JP2001353444A - Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same - Google Patents

Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same

Info

Publication number
JP2001353444A
JP2001353444A JP2000177066A JP2000177066A JP2001353444A JP 2001353444 A JP2001353444 A JP 2001353444A JP 2000177066 A JP2000177066 A JP 2000177066A JP 2000177066 A JP2000177066 A JP 2000177066A JP 2001353444 A JP2001353444 A JP 2001353444A
Authority
JP
Japan
Prior art keywords
catalyst
mass
alumina
palladium
sulfate group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000177066A
Other languages
Japanese (ja)
Inventor
Takao Kimura
孝夫 木村
Atsuyasu Oshio
敦保 大塩
Kazuhiko Hagiwara
和彦 萩原
Takashi Kawakami
敬士 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2000177066A priority Critical patent/JP2001353444A/en
Publication of JP2001353444A publication Critical patent/JP2001353444A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for hydrogenation desulfurization to decrease the sulfur content in hydrocarbon fractions obtained by fractionation of crude oil, particularly in naphtha, and to provide a catalyst which does not require preliminary sulfurization as a treating process prior to use and which shows high hydrogenation desulfurization activity at a low temperature. SOLUTION: The catalyst for hydrogenation desulfurization is prepared by depositing 1 to 30 mass% of alumina or silica alumina based on the catalyst, 1 to 3 mass% of sulfate groups in terms of the sulfur content and 0.05 to 10 mass% palladium on a carrier consisting of zirconium oxide or hydroxide. The catalyst has >=0.1 ml/g total pore volume, in which the proportion of pores having 1.4 to 2.1 nm pore diameter is 30 to 70 %. In addition to palladium, one or more kinds selected from platinum, rhenium, ruthenium, cobalt and molybdenum can be deposited by 0.05 to 10 mass% on the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油の水素
化脱硫処理に使用し、有機イオウ化合物を含有する軽質
炭化水素油のイオウ分を低減させる触媒に関する。詳し
くは、固体超強酸触媒を用いる水素化脱硫処理に当たっ
て、従来の脱硫触媒では反応前処理として必要であった
予備硫化処理の必要がなく、しかも炭化水素油中のイオ
ウ分を低減する活性が、比較的低い反応温度においても
高く得られる触媒に関する。本発明はまた、そのような
触媒の製造方法にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used for hydrodesulfurization treatment of hydrocarbon oil and for reducing the sulfur content of light hydrocarbon oil containing an organic sulfur compound. Specifically, in the hydrodesulfurization treatment using a solid superacid catalyst, the conventional desulfurization catalyst does not require a preliminary sulfurization treatment required as a pre-reaction treatment, and has an activity of reducing the sulfur content in hydrocarbon oil, It relates to a catalyst which can be obtained even at a relatively low reaction temperature. The present invention also relates to a method for producing such a catalyst.

【0002】[0002]

【従来の技術】原油の蒸留や分解によって得られる各種
の炭化水素留分は、多かれ少なかれイオウ化合物を含
み、これらの油を燃料として使用する場合には、それに
起因するイオウ酸化物が放出されて大気を汚染する。近
年は、自動車および航空機エンジンの燃料として使用さ
れるガソリンや軽油にも、環境汚染の問題からいっそう
の低イオウ化が要求されている。
2. Description of the Related Art Various hydrocarbon fractions obtained by distillation or cracking of crude oil contain more or less sulfur compounds, and when these oils are used as fuels, sulfur oxides resulting therefrom are released. Pollutes the atmosphere. In recent years, gasoline and light oil used as fuels for automobile and aircraft engines have been required to further reduce sulfur due to environmental pollution.

【0003】現在、ガソリン基材として使用されている
ライトナフサのような軽質炭化水素油は、有機イオウ化
合物を、通常は400〜700ppm程度含有しているた
め、マーロックス処理によりイオウ分を70〜150pp
mに低減したり、Co−Mo系、Ni−Mo系等の水素
化脱硫触媒を用いて処理することにより、イオウ分の低
減を図っている。軽油等の中間留分にはイオウ分が約1
〜2%含有されているため、ナフサの脱硫と同様に、水
素化脱硫触媒で処理してイオウ分を500ppm以下に低
減しているが、環境規制の強化により、今後さらにイオ
ウ分を低減することが要求されている。
[0003] Light hydrocarbon oils such as light naphtha currently used as a gasoline base material generally contain an organic sulfur compound in an amount of about 400 to 700 ppm.
m, or by using a hydrodesulfurization catalyst such as a Co-Mo system or a Ni-Mo system to reduce the sulfur content. The sulfur content is about 1 in the middle distillate such as light oil.
The sulfur content is reduced to 500 ppm or less by treating with a hydrodesulfurization catalyst, as in the case of naphtha desulfurization, but the sulfur content will be further reduced in the future by strengthening environmental regulations. Is required.

【0004】しかし、これまで使用されている水素化脱
硫触媒では、今後の規制に応えてイオウ分を十分に低減
するに足りるほど高い脱硫活性を示すものではなく、従
来品よりさらに活性がすぐれた脱硫触媒の出現が要望さ
れている。それに加えて、従来のCo−Mo系やNi−
Mo系等の脱硫触媒では、水素化脱硫反応の前処理とし
て予備硫化を必要とし、工程が煩雑であるばかりでな
く、経済的にも不利であった。
However, the hydrodesulfurization catalysts used so far do not exhibit a desulfurization activity high enough to sufficiently reduce the sulfur content in response to future regulations, and are even more active than conventional products. There is a demand for the emergence of desulfurization catalysts. In addition, conventional Co-Mo and Ni-
Mo-based desulfurization catalysts require preliminary sulfurization as a pretreatment for the hydrodesulfurization reaction, which is not only complicated but also economically disadvantageous.

【0005】この問題に対するひとつの解決策として、
最近、硫酸化ジルコニアをベースとする酸性触媒が開示
された(特開平11−197510号)。この触媒は、
硫酸化ジルコニアと白金のような水素化遷移金属とを含
有する固体酸性触媒であって、135m2/g以上の比
表面積と、0.16ml/g以上の細孔容積と、2nm以
上の平均細孔半径とを有するものである。
[0005] As one solution to this problem,
Recently, an acidic catalyst based on sulfated zirconia has been disclosed (JP-A-11-197510). This catalyst
A solid acidic catalyst containing sulfated zirconia and a transition metal hydride such as platinum, having a specific surface area of at least 135 m 2 / g, a pore volume of at least 0.16 ml / g, and an average fineness of at least 2 nm. And a hole radius.

【0006】発明者らも、硫酸化ジルコニアに白金族金
属を組み合わせた水素化脱硫触媒について研究し、軽質
炭化水素の脱硫活性とともに異性化性能が高い触媒を見
出して、すでに提案した(特願平11−324242
号)。その触媒は、酸化ジルコニウムまたは水酸化ジル
コニウムに硫酸根をイオウ分にして1〜3質量%含有さ
せるとともに、パラジウム0.05〜10質量%を(ま
たはさらに白金0.05〜10質量%をも)担持させ、
550〜800℃で焼成安定化させてなり、比表面積が
50〜150m2/gであることを特徴とするものであ
る。
The present inventors have also studied a hydrodesulfurization catalyst obtained by combining a sulfated zirconia with a platinum group metal, and have found a catalyst having a high isomerization performance as well as a desulfurization activity of light hydrocarbons, and have already proposed it (Japanese Patent Application No. Hei. 11-324242
issue). The catalyst contains zirconium oxide or zirconium hydroxide containing 1-3% by mass of sulfur as sulfur, and 0.05-10% by mass of palladium (or 0.05-10% by mass of platinum). Carried,
It is characterized by being stabilized by firing at 550 to 800 ° C. and having a specific surface area of 50 to 150 m 2 / g.

【0007】さらに研究を進めた発明者らは、特定の固
体超強酸触媒が、脱硫反応の前処理として予備硫化を行
なわなくても脱硫活性がすぐれ、比較的低い反応温度に
おいても炭化水素油中のイオウ分を効果的に低減できる
ことを見出した。
The inventors of the present invention further studied and found that a specific solid superacid catalyst had excellent desulfurization activity even without pre-sulfurization as a pretreatment for the desulfurization reaction, and even in a comparatively low reaction temperature, the hydrocarbon solid oil catalyst had a high catalytic activity. It has been found that the sulfur content can be effectively reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、発明
者らの得た上記の新知見を活用し、炭化水素油の水素化
脱硫に使用する触媒であって、使用に先立つ処理工程で
ある予備硫化を必要とせず、しかも高い水素化脱硫活性
を有し、比較的低温で有効な水素化脱硫触媒を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a catalyst used for hydrodesulfurization of a hydrocarbon oil by utilizing the above-mentioned new knowledge obtained by the inventors, and to provide a catalyst in a treatment step prior to use. An object of the present invention is to provide a hydrodesulfurization catalyst which does not require a certain presulfurization, has high hydrodesulfurization activity, and is effective at a relatively low temperature.

【0009】[0009]

【課題を解決するための手段】本発明の炭化水素油の水
素化脱硫触媒は、ジルコニウムの酸化物または水酸化物
からなる担体に、触媒基準で、アルミナまたはシリカ・
アルミナを1〜30質量%、硫酸根をイオウ分にして1
〜3質量%、パラジウムを0.05〜10質量%担持さ
せてなり、全細孔容積が0.1ml/g以上であって、そ
のうちで1.4〜2.1nmの細孔径を有する細孔が占
める割合が30〜70%であることを特徴とする。
The catalyst for hydrodesulfurization of a hydrocarbon oil according to the present invention is provided on a carrier comprising an oxide or hydroxide of zirconium on the basis of a catalyst.
1-30% by mass of alumina and sulfur content of sulfur
-3% by mass, and 0.05-10% by mass of palladium, and the total pore volume is 0.1 ml / g or more, among which pores having a pore size of 1.4-2.1 nm. Is 30 to 70%.

【0010】この触媒には、さらに白金、レニウム、ル
テニウム、コバルトおよびモリブデンから選んだ1種ま
たは2種以上を、0.05〜10質量%担持させること
もできる。
The catalyst may further support 0.05 to 10% by mass of one or more selected from platinum, rhenium, ruthenium, cobalt and molybdenum.

