することは技術的に難しい。
However, since the conventional hydrotreating catalyst contains a metal species having poor sulfur resistance such as nickel and palladium as an active component of the catalyst, the sulfur compound content in the feed oil is small. It works effectively only in a low sulfur atmosphere of ppm or less. Therefore, it is technically difficult to use a conventional hydrotreating catalyst for hydrotreating an LCO having a higher sulfur compound content.

【0011】他方、上述した水素化脱硫用の触媒は、石
油精製プロセスにおいて使用される代表的な水素化脱硫
触媒であって、本来、水素化脱硫を目的とした触媒であ
るから耐硫黄性が十分にあるものの、1環芳香族化合物
の水素化性能に不十分なところがある。
On the other hand, the above-mentioned hydrodesulfurization catalyst is a typical hydrodesulfurization catalyst used in a petroleum refining process, and since it is originally intended for hydrodesulfurization, it has a sulfur resistance. Although sufficient, there are some areas where the hydrogenation performance of the 1-ring aromatic compound is insufficient.

【0012】このため、水素化脱硫用触媒をLCOの水
素化処理用触媒として使用し、1環芳香族化合物を水素
化してナフテン類に転化するには、10MPa以上の高
い水素分圧の下で、また原料油の性状や反応温度など他
の条件によっては、更に高い高圧条件下で水素化処理を
行うことが必要になり、設備費及び運転費が嵩む。ま
た、脱硫用触媒を使用する場合、水素分圧を高くする代
わりに、反応温度を上げることによって反応速度を速く
し、1環芳香族化合物の転化を促進することもできる
が、反応温度を高くすることは、発熱反応である水素化
反応にとって反応平衡上不利になるばかりではなく、分
解反応や縮重合反応などの副反応も著しく進行するた
め、水素化生成物の収率が低下し、経済的でない。ま
た、高温反応であるために、生成油の色相問題が改善さ
れず、更には、装置の設備費及び運転費が嵩むと言う問
題点が生じる。
Therefore, in order to use a hydrodesulfurization catalyst as a catalyst for hydrotreating LCO and hydrogenate a 1-ring aromatic compound to convert it to naphthenes, under a high hydrogen partial pressure of 10 MPa or more. Further, depending on other conditions such as the properties of the raw material oil and the reaction temperature, it is necessary to carry out the hydrotreatment under a higher pressure condition, which increases equipment costs and operating costs. When a desulfurization catalyst is used, the reaction rate can be increased by increasing the reaction temperature instead of increasing the hydrogen partial pressure, and the conversion of the 1-ring aromatic compound can be promoted. This is not only disadvantageous in terms of reaction equilibrium to the hydrogenation reaction, which is an exothermic reaction, but also side reactions such as decomposition reaction and polycondensation reaction significantly progress, so that the yield of hydrogenation product decreases and the economy Not relevant. Further, since the reaction is carried out at a high temperature, the problem of the hue of the produced oil is not improved, and further, the equipment cost and the operating cost of the apparatus increase.

【0013】上述したように、従来の触媒は、1環芳香
族化合物に対する高い水素化活性と、耐硫黄性の双方を
合わせ持ち、しかも脱硫性能を備えた触媒と言う要求を
満足せず、LCOの水素化反応に使用し、LCOの芳香
族化合物含有率を低減させる処理には適していなかっ
た。そこで、本発明の目的は、第1には、炭化水素油、
特に軽油留分を水素化処理して、芳香族化合物含有率を
低減させるのに適する触媒を提供することであり、第2
には、その触媒を使用して軽油留分を水素化処理する方
法を提供することである。
As described above, the conventional catalyst does not satisfy the requirement of a catalyst that has both high hydrogenation activity for a 1-ring aromatic compound and sulfur resistance, and has desulfurization performance. Was not suitable for the treatment for reducing the aromatic compound content of LCO. Then, the object of the present invention is, firstly, a hydrocarbon oil,
In particular, it is to provide a catalyst suitable for reducing the aromatic compound content by hydrotreating a gas oil fraction.
To provide a method for hydrotreating a gas oil fraction using the catalyst.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記の目
的を解決するために、アルミナを主成分とした無機酸化
物からなる担体に、白金、又は白金に加えてアルカリ金
属又はアルカリ土類金属を担持させた新たな触媒を調製
し、芳香族化合物の水素化反応を行わせる実験を重ねた
結果、新たな触媒が、従来の水素化処理とほぼ同様な水
素分圧及び反応温度等の条件下において、硫黄化合物な
どによる活性劣化を引き起こすことなく、また、NiM
o系、CoMo系等の従来の脱硫用触媒に比べて、芳香
族化合物、特に1環芳香族化合物に対して高い水素化活
性を示すことを見い出し、本発明を完成するに至った。
[Means for Solving the Problems] In order to solve the above-mentioned object, the present inventors have proposed that platinum, or an alkali metal or alkaline earth in addition to platinum, is added to a carrier composed of an inorganic oxide containing alumina as a main component. As a result of repeated experiments of preparing a new catalyst supporting a metal group and carrying out a hydrogenation reaction of an aromatic compound, the new catalyst shows that the hydrogen partial pressure and reaction temperature, etc. are almost the same as those in the conventional hydrotreatment. Under the conditions of, NiM
The inventors have found that they have higher hydrogenation activity for aromatic compounds, particularly monocyclic aromatic compounds, as compared with conventional catalysts for desulfurization such as o-based and CoMo-based catalysts, and have completed the present invention.

【0015】すなわち、本発明に係る触媒は、アルミナ
を主成分とし、非アルミナ系を含む無機酸化物からなる
担体に、触媒基準で、0.1〜8質量%(金属換算)の
白金、又は0.1〜8質量%(金属換算)の白金に加え
て0.1〜2質量%(酸化物換算)のアルカリ金属及び
アルカリ土類金属のいずれかを担持させた、炭化水素油
の水素化処理用触媒であることを特徴としている。
That is, the catalyst according to the present invention comprises a carrier composed of an inorganic oxide containing alumina as a main component and containing a non-alumina system, and 0.1 to 8% by mass (metal conversion) of platinum, based on the catalyst, or Hydrogenation of hydrocarbon oil carrying 0.1 to 2% by mass (as metal) of platinum and 0.1 to 2% by mass (as oxide) of either alkali metal or alkaline earth metal. It is a processing catalyst.

【0016】本発明の触媒は、炭化水素油、特に軽油留
分の水素化処理、例えば接触分解軽油、直留軽油、熱分
解軽油、水素化処理軽油、脱硫処理軽油等の水素化処理
に適している。本発明の触媒を使用して原料油を水素化
処理する際、触媒性能を発揮させる上で原料油として望
ましい性状は、沸点範囲が150〜400℃、好ましく
は160〜380℃、より好ましくは170〜350℃
であり、硫黄分は、低いほど好ましく、2000質量pp
m 以下、好ましくは500質量ppm 以下である。また、
芳香族化合物の含有量に関しては、特に限定されるもの
ではないが、含有率は好ましくは5〜90容量%、より
好ましくは5〜75容量%の範囲である。
The catalyst of the present invention is suitable for hydrotreating hydrocarbon oils, particularly gas oil fractions, for example, hydrocracking of catalytically cracked gas oil, straight run gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil and the like. ing. When hydrotreating a feedstock using the catalyst of the present invention, desirable properties as a feedstock for exerting catalytic performance have a boiling point range of 150 to 400 ° C, preferably 160 to 380 ° C, more preferably 170. ~ 350 ° C
The lower the sulfur content is, the more preferable it is.
m or less, preferably 500 mass ppm or less. Also,
The content of the aromatic compound is not particularly limited, but the content is preferably 5 to 90% by volume, more preferably 5 to 75% by volume.

【0017】本発明の触媒の担体は、アルミナを主成分
とし、更にアルミナ以外の種類の無機酸化物が混合され
ている。担体の主成分となるアルミナは、α−アルミ
ナ、β−アルミナ、γ−アルミナ、δ−アルミナなどの
種々の種類のアルミナを使用することができるが、好ま
しくは、多孔質で高比表面積であるアルミナであり、よ
り好ましくは、γ−アルミナである。
The carrier of the catalyst of the present invention contains alumina as a main component, and further contains an inorganic oxide of a type other than alumina. As the main component of the carrier, various kinds of alumina such as α-alumina, β-alumina, γ-alumina and δ-alumina can be used, but it is preferably porous and has a high specific surface area. Alumina, more preferably γ-alumina.

【0018】一方、アルミナに混合される、アルミナ以
外の種類の無機酸化物(以下、担体副成分と言う)は、
第1の種類の群として、例えば、シリカ、ボリア、チタ
ニア、ジルコニア、マグネシア、ハフニア、セリア、イ
ットリア、ニオビア等であり、これらを単独でアルミナ
に混合し、又は2種以上の担体副成分の組み合わせでア
ルミナに混合することができる。これらの第1の種類の
担体副成分のうち、好ましくは、シリカ、ボリア、シリ
カ−アルミナ、シリカ−ジルコニア、シリカ−ボリアで
ある。
On the other hand, an inorganic oxide of a type other than alumina mixed with alumina (hereinafter referred to as carrier subcomponent) is
The first type group includes, for example, silica, boria, titania, zirconia, magnesia, hafnia, ceria, yttria, niobia, etc., which are mixed alone with alumina, or a combination of two or more carrier subcomponents. Can be mixed with alumina. Of these first type carrier subcomponents, preferred are silica, boria, silica-alumina, silica-zirconia, silica-boria.

【0019】また、第2の種類の担体副成分の群は、ゼ
オライト、モレキュラシーブ等の結晶性無機酸化物、あ
るいはモンモリロナイト、カオリン、ベントナイト、サ
ポナイト等の粘土鉱物等であり、これらを単独で、又は
2種以上の担体副成分の組み合わせでアルミナに混合す
ることができる。
The second type of carrier subcomponent is a crystalline inorganic oxide such as zeolite or molecular sieve, or a clay mineral such as montmorillonite, kaolin, bentonite or saponite, which may be used alone or A combination of two or more carrier subcomponents can be mixed with the alumina.