【0011】本発明の触媒を使用した炭化水素油の水素
化脱硫方法は、有機イオウ分を含有する炭化水素留分
を、水素とともに、水素分圧1〜15MPa、温度50
〜350℃、液空間速度0.1〜15hr-1、および水
素/オイル比50〜1500NL/Lの条件下で、この
触媒に接触させて脱硫反応を行なうことからなる。
The hydrodesulfurization process for hydrocarbon oils using the catalyst of the present invention is characterized in that a hydrocarbon fraction containing an organic sulfur component is mixed with hydrogen together with a hydrogen partial pressure of 1 to 15 MPa and a temperature of 50 MPa.
Under the conditions of 350350 ° C., a liquid hourly space velocity of 0.1-115 hr −1 , and a hydrogen / oil ratio of 50〜1500 NL / L, a desulfurization reaction is performed by contacting the catalyst.

【0012】[0012]

【発明の実施の形態】本発明の触媒の担体は、上記のと
おりジルコニウムの酸化物または水酸化物である。水酸
化ジルコニウムには、Zr(OH)4、Zr(OH)2、Zr
(OH)3などの形態があり、そのいずれでもよいが、一
般には酸化ジルコニウムの水和物ZrO2・xH2O(た
だし、0<x≦2)で表されるものが好適である。
BEST MODE FOR CARRYING OUT THE INVENTION The carrier of the catalyst of the present invention is a zirconium oxide or hydroxide as described above. Zirconium hydroxide includes Zr (OH) 4 , Zr (OH) 2 , Zr
There are various forms such as (OH) 3, and any of them may be used. In general, zirconium oxide hydrate ZrO 2 .xH 2 O (where 0 <x ≦ 2) is preferable.

【0013】ジルコニウムの酸化物または水酸化物から
なる担体には、アルミナまたはシリカ・アルミナを含有
させることが、触媒強度の観点から好ましい。その含有
量は、触媒基準で1〜30質量%、好ましくは3〜25
質量%である。含有量が1質量%未満であると、触媒強
度が低く工業用触媒として不適切であり、一方で30質
量%を超えると、触媒強度は十分であるが、脱硫触媒活
性が低くなる。
It is preferable from the viewpoint of catalyst strength that alumina or silica-alumina be contained in the support made of zirconium oxide or hydroxide. Its content is 1 to 30% by mass, preferably 3 to 25% by mass, based on the catalyst.
% By mass. If the content is less than 1% by mass, the catalyst strength is low and it is unsuitable as an industrial catalyst, while if it exceeds 30% by mass, the catalyst strength is sufficient but the activity of the desulfurization catalyst is low.

【0014】本発明の固体超強酸触媒は、SCSすなわ
ち側面破壊強度(Side Crush Strength、触媒の機械的
強度を示す値)が0.5kg/mm以上であることが好まし
い。SCSが0.5kg/mmに満たないと触媒強度が低
く、反応装置に触媒を充填したときに触媒が破壊して粉
末化するおそれがある。触媒粒が粉末化すると、装置内
の差圧が大きくなって、水素化処理の運転が続行できな
くなるおそれがある。
The solid superacid catalyst of the present invention preferably has an SCS, that is, a side crush strength (a value indicating the mechanical strength of the catalyst) of 0.5 kg / mm or more. If the SCS is less than 0.5 kg / mm, the catalyst strength is low, and the catalyst may be broken and powdered when the reactor is filled with the catalyst. When the catalyst particles are powdered, the pressure difference inside the device may increase, and the operation of the hydrotreating may not be continued.

【0015】担体にパラジウムを担持させるために使用
するパラジウム化合物としては、塩化金属酸塩、塩化
物、硫酸塩、硝酸塩、酢酸塩、テトラアミンパラジウム
錯体などが挙げられる。好ましいものは、塩化物、硫酸
塩および硝酸塩である。
Examples of the palladium compound used for supporting palladium on the carrier include metal chlorides, chlorides, sulfates, nitrates, acetates, and tetraamine palladium complexes. Preferred are chlorides, sulfates and nitrates.

【0016】パラジウムの含有量は、触媒基準で、0.
05〜10質量%、好ましくは0.1〜5質量%とす
る。パラジウム担持量が0.05質量%未満では脱硫活
性が発現せず、10質量%を超えると活性金属であるパ
ラジウムの分散性が低くなり、かえって活性が低下す
る。
[0016] The content of palladium is 0.1% on a catalyst basis.
The amount is from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass. If the supported amount of palladium is less than 0.05% by mass, the desulfurization activity is not exhibited, and if it exceeds 10% by mass, the dispersibility of palladium which is an active metal is lowered, and the activity is rather lowered.

【0017】担体に硫酸根(SO4)を与える処理剤と
しては、硫酸、硫酸アンモニウム、あるいは硫化水素、
亜硫酸ガス等が挙げられる。使いやすいものは、硫酸や
硫酸アンモニウムである。硫酸根の量は、イオウ(S)
分として1〜3質量%、好ましくは1.5〜2質量%と
なるようにする。硫酸根の量がイオウとして1質量%未
満であると、触媒の酸性度つまり固体超強酸性が弱く、
脱硫触媒としての活性が不十分である。また、3質量%
を超える多量になると、ジルコニア担体の表面を硫酸根
が過剰に覆い、表面に積層して活性点をつぶしてしまう
ため、かえって活性が低下する。
Examples of the treating agent that gives a sulfate group (SO 4 ) to a carrier include sulfuric acid, ammonium sulfate, hydrogen sulfide, and the like.
Sulfurous acid gas and the like are mentioned. Those that are easy to use are sulfuric acid and ammonium sulfate. The amount of sulfate is sulfur (S)
The content is 1 to 3% by mass, preferably 1.5 to 2% by mass. If the amount of sulfate is less than 1% by mass as sulfur, the acidity of the catalyst, that is, the solid superacidity is weak,
Insufficient activity as a desulfurization catalyst. In addition, 3% by mass
If the amount exceeds the above range, the surface of the zirconia carrier is excessively covered with sulfate groups, and the active sites are crushed by laminating on the surface, so that the activity is rather lowered.

【0018】触媒中のイオウ分の測定は、試料を酸素気
流中で燃焼させ、試料中に含まれているSを酸化させて
SO2にし、水分とダストを除去した後、赤外線検出器
たとえばソリッド・ステート型の検出器を用いて検出す
ることにより行なう。この分析方法によれば、試料中の
イオウ分量を0.001〜99.99%の濃度範囲で求
めることができる。
The sulfur content in the catalyst is measured by burning a sample in an oxygen stream, oxidizing S contained in the sample to SO 2 , removing moisture and dust, and then using an infrared detector such as a solid detector. -It is performed by detecting using a state type detector. According to this analysis method, the amount of sulfur in the sample can be determined in the concentration range of 0.001 to 99.99%.

【0019】本発明の水素化脱硫触媒は、所定の温度で
焼成安定させた後、全細孔容積が0.1ml/g以上、好
ましくは0.1〜0.25ml/gの範囲内であって、そ
のうちで1.4〜2.1nmの細孔径を有する細孔が占
める割合が30〜70%であることを要する。全細孔容
積が0.1ml/gに達しないものは、触媒活性が高く得
られない。上記の範囲の細孔径をもつ細孔の容積が全細
孔容積の30%未満であると、脱硫活性点が少なく、十
分な脱硫活性が得られない。70%を超えると、脱硫活
性は十分に得ることができるが、触媒強度が低下する。
好ましい範囲は、35〜65%である。
The hydrodesulfurization catalyst of the present invention has a total pore volume of 0.1 ml / g or more, preferably 0.1 to 0.25 ml / g, after calcination and stabilization at a predetermined temperature. It is necessary that the ratio of the pores having a pore diameter of 1.4 to 2.1 nm is 30 to 70%. If the total pore volume does not reach 0.1 ml / g, high catalytic activity cannot be obtained. If the volume of the pores having a pore diameter in the above range is less than 30% of the total pore volume, the desulfurization activity point is small, and sufficient desulfurization activity cannot be obtained. If it exceeds 70%, the desulfurization activity can be sufficiently obtained, but the strength of the catalyst decreases.
The preferred range is 35-65%.

【0020】上記の細孔径と細孔容積は、通常の表面積
および細孔容積測定装置を用い、窒素吸着法により測定
・算出することができる。
The above pore diameter and pore volume can be measured and calculated by a nitrogen adsorption method using an ordinary surface area and pore volume measuring device.

【0021】本発明の触媒の好ましい態様は、前記のよ
うに、パラジウムを含有する触媒に白金、ルテニウム、
レニウム、コバルトおよびモリブデンから選んだ金属を
1種または2種以上添加することにより、さらに脱硫活
性を高くしたものである。これらの金属の添加量は、
0.05〜10質量%、好ましくは、0.05〜5質量
%である。0.05質量%未満では脱硫活性の向上効果
が認められず、10質量%を超えると活性金属の分散性
が低下し、脱硫活性はむしろ低くなる可能性がある。
In a preferred embodiment of the catalyst of the present invention, as described above, the catalyst containing palladium contains platinum, ruthenium,
The desulfurization activity is further enhanced by adding one or more metals selected from rhenium, cobalt and molybdenum. The amount of these metals added is
It is 0.05 to 10% by mass, preferably 0.05 to 5% by mass. If the amount is less than 0.05% by mass, the effect of improving the desulfurization activity is not recognized. If the amount exceeds 10% by mass, the dispersibility of the active metal is reduced, and the desulfurization activity may be rather reduced.

【0022】本発明の固体超強酸触媒は、焼成安定化処
理を行なった後の物性として、担体の酸化ジルコニウム
(ZrO2)の結晶構造における単斜晶構造と正方晶構
造との存在比率が、単斜晶/正方晶=20/80〜0/
100の範囲にあることが好ましく、より好ましい範囲
は、10/90〜0/100である。これは、触媒担体
としては正方晶構造の方が高活性であり、単斜晶構造の
割合が高いと、それにしたがって触媒活性が低くなるた
めである。酸化ジルコニウム中の単斜晶構造と正方晶構
造の存在比は、触媒のX線回折ピークを測定し、CuK
α線による2θ=28.2(単斜晶構造の主ピーク)の
ピークと、2θ=30.2(正方晶構造の主ピーク)と
のX線回折ピーク積分強度比をもって算出することがで
きる。
The solid superacid catalyst of the present invention has a physical property after the calcination stabilization treatment in which the abundance ratio between the monoclinic structure and the tetragonal structure in the crystal structure of zirconium oxide (ZrO 2 ) of the carrier is as follows. Monoclinic / tetragonal = 20 / 80-0 /
It is preferably in the range of 100, more preferably 10/90 to 0/100. This is because the tetragonal structure has a higher activity as the catalyst carrier, and the higher the proportion of the monoclinic structure, the lower the catalytic activity. The abundance ratio between the monoclinic structure and the tetragonal structure in zirconium oxide was determined by measuring the X-ray diffraction peak of the catalyst,
It can be calculated from the integrated intensity ratio of the X-ray diffraction peak of 2θ = 28.2 (main peak of monoclinic structure) and 2θ = 30.2 (main peak of tetragonal structure) due to α-rays.

【0023】さらに、本発明の固体超強酸触媒は、所定
の焼成安定化処理を行なった後、比表面積が50〜20
0m2/gの範囲にあることが好ましい。より好ましく
は、50〜150m2/gの範囲である。比表面積が50
m2/g未満では、担持金属の分散性が低く、水素化脱硫
のための活性点も少なくなる。比表面積が低いものは、
ジルコニウム酸化物の結晶構造も、単斜晶と正方晶の比
率が20/80より大きくなる傾向があり、この観点か
らも好ましくない。比表面積が低ければ、触媒中の硫酸
根の含有量も、イオウ分で1質量%以上を確保すること
が困難になり、固体超強酸性が発現しない。一方、比表
面積が200m2/gを超えるものは、ジルコニウム酸化
物の結晶化が進行せず、その中の酸化ジルコニウム正方
晶構造の割合が低いレベルであるため、やはり水素化脱
硫活性が低い値に止まり、好ましくない。上記の比表面
積は、BET法により測定した値を用いる。
Further, the solid superacid catalyst of the present invention has a specific surface area of 50 to 20 after a predetermined calcination stabilization treatment.
It is preferably in the range of 0 m 2 / g. More preferably, it is in the range of 50 to 150 m 2 / g. Specific surface area is 50
If it is less than m 2 / g, the dispersibility of the supported metal is low, and the number of active sites for hydrodesulfurization is reduced. Those with low specific surface area
The crystal structure of zirconium oxide also tends to have a monoclinic / tetragonal ratio greater than 20/80, which is not preferred from this viewpoint. If the specific surface area is low, it is difficult to secure the content of sulfate groups in the catalyst at 1% by mass or more by sulfur content, and solid superacidity does not appear. On the other hand, when the specific surface area exceeds 200 m 2 / g, crystallization of the zirconium oxide does not progress, and the ratio of the zirconium oxide tetragonal structure therein is at a low level. It is not preferable. As the specific surface area, a value measured by the BET method is used.

【0024】本発明の触媒を製造する方法には特段の限
定はなく、硫酸根を与え、またパラジウムを担持させる
方法も、順序も任意であるが、好適な具体例を挙げれば
次の諸方法であり、そのいずれの方法を用いてもよい。 (1)水酸化ジルコニウム担体にまず硫酸根を含有さ
せ、これを乾燥後、パラジウム金属を含浸担持させ、乾
燥・焼成を行ない、続いてアルミナゾル等の無機酸化物
を混合して、成形・乾燥・焼成を行なう工程 (2)水酸化ジルコニウム担体に、活性金属を先に含浸
担持させ、これを乾燥後、硫酸根を含有させ、乾燥・焼
成を行ない、つぎにアルミナゾル等の無機酸化物を混合
して、成形・乾燥・焼成を行なう工程 (3)水酸化ジルコニウム担体にまずパラジウム金属を
含浸担持させ、これにアルミナゾル等の無機酸化物を混
合し、成形・乾燥・焼成後、硫酸根を含有させて、乾燥
・焼成する工程 (4)水酸化ジルコニウム担体にまず硫酸根を含有さ
せ、これにアルミナゾル等の無機酸化物を混合し、成形
・乾燥・焼成した後、パラジウム金属を含浸担持させ
て、乾燥・焼成する工程 (5)水酸化ジルコニウム担体に硫酸根とパラジウム金
属とを同時に担持させ、それを乾燥・焼成後、アルミナ
ゾル等の無機酸化物を混合して、成形・乾燥・焼成する
工程 (6)水酸化ジルコニウム担体に初めにアルミナゾル等
の無機酸化物を混合し、これを成形・乾燥した後、硫酸
根を含有させて再度乾燥を行ない、ついでパラジウム金
属を含浸担持させてから、乾燥・焼成を行なう工程
There is no particular limitation on the method for producing the catalyst of the present invention. The method for providing sulfate and supporting palladium is not limited, and the order is arbitrary. And any of these methods may be used. (1) A zirconium hydroxide carrier first contains a sulfate group, which is dried, impregnated and supported with palladium metal, dried and calcined, and then mixed with an inorganic oxide such as alumina sol to form, dry, and form. Step of calcining (2) The active metal is first impregnated and supported on the zirconium hydroxide carrier, dried, then sulfated, dried and calcined, and then an inorganic oxide such as alumina sol is mixed. (3) Palladium metal is first impregnated and supported on the zirconium hydroxide carrier, and an inorganic oxide such as alumina sol is mixed with the zirconium hydroxide carrier. (4) A zirconium hydroxide carrier is first made to contain a sulfate group, an inorganic oxide such as alumina sol is mixed with the zirconium hydroxide carrier, molded, dried and calcined. (5) A zirconium hydroxide carrier is loaded with a sulfate group and a palladium metal at the same time, dried and fired, mixed with an inorganic oxide such as alumina sol, and formed. Drying and calcining step (6) First, an inorganic oxide such as alumina sol is mixed with the zirconium hydroxide support, molded and dried, then sulfated, dried again, and then impregnated with palladium metal Step of drying and firing after loading

【0025】パラジウムに加えて第二の金属成分である
白金、ルテニウム、レニウム、コバルトまたはモリブデ
ンを使用する場合、その担持は、パラジウムの担持と同
様な方法を用いて行なうことができ、焼成安定化処理前
であれば、どの段階でこれら金属を導入してもよい。も
ちろん、パラジウムと同時に導入してもよい。
When platinum, ruthenium, rhenium, cobalt or molybdenum, which is the second metal component, is used in addition to palladium, the loading can be carried out by the same method as that for loading palladium, and the firing stability can be improved. These metals may be introduced at any stage before the treatment. Of course, you may introduce simultaneously with palladium.

【0026】以下、上記(1)の製造工程を例にとっ
て、本発明の触媒の製造方法を具体的に説明する。
Hereinafter, the method for producing a catalyst of the present invention will be described in detail by taking the production step (1) as an example.

【0027】まず、ジルコニウムの水酸化物または酸化
物からなる担体の素材に対して、硫酸根処理を行なう。
この硫酸根処理は、ジルコニウムの水酸化物または酸化
物に、水に溶かした硫酸塩を添加して、濾過、乾燥する
ことにより実施する。硫酸根を与える処理剤としては、
0.1〜5Nの硫酸、0.1〜10モル濃度の硫酸アン
モニウム、硫化水素や亜硫酸ガス等が挙げられるが、好
ましいのは、前記のように硫酸や硫酸アンモニウムであ
る。
First, the raw material of the carrier made of zirconium hydroxide or oxide is subjected to sulfate treatment.
This sulfate treatment is carried out by adding a sulfate dissolved in water to a hydroxide or oxide of zirconium, followed by filtration and drying. As a treatment agent that gives a sulfate group,
Examples thereof include 0.1 to 5N sulfuric acid, 0.1 to 10 molar concentration of ammonium sulfate, hydrogen sulfide, and sulfurous acid gas. Preferred are sulfuric acid and ammonium sulfate as described above.

【0028】硫酸根処理の方法には、含浸法や混練法が
ある。含浸法は、液体である処理剤を触媒担体に対して
1〜10倍当量含浸させ、濾過、乾燥する方法である。
乾燥は、たとえば110℃に、1〜24時間加熱する。
混練法は、硫酸根処理剤として固体の状態にあるもの
を、担体と混練して含有させる方法である。混練の手段
としては、一般に触媒製造に用いられる混練機であれ
ば、どのようなものを用いてもかまわない。混練の際に
は、粘度調整剤として液体を加えることもできる。添加
する液体としては、水、エタノール、イソプロパノー
ル、アセトン、メチルエチルケトン、ジエチルケトン、
メチルイソブチルケトン等の溶剤が挙げられる。この場
合、硫酸根処理剤と溶媒の添加順序にはとくに制限はな
く、混練の温度および時間は、その条件で本発明の触媒
が期待される物性をそなえる限り、限定されない。
As a method of the sulfate group treatment, there are an impregnation method and a kneading method. The impregnation method is a method of impregnating a treating agent which is a liquid with a catalyst carrier in an equivalent amount of 1 to 10 times, filtering and drying.
Drying is performed, for example, by heating to 110 ° C. for 1 to 24 hours.
The kneading method is a method in which a solid state as a sulfate group treating agent is kneaded with a carrier and contained. As a kneading means, any kneading machine generally used for the production of a catalyst may be used. During kneading, a liquid can be added as a viscosity modifier. Liquids to be added include water, ethanol, isopropanol, acetone, methyl ethyl ketone, diethyl ketone,
Solvents such as methyl isobutyl ketone are exemplified. In this case, there are no particular restrictions on the order of addition of the sulfate treatment agent and the solvent, and the temperature and time of kneading are not limited as long as the catalyst of the present invention has the expected physical properties under the conditions.