【0020】更に、第3の種類の担体副成分の群は、ジ
ルコニア、チタニアなどの特定の金属酸化物を硫酸イオ
ンで賦活した無機酸化物、例えばSO4 /ZrO2 、S
4/TiO2 等であり、これらを単独で、又は2種以
上の担体副成分の組み合わせでアルミナに混合すること
ができる。また、2種以上の担体副成分の組み合わせで
アルミナに混合する場合には、第1の種類から第3の種
類の担体副成分の群から任意に選択して混合することが
できる。
Further, the third type of carrier subcomponent is an inorganic oxide obtained by activating a specific metal oxide such as zirconia or titania with sulfate ion, for example, SO 4 / ZrO 2 , S.
O 4 / TiO 2 and the like, which can be mixed with alumina alone or in combination of two or more carrier subcomponents. Further, when two or more kinds of carrier subcomponents are mixed with alumina, they can be arbitrarily selected and mixed from the group of the first to third kinds of carrier subcomponents.

【0021】担体副成分を単独で、又は2種以上の組み
合わせでアルミナに混合する際の担体副成分の担体中の
含有率は、担体の質量を基準にして、酸化物換算で、5
〜50質量%、好ましくは10〜40質量%である。ア
ルミナと担体副成分とを混合する混合方法は、各成分が
全体として一様で均一に混合されるならば、特に限定さ
れるものではなく、一般によく用いられている混合方
法、例えば化学混合法或いは物理混合法と呼ばれている
方法を用いることができる。即ち、化学混合法では、各
成分の酸化物の前駆体、例えばゲル、ゾル、或いは水酸
化物等を混合し、また、物理混合法では、各成分の酸化
物を粒状又は粉末状にして混合する。
The content of the carrier subcomponent in the carrier when the carrier subcomponents are mixed with alumina alone or in combination of two or more kinds is 5 in terms of oxide based on the mass of the carrier.
-50 mass%, preferably 10-40 mass%. The mixing method of mixing the alumina and the carrier subcomponents is not particularly limited as long as the respective components are uniformly and uniformly mixed as a whole, and a generally used mixing method, for example, a chemical mixing method. Alternatively, a method called a physical mixing method can be used. That is, in the chemical mixing method, precursors of oxides of respective components, for example, gel, sol, hydroxide, etc. are mixed, and in the physical mixing method, oxides of respective components are mixed in a granular or powder form. To do.

【0022】以上のアルミナと担体副成分とで構成され
る担体の比表面積、細孔容積及び平均細孔径は、特に制
限されるものではないが、耐硫黄性に優れ、炭化水素油
に対する水素化活性および脱硫活性を高めた触媒にする
ためには、比表面積は200m2 /g以上、より好まし
くは250m2 /g以上であり、細孔容積は0.4〜
1.2ml/gの範囲にあり、平均細孔径は50〜10
0Åの範囲にあることが好ましい。本発明の触媒では、
担体及び触媒の形状は特に限定されるものではなく、こ
れまでに市販、或いは報告された既知の種々の形状で良
く、例えば円柱形、四葉型などの形状を使用することが
できる。触媒の大きさは、実用的には、1/10〜1/
22インチが適している。また、成形の時期は、所定の
触媒形状が得られるならば特に限定されるものではな
く、活性成分を担持する前、即ち担体の段階で成形し、
次いで活性成分を担持させても良く、または粒状、粉末
状の担体に活性成分を担持させた後に触媒として成形し
ても良い。
The specific surface area, pore volume and average pore diameter of the carrier composed of the above alumina and carrier subcomponents are not particularly limited, but are excellent in sulfur resistance and hydrogenated to hydrocarbon oil. In order to obtain a catalyst having enhanced activity and desulfurization activity, the specific surface area is 200 m 2 / g or more, more preferably 250 m 2 / g or more, and the pore volume is 0.4 to
It is in the range of 1.2 ml / g and the average pore size is 50 to 10
It is preferably in the range of 0 °. In the catalyst of the present invention,
The shapes of the carrier and the catalyst are not particularly limited, and various known shapes which have been commercially available or reported so far may be used, and for example, a cylindrical shape, a four-lobed shape and the like can be used. The size of the catalyst is practically 1/10 to 1 /
22 inches is suitable. In addition, the timing of molding is not particularly limited as long as a predetermined catalyst shape can be obtained, and before molding the active ingredient, that is, at the stage of the carrier,
Then, the active ingredient may be supported, or the active ingredient may be supported on a granular or powdery carrier and then molded as a catalyst.

【0023】担体に担持させる活性成分は、白金の化合
物、又は白金の化合物とアルカリ金属及びアルカリ土類
金属のいずれか(以下、活性副成分と言う)とを組み合
わせたものである。
The active ingredient supported on the carrier is a platinum compound or a combination of a platinum compound and one of an alkali metal and an alkaline earth metal (hereinafter referred to as an active subcomponent).

【0024】白金化合物の具体例としては、塩化金属酸
塩、塩化物、硝酸塩、硫酸塩、酢酸塩、燐酸塩、有機酸
塩があげられ、好ましくは塩化金属酸塩、塩化物、硝酸
塩である。これらの化合物を、単独で、あるいは2種以
上を組み合わせて使用することができる。
Specific examples of the platinum compound include metal chlorides, chlorides, nitrates, sulfates, acetates, phosphates and organic acid salts, preferably metal chlorides, chlorides and nitrates. . These compounds can be used alone or in combination of two or more kinds.

【0025】活性副成分として使用されるアルカリ金属
及びアルカリ土類金属は、カリウム、リチウム、カルシ
ウム等のアルカリ金属、アルカリ土類金属及びそれらの
化合物であって、活性副成分を単独で、又は2種類以上
の活性副成分を同時に含有させることができる。アルカ
リ金属及びアルカリ土類金属の化合物の具体例として
は、上記の白金化合物のアルカリ金属塩またはアルカリ
土類金属塩、硝酸塩、ハロゲン化物、ハロゲン酸塩、硫
酸塩、炭酸塩等があげられ、好ましくは白金化合物のア
ルカリ金属塩またはアルカリ土類金属塩、硝酸塩、塩化
物及び炭酸塩である。また、これらの化合物を、単独、
あるいは2種以上の組み合わせで使用することができ
る。
The alkali metal and alkaline earth metal used as the active subcomponent are alkali metals such as potassium, lithium and calcium, alkaline earth metals and their compounds, and the active subcomponent alone or More than one type of active subcomponent can be included at the same time. Specific examples of the alkali metal and alkaline earth metal compounds include alkali metal salts or alkaline earth metal salts of the above platinum compounds, nitrates, halides, halogenates, sulfates, carbonates, etc., and preferred. Are alkali metal salts or alkaline earth metal salts, nitrates, chlorides and carbonates of platinum compounds. In addition, these compounds alone,
Alternatively, two or more kinds can be used in combination.

【0026】これらの活性成分のうち、白金の含有量
は、触媒の質量を基準にして、金属換算で、0.1〜8
質量%、好ましくは0.5〜5質量%である。白金が、
0.1質量%未満では、白金に帰属する活性点が十分に
得られず、8質量%を超えると、白金化合物の凝集等に
よって活性金属の分散性が悪くなるばかりではなく、効
率的に分散させる活性金属含有量の限度を超えてしまう
ため、コスト的にも高くなる。更に、白金に加えて、上
述した活性副成分をも含有させる場合には、これら活性
副成分の含有量は、触媒の質量を基準にして、酸化物換
算で、0.1〜2質量%である。一般的に、芳香族化合
物の水素化反応を始めとする多くの触媒反応は、触媒又
は担体に存在する酸点によって大きく促進される。アル
ミナを主成分とし、非アルミナ系を含む無機酸化物から
なる、本発明で使用する担体にあっても、芳香族化合物
の水素化反応を促進する上で、このことは重要である。
しかし、酸の強さが強すぎると、芳香族化合物の水素化
反応よりも、寧ろ、分解反応、異性化反応等の副反応が
過剰に促進されるので、好ましくない。従って、芳香族
化合物の水素化反応を高選択的に進行させるためには、
担体或いは触媒の酸の強さを制御することが非常に重要
である。本発明において、活性副成分、すなわちアルカ
リ金属、又はアルカリ土類金属の添加は、触媒の酸点を
芳香族化合物の水素化反応に対して適度な強さに制御す
ることを目的としている。活性副成分の含有量が、0.
1質量%未満では、これらの金属に起因する効果を発現
させるには不十分であり、2質量%を超えると、白金金
属及び触媒担体上に存在する反応活性点をも被覆してし
まい、触媒活性の向上がみられなくなる。
Of these active ingredients, the platinum content is 0.1 to 8 in terms of metal, based on the mass of the catalyst.
It is mass%, preferably 0.5 to 5 mass%. Platinum
If it is less than 0.1% by mass, sufficient active sites attributed to platinum cannot be obtained, and if it exceeds 8% by mass, not only the dispersibility of the active metal deteriorates due to aggregation of the platinum compound, but also efficient dispersion. Since the limit of the active metal content to be exceeded is exceeded, the cost becomes high. Furthermore, when the above-mentioned active subcomponents are also contained in addition to platinum, the content of these active subcomponents is 0.1 to 2% by mass in terms of oxide, based on the mass of the catalyst. is there. In general, many catalytic reactions including the hydrogenation reaction of aromatic compounds are greatly promoted by the acid sites present on the catalyst or the carrier. This is important for promoting the hydrogenation reaction of the aromatic compound even in the carrier used in the present invention, which is composed of an inorganic oxide containing alumina as a main component and containing a non-alumina system.
However, when the strength of the acid is too strong, side reactions such as decomposition reaction and isomerization reaction are excessively promoted rather than hydrogenation reaction of the aromatic compound, which is not preferable. Therefore, in order to proceed the hydrogenation reaction of the aromatic compound with high selectivity,
It is very important to control the acid strength of the support or catalyst. In the present invention, the addition of an active subcomponent, that is, an alkali metal or an alkaline earth metal is intended to control the acid point of the catalyst to an appropriate strength for the hydrogenation reaction of an aromatic compound. The content of the active subcomponent is 0.
If it is less than 1% by mass, it is not sufficient to exert the effect caused by these metals, and if it exceeds 2% by mass, the platinum metal and the reaction active sites present on the catalyst carrier are also covered, and the catalyst No improvement in activity can be seen.