【0029】次に、硫酸根含有ジルコニアに、パラジウ
ム金属を担持させる。パラジウムは、その塩化金属酸
塩、塩化物、硫酸塩、硝酸塩、酢酸塩、テトラアミンパ
ラジウム錯体等の水溶液に、担体を浸漬して引き上げ、
乾燥することにより含有させることができる。乾燥は、
たとえば温度110℃で1〜24時間行なう。別法とし
て、上述の硫酸根処理剤との混練時に、パラジウム金属
の塩化物、硫酸物、硝酸物等も混合して、混練によっ
て、金属と硫酸根とを同時に担持させるという手法を選
ぶこともできる。
Next, palladium metal is supported on the sulfate group-containing zirconia. Palladium is immersed in an aqueous solution of metal chloride, chloride, sulfate, nitrate, acetate, tetraamine palladium complex, etc.
It can be contained by drying. Drying is
For example, it is performed at a temperature of 110 ° C. for 1 to 24 hours. As another method, when kneading with the above-mentioned sulfate group treating agent, chloride, sulfate, nitrate and the like of palladium metal are also mixed, and by kneading, a method of simultaneously supporting the metal and sulfate group may be selected. it can.

【0030】硫酸根およびパラジウム金属が担持された
担体には、焼成安定化処理を施す。焼成安定化処理は、
酸化性の雰囲気下、温度が550〜800℃の範囲、好
ましくは600〜750℃の範囲で、0.5〜10時間
にわたり加熱することにより行なう処理である。焼成温
度が550℃未満では、ジルコニウム化合物中に含まれ
る水酸化ジルコニウムの割合が多くなり、ジルコニウム
酸化物中の正方晶の占める割合が少なくなるため、固体
酸の性質が発現せず、触媒の水素化脱硫活性が低い。こ
れに対し、800℃を超える高温で加熱処理すると、水
酸化物の割合は減少するが、単斜晶の酸化ジルコニウム
の占める割合が多くなって、水素化脱硫活性が低くな
る。それだけでなく、硫酸根も触媒上から脱離し、触媒
中のイオウ分量が1質量%未満になり、固体酸強度が低
下してしまう。さらに、パラジウム等の担持金属のシン
タリングも起こり、水素化脱硫の活性点が減少する。
The carrier supporting the sulfate group and the palladium metal is subjected to a calcination stabilization treatment. The firing stabilization process is
This is a treatment performed by heating in an oxidizing atmosphere at a temperature of 550 to 800 ° C., preferably 600 to 750 ° C. for 0.5 to 10 hours. If the calcination temperature is lower than 550 ° C., the proportion of zirconium hydroxide contained in the zirconium compound increases, and the proportion of the tetragonal crystals in the zirconium oxide decreases, so that the properties of the solid acid do not appear and the catalyst hydrogen Low desulfurization activity. On the other hand, when heat treatment is performed at a high temperature exceeding 800 ° C., the proportion of hydroxide decreases, but the proportion of monoclinic zirconium oxide increases and the hydrodesulfurization activity decreases. In addition, the sulfate groups are also eliminated from the catalyst, the sulfur content in the catalyst becomes less than 1% by mass, and the solid acid strength decreases. Further, sintering of a supported metal such as palladium also occurs, and the active sites of hydrodesulfurization decrease.

【0031】触媒の焼成安定化処理を酸化性雰囲気下で
行なう理由は、もし還元性雰囲気下で行なうと、パラジ
ウムなどの金属または金属化合物と硫酸根の結合状態が
変化したり、還元分解に起因すると思われる硫酸根の減
少によって、触媒活性が低下するからである。
The reason why the stabilization treatment of the catalyst is carried out in an oxidizing atmosphere is that if it is carried out in a reducing atmosphere, the bonding state between a metal or metal compound such as palladium and a sulfate group changes, or the catalyst is caused by reductive decomposition. This is because the catalytic activity decreases due to the decrease in the sulfate group, which is considered to be the case.

【0032】上述の焼成安定化処理は、パラジウム等の
金属を担持する前に行なっても、後に行なってもかまわ
ない。金属を担持する前に行なう場合でも、焼成安定化
は、結晶状態が正方晶構造の酸化ジルコニウムが得られ
る温度である550〜800℃の範囲、さらに好ましく
は600〜750℃の範囲で実施し、焼成時間は0.5
〜10時間の範囲が好ましい。焼成安定化を先に行なっ
た場合は、つぎにパラジウム等の金属を含浸担持させ、
その後、さらに300〜700℃の温度で焼成する安定
化処理を行ない、触媒を活性化することもできる。
The above-mentioned calcination stabilization treatment may be performed before or after carrying a metal such as palladium. Even when carried out before supporting the metal, the firing stabilization is performed in the range of 550 to 800 ° C., which is the temperature at which the crystalline state of the zirconium oxide having a tetragonal structure is obtained, and more preferably in the range of 600 to 750 ° C. Firing time is 0.5
A range from 10 hours to 10 hours is preferred. If the firing stabilization is performed first, then impregnated with a metal such as palladium,
Thereafter, a stabilization treatment for firing at a temperature of 300 to 700 ° C. may be further performed to activate the catalyst.

【0033】このようにして得たパラジウム担持硫酸根
含有ジルコニアは、次にバインダーとなるアルミナやシ
リカ・アルミナと混合して、触媒に成形する。アルミナ
原料としては、種々の形態のものが使用できるが、水酸
化アルミニウム、ベーマイト、または擬ベーマイトの形
態のものが好ましい。シリカ原料としては、シリカゾル
が好適である。触媒の製造は、パラジウム担持硫酸根含
有ジルコニアと、たとえばアルミナゾルとを混合し、成
形、乾燥後、焼成安定化処理を行なうことからなる。あ
るいは、パラジウム含有硫酸根ジルコニアとベーマイト
粉末とを混合し、水その他の媒体を添加して流動性を与
えた後、成形処理を行ない、乾燥、焼成によって本発明
の触媒を得ることもできる。
The palladium-supported sulfate-containing zirconia thus obtained is then mixed with alumina or silica-alumina serving as a binder to form a catalyst. Although various forms can be used as the alumina raw material, those in the form of aluminum hydroxide, boehmite, or pseudo-boehmite are preferable. As the silica raw material, silica sol is suitable. The production of the catalyst comprises mixing palladium-supported sulfate-containing zirconia with, for example, alumina sol, molding, drying, and then performing a firing stabilization treatment. Alternatively, the catalyst of the present invention can also be obtained by mixing palladium-containing sulfated zirconia and boehmite powder, adding water or other medium to give fluidity, performing a molding treatment, drying and calcining.

【0034】バインダーとしてアルミナを使用する場合
は、上記の触媒製造法(1)〜(6)で述べたように、
水酸化ジルコニウムにアルミナを混合してから、硫酸
根、パラジウム金属等を与える処理を行ない、その後、
成形、乾燥、焼成する手順によってもよい。
When alumina is used as the binder, as described in the above catalyst production methods (1) to (6),
After mixing alumina with zirconium hydroxide, perform a treatment to give sulfate, palladium metal, etc.,
The molding, drying and firing procedures may be used.

【0035】触媒の形状にはとくに限定はなく、通常こ
の種の触媒がとり得る種々の形状、たとえば打錠成型や
押出成型により得られる円柱状、四葉型等を採用するこ
とができる。
The shape of the catalyst is not particularly limited, and various shapes which can be usually taken by this type of catalyst, for example, a columnar shape or a four-leaf type obtained by tableting or extrusion molding can be adopted.

【0036】本発明の好ましい態様である、パラジウム
に加えて白金、ルテニウム、レニウム、コバルトまたは
モリブデンを担持させた触媒の製造は、パラジウムを担
持させる方法と同様の手法で実施することができる。す
なわち、パラジウムと同時に、または別個に、これらの
金属の塩化金属酸塩、塩化物、硫酸塩、硝酸塩、酢酸
塩、テトラアミン錯体等の水溶液を担体に含浸させ、乾
燥することである。前記の硫酸根処理剤との混練時に、
これらの金属の塩化物、硫酸物、硝酸物等を混練するこ
とにより、硫酸根を与えると同時に、金属を担持させる
方法も採用することができる。
The production of a catalyst supporting platinum, ruthenium, rhenium, cobalt or molybdenum in addition to palladium, which is a preferred embodiment of the present invention, can be carried out in the same manner as the method for supporting palladium. That is, simultaneously or separately with palladium, the carrier is impregnated with an aqueous solution of a metal chloride, chloride, sulfate, nitrate, acetate, tetraamine complex, or the like, and dried. At the time of kneading with the sulfate treatment agent,
By kneading chlorides, sulfates, nitrates and the like of these metals, a method of giving a sulfate group and supporting the metal at the same time can be adopted.

【0037】本発明の固体超強酸触媒を用いて水素化脱
硫を行なう原料油としては、原油の常圧蒸留装置から留
出したライトナフサ、ヘビーナフサ、灯油、軽油等の有
機イオウを含有する炭化水素油が適切である。とくに好
適な原料油は、ASTM蒸留温度が25〜130℃、好
ましくは25〜110℃のライトナフサである。ライト
ナフサの有機イオウの含有量についていえば、700質
量ppm以下、好ましくは10〜500質量ppm程度のもの
が効果的に脱硫処理できる。
The feedstock oil to be subjected to hydrodesulfurization using the solid superacid catalyst of the present invention includes hydrocarbons containing organic sulfur such as light naphtha, heavy naphtha, kerosene, and light oil distilled from a crude oil distillation apparatus. Oil is appropriate. A particularly suitable feedstock is light naphtha having an ASTM distillation temperature of 25-130 ° C, preferably 25-110 ° C. Regarding the content of organic sulfur in light naphtha, those having a content of 700 mass ppm or less, preferably about 10 to 500 mass ppm, can be desulfurized effectively.