【0027】本発明に係る触媒は、既知の触媒調製方法
により調製することができる。代表的な方法としては、
酸、水、アルコール類などの溶媒に上記活性成分を溶解
させて調製した溶液に担体を含浸させる含浸処理を1回
以上行い、上記の担体に活性成分を担持させるようにし
た含浸法があげられる。溶媒として、例えば、塩酸、硝
酸、硫酸などの酸性溶媒を使用する場合は、活性成分を
十分に溶解できる程度の酸濃度で、しかも酸が担体表面
を浸食して、担体の表面積、細孔容積等の物性値を大き
く変化させることのないような酸濃度に希釈することが
好ましい。活性成分を溶解した含浸液に担体を含浸させ
る際の条件は、所定量の活性成分が所定の金属分布で担
持される限り、特に限定はない。例えば、一例として含
浸液の温度条件を挙げれば、温度は、10℃から100
℃の範囲、又は上限として含浸液の沸点、好ましくは1
5〜60℃、より好ましくは15〜40℃の範囲であ
り、実際には、室温でも良い。含浸液と担体とを接触さ
せる時間は、金属分布が所定の分布に達している限り特
に限定されないが、通常、15〜5時間で含浸させるこ
とができる。含浸工程中は、含浸液と担体とを接触させ
たままで放置しておいてもかまわないが、担体間の活性
成分の担持量を均等にするために、含浸液と担体とを一
緒にして攪拌するのが好ましい。また、含浸工程を経た
後は、含浸された活性成分を担体に固定するために、担
体を含浸液に含浸させた後、乾燥、焼成処理を施すのが
好ましい。触媒を乾燥する方法は、触媒全体が均等に乾
燥される限り特に限定はなく、風乾、熱風乾燥、加熱乾
燥、凍結乾燥などの種々の乾燥方法を採用することがで
きる。通常、効率性や簡便性の点から、10〜100
℃、好ましくは15〜60℃の乾燥空気又は乾燥窒素に
よる風乾が良い。余りに長時間焼成したり、或いは高温
で焼成したりすると、担持された活性成分が凝集した
り、担体が焼結したり、相変化を起こしたりして、形状
や物理性状及び化学性状に大きな変化が生じることがあ
るので、通常、350〜600℃、好ましくは400〜
550℃の範囲の温度で、1〜10時間、好ましくは2
〜5時間、焼成する。また、焼成中の雰囲気は、焼成中
に発生するガスによって触媒の周囲が充満されない限
り、特に限定はなく、不活性ガス又は空気の流通下で、
通常、空気の流通下で焼成する。含浸法により触媒を調
製する際、複数回にわって含浸処理を行う時には、含浸
処理毎に、乾燥及び焼成処理を行ってもよい。また、活
性副成分を含有させるのであれば、活性副成分を含浸さ
せる時期についても制限はなく、白金化合物を含浸させ
る前後に含浸させてもよく、また白金化合物と同時に含
浸させても良い。更に、別の担持方法としては、担体と
して成形する前の担体材料に活性成分の一部あるいは全
部を混合し、一体的に成形する混練法、更には、共沈法
などがあげられる。
The catalyst according to the present invention can be prepared by a known catalyst preparation method. As a typical method,
An impregnation method in which the carrier is impregnated with a solution prepared by dissolving the above-mentioned active ingredient in a solvent such as acid, water, alcohol or the like to carry the active ingredient onto the above-mentioned carrier once or more. . For example, when an acidic solvent such as hydrochloric acid, nitric acid or sulfuric acid is used as the solvent, the acid concentration is such that the active ingredient is sufficiently dissolved, and the acid erodes the surface of the carrier, resulting in the surface area and pore volume of the carrier. It is preferable to dilute to an acid concentration that does not significantly change the physical properties such as. The conditions for impregnating the carrier in the impregnating solution in which the active ingredient is dissolved are not particularly limited as long as a predetermined amount of the active ingredient is supported in a predetermined metal distribution. For example, when the temperature condition of the impregnating liquid is taken as an example, the temperature is from 10 ° C to 100 ° C.
The boiling point of the impregnating liquid, preferably 1
The temperature is in the range of 5 to 60 ° C., more preferably 15 to 40 ° C., and may actually be room temperature. The time for contacting the impregnating liquid with the carrier is not particularly limited as long as the metal distribution reaches a predetermined distribution, but usually the impregnation can be carried out for 15 to 5 hours. During the impregnation step, the impregnating liquid and the carrier may be left in contact with each other, but the impregnating liquid and the carrier may be stirred together to make the amount of the active ingredient supported evenly between the carriers. Preferably. Further, after the impregnation step, in order to fix the impregnated active ingredient to the carrier, it is preferable to impregnate the carrier with the impregnating liquid, and then to perform drying and baking treatment. The method for drying the catalyst is not particularly limited as long as the entire catalyst is uniformly dried, and various drying methods such as air drying, hot air drying, heat drying and freeze drying can be adopted. Usually, 10-100 in terms of efficiency and simplicity
Air drying with dry air or dry nitrogen at 15 ° C, preferably 15 to 60 ° C is good. If it is burnt for too long or at a high temperature, the active ingredients carried will aggregate, the carrier will sinter, or a phase change will occur, resulting in a large change in shape, physical properties, and chemical properties. May occur, so it is usually 350 to 600 ° C., preferably 400 to 600 ° C.
At a temperature in the range of 550 ° C. for 1 to 10 hours, preferably 2
Bake for ~ 5 hours. Further, the atmosphere during firing is not particularly limited as long as the atmosphere around the catalyst is not filled with the gas generated during firing, under the flow of an inert gas or air,
Usually, it is fired under the flow of air. When the catalyst is prepared by the impregnation method, when the impregnation treatment is performed a plurality of times, the drying and firing treatment may be performed for each impregnation treatment. Also, if the active subcomponent is contained, the timing of impregnating the active subcomponent is not limited, and it may be impregnated before or after the impregnation with the platinum compound, or may be impregnated with the platinum compound at the same time. Further, as another supporting method, a kneading method in which a part or all of the active ingredient is mixed with a carrier material before being molded as a carrier and integrally molded, and further, a coprecipitation method and the like can be mentioned.

【0028】以上に挙げた触媒の調製方法によって調製
された本発明に係る触媒において、触媒としての機能が
発現する限り、その比表面積、細孔容積及び平均細孔径
が特に制限されるものではないが、前述した担体と同様
に、炭化水素油に対する水素化活性および脱硫活性を高
めるためには、比表面積は、200m2 /g以上が好ま
しく、250m2 /g以上がより好ましい。また、細孔
容積は、好ましくは0.4〜1.2ml/gの範囲に、
より好ましくは0.5〜0.9ml/gの範囲にあるこ
とが望ましい。平均細孔径は50〜100Åの範囲が好
ましく、60〜90Åの範囲がより好ましい。平均細孔
径が50Å未満であると、機械的な強度が不足するのみ
ならず、反応物質が細孔内に拡散し難くなるため、芳香
族化合物及び難脱硫性硫黄化合物の水素化反応が、効率
的に進行しなくなる。また、100Åより大きいと、細
孔内の拡散性は良いものの、細孔内表面積が減少するた
め、触媒の有効比表面積が減少し、活性が低くなる。ま
た、上記の細孔条件を満たす細孔の有効数を多くするた
め、触媒の細孔径分布(即ち、平均細孔径±15Åの細
孔径を有する細孔の割合)は、70%以上で、好ましく
は80%以上である。
In the catalyst according to the present invention prepared by the above-mentioned catalyst preparation method, the specific surface area, pore volume and average pore diameter are not particularly limited as long as the function as a catalyst is exhibited. However, like the above-mentioned carrier, the specific surface area is preferably 200 m 2 / g or more, and more preferably 250 m 2 / g or more in order to enhance the hydrogenation activity and desulfurization activity for hydrocarbon oil. The pore volume is preferably in the range of 0.4 to 1.2 ml / g,
More preferably, it is desirable to be in the range of 0.5 to 0.9 ml / g. The average pore diameter is preferably in the range of 50 to 100Å, more preferably in the range of 60 to 90Å. If the average pore size is less than 50Å, not only the mechanical strength is insufficient, but also the reactants are less likely to diffuse into the pores, so the hydrogenation reaction of aromatic compounds and refractory sulfur compounds is less efficient. Will not progress. On the other hand, if it is greater than 100Å, the diffusivity in the pores is good, but the surface area in the pores is reduced, so that the effective specific surface area of the catalyst is reduced and the activity is lowered. Further, in order to increase the effective number of pores satisfying the above-mentioned pore conditions, the pore diameter distribution of the catalyst (that is, the proportion of pores having an average pore diameter of ± 15Å) is 70% or more, preferably Is 80% or more.