【0038】本発明の触媒を用いた炭化水素油の水素化
脱硫反応の条件は、下記のとおりである。 反応温度:50〜350℃、好ましくは100〜280
℃ 水素分圧:1.0〜15MPa、好ましくは1.4〜5
MPa LHSV:0.1〜15hr-1、好ましくは1.0〜8
hr-1 水素/オイル比:50〜1500NL/L、好ましくは
100〜1000NL/L
The conditions for the hydrodesulfurization reaction of hydrocarbon oil using the catalyst of the present invention are as follows. Reaction temperature: 50-350 ° C, preferably 100-280
° C Hydrogen partial pressure: 1.0 to 15 MPa, preferably 1.4 to 5
MPa LHSV: 0.1 to 15 hr-1, preferably 1.0 to 8
hr-1 hydrogen / oil ratio: 50 to 1500 NL / L, preferably 100 to 1000 NL / L

【0039】反応温度が50℃より低いと、触媒の活性
が低すぎ、一方、350℃以上では炭化水素油の分解が
進んで、生成油の収率が低下する。後記する実施例に見
るように、100〜200℃の、比較的低い温度で高い
脱硫活性を示すことが、この触媒の利点である。そのほ
かの条件すなわち水素分圧、液空間速度および水素/オ
イル比は、従来実施されている炭化水素油の脱硫反応の
条件と、ほぼ同様である。
When the reaction temperature is lower than 50 ° C., the activity of the catalyst is too low. On the other hand, when the reaction temperature is higher than 350 ° C., the decomposition of the hydrocarbon oil proceeds and the yield of the produced oil decreases. As seen in the examples below, it is an advantage of this catalyst that it exhibits high desulfurization activity at relatively low temperatures of 100-200 ° C. Other conditions, that is, the hydrogen partial pressure, the liquid hourly space velocity, and the hydrogen / oil ratio are almost the same as the conditions of the conventional desulfurization reaction of hydrocarbon oil.

【0040】本発明の固体超強酸触媒は、従来の脱硫触
媒に対し反応前処理として行なっている予備硫化は必要
ないが、それに代えて、触媒活性の安定化、すなわち担
持されている金属化合物の金属への還元と強酸点の活性
化のために、還元処理を施すことが好ましい。この還元
処理は、触媒を水素または不活性ガスの雰囲気下、10
0〜500℃の温度で1〜24時間乾燥し、次いで、水
素ガス雰囲気下で100〜400℃の温度で還元するこ
とにより実施することが好ましい。
The solid superacid catalyst of the present invention does not require pre-sulfurization, which is performed as a pre-reaction treatment for a conventional desulfurization catalyst, but instead stabilizes the catalytic activity, that is, removes the supported metal compound. For reduction to metal and activation of strong acid sites, reduction treatment is preferably performed. This reduction treatment is carried out by subjecting the catalyst to an atmosphere of hydrogen or an inert gas.
It is preferable to carry out drying by drying at a temperature of 0 to 500 ° C. for 1 to 24 hours, and then reducing at a temperature of 100 to 400 ° C. in a hydrogen gas atmosphere.

【0041】[0041]

【実施例】以下に、本発明の実施例1〜17(触媒A〜
J,NおよびP〜Tの製造)および比較例1〜5(触媒
*,L*およびO*の製造と、市販触媒U*およびV*
を挙げ、それら触媒を使用した水素化脱硫反応の例を示
して、本発明を詳細に説明する。ただし、本発明はこれ
らの例によって限定されるものではない。(*印は、比
較例であることを示す。)
EXAMPLES Examples 1 to 17 of the present invention (catalysts A to
J, N and P to T) and Comparative Examples 1 to 5 (production of catalysts K * , L * and O * and commercially available catalysts U * and V * )
The present invention will be described in detail by giving examples of hydrodesulfurization reactions using these catalysts. However, the present invention is not limited by these examples. (The asterisk indicates a comparative example.)

【0042】[実施例1] 触媒A (1)Zr(OH)4の調製 市販のオキシ塩化ジルコニウムZrOCl2・8H2Oの
1000gを4Lの蒸留水に溶かし、攪拌しながら、そ
こへ25%アンモニア水NH3aq.を滴下して、水酸化
ジルコニウムZr(OH)4を沈殿させた。水溶液のpH
が9.0になるように調製し、沈殿した水酸化ジルコニ
ウムを濾過して分離した。濾過後、蒸留水でよく洗浄
し、110℃で一昼夜乾燥させ、水酸化ジルコニウム4
90gを得た。 (2)SO4/Zr(OH)4の調製 上記のようにしてオキシ塩化ジルコニウムから調製した
水酸化ジルコニウムの400gを1N−硫酸4000g
に入れ、30分間攪拌した。攪拌後、濾過して固体分を
110℃で一昼夜乾燥し、硫酸根を含有する水酸化ジル
コニウムSO4/Zr(OH)4452gを得た。 (3)Pd/SO4/ZrO2の調製 塩化パラジウムPdCl21.8gを塩酸に溶かした溶
液に、硫酸根を与えた水酸化ジルコニウム190gを入
れ、Pd塩を含浸させた。その後、110℃で一昼夜乾
燥し、マッフル炉を用いて600℃で3時間焼成するこ
とにより、Pd担持硫酸根含有ジルコニア触媒原料(P
d/SO4/ZrO2)135gを得た。 (4)Pd/SO4/ZrO2−Al23 上記の操作で得られた触媒原料100gとアルミナゾル
60gとを十分混合し、押出成形機を通して直径1.6
mmの円柱状に成形し、110℃で一昼夜乾燥した。これ
を再度600℃に焼成して安定化することにより、触媒
Aを109g得た。
[0042] [Example 1] was dissolved catalyst A (1) Zr (OH) 4 1000g Preparation commercial zirconium oxychloride ZrOCl 2 · 8H 2 O in distilled water 4L, while stirring, 25% ammonia thereto Water NH 3 aq. Was added dropwise to precipitate zirconium hydroxide Zr (OH) 4 . PH of aqueous solution
Was adjusted to 9.0, and the precipitated zirconium hydroxide was separated by filtration. After filtration, wash well with distilled water, dry at 110 ° C. for 24 hours, and add zirconium hydroxide 4
90 g were obtained. (2) Preparation of SO 4 / Zr (OH) 4 400 g of zirconium hydroxide prepared from zirconium oxychloride as described above was mixed with 4000 g of 1N sulfuric acid.
And stirred for 30 minutes. After stirring, the mixture was filtered and the solid was dried at 110 ° C. for 24 hours to obtain 452 g of sulfated zirconium hydroxide SO 4 / Zr (OH) 4 . (3) Preparation of Pd / SO 4 / ZrO 2 A solution of 1.8 g of palladium chloride PdCl 2 dissolved in hydrochloric acid was charged with 190 g of zirconium hydroxide to which a sulfate group was given, and impregnated with a Pd salt. Thereafter, it is dried at 110 ° C. for 24 hours, and calcined in a muffle furnace at 600 ° C. for 3 hours to obtain a Pd-supported sulfate-containing zirconia catalyst material (P
d / SO 4 / ZrO 2 ) 135 g were obtained. (4) Pd / SO 4 / ZrO 2 —Al 2 O 3 100 g of the catalyst raw material obtained by the above operation and 60 g of alumina sol were sufficiently mixed and passed through an extruder to a diameter of 1.6.
It was molded into a column of mm and dried at 110 ° C. all day and night. This was calcined again at 600 ° C. and stabilized to obtain 109 g of Catalyst A.

【0043】[実施例2] 触媒B 実施例1において、塩化パラジウムの代わりに硫酸パラ
ジウム1.9gを用い、硫酸根含有水酸化ジルコニウム
を200g用いたほかは、実施例1と同じ条件で含浸、
乾燥、成形および焼成を行ない、触媒Bを151g得
た。
Example 2 Catalyst B The procedure of Example 1 was repeated except that 1.9 g of palladium sulfate was used instead of palladium chloride and 200 g of zirconium hydroxide containing a sulfate group was used.
Drying, molding and calcination were performed to obtain 151 g of Catalyst B.

【0044】[実施例3] 触媒C 実施例1において、塩化パラジウムの代わりに硝酸パラ
ジウム1.8gを用い、硫酸根含有水酸化ジルコニウム
を166g用いたほかは、実施例1と同じ条件で含浸、
乾燥、成形および焼成を行ない、触媒Cを175g得
た。
Example 3 Catalyst C The procedure of Example 1 was repeated, except that 1.8 g of palladium nitrate was used instead of palladium chloride, and 166 g of zirconium hydroxide containing a sulfate group was used.
Drying, molding and calcination were performed to obtain 175 g of Catalyst C.

【0045】[実施例4] 触媒D 実施例1において、塩化パラジウムの代わりにテトラア
ミンパラジウムクロライドモノハイドレート2.0gを
用い、硫酸根含有水酸化ジルコニウムを139g用いた
ほかは、実施例1と同じ条件で含浸、乾燥、成形および
焼成を行ない、触媒Dを149g得た。
Example 4 Catalyst D Example 1 was the same as Example 1 except that 2.0 g of tetraamine palladium chloride monohydrate was used instead of palladium chloride, and 139 g of zirconium hydroxide containing a sulfate group was used. Impregnation, drying, molding and calcination were performed under the same conditions to obtain 149 g of Catalyst D.

【0046】[実施例5] 触媒E 実施例1において、アルミナゾルを30g用いたほか
は、実施例1と同じ条件で含浸および乾燥を行ない、打
錠成形機を用いて直径3mmのペレットを製造し、これを
焼成して触媒Eを得た。
Example 5 Catalyst E The impregnation and drying were carried out under the same conditions as in Example 1 except that 30 g of alumina sol was used in Example 1, and pellets having a diameter of 3 mm were produced using a tableting machine. This was calcined to obtain a catalyst E.

【0047】[実施例6] 触媒F 実施例1において、アルミナゾルを90g用いたほか
は、実施例1と同じ条件で含浸、乾燥、成形および焼成
を行ない、触媒Fを得た。
Example 6 Catalyst F A catalyst F was obtained by impregnation, drying, molding and calcining under the same conditions as in Example 1 except that 90 g of alumina sol was used.

【0048】[実施例7] 触媒G 実施例1において、アルミナゾルを120g用いたほか
は、実施例1と同じ条件で、含浸、乾燥、成形および焼
成を行ない、触媒Gを得た。
Example 7 Catalyst G The catalyst G was obtained by impregnating, drying, molding and calcining under the same conditions as in Example 1 except that 120 g of alumina sol was used.

【0049】[実施例8] 触媒H 実施例1において、アルミナゾルを54gとし、さらに
シリカゾルを6g追加した以外は実施例1と同じ条件
で、含浸、乾燥、成形および焼成を行ない、触媒Hを得
た。
Example 8 Catalyst H The impregnation, drying, molding and calcination were carried out under the same conditions as in Example 1 except that 54 g of alumina sol and 6 g of silica sol were added, to obtain catalyst H. Was.