【0029】本発明に係る触媒を使用して軽油の水素化
処理を行う場合には、通常、3〜10MPa、好ましく
は3〜7MPaのの範囲の水素分圧、通常、200〜4
00℃、好ましくは250〜370℃の範囲の温度、及
び通常、0.1〜5.0hr-1、より好ましくは0.5
〜4.0hr-1の範囲の液空間速度の条件で、触媒と原
料油とを接触させる。水素化反応の際、反応で消費する
量以上の水素を供給する限り、水素/オイル比は特に限
定しないが、通常、100〜1000m3 /m3 、好ま
しくは200〜600m3 /m3 の水素/オイル比にな
るように水素を供給する。水素分圧が高いほど、反応平
衡的には有利であるが、反応器の運転圧力が高くなって
肉厚を厚くする必要が生じ、設備費が嵩む。また、水素
ガスを供給する圧縮機の動力が増大して運転費も嵩む。
反応温度が400℃より高いと、水素化反応が反応平衡
的に不利になり、分解反応や異性化反応が過剰に進行
し、生成油の収率が低下する。逆に、反応温度が200
℃未満であると、水素化反応の進行が遅くなって、同じ
く、生成油の収率が低下する。液空間速度が5.0hr
-1より大きいと、触媒と原料油との接触時間が短すぎ、
水素化反応が十分に進行しないので、生成油の収率が低
下する。逆に、液空間速度が0.1hr-1より小さい
と、触媒量が増大すると共に触媒を収容する反応器が大
きくなるために、経済的でない。商業規模での炭化水素
油、例えば軽油の接触水素化処理を行うには、本発明に
係る触媒の固定床、移動床または流動床式触媒層を反応
器内に形成し、反応器内に軽油を導入し、本発明で規定
した条件下で水素化反応を行う。最も一般的には、固定
床式触媒層を反応器内に形成し、炭化水素油を反応器の
上部に導入し、固定床を上から下に通過させ、反応器の
下部から生成物を流出させるようにする。本発明による
触媒は、単独の反応器に充填して一段の水素化処理を行
う場合にも使用することもできるし、幾つかの反応器に
充填して多段の連続した水素化処理を行う場合にも使用
することができる。特に、原料油が比較的重質の炭化水
素油の場合には、多段の水素化処理を行うのが好まし
い。
When the gas oil is hydrotreated using the catalyst according to the present invention, the hydrogen partial pressure is usually in the range of 3 to 10 MPa, preferably 3 to 7 MPa, usually 200 to 4
Temperature in the range of 00 ° C, preferably 250 to 370 ° C, and usually 0.1 to 5.0 hr -1 , more preferably 0.5.
The catalyst and the feedstock are brought into contact with each other under the condition of the liquid hourly space velocity in the range of to 4.0 hr −1 . During the hydrogenation reaction, as long as hydrogen is supplied to at least the amount consumed in the reaction, hydrogen / oil ratio is not particularly limited, usually, 100~1000m 3 / m 3, preferably hydrogen 200~600m 3 / m 3 Supply hydrogen so that the oil / oil ratio is achieved. The higher the hydrogen partial pressure, the more advantageous in terms of reaction equilibrium, but the operating pressure of the reactor becomes higher, which necessitates a thicker wall, which increases equipment costs. In addition, the power of the compressor that supplies hydrogen gas increases and operating costs increase.
When the reaction temperature is higher than 400 ° C, the hydrogenation reaction becomes disadvantageous in terms of reaction equilibrium, the decomposition reaction and the isomerization reaction proceed excessively, and the yield of the produced oil decreases. Conversely, the reaction temperature is 200
If the temperature is lower than 0 ° C, the progress of the hydrogenation reaction will be delayed, and the yield of the produced oil will be similarly reduced. Liquid hourly space velocity is 5.0 hr
If it is larger than -1 , the contact time between the catalyst and the feed oil is too short,
Since the hydrogenation reaction does not proceed sufficiently, the yield of product oil is reduced. On the other hand, if the liquid hourly space velocity is smaller than 0.1 hr -1 , it is not economical because the amount of the catalyst increases and the reactor containing the catalyst becomes large. To carry out catalytic hydrotreating of hydrocarbon oils, such as gas oil, on a commercial scale, a fixed bed, moving bed or fluidized bed catalyst bed of the catalyst according to the invention is formed in the reactor and the gas oil is placed in the reactor. Is introduced and the hydrogenation reaction is carried out under the conditions specified in the present invention. Most commonly, a fixed bed catalyst bed is formed in the reactor, hydrocarbon oil is introduced at the top of the reactor, the fixed bed is passed from top to bottom, and the product is discharged from the bottom of the reactor. I will let you. The catalyst according to the present invention can be used also when it is packed in a single reactor to carry out one-stage hydrotreatment, or when it is packed in several reactors to carry out multi-stage continuous hydrotreatment. Can also be used for In particular, when the feedstock oil is a relatively heavy hydrocarbon oil, it is preferable to carry out a multistage hydrotreatment.

【0030】[0030]

【発明の実施の形態】以下に、実施例を挙げ、添付図面
を参照して、本発明の実施の形態を具体的かつ詳細に説
明する。実施例1 本発明に係る触媒の性能を評価するために、触媒の性能
試験を行った。先ず、表1に示すように、担体材料とし
てシリカゲルとアルミナゲル(或いはゾル)とを用意
し、担体基準でシリカ10質量%入りγ−アルミナとな
るように混合し、洗浄し、乾燥し、次いで直径1/16
インチの円柱状に成形した後、500℃で焼成して、比
表面積336m2 /g、細孔容積0.83ml/g及び
平均細孔径75Åを有する担体を得た。水31.7gに
塩化白金酸1.0gを溶解した水溶液に得た担体37.
3gを投入し、室温で約4時間攪拌しながら担体に水溶
液を含浸させた。次いで、水溶液を含浸させた担体を室
温で窒素気流中にて風乾し、続いて空気流通下で500
℃で4時間焼成した。これにより、1質量%(金属換
算)の白金を含浸、担持させた実施例1の試作触媒を調
製した。次いで、試作触媒を図1の高圧流通式反応装置
10の反応器12に充填して固定床式触媒層14を形成
し、下記の前処理条件で前処理した。次に、図1のフロ
ーチャートに示すように、反応温度に加熱した原料油と
水素含有ガスとの混合流体を反応器12の上部より反応
器12に導入して、以下の条件で水素化反応を進行さ
せ、生成した生成油とガスの混合流体を反応器12の下
部より流出させ、気液分離器16で生成油を分離した。
原料油は、ナフタレン15質量%とデカリン85質量%
の混合油であった。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Example 1 A catalyst performance test was conducted to evaluate the performance of the catalyst according to the present invention. First, as shown in Table 1, silica gel and alumina gel (or sol) were prepared as carrier materials, mixed so as to be γ-alumina containing 10% by mass of silica based on the carrier, washed, dried, and then Diameter 1/16
After being formed into an inch-shaped column, it was baked at 500 ° C. to obtain a carrier having a specific surface area of 336 m 2 / g, a pore volume of 0.83 ml / g and an average pore diameter of 75Å. Carrier obtained in an aqueous solution in which 1.0 g of chloroplatinic acid was dissolved in 31.7 g of water 37.
3 g was added, and the carrier was impregnated with the aqueous solution while stirring at room temperature for about 4 hours. Then, the carrier impregnated with the aqueous solution is air-dried at room temperature in a nitrogen stream, and then 500 times under air flow.
Calcination was performed at 4 ° C. for 4 hours. As a result, a prototype catalyst of Example 1 in which 1% by mass (metal conversion) of platinum was impregnated and supported was prepared. Next, the trial catalyst was filled in the reactor 12 of the high pressure flow reactor 10 of FIG. 1 to form the fixed bed catalyst layer 14, and pretreated under the following pretreatment conditions. Next, as shown in the flow chart of FIG. 1, a mixed fluid of the feed oil heated to the reaction temperature and the hydrogen-containing gas is introduced into the reactor 12 from the upper part of the reactor 12, and the hydrogenation reaction is performed under the following conditions. The mixed fluid of the produced oil and the gas produced was caused to flow out from the lower part of the reactor 12, and the produced oil was separated by the gas-liquid separator 16.
The raw material oil is 15% by weight of naphthalene and 85% by weight of decalin.
It was a mixed oil of.

【表1】 [Table 1]

【0031】反応条件 反応温度 ;250または300℃(運転開始後
の経過日数により異なる) 圧力(水素分圧);4.9MPa 液空間速度 ;1.8hr-1 水素/オイル比 ;560m3 /m3 触媒の前処理条件 圧力(水素分圧);4.9MPa 雰囲気 ;水素ガス流通下 温度 ;ステップ昇温、150℃にて1.5
hr維持、次いで300℃にて2hr維持
Reaction conditions Reaction temperature: 250 or 300 ° C. (depending on the number of days elapsed after the start of operation) Pressure (hydrogen partial pressure): 4.9 MPa Liquid hourly space velocity: 1.8 hr -1 hydrogen / oil ratio: 560 m 3 / m 3 Pretreatment condition pressure of catalyst (hydrogen partial pressure); 4.9 MPa atmosphere; temperature under hydrogen gas flow; step temperature increase, 1.5 at 150 ° C.
Maintained for hr, then maintained at 300 ° C for 2 hr

【0032】表2に示す反応開始後の日数(実施例1で
は6日)が経過するまで250℃の反応温度で反応装置
を運転し、経過した時点で生成油試料を採取し、その性
状を分析した。その結果は、表2に示す通りである。次
いで、表2に示す反応開始後の経過日数(実施例1では
6日)から表4に示す日数(実施例1では13日)が経
過するまで300℃の反応温度で反応装置を運転し、そ
の時点で生成油試料を採取し、その性状を分析した。そ
の結果は、表3に示した通りである。
The reactor was operated at a reaction temperature of 250 ° C. until the number of days after the start of the reaction shown in Table 2 (6 days in Example 1) passed, and when the time passed, a sample of the produced oil was sampled and its properties were measured. analyzed. The results are as shown in Table 2. Then, the reactor was operated at a reaction temperature of 300 ° C. until the number of days elapsed after the start of the reaction shown in Table 2 (6 days in Example 1) to the number of days shown in Table 4 (13 days in Example 1), At that time, a sample of the produced oil was taken and its properties were analyzed. The results are as shown in Table 3.

【表2】 [Table 2]

【表3】 [Table 3]

【0033】表2、表3における転化率は、次式によっ
て算出されたナフタレンの転化率(%)を表している。 転化率(%)={(A−B)/A}×100 ここで、Aは原料油中のナフタレンの質量%、及びBは
生成油中のナフタレンの質量%である。また、デカリ
ン、テトラリン、その他は、原料油中のナフタレンが水
素化により転化した生成油(原料油中のデカリンを除
く)のそれぞれの成分の組成比(質量%)を表す。な
お、「その他」は、デカリン、テトラリン、ナフタレン
以外の全成分の組成比(質量%)を一括して示してい
る。
The conversion rates in Tables 2 and 3 represent the conversion rates (%) of naphthalene calculated by the following formula. Conversion (%) = {(A−B) / A} × 100 Here, A is the mass% of naphthalene in the feed oil, and B is the mass% of naphthalene in the produced oil. Further, decalin, tetralin, and the like represent the composition ratio (mass%) of each component of the produced oil (excluding decalin in the raw material oil) obtained by converting naphthalene in the raw material oil by hydrogenation. In addition, "others" collectively indicates the composition ratio (mass%) of all components other than decalin, tetralin, and naphthalene.

【0034】表2及び表3において、それぞれ、ナフタ
レンの転化率が高く、テトラリンの含有率が低く、そし
てデカリンの含有率が高い程、多環芳香族化合物の水素
化反応の活性が高く、特にテトラリンの含有率が低いほ
ど、一環芳香族化合物の飽和炭化水素への転化率が高い
触媒であると評価でき、多環芳香族化合物の水素化反応
を律速している一環芳香族化合物の飽和炭化水素への水
素化反応を促進する好ましい触媒と評価できる。
In Tables 2 and 3, the higher the conversion of naphthalene, the lower the content of tetralin, and the higher the content of decalin, the higher the activity of the hydrogenation reaction of the polycyclic aromatic compound, especially It can be evaluated that the lower the content of tetralin, the higher the conversion rate of monocyclic aromatic compounds to saturated hydrocarbons, and the saturated carbonization of monocyclic aromatic compounds that controls the hydrogenation reaction of polycyclic aromatic compounds. It can be evaluated as a preferable catalyst that accelerates the hydrogenation reaction to hydrogen.

【0035】実施例2〜実施例12 実施例1と同様にして、表1に示すような実施例2から
実施例12の試作触媒を調製し、実施例1と同じ原料
油、同じ触媒前処理条件及び同じ反応条件で、実施例1
と同様にして実施例2から実施例12の触媒の性能試験
を行った。但し、実施例11の触媒では白金及びカリウ
ムを同時に表1に示した担体に含浸担持させ、実施例1
2の触媒では白金及びリチウムを同時に表1に示す担体
に含浸担持させ、また、実施例12の触媒性能試験にお
いて、250℃の反応温度での運転時の液空間速度は、
実施例1から実施例11までの1.8hr-1に代えて、
1.3hr-1とした。
Examples 2 to 12 In the same manner as in Example 1, trial catalysts of Examples 2 to 12 as shown in Table 1 were prepared, and the same feed oil and the same catalyst pretreatment as those of Example 1 were prepared. Example 1 under the same conditions and the same reaction conditions
The performance tests of the catalysts of Examples 2 to 12 were conducted in the same manner as in. However, in the catalyst of Example 11, platinum and potassium were simultaneously impregnated and supported on the carrier shown in Table 1,
In the catalyst of No. 2, platinum and lithium were simultaneously impregnated and supported on the carrier shown in Table 1, and in the catalyst performance test of Example 12, the liquid hourly space velocity during operation at the reaction temperature of 250 ° C. was
Instead of 1.8 hr −1 of Example 1 to Example 11,
It was set to 1.3 hr -1 .

【0036】実施例2から実施例12の触媒の性能試験
では、表2に示す経過日数が経過するまで、250℃の
反応温度で、次いで表3に示す経過日数が経過するまで
300℃の反応温度でそれぞれ反応装置を運転し、経過
日数がそれぞれ経過した時点で生成油試料を採取した。
250℃の反応温度での生成油の性状及び300℃の反
応温度での生成油の性状は、それぞれ表2及び表3に示
されている。
In the performance tests of the catalysts of Examples 2 to 12, the reaction was carried out at the reaction temperature of 250 ° C. until the elapsed days shown in Table 2 and then at the reaction temperature of 300 ° C. until the elapsed days shown in Table 3 passed. The reactor was operated at each temperature, and a sample of the produced oil was collected at the time when the elapsed days passed.
The properties of the product oil at the reaction temperature of 250 ° C. and the properties of the product oil at the reaction temperature of 300 ° C. are shown in Tables 2 and 3, respectively.

【0037】比較例1 本発明に係る触媒とは異なり、触媒の担体材料として、
無機酸化物を含まないγ−アルミナ単体を使用し、表1
に示す活性成分を担持させて、比較例1の触媒を調製
し、実施例1と同じ原料油、同じ前処理条件、及び同じ
反応条件で実施例1と同様にして水素化処理を行った。
比較例1の触媒の性能試験では、表2に示す経過日数
(5日)が経過するまで、250℃の反応温度で、次い
で表3に示す経過日数(12日)が経過するまで300
℃の反応温度でそれぞれ反応装置を運転し、経過日数が
それぞれ経過した時点で生成油試料を採取した。250
℃の反応温度での生成油の性状及び300℃の反応温度
での生成油の性状は、それぞれ表2及び表3に示されて
いる。
Comparative Example 1 Unlike the catalyst according to the present invention, as a carrier material for the catalyst,
Using γ-alumina simple substance containing no inorganic oxide, Table 1
The catalyst of Comparative Example 1 was prepared by carrying the active ingredient shown in 1 above, and hydrogenated in the same manner as in Example 1 under the same feed oil, the same pretreatment conditions, and the same reaction conditions as in Example 1.
In the performance test of the catalyst of Comparative Example 1, the reaction temperature was 250 ° C. until the elapsed days (5 days) shown in Table 2 passed, and then the elapsed days (12 days) shown in Table 3 passed 300 times.
The reaction apparatus was operated at the reaction temperature of 0 ° C., and a sample of the produced oil was collected when the elapsed days passed. 250
The properties of the product oil at the reaction temperature of 300C and the properties of the product oil at the reaction temperature of 300C are shown in Tables 2 and 3, respectively.

【0038】比較例2 比較例1と同じ担体に、酸化物換算で、4質量%のニッ
ケルおよび20質量%のタングステンを含浸、担持させ
て、比較例2の触媒を調製し、触媒の前処理を水素と硫
化水素との混合ガス流通下で、150℃で2hr、35
0℃で2hrそれぞれ維持するステップ昇温による前処
理温度で硫化処理を行った以外、実施例1と同じ原料油
を使用し、実施例1と同じ反応条件で実施例1と同様に
して水素化処理を行った。比較例2の触媒の性能試験で
は、表2に示す経過日数(5日)が経過するまで、25
0℃の反応温度で、次いで表3に示す経過日数(12
日)が経過するまで300℃の反応温度でそれぞれ反応
装置を運転し、それぞれ経過日数が経過した時点で生成
油試料を採取した。250℃の反応温度での生成油の性
状及び300℃の反応温度での生成油の性状は、それぞ
れ表2及び表3に示されている。
[0038] same carrier as in Comparative Example 2 Comparative Example 1, in terms of oxide, impregnated with 4 wt% of nickel and 20 wt% tungsten, by supporting, to prepare a catalyst of Comparative Example 2, pretreatment of the catalyst Under a mixed gas flow of hydrogen and hydrogen sulfide at 150 ° C. for 2 hours, 35 hours
Hydrogenation was carried out in the same manner as in Example 1 under the same reaction conditions as in Example 1 except that the sulfurization treatment was carried out at a pretreatment temperature by increasing the temperature by maintaining each step at 0 ° C. for 2 hours. Processed. In the performance test of the catalyst of Comparative Example 2, it took 25 days until the elapsed days (5 days) shown in Table 2 were elapsed.
At a reaction temperature of 0 ° C., then the number of days elapsed (12
Each of the reactors was operated at a reaction temperature of 300 ° C. until the lapse of days), and a sample of the produced oil was collected at the time when the elapsed days passed. The properties of the product oil at the reaction temperature of 250 ° C. and the properties of the product oil at the reaction temperature of 300 ° C. are shown in Tables 2 and 3, respectively.

【0039】表2及び表3から判るように、実施例1か
ら実施例12で使用した本発明に係る触媒は、従来の水
素化処理の際とほぼ同じ水素分圧及び反応温度の下で、
ナフタレンの転化率及び一環の芳香族化合物の転化率の
少なくとも一方が、比較例1及び2の触媒に比べて大き
く、芳香族化合物の低減に有効な触媒であると評価でき
る。
As can be seen from Tables 2 and 3, the catalysts according to the present invention used in Examples 1 to 12 have the same hydrogen partial pressure and reaction temperature as in the conventional hydrotreatment,
At least one of the conversion rate of naphthalene and the conversion rate of a part of the aromatic compound is larger than that of the catalysts of Comparative Examples 1 and 2, and it can be evaluated that the catalyst is effective in reducing the aromatic compound.

【0040】実施例13 実施例2と同じ触媒を実施例1と同様に図1の高圧流通
式反応装置10の反応器12に充填して固定床式触媒層
14を形成し、実施例2と同じ前処理条件で処理した
後、以下に記載した性状の脱硫処理軽油を原料油とし
て、以下に示す反応条件の下で水素化処理を行った。原料油 油種 ;脱硫処理軽油 比重(15/4℃);0.8454 粘度(@30℃) ;5.971mm2 /s 蒸留性状 ;(初留点)が201℃、(50%
点)が309℃、(終点)が384℃ 硫黄分 ;0.038質量% 窒素分 ;0.011質量% 飽和炭化水素成分 ;72.2容量% 1環芳香族 ;21.9容量% 2環芳香族 ;4.6容量% 3環芳香族 ;1.3容量% セーボルト色 ;−16以下
Example 13 The same catalyst as in Example 2 was charged into the reactor 12 of the high pressure flow reactor 10 of FIG. 1 in the same manner as in Example 1 to form the fixed bed type catalyst layer 14, and After treatment under the same pretreatment conditions, hydrotreating was performed under the reaction conditions shown below, using a desulfurized gas oil having the properties described below as a feedstock. Raw oil type; Desulfurized light oil Specific gravity (15/4 ° C); 0.8454 Viscosity (@ 30 ° C); 5.971 mm 2 / s Distillation properties; (Initial boiling point) is 201 ° C, (50%
Point) is 309 ° C., (end point) is 384 ° C. Sulfur content; 0.038 mass% nitrogen content; 0.011 mass% saturated hydrocarbon component; 72.2% by volume 1 ring aromatic; 21.9% by volume 2 ring Aromatic: 4.6% by volume Three-ring aromatics: 1.3% by volume Seybolt color: -16 or less

【0041】反応条件 反応温度 ;350℃ 圧力(水素分圧) ;4.9MPa 液空間速度 ;1.5hr-1 水素/オイル比 ;560m3 /m3 実施例13の触媒性能試験では、表4に示す経過日数、
即ち21日が経過した時点で、生成油試料を採取し、そ
の性状を分析した。その結果は、表4に示す通りであ
る。
Reaction conditions Reaction temperature; 350 ° C. Pressure (hydrogen partial pressure); 4.9 MPa Liquid hourly space velocity; 1.5 hr -1 hydrogen / oil ratio; 560 m 3 / m 3 In the catalyst performance test of Example 13, Table 4 The number of days elapsed,
That is, after 21 days had elapsed, a sample of the produced oil was collected and its properties were analyzed. The results are as shown in Table 4.