【0050】[実施例9] 触媒I 実施例1において、アルミナゾルを36g、シリカゾル
を24g追加し、押出成形機の代わりに打錠成形機を用
いた以外は、実施例1と同じ条件で、含浸、乾燥、焼成
を行ない、触媒Iを得た。
Example 9 Catalyst I In Example 1, impregnation was carried out under the same conditions as in Example 1 except that 36 g of alumina sol and 24 g of silica sol were added, and a tableting machine was used instead of an extruder. After drying and calcination, catalyst I was obtained.

【0051】[実施例10] 触媒J 実施例1において、アルミナゾルを108gとし、さら
にシリカゾルを12g追加した以外は、実施例1と同じ
条件で、含浸、乾燥、成形および焼成を行ない、触媒J
を得た。
Example 10 Catalyst J The impregnation, drying, molding and calcination were carried out under the same conditions as in Example 1 except that the alumina sol was changed to 108 g and the silica sol was further added to 12 g.
I got

【0052】[比較例1] 触媒K* 実施例1において、アルミナの混合をせず、かつ打錠成
形機を用いた以外は実施例1と同じ条件で、含浸、乾
燥、成形および焼成を行ない、触媒Kを得た。
[Comparative Example 1] Catalyst K * Impregnation, drying, molding and firing were performed under the same conditions as in Example 1 except that alumina was not mixed and a tableting machine was used. Thus, a catalyst K was obtained.

【0053】[比較例2] 触媒L* 実施例1において、塩化パラジウムの代わりに塩化白金
1.9gを用い、硫酸根含有水酸化ジルコニウム200
gを用いたほかは実施例1と同じ条件で、含浸、乾燥、
成形および焼成を行ない、触媒L*を得た。
[Comparative Example 2] Catalyst L * In Example 1, 1.9 g of platinum chloride was used in place of palladium chloride, and 200 g of sulfate-containing zirconium hydroxide was used.
g, impregnation, drying,
Forming and calcining were performed to obtain a catalyst L * .

【0054】上記触媒A〜Lの製造条件と物性とを、表
1にまとめて示す。 表 1 触媒の製造条件および物性(その1) 触媒A 触媒B 触媒C 触媒D 担持物質 PdCl2 PdSO4 Pd(N03)2 Pd(NH3)4Cl2 焼成条件 600℃×3h 600℃×3h 600℃×3h 600℃×3h 比表面積(m2/g) 134 133 138.4 132.4 イオウ分(質量%) 1.74 1.53 1.81 1.56 金属元素分析値(質量%) Pd 0.51 0.45 0.58 0.70 ZrO2結晶構造比 単斜晶/正方晶 3.5/96.5 3.7/96.3 4.1/95.9 4.3/95.7 無機金属酸化物 アルミナ アルミナ アルミナ アルミナ 含有量(質量%) 10 10 10 10 触媒形状 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 SCS(kg/mm) 0.6 0.5 0.6 0.6 細孔容積(ml/g) 0.154 0.151 0.157 0.153 1.4〜2.1nmの細孔容積 が占める割合(%) 45.7 44.6 44.7 46.1
The production conditions and physical properties of the catalysts A to L are shown in Table 1. Table 1 catalyst preparation conditions and the physical properties (1) Catalyst A Catalyst B Catalyst C Catalyst D support material PdCl 2 PdSO 4 Pd (N0 3 ) 2 Pd (NH 3) 4 Cl 2 baking conditions 600 ℃ × 3h 600 ℃ × 3h 600 ℃ × 3h 600 ℃ × 3h Specific surface area (m 2 / g) 134 133 138.4 132.4 Sulfur content (% by mass) 1.74 1.53 1.81 1.56 Metal element analysis value (% by mass) Pd 0.51 0.45 0.58 0.70 ZrO 2 crystal structure ratio Amorphous / tetragonal 3.5 / 96.5 3.7 / 96.3 4.1 / 95.9 4.3 / 95.7 Inorganic metal oxide Alumina Alumina Alumina Alumina Content (% by mass) 10 10 10 10 Catalyst shape 1.6mmφ cylinder 1.6mmφ cylinder 1.6mmφ cylinder 1.6mmφ cylinder SCS ( (kg / mm) 0.6 0.5 0.6 0.6 Pore volume (ml / g) 0.154 0.151 0.157 0.153 Ratio of pore volume of 1.4 to 2.1 nm (%) 45.7 44.6 44.7 46.1

【0055】 表 1 触媒の製造条件および物性(その2) 触媒E 触媒F 触媒G 触媒H 担持物質 PdCl2 PdCl2 PdCl2 PdCl2 焼成条件 600℃×3h 600℃×3h 600℃×3h 600℃×3h 比表面積(m2/g) 116.1 146.1 161.0 141.7 イオウ分(質量%) 1.83 1.64 1.54 1.63 金属元素分析値(質量%) Pd 0.53 0.48 0.44 0.49 ZrO2結晶構造比 単斜晶/正方晶 3.5/96.5 3.7/96.3 4.1/95.9 4.3/95.7 無機酸化物 アルミナ アルミナ アルミナ シリカ・アルミナ(10:90) 含有量(質量%) 5 15 20 10 触媒形状 3mmφヘ゜レット 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 SCS(kg/mm) 0.8 0.6 0.8 0.7 細孔容積(ml/g) 0.130 0.178 0.202 0.170 1.4〜2.1nmの細孔容 積が占める割合(%) 60.3 36.2 31.0 35.4 Table 1 Catalyst Production Conditions and Physical Properties (Part 2) Catalyst E Catalyst F Catalyst G Catalyst H Supported Material PdCl 2 PdCl 2 PdCl 2 PdCl 2 Firing Conditions 600 ° C. × 3h 600 ° C. × 3h 600 ° C. × 3h 600 ° C. × 3h Specific surface area (m2 / g) 116.1 146.1 161.0 141.7 Sulfur content (% by mass) 1.83 1.64 1.54 1.63 Metal element analysis value (% by mass) Pd 0.53 0.48 0.44 0.49 ZrO 2 crystal structure ratio Monoclinic / tetragonal 3.5 / 96.5 3.7 /96.3 4.1 / 95.9 4.3 / 95.7 Inorganic oxide Alumina Alumina Alumina Silica / alumina (10:90) Content (% by mass) 5 15 20 10 Catalyst shape 3mmφ Heelette 1.6mmφ cylinder 1.6mmφ cylinder 1.6mmφ cylinder SCS (kg / mm ) 0.8 0.6 0.8 0.7 pore volume (ml / g) 0.130 0.178 0.202 0.170 proportion of Hosoanayo product of 1.4~2.1nm (%) 60.3 36.2 31.0 35.4

【0056】 表 1 触媒の製造条件および物性(その3) 触媒I 触媒J 触媒K* 触媒L* 担持物質 PdCl2 PdCl2 PdCl2 H2PtCl6 焼成条件 600℃×3h 600℃×3h 600℃×3h 600℃×3h 比表面積(m2/g) 119.1 137.2 101.1 132.4 イオウ分(質量%) 1.75 1.50 1.92 1.90 金属元素分析値(質量%) Pd 0.52 0.46 0.55 − Pt − − − 0.60 ZrO2結晶構造比 単斜晶/正方晶 3.5/96.5 3.7/96.3 3.5/96.5 4.3/95.7 無機金属酸化物 シリカ・アルミナ(40:60) シリカ・アルミナ(10:90) − アルミナ 含有量(質量%) 10 20 0 10 触媒形状 3mmφヘ゜レット 1.6mmφ円柱 3mmφヘ゜レット 1.6mmφ円柱 SCS(kg/mm) 0.9 0.8 <0.1 0.6 細孔容積(ml/g) 0.134 0.160 0.107 0.158 1.4〜2.1nmの細孔容 積が占める割合(%) 57.5 40.1 76.8 45.9 比表面積の測定には、日本ベル(株)製の高精度全自動ガス吸着装置「BELSOR P 28」を使用した。イオウ分の量は、LECO社のSC−132硫黄分分析計を 用いて測定した。Table 1 Catalyst Production Conditions and Properties (Part 3) Catalyst I Catalyst J Catalyst K * Catalyst L * Supporting substance PdCl 2 PdCl 2 PdCl 2 H 2 PtCl 6 Firing conditions 600 ° C × 3h 600 ° C × 3h 600 ° C × 3h 600 ° C × 3h Specific surface area (m2 / g) 119.1 137.2 101.1 132.4 Sulfur content (% by mass) 1.75 1.50 1.92 1.90 Metal element analysis value (% by mass) Pd 0.52 0.46 0.55 − Pt − − − 0.60 ZrO 2 crystal structure ratio Monoclinic / tetragonal 3.5 / 96.5 3.7 / 96.3 3.5 / 96.5 4.3 / 95.7 Inorganic metal oxide silica / alumina 40:60) Silica / alumina (10:90) − Alumina content (% by mass) 10 20 0 10 Catalyst shape 3mmφ pellet 1.6mmφ cylinder 3mmφ pellet 1.6mmφ cylinder SCS (kg / mm) 0.9 0.8 <0.1 0.6 Pore volume (ml / g) 0.134 0.160 0.107 0.158 proportion of Hosoanayo product of 1.4~2.1nm (%) 57.5 40.1 76.8 the measurement of 45.9 specific surface area, high-precision fully automatic gas adsorption apparatus manufactured by Nippon Bell Co. " BELSOR P 28 "was used. The sulfur content was measured using a SC-132 sulfur analyzer from LECO.

【0057】[実施例11] 触媒M 塩化パラジウムPdCl2の1.5gを水20gに入
れ、濃塩酸を30cc滴下し超音波を10分間かけて溶解
させて第一の溶液を得た。別に、塩化白金酸六水和物H
2PtCl6・6H2Oの1.6gを水10gに溶かし
て、第二の溶液を得た。第一および第二の溶液を混合し
た液に、実施例1で製造した硫酸根含有水酸化ジルコニ
ウム172.9gを入れ、Pd塩およびPt塩を含浸、
担持させた。以下は実施例1の工程(4)と同様にして
アルミナゾルを混合し、成形、乾燥および焼成を行な
い、Pd/Pt/SO4/ZrO2−Al23を得た。
Example 11 Catalyst M 1.5 g of palladium chloride PdCl 2 was placed in 20 g of water, 30 cc of concentrated hydrochloric acid was added dropwise, and ultrasonic waves were dissolved for 10 minutes to obtain a first solution. Separately, chloroplatinic acid hexahydrate H
The 2 PtCl 6 · 6H 2 O in 1.6g dissolved in water 10 g, to obtain a second solution. 172.9 g of the sulfate group-containing zirconium hydroxide prepared in Example 1 was added to the mixed solution of the first and second solutions, and impregnated with Pd salt and Pt salt.
Supported. Thereafter, alumina sol was mixed in the same manner as in step (4) of Example 1, and the mixture was molded, dried, and fired to obtain Pd / Pt / SO 4 / ZrO 2 —Al 2 O 3 .