【表4】 [Table 4]

【0042】表4において、飽和炭化水素の比率が高い
程、芳香族化合物の水素化反応を促進させる触媒である
ことを意味し、またセーボルトの値の大きい程、着色成
分を分解、除去する触媒と評価できる。
In Table 4, a higher saturated hydrocarbon ratio means a catalyst that accelerates the hydrogenation reaction of the aromatic compound, and a higher Saebolt value decomposes and removes the coloring component. Can be evaluated.

【0043】実施例14〜実施例20 表4に示すように、実施例2、5、7、8、10、11
及び13で調製した触媒のいずれかを使用し、実施例1
3と同じ原料油及び同じ反応条件で、実施例13と同様
に水素化処理を行った。但し、実施例20の液空間速度
は、実施例14から実施例19の1.5hr-1に代え
て、0.6hr-1とした。実施例14から実施例20の
触媒性能試験では、表4に示す経過日数が経過した時点
で、生成油を採取し、その性状を分析した。その結果
は、それぞれ表4に示す通りである。
Examples 14 to 20 As shown in Table 4, Examples 2, 5, 7, 8, 10, 11 were obtained.
And using any of the catalysts prepared in
Hydrotreating was carried out in the same manner as in Example 13 under the same feedstock oil and reaction conditions as in 3. However, liquid hourly space velocity in Example 20, instead of 1.5hr -1 Example 19 from Example 14, was 0.6hr -1. In the catalyst performance tests of Examples 14 to 20, at the time when the number of days elapsed shown in Table 4 had elapsed, the produced oil was collected and its properties were analyzed. The results are as shown in Table 4.

【0044】比較例3 触媒および触媒の前処理条件が比較例1と同様である以
外は、実施例13と同様にして水素化処理を行った。比
較例3の触媒の性能試験では、表4に示す経過日数(2
0日)が経過した時点で、生成油を採取し、その性状を
分析した。その結果は、表4に示す通りである。
Comparative Example 3 Hydrotreating was performed in the same manner as in Example 13 except that the catalyst and the pretreatment conditions for the catalyst were the same as those in Comparative Example 1. In the performance test of the catalyst of Comparative Example 3, the number of elapsed days (2
After the lapse of 0 days), the produced oil was collected and analyzed for its properties. The results are as shown in Table 4.

【0045】比較例4 触媒および触媒の前処理条件が比較例2と同様である以
外は、実施例13と同様にして水素化処理を行った。比
較例4の触媒の性能試験では、表4に示す経過日数(2
0日)が経過した時点で、生成油を採取し、その性状を
分析した。その結果は、表4に示す通りである。
Comparative Example 4 The hydrogenation treatment was carried out in the same manner as in Example 13 except that the catalyst and the pretreatment conditions for the catalyst were the same as those in Comparative Example 2. In the performance test of the catalyst of Comparative Example 4, the elapsed days (2
After the lapse of 0 days), the produced oil was collected and analyzed for its properties. The results are as shown in Table 4.

【0046】表4から判るように、本発明に係る触媒を
使用した実施例13から実施例20では、比較例3及び
4に比べて、生成油中の3環、2環及び1環芳香族化合
物の含有率が少なく、逆に飽和炭化水素成分の含有率が
多い。これは、本発明に係る触媒が、従来の水素化処理
の際とほぼ同じ水素分圧及び反応温度の下で、芳香族化
合物の水素化反応、特に従来難しかった1環芳香族化合
物の水素化反応に対して有効であることを示している。
また、表4から判るように、実施例13から実施例20
で得た生成油は、その硫黄分の含有量が、比較例3で得
た生成油に比べて低く、しかも極めて低いレベルであ
る。これは、本発明に係る触媒が、0.04%程度の硫
黄含有率の原料油を水素化処理して極く微量の硫黄分し
か含まない生成油を生産できることを示し、耐硫黄性と
脱硫性能が高いことを示している。また、表4は、本発
明に係る触媒がセーボルト色を大幅に改善できることを
示している。
As can be seen from Table 4, in Examples 13 to 20 using the catalyst according to the present invention, as compared with Comparative Examples 3 and 4, the three-ring, two-ring and one-ring aromatics in the produced oil were compared. The compound content is low, and conversely the saturated hydrocarbon component content is high. This is because the catalyst according to the present invention has a hydrogenation reaction of an aromatic compound, particularly a hydrogenation of a one-ring aromatic compound, which has been difficult in the past, under substantially the same hydrogen partial pressure and reaction temperature as in the conventional hydrotreatment. It is shown to be effective for the reaction.
Further, as can be seen from Table 4, Example 13 to Example 20
The produced oil obtained in 1. has a lower sulfur content than the produced oil obtained in Comparative Example 3 and has an extremely low level. This shows that the catalyst according to the present invention can produce a product oil containing only a very small amount of sulfur by hydrotreating a feedstock oil having a sulfur content of about 0.04%, and has a high sulfur resistance and desulfurization. It shows that the performance is high. Table 4 also shows that the catalyst according to the present invention can significantly improve the Saybolt color.

【0047】実施例21 実施例2と同じ担体を用い、表5に示すように、白金の
担持量が0.1質量%の触媒を実施例1と同様にして調
製し、実施例21の試作触媒とした。次いで、実施例1
と同様に図1の高圧流通式反応装置10の反応器12に
充填して固定床式触媒層14を形成し、実施例2と同じ
前処理条件で処理した後、以下に記載した性状の脱硫処
理LCOを原料油として、以下に示す反応条件の下で水
素化処理を行い、実施例21の試作触媒の評価試験を行
った。
Example 21 Using the same carrier as in Example 2, as shown in Table 5, a catalyst having a platinum loading of 0.1% by mass was prepared in the same manner as in Example 1, and a prototype of Example 21 was prepared. It was used as a catalyst. Then, Example 1
1 is filled in the reactor 12 of the high-pressure flow reactor 10 of FIG. 1 to form a fixed bed catalyst layer 14 and treated under the same pretreatment conditions as in Example 2, and then desulfurization having the properties described below. Using the treated LCO as a feed oil, hydrogenation treatment was performed under the reaction conditions shown below, and an evaluation test of the prototype catalyst of Example 21 was performed.

【表5】 [Table 5]

【0048】原料油 油種 ;脱硫処理LCO 比重(15/4℃);0.9089 粘度(@30℃) ;3.870mm2 /s 蒸留性状 ;(初留点)が177℃、(50%
点)が276℃、(終点)が362℃ 硫黄分 ;0.018質量% 窒素分 ;0.031質量% 飽和炭化水素成分 ;30.9容量% 芳香族化合物成分 ;69.1容量%
Raw oil type; Desulfurized LCO specific gravity (15/4 ° C.); 0.9089 viscosity (@ 30 ° C.); 3.870 mm 2 / s distillation property; (initial boiling point) is 177 ° C., (50%
Point) is 276 ° C., (end point) is 362 ° C. Sulfur content; 0.018 mass% nitrogen content; 0.031 mass% saturated hydrocarbon component; 30.9 vol% aromatic compound component; 69.1 vol%

【0049】反応条件 反応温度 ;350℃ 圧力(水素分圧) ;4.9MPa 液空間速度 ;1.5hr-1 水素/オイル比 ;560m3 /m3 Reaction conditions Reaction temperature; 350 ° C. pressure (hydrogen partial pressure); 4.9 MPa liquid hourly space velocity; 1.5 hr -1 hydrogen / oil ratio; 560 m 3 / m 3

【0050】実施例21の触媒性能試験では、反応開始
後14〜17日の日数が経過した時点で生成油試料を採
取し、その性状を分析した。その結果は、表6に示す通
りである。表6では、脱芳香族率が大である程、芳香族
化合物の水素化反応が進行し、生成油中の芳香族化合物
分の含有率が低いことを意味する。表6に示した脱芳香
族率は、次式によって算出された芳香族化合物分の減少
率(%)で表示されている。 脱芳香族率(%)={(A−B)/A}×100 ここで、Aは原料油中の芳香族化合物分の容量%、及び
Bは生成油中の芳香族化合物分の容量%である。
In the catalyst performance test of Example 21, a sample of the produced oil was collected at the time when 14 to 17 days had elapsed after the start of the reaction, and its properties were analyzed. The results are as shown in Table 6. In Table 6, it means that the higher the dearomatization rate, the more the hydrogenation reaction of the aromatic compound proceeds, and the lower the content rate of the aromatic compound component in the produced oil. The dearomatization rate shown in Table 6 is represented by the reduction rate (%) of the aromatic compound component calculated by the following formula. Dearomatization rate (%) = {(A−B) / A} × 100 where A is the volume% of the aromatic compound in the feed oil, and B is the volume% of the aromatic compound in the produced oil. Is.