【0058】[実施例12] 触媒N 塩化パラジウムPdCl2の1.5gを水20gに入
れ、濃塩酸を30cc滴下し超音波を10分間かけて溶解
させて第一の溶液を得た。別に、塩化白金酸六水和物H
2PtCl6・6H2Oの1.6gを水10gに溶かし
て、第二の溶液を得た。これらの溶液を混合した液に、
上記の硫酸根含有水酸化ジルコニウム174.2gを入
れ、Pd塩およびPt塩を含浸、担持させた。以下は実
施例1の工程(4)と同様にしてアルミナゾルを混合
し、成形、乾燥および焼成を行なって、Pd/Pt/S
4/ZrO2−Al23を得た。
Example 12 Catalyst N 1.5 g of palladium chloride PdCl 2 was placed in 20 g of water, 30 cc of concentrated hydrochloric acid was added dropwise, and ultrasonic waves were dissolved for 10 minutes to obtain a first solution. Separately, chloroplatinic acid hexahydrate H
The 2 PtCl 6 · 6H 2 O in 1.6g dissolved in water 10 g, to obtain a second solution. To a mixture of these solutions,
174.2 g of the above-mentioned sulfate group-containing zirconium hydroxide was added thereto, and impregnated with and supported Pd salts and Pt salts. After that, the alumina sol was mixed in the same manner as in step (4) of Example 1, and the mixture was molded, dried and calcined to obtain Pd / Pt / S
O 4 / ZrO 2 —Al 2 O 3 was obtained.

【0059】[比較例3] 触媒O* 塩化パラジウムPdCl22.2gを水20gに入れ、
濃塩酸を30cc滴下し超音波を10分間かけて溶解させ
て第一の溶液を得た。別に、塩化白金酸六水和物H2
tCl6・6H2Oの2.5gを水10gに溶かして第二
の溶液を得た。これらの溶液を混合した液に、実施例1
で製造した硫酸根含有水酸化ジルコニウム170gを入
れて、Pd塩およびPt塩を含浸させた。以下は実施例
1と同様に乾燥および焼成を行なって、Pd/Pt担持
硫酸根含有ジルコニアPd/Pt/SO4/ZrO2を得
た。得られたPd/Pt担持硫酸根含有ジルコニア10
0gにアルミナゾル210gを混合し、押出成形後、1
10℃で一昼夜乾燥を行ない、次に600℃で3時間焼
成して、Pd/Pt/SO4/ZrO2−Al23を得
た。
Comparative Example 3 2.2 g of catalyst O * palladium chloride PdCl 2 was placed in 20 g of water.
30 cc of concentrated hydrochloric acid was added dropwise, and ultrasonic waves were dissolved for 10 minutes to obtain a first solution. Separately, chloroplatinic acid hexahydrate H 2 P
The tCl 6 · 6H 2 O in 2.5g yield a second solution by dissolving in water 10g. Example 1 was added to a solution obtained by mixing these solutions.
170 g of the sulfate-containing zirconium hydroxide prepared in the above was added to impregnate the Pd salt and the Pt salt. Thereafter, drying and firing were performed in the same manner as in Example 1 to obtain Pd / Pt-supported sulfate-containing zirconia Pd / Pt / SO 4 / ZrO 2 . The obtained Pd / Pt-supported sulfate-containing zirconia 10
After mixing 210 g of alumina sol with 0 g and extrusion molding, 1 g
Drying was carried out at 10 ° C. all day and night, followed by baking at 600 ° C. for 3 hours to obtain Pd / Pt / SO 4 / ZrO 2 —Al 2 O 3 .

【0060】[実施例13] 触媒P 塩化パラジウムPdCl21.5gを水20gに入れ、
濃塩酸を30cc滴下し超音波を10分間かけて溶解させ
て第一の溶液を得た。別に、酸化レニウムRe 271.
2gを水10gに溶かして、第二の溶液を得た。これら
の溶液を混合して得た液に、上記の硫酸根含有水酸化ジ
ルコニウム170.0gを入れ、Pd塩およびRe塩を
含浸させた。以下は実施例1の工程(4)と同様にして
アルミナを混合し、成形、乾燥および焼成を行なって、
Pd/Re/SO4/ZrO2−Al23を得た。
Example 13 Catalyst P Palladium chloride PdClTwo1.5 g is put in 20 g of water,
30 cc of concentrated hydrochloric acid is dropped, and ultrasonic waves are dissolved for 10 minutes.
To obtain a first solution. Separately, rhenium oxide Re TwoO71.
2 g was dissolved in 10 g of water to obtain a second solution. these
The solution obtained by mixing the solutions of
Add 170.0 g of ruconium, and add Pd salt and Re salt.
Impregnated. The following is the same as in step (4) of Example 1.
Alumina is mixed, molded, dried and fired,
Pd / Re / SOFour/ ZrOTwo-AlTwoOThreeI got

【0061】[実施例14] 触媒Q 塩化パラジウムPdCl21.5gを水20gに入れ、
濃塩酸を30cc滴下し超音波を10分間かけて溶解さ
せ、第一の溶液を得た。別に、塩化ルテニウムRuCl
31.9gを水10gに溶かして、第二の溶液を得た。
これらの溶液を混合した液に上記の硫酸根含有水酸化ジ
ルコニウム171.1gを入れ、Pd塩およびRu塩を
含浸させた。以下は実施例1の工程(4)と同様にして
成形、乾燥および焼成を行なって、Pd/Ru/SO4
/ZrO2−Al23を得た。
Example 14 Catalyst Q 1.5 g of palladium chloride PdCl 2 was placed in 20 g of water.
30 cc of concentrated hydrochloric acid was added dropwise and ultrasonic waves were dissolved for 10 minutes to obtain a first solution. Separately, ruthenium chloride RuCl
3 1.9 g was dissolved in 10 g of water to obtain a second solution.
171.1 g of the above-mentioned sulfate group-containing zirconium hydroxide was added to a liquid obtained by mixing these solutions, and impregnated with a Pd salt and a Ru salt. Thereafter, molding, drying and calcination are performed in the same manner as in step (4) of Example 1, and Pd / Ru / SO 4
/ To obtain a ZrO 2 -Al 2 O 3.

【0062】[実施例15] 触媒R 塩化パラジウムPdCl21.5gを水20gに入れ、
濃塩酸を30cc滴下し超音波を10分間かけて溶解さ
せ、第一の溶液を得た。別に、塩化ルテニウムRuCl
32.2gを水10gに溶かして、第二の溶液を得た。
これらの溶液を混合した液に上記の硫酸根含有水酸化ジ
ルコニウム169.5gを入れ、Pd塩およびRu塩を
含浸させた。以下は実施例1の工程(4)と同様にして
成形、乾燥および焼成を行なって、Pd/Ru/SO4
/ZrO2−Al23を得た。
Example 15 Catalyst R 1.5 g of palladium chloride PdCl 2 was placed in 20 g of water.
30 cc of concentrated hydrochloric acid was added dropwise and ultrasonic waves were dissolved for 10 minutes to obtain a first solution. Separately, ruthenium chloride RuCl
3 2.2 g was dissolved in 10 g of water to obtain a second solution.
169.5 g of the above-mentioned sulfate-containing zirconium hydroxide was added to a liquid obtained by mixing these solutions, and impregnated with a Pd salt and a Ru salt. Thereafter, molding, drying and calcination are performed in the same manner as in step (4) of Example 1, and Pd / Ru / SO 4
/ To obtain a ZrO 2 -Al 2 O 3.

【0063】[実施例16] 触媒S 塩化パラジウムPdCl21.5gを水20gに入れ、
濃塩酸を30cc滴下し超音波を10分間かけて溶解させ
て、第一の溶液を得た。これと別に、硝酸コバルト6水
和物Co(NO3)2・6H2Oの4.5gを水10gに溶
かした、第二の溶液を用意した。二つの溶液を混合した
液に、上記の硫酸根含有水酸化ジルコニウム170.9
gを入れ、Pd塩およびCo塩を含浸させた。以下は実
施例1の工程(4)と同様にして成形、乾燥および焼成
を行なって、Pd/Co/SO4/ZrO2−Al23
得た。
Example 16 Catalyst S 1.5 g of palladium chloride PdCl 2 was placed in 20 g of water.
30 cc of concentrated hydrochloric acid was added dropwise and ultrasonic waves were dissolved for 10 minutes to obtain a first solution. Separately, a second solution was prepared by dissolving 4.5 g of cobalt nitrate hexahydrate Co (NO 3 ) 2 .6H 2 O in 10 g of water. The above-mentioned sulfate-containing zirconium hydroxide of 170.9 was added to the mixed solution of the two solutions.
g and impregnated with Pd and Co salts. Thereafter, molding, drying and firing were performed in the same manner as in step (4) of Example 1 to obtain Pd / Co / SO 4 / ZrO 2 —Al 2 O 3 .