【表6】 [Table 6]

【0051】実施例22〜26 実施例22〜26では、白金の担持量が、表5に示すよ
うに、実施例21と異なり、それぞれ、0.5質量%、
1.0質量%、2.1質量%、4.8質量%及び7.1
%であることを除いて、実施例21と同様にして調製
し、それぞれ実施例22から25の試作触媒とした。次
いで、実施例21と同様にして実施例22から26の試
作触媒の評価試験を行い、その結果を実施例21と同様
に表6に示した。
Examples 22 to 26 In Examples 22 to 26, the loading amount of platinum was 0.5% by mass, respectively, as shown in Table 5, unlike Example 21.
1.0 wt%, 2.1 wt%, 4.8 wt% and 7.1
%, Respectively, to prepare trial catalysts of Examples 22 to 25, respectively. Then, evaluation tests of the prototype catalysts of Examples 22 to 26 were performed in the same manner as in Example 21, and the results are shown in Table 6 as in Example 21.

【0052】実施例27及び28 実施例27及び28では、シリカの混合量が、実施例2
1と異なり、表5に示すように、それぞれ、10質量%
及び40質量%であることを除いて、実施例21と同様
にして調製し、それぞれ実施例27及び28の試作触媒
とした。次いで、実施例21と同様にして実施例27及
び28の試作触媒の評価試験を行い、その結果を実施例
21と同様に表6に示した。
Examples 27 and 28 In Examples 27 and 28, the mixing amount of silica was the same as that in Example 2.
Different from 1, as shown in Table 5, each 10% by mass
And 40% by mass, respectively, to prepare catalysts in the same manner as in Example 21 to obtain trial catalysts of Examples 27 and 28, respectively. Then, evaluation tests of the prototype catalysts of Examples 27 and 28 were performed in the same manner as in Example 21, and the results are shown in Table 6 as in Example 21.

【0053】比較例5〜10 比較例1と同じ担体を用い、表5に示すように、白金の
担持量が、それぞれ、0.1質量%、0.5質量%、
1.0質量%、2.1質量%、5.6質量%及び7.1
質量%であることを除いて実施例21と同様にして触媒
を調製し、それぞれを比較例5から10の触媒とした。
次いで、実施例21と同様にして比較例5から10の触
媒の評価試験を行い、その結果を実施例21と同様に表
6に示した。
Comparative Examples 5-10 Using the same carrier as in Comparative Example 1, as shown in Table 5, the loading amounts of platinum were 0.1% by mass, 0.5% by mass, and 0.5% by mass, respectively.
1.0 wt%, 2.1 wt%, 5.6 wt% and 7.1
A catalyst was prepared in the same manner as in Example 21 except that the content was% by mass, and each was used as a catalyst of Comparative Examples 5 to 10.
Then, evaluation tests of the catalysts of Comparative Examples 5 to 10 were performed in the same manner as in Example 21, and the results are shown in Table 6 as in Example 21.

【0054】実施例21〜26及び比較例5〜10で得
た表6に示す脱芳香族率と各例の白金担持量の関係を図
2に示すように整理した。図2では、横軸に白金担持量
(質量%)を、縦軸に脱芳香族率(%)を取り、白抜き
の四角形は実施例21〜26を、黒四角は比較例5〜1
0のデータを示している。その結果、図2から判るよう
に、γ−アルミナを主成分とし、担体副成分として担体
基準でシリカを20質量%含む担体に白金を担持させて
なる本発明に係る触媒は、白金が約8質量%までの全領
域で、γ−アルミナからなる担体に同じ量又はほぼ同じ
量の白金を担持させた比較例の触媒に比べて、脱芳香族
率が高い。即ち、本発明に係る触媒を使用すれば、同じ
白金担持量の比較例の触媒に比べて、芳香族化合物分の
含有率が少なく、かつ飽和炭化水素成分の含有率が多い
生成油を得ることができる。これは、本発明に係る触媒
が、従来の水素化処理の際とほぼ同じ水素分圧及び反応
温度の下で、脱硫処理LCO中の芳香族化合物の水素化
反応に対して有効であることを示している。また、図2
は、白金担持量が増加するにつれて、脱芳香族率が増加
し、即ち生成油中の芳香族化合物分が減少していること
を示している。しかし、白金担持量が8質量%を越える
と、白金担持量の増加に対して、脱芳香族率の増加は明
らかに小さくなり、触媒の芳香族化合物の水素化性能は
飽和状態に近づいていることを示している。これは、活
性成分である白金金属の凝集等によって、活性成分の分
散性が極端に悪くなっているためである。従って、白金
金属を効率的に分散させ、芳香族化合物の高い水素化性
能を維持しつつ触媒コストを低減するには、白金担持量
を8質量%以下に制限すべきである。
The relationship between the dearomatization rate shown in Table 6 obtained in Examples 21 to 26 and Comparative Examples 5 to 10 and the amount of platinum carried in each example was arranged as shown in FIG. In FIG. 2, the amount of platinum supported (mass%) is plotted on the horizontal axis, and the dearomatization ratio (%) is plotted on the vertical axis, with white squares representing Examples 21 to 26 and black squares representing Comparative Examples 5-1.
The data of 0 is shown. As a result, as can be seen from FIG. 2, the catalyst according to the present invention in which platinum is supported on a carrier containing γ-alumina as a main component and 20% by mass of silica as a carrier subcomponent on a carrier basis, has a platinum content of about 8%. The dearomatization rate is higher than that of the catalyst of Comparative Example in which the same amount or almost the same amount of platinum is supported on the carrier made of γ-alumina in the entire region up to mass%. That is, when the catalyst according to the present invention is used, it is possible to obtain a product oil having a lower content of aromatic compounds and a higher content of saturated hydrocarbon components as compared with the catalyst of the comparative example having the same platinum loading amount. You can This means that the catalyst according to the present invention is effective for the hydrogenation reaction of aromatic compounds in desulfurization-treated LCO under substantially the same hydrogen partial pressure and reaction temperature as in the conventional hydrotreatment. Shows. FIG.
Shows that the dearomatization rate increases as the platinum loading increases, that is, the aromatic compound content in the produced oil decreases. However, when the amount of platinum supported exceeds 8% by mass, the increase in the amount of dearomatization becomes apparently small with respect to the increase in the amount of platinum supported, and the hydrogenation performance of the aromatic compound of the catalyst approaches the saturated state. It is shown that. This is because the dispersibility of the active ingredient is extremely deteriorated due to aggregation of platinum metal which is the active ingredient. Therefore, in order to efficiently disperse the platinum metal and reduce the catalyst cost while maintaining the high hydrogenation performance of the aromatic compound, the amount of platinum supported should be limited to 8% by mass or less.

【0055】試作触媒中の白金担持量がそれぞれ0.5
質量%である実施例22、27、28及び比較例6で得
た表6に示す脱芳香族率と、各例の試作触媒中のシリカ
混合量の関係を、図3に示すように整理した。図3で
は、横軸にシリカ混合量(質量%)を、縦軸に脱芳香族
率(%)を取っている。この結果、図3から判る通り、
γ−アルミナを主成分とし、担体副成分としてシリカを
混合した担体に0.5質量%の白金を担持させた本発明
に係る触媒は、担体基準でシリカ混合量が5〜50質量
%の全領域で、γ−アルミナからなる担体に同じ量の白
金を担持させた比較例の触媒に比べて、脱芳香族率が高
い。即ち、本発明に係る触媒を使用すれば、同じ白金担
持量の比較例の触媒に比べて、芳香族化合物分の含有量
が少なく、かつ飽和炭化水素成分の含有量の多い生成油
を得ることができる。これは、本発明に係る触媒が従来
の水素化処理の際とほぼ同じ水素分圧及び反応温度の下
で、脱硫LCO中の芳香族化合物の水素化反応に対して
有効であることを示している。
The amount of platinum carried in the trial catalyst was 0.5 each.
The relationship between the dearomatization rate shown in Table 6 obtained in Examples 22, 27, 28 and Comparative Example 6 which is% by mass, and the amount of silica mixed in the prototype catalyst of each example was arranged as shown in FIG. . In FIG. 3, the horizontal axis represents the silica mixture amount (mass%), and the vertical axis represents the dearomatization rate (%). As a result, as can be seen from FIG.
The catalyst according to the present invention in which 0.5% by mass of platinum is supported on a carrier in which γ-alumina is a main component and silica is mixed as a carrier subcomponent, the total amount of silica is 5 to 50% by mass based on the carrier. In the region, the rate of dearomatization is higher than that of the catalyst of the comparative example in which the same amount of platinum is supported on the carrier made of γ-alumina. That is, when the catalyst according to the present invention is used, it is possible to obtain a product oil having a lower content of aromatic compounds and a higher content of saturated hydrocarbon components as compared with the catalyst of the comparative example having the same platinum loading amount. You can This shows that the catalyst according to the present invention is effective for the hydrogenation reaction of aromatic compounds in desulfurized LCO under almost the same hydrogen partial pressure and reaction temperature as in the conventional hydrotreatment. There is.

【0056】また、図3は、担体中のシリカ混合量が5
質量%未満又は50質量%以上の場合には、比較例の触
媒を使用した場合より、脱芳香族率が高く、即ち生成油
中の芳香族化合物分は少ないものの、その程度は小さい
ことを示している。これは、担体中のシリカ混合量が5
質量%未満又は50質量%以上の場合には、担体中のシ
リカの量が少な過ぎるために、又はシリカの量が多過ぎ
るために、シリカとアルミナとの混合によって形成され
た、水素化反応に対して有効に作用する酸点の数量が、
少なくなるからと考えられる。よって、比較例の触媒と
比較して、明確に脱芳香族率が高くなるシリカ混合量は
5〜50質量%の範囲であり、好ましくは10〜40質
量%の範囲であって、この範囲で、シリカ混合、即ち非
アルミナ系無機物の混合による効果が最も高くなる。
Further, FIG. 3 shows that the amount of silica mixed in the carrier is 5
When it is less than 50% by mass or more than 50% by mass, the dearomatization rate is higher than that in the case of using the catalyst of Comparative Example, that is, the aromatic compound content in the produced oil is small, but the degree thereof is small. ing. This is because the silica content in the carrier is 5
If the amount is less than 50% by mass or more than 50% by mass, the amount of silica in the carrier is too small, or the amount of silica is too large, resulting in a hydrogenation reaction formed by mixing silica and alumina. The number of acid points that effectively act on the
It is thought that it will decrease. Therefore, as compared with the catalyst of the comparative example, the amount of silica mixture that clearly increases the dearomatization rate is in the range of 5 to 50% by mass, preferably in the range of 10 to 40% by mass. However, the effect of mixing silica, that is, mixing non-alumina-based inorganic substances is maximized.

【0057】[0057]

【発明の効果】以上、詳細に述べたように、本発明によ
れば、アルミナを主成分とし、非アルミナ系を含む無機
酸化物からなる担体に、触媒基準で、0.1〜8質量%
(金属換算)の白金、又は0.1〜8質量%(金属換
算)の白金に加えて0.1〜2質量%(酸化物換算)の
アルカリ金属及びアルカリ土類金属のいずれかを担持さ
せた触媒を使って、炭化水素油を接触水素化反応させる
ことにより、炭化水素油、例えば軽油中の芳香族化合物
の含有率を低減させることができる。本発明に係る触媒
を使用して、従来の水素化処理条件と同様の条件で、硫
黄分を相当量含有する原料油においても、接触水素化反
応を行わせることにより、芳香族化合物、特に従来の技
術では難しかった1環芳香族化合物と、硫黄化合物の水
素化処理を効率的に行うことができる。
As described above in detail, according to the present invention, a carrier composed of an inorganic oxide containing alumina as a main component and a non-alumina system is used in an amount of 0.1 to 8% by mass based on the catalyst.
In addition to (metal conversion) platinum or 0.1 to 8 mass% (metal conversion) platinum, 0.1 to 2 mass% (oxide conversion) either alkali metal or alkaline earth metal is supported. By carrying out a catalytic hydrogenation reaction on a hydrocarbon oil using such a catalyst, the content of aromatic compounds in the hydrocarbon oil, for example, light oil, can be reduced. Using the catalyst according to the present invention, under the same conditions as conventional hydrotreating conditions, even in a feedstock containing a considerable amount of sulfur, by carrying out a catalytic hydrogenation reaction, aromatic compounds, particularly conventional It is possible to efficiently perform the hydrogenation treatment of the 1-ring aromatic compound and the sulfur compound, which is difficult with the above technique.

【0058】本発明に係る炭化水素油の水素化処理用触
媒を使用すれば、原料油が多量の芳香族化合物を含有す
るLCOなどの炭化水素油であっても、水素化処理によ
って芳香族化合物や硫黄化合物を効率的に減少させるこ
とによって、排気ガス中のパティキュレートの発生を抑
制し、かつ、硫黄含有量が少ない軽油基材を低コストで
供給することができる。また、触媒の反応条件が、従来
の水素化処理の際の反応条件とほぼ同じなので、従来の
装置を大幅改造することなく転用できる利点を有する。
If the hydrocarbon oil hydrotreating catalyst according to the present invention is used, even if the feedstock oil is a hydrocarbon oil such as LCO containing a large amount of aromatic compounds, the aromatic compounds can be treated by the hydrotreatment. By efficiently reducing the amount of sulfur compounds and sulfur compounds, it is possible to suppress the generation of particulates in the exhaust gas and supply a gas oil base material having a low sulfur content at low cost. Further, since the reaction conditions of the catalyst are almost the same as the reaction conditions in the conventional hydrotreatment, there is an advantage that the conventional device can be diverted without major modification.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の触媒の性能試験で使用した装置のフ
ローチャートである。
FIG. 1 is a flow chart of an apparatus used in a performance test of a catalyst of Example 1.

【図2】白金担持量と脱芳香族率との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the amount of platinum supported and the rate of dearomatization.

【図3】シリカ混合量と脱芳香族率との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the amount of silica mixed and the rate of dearomatization.

【符号の説明】[Explanation of symbols]

10 固定床式の高圧流通式反応装置 12 反応器 14 触媒層 16 気液分離器 10 Fixed Bed Type High Pressure Flow Reactor 12 Reactor 14 Catalyst Layer 16 Gas-Liquid Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナを主成分とし、非アルミナ系を
含む無機酸化物からなる担体に、触媒基準で、0.1〜
8質量%(金属換算)の白金、又は0.1〜8質量%
(金属換算)の白金に加えて0.1〜2質量%(酸化物
換算)のアルカリ金属及びアルカリ土類金属のいずれか
を担持させた、炭化水素油の水素化処理用触媒。
1. A carrier composed of an inorganic oxide containing alumina as a main component and containing a non-alumina-based material, on a catalyst basis, from 0.1 to 0.1.
8% by mass (metal equivalent) of platinum, or 0.1 to 8% by mass
A catalyst for hydrotreating a hydrocarbon oil, which carries 0.1 to 2% by mass (oxide conversion) of an alkali metal or an alkaline earth metal in addition to (metal conversion) platinum.
【請求項2】 非アルミナ系の無機酸化物の含有量(酸
化物基準)が、5〜50質量%(担体基準)の範囲にあ
ることを特徴とする請求項1に記載の炭化水素油の水素
化処理用触媒。
2. The hydrocarbon oil according to claim 1, wherein the content of the non-alumina-based inorganic oxide (oxide basis) is in the range of 5 to 50 mass% (carrier basis). Hydrotreating catalyst.
【請求項3】 アルミナを主成分とし、非アルミナ系を
含む無機酸化物からなる担体に、触媒基準で、0.1〜
8質量%(金属換算)の白金、又は0.1〜8質量%
(金属換算)の白金に加えて0.1〜2質量%(酸化物
換算)のアルカリ金属及びアルカリ土類金属のいずれか
を担持させた触媒の存在下で、 3〜10MPaの範囲の水素分圧、200〜400℃の
範囲の温度及び0.1〜5.0hr-1の範囲の液空間速
度の条件で、芳香族化合物を含有し、かつ2000質量
ppm 以下の含有率で硫黄分を含む軽油留分の接触反応を
行うことを特徴とする軽油の水素化処理方法。
3. A carrier composed of an inorganic oxide containing alumina as a main component and containing a non-alumina-based material is used in an amount of 0.1 to 0.1 on a catalyst basis.
8% by mass (metal equivalent) of platinum, or 0.1 to 8% by mass
Hydrogen content in the range of 3 to 10 MPa in the presence of a catalyst supporting 0.1 to 2% by mass (oxide conversion) of an alkali metal or an alkaline earth metal in addition to (metal conversion) platinum. 2000 masses containing an aromatic compound under the conditions of pressure, temperature in the range of 200 to 400 ° C. and liquid hourly space velocity in the range of 0.1 to 5.0 hr −1.
A method for hydrotreating gas oil, which comprises carrying out a catalytic reaction of a gas oil fraction containing sulfur at a content rate of ppm or less.
JP30875596A 1995-12-22 1996-11-05 Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil Pending JPH09225304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30875596A JPH09225304A (en) 1995-12-22 1996-11-05 Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-349458 1995-12-22
JP34945895 1995-12-22
JP30875596A JPH09225304A (en) 1995-12-22 1996-11-05 Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil

Publications (1)

Publication Number Publication Date
JPH09225304A true JPH09225304A (en) 1997-09-02

Family

ID=26565682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30875596A Pending JPH09225304A (en) 1995-12-22 1996-11-05 Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil

Country Status (1)

Country Link
JP (1) JPH09225304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105712B2 (en) 2001-06-01 2006-09-12 Albemarle Corporation Process for the hydrogenation of aromatics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105712B2 (en) 2001-06-01 2006-09-12 Albemarle Corporation Process for the hydrogenation of aromatics

Similar Documents

Publication Publication Date Title
JP3786007B2 (en) Catalyst for hydrotreating aromatic compounds in hydrocarbon oils
JP5156624B2 (en) Method for producing hydrocarbon fraction
JP3688476B2 (en) Hydrocracking catalyst for medium distillate oil production
EP1818385A1 (en) Process for producing hydrorefined gas oil, hydrorefind gas oil, and gas oil composition
JP2000351977A (en) Catalyst composition for improving quality of hydrocarbon having boiling point in naphtha region
WO2012133316A1 (en) Hydrogenation refining catalyst and method for producing a hydrocarbon oil
KR20140146127A (en) Method for dewaxing hydrocarbon oil and method for producing lubricating-oil base oil
CN106552646B (en) Supported catalyst, preparation method and application thereof, and method for catalyzing ring opening of naphthenic hydrocarbon by hydrogenolysis
JP5537780B2 (en) Light oil composition
CN1094967C (en) Gasoline fraction hydrogenating and modifying method
JPH09225304A (en) Catalyst for hydrogenation treatment of hydrocarbon oil and hydrogenation treatment of light oil
JP3553258B2 (en) Method for hydrogenating aromatic hydrocarbons in hydrocarbon oil and catalyst used therefor
JP2001179105A (en) Catalyst for hydrodesulfurization and isomerization of light hydrocarbon oil and method of producing the same
JP3512317B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
JP3770679B2 (en) Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method
KR101600285B1 (en) Method for producing lubricating-oil base oil
JP3537979B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
JP3512326B2 (en) Hydroprocessing of gas oil
JP5298329B2 (en) Method for processing petroleum hydrocarbons
JP2001205084A (en) Catalyst for hydrogenating aromatic compound in hydrocarbon oil
RU2779444C1 (en) Catalyst for the second stage of hydrocracking
RU2779443C1 (en) Method for preparation of the catalyst for the second stage of hydrocracking
CN108654612B (en) Supported bimetallic catalyst, preparation method thereof and naphthenic hydrocarbon hydrogenolysis ring-opening method
CN110237848B (en) Supported multi-metal component catalyst, preparation method and application thereof, and naphthenic hydrocarbon hydrogenolysis ring-opening method
JP3844044B2 (en) Catalyst for hydrotreating aromatic compounds in hydrocarbon oil and process for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060315

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A02