【0064】[実施例17] 触媒T 塩化パラジウムPdCl21.5gを水20gに入れ、
濃塩酸を30cc滴下し超音波を10分間かけて溶解さ
せ、第一の溶液を得た。別に、パラモリブデン酸アンモ
ニウム(NH46Mo724・4H2Oの1.7gを水1
0gに溶かして、第二の溶液を得た。二つの溶液を混合
した液に、上記の硫酸根含有水酸化ジルコニウム17
0.4gを入れ、Pd塩およびMo塩を含浸させた。以
下は実施例1の工程(4)と同様にして成形、乾燥およ
び焼成を行なって、Pd/Mo/SO 4/ZrO2−Al
23を得た。
Example 17 Catalyst T Palladium chloride PdClTwo1.5 g is put in 20 g of water,
30 cc of concentrated hydrochloric acid is dropped, and ultrasonic waves are dissolved for 10 minutes.
To obtain a first solution. Separately, ammo paramolybdate
Nium (NHFour)6Mo7Otwenty four・ 4HTwo1.7 g of O in water 1
0 g to give a second solution. Mix two solutions
The sulfated zirconium hydroxide containing 17
0.4 g was impregnated with Pd salt and Mo salt. Less than
The lower part is molded, dried and dried in the same manner as in step (4) of Example 1.
And baking to produce Pd / Mo / SO Four/ ZrOTwo-Al
TwoOThreeI got

【0065】[比較例4]アルミナを担体とするCo−
Mo系の、市販脱硫触媒U*を用いた。
Comparative Example 4 Co-
A Mo-based, commercially available desulfurization catalyst U * was used.

【0066】[比較例5]アルミナを担体とするCo−
Mo系の、市販脱硫触媒V*を用いた。
Comparative Example 5 Co-
A Mo-based, commercially available desulfurization catalyst V * was used.

【0067】実施例11〜17および比較例3の触媒の
製造条件および物性を、表2にまとめて示す。 表 2 触媒の製造条件および物性(その4) 触媒M 触媒N 触媒O* 触媒P 担持物質 PdCl2/H2PtCl6 PdCl2/H2PtCl6 PdCl2/H2PtCl6 PdCl2/Re2O3 焼成条件 600℃×3h 600℃×3h 600℃×3h 600℃×3h 比表面積(m2/g) 149 144.9 191.1 143.5 イオウ分(質量%) 1.96 1.90 1.64 1.84 金属元素分析値(質量%) Pd 0.47 0.98 0.52 0.48 Pt 0.43 0.49 0.49 − Re − − − 0.48 ZrO2結晶構造比 単斜晶/正方晶 4.0/96.0 3.5/96.5 3.5/96.5 3.6/96.4 無機酸化物 アルミナ アルミナ アルミナ アルミナ 含有量(質量%) 10 10 35 10 触媒形状 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 SCS(kg/mm) 0.6 0.6 1.0 0.6 細孔容積(ml/g) 0.156 0.160 0.245 0.153 1.4〜2.1nmの細孔容 45.5 44.4 22.7 46.7 積が占める割合(%)
The production conditions and physical properties of the catalysts of Examples 11 to 17 and Comparative Example 3 are summarized in Table 2. Table 2 Catalyst Production Conditions and Properties (Part 4) Catalyst M Catalyst N Catalyst O * Catalyst P Supported Material PdCl 2 / H 2 PtCl 6 PdCl 2 / H 2 PtCl 6 PdCl 2 / H 2 PtCl 6 PdCl 2 / Re 2 O 3 Firing conditions 600 ℃ × 3h 600 ℃ × 3h 600 ℃ × 3h 600 ℃ × 3h Specific surface area (m 2 / g) 149 144.9 191.1 143.5 Sulfur content (% by mass) 1.96 1.90 1.64 1.84 Metal element analysis value (% by mass) Pd 0.47 0.98 0.52 0.48 Pt 0.43 0.49 0.49 − Re − − − 0.48 ZrO 2 crystal structure ratio Monoclinic / tetragonal 4.0 / 96.0 3.5 / 96.5 3.5 / 96.5 3.6 / 96.4 Inorganic oxide Alumina Alumina Alumina Alumina Content (% by mass) 10 10 35 10 Catalyst shape 1.6mmφ cylinder 1.6mmφ cylinder 1.6mmφ cylinder 1.6mmφ cylinder SCS (kg / mm) 0.6 0.6 1.0 0.6 Pore volume (ml / g) 0.156 0.160 0.245 0.153 1.4 ~ 2.1nm pore volume 45.5 44.4 22.7 46.7 Product occupation ratio (%)

【0068】 表 2 触媒の製造条件および物性(その5) 触媒Q 触媒R 触媒S 触媒T 担持物質 PdCl2/RuCl3 PdCl2/RuCl3 PdCl2/Co(NO3) PdCl2/(NH4)6Mo723 焼成条件 600℃×3h 600℃×3h 600℃×3h 600℃×3h 比表面積(m2/g) 144 141.5 140.0 144.6 イオウ分(質量%) 2.11 2.04 1.74 1.64 金属元素分析値(質量%) Pd 0.47 0.46 0.49 0.52 Ru 0.49 1.01 − − Co − − 0.49 − Mo − − − 0.49 ZrO2結晶構造比 単斜晶/正方晶 5.5/94.5 4.6/95.4 3.6/96.4 3.1/96.9 無機酸化物 アルミナ アルミナ アルミナ アルミナ 含有量(質量%) 10 10 10 10 触媒形状 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 1.6mmφ円柱 SCS(kg/mm) 0.5 0.6 0.6 0.6 細孔容積(ml/g) 0.155 0.151 0.158 0.154 1.4〜2.1nmの細孔容 46.6 44.3 47.0 45.5 積が占める割合(%) Table 2 Catalyst Production Conditions and Properties (Part 5) Catalyst Q Catalyst R Catalyst S Catalyst T Carrying Material PdCl 2 / RuCl 3 PdCl 2 / RuCl 3 PdCl 2 / Co (NO 3 ) PdCl 2 / (NH 4 ) 6 Mo 7 0 23 baking conditions 600 ℃ × 3h 600 ℃ × 3h 600 ℃ × 3h 600 ℃ × 3h specific surface area (m 2 / g) 144 141.5 140.0 144.6 sulfur (wt%) 2.11 2.04 1.74 1.64 metal element analysis ( Mass%) Pd 0.47 0.46 0.49 0.52 Ru 0.49 1.01 − − Co − − 0.49 − Mo − − − 0.49 ZrO 2 crystal structure ratio Monoclinic / tetragonal 5.5 / 94.5 4.6 / 95.4 3.6 / 96.4 3.1 / 96.9 Inorganic oxide Alumina Alumina Alumina Alumina content (% by mass) 10 10 10 10 Catalyst shape 1.6 mmφ cylinder 1.6 mmφ cylinder 1.6 mmφ cylinder 1.6 mmφ cylinder SCS (kg / mm) 0.5 0.6 0.6 0.6 Pore volume (ml / g) 0.155 0.151 0.158 0.154 1.4 Pore volume up to 2.1 nm 46.6 44.3 47.0 45.5 Percentage of product (%)

【0069】[触媒使用例] 炭化水素油の水素化脱硫 評価方法 触媒充填容量が15mlの固定床流通式反応器に触媒を充
填し、原料炭化水素油として未洗ライトナフサを供給し
て、表3の条件で水素化脱硫反応を行なうことにより、
SCSが0.5kg/mm未満の触媒Kを除いた触媒A〜J
およびL〜Tの脱硫活性を評価した。充填に先だって、
各触媒は、16〜28meshに粉砕した。比較例4および
5の市販脱硫触媒は、前処理としての予備硫化を行なわ
ず、そのまま脱硫反応に使用した。
[Example of use of catalyst] Evaluation method for hydrodesulfurization of hydrocarbon oil The catalyst was charged into a fixed bed flow type reactor having a catalyst filling capacity of 15 ml, and unwashed light naphtha was supplied as a raw material hydrocarbon oil. By performing the hydrodesulfurization reaction under the conditions of 3,
Catalysts A to J excluding catalyst K having an SCS of less than 0.5 kg / mm
And the desulfurization activity of LT was evaluated. Prior to filling,
Each catalyst was ground to 16-28 mesh. The commercial desulfurization catalysts of Comparative Examples 4 and 5 were used in the desulfurization reaction without performing preliminary sulfurization as pretreatment.

【0070】 表 3 水素化脱硫反応の条件 反応条件 反応温度 : 160℃ 水素分圧 : 3.0MPa 液空間速度 : 1hr-1 水素/オイル比: 300NL/L 原料 : 未洗ライトナフサ(S量は384質量ppm) 原料油の性状 密度 g/cm3(15℃) 0.6534 蒸留性状 IBP ℃ 29.5 5%留出温度 ℃ 39.5 10%留出温度 ℃ 40.5 50%留出温度 ℃ 49.0 70%留出温度 ℃ 54.5 90%留出温度 ℃ 63.5 95%留出温度 ℃ 66.5 EP ℃ 98.5 イオウ分 質量ppm 384 飽和分 容積% 98.53 不飽和分 容積% 0.07 芳香族分 容積% 1.40 Table 3 Conditions for Hydrodesulfurization Reaction Reaction Conditions Reaction Temperature: 160 ° C. Hydrogen Partial Pressure: 3.0 MPa Liquid Space Velocity: 1 hr −1 Hydrogen / Oil Ratio: 300 NL / L Raw Material: Unwashed Light Naphtha (S Content: Properties of feed oil Density g / cm 3 (15 ° C) 0.6534 Distillation properties IBP ℃ 29.5 5% distillation temperature ℃ 39.5 10% distillation temperature ℃ 40.5 50% distillation temperature ° C 49.0 70% distillation temperature ° C 54.5 90% distillation temperature ° C 63.5 95% distillation temperature ° C 66.5 EP ° C 98.5 Sulfur mass ppm 384 Saturation volume% 98.53 Unsaturated Fraction volume% 0.07 aromatic content volume% 1.40

【0071】水素化脱硫反応の結果を、使用触媒ととも
に表4に示す。 表 4 ライトナフサの水素化脱硫反応の結果 触 媒 組 成 脱硫率(%) 実施例1の触媒A Pd/SO4/ZrO2・Al2O3 97.2 実施例2の触媒B Pd/SO4/ZrO2・Al2O3 96.8 実施例3の触媒C Pd/SO4/ZrO2・Al2O3 96.5 実施例4の触媒D Pd/SO4/ZrO2・Al2O3 96.0 実施例5の触媒E Pd/SO4/ZrO2・Al2O3 98.5 実施例6の触媒F Pd/SO4/ZrO2・Al2O3 97.0 実施例7の触媒G Pd/SO4/ZrO2・Al2O3 95.0 実施例8の触媒H Pd/SO4/ZrO2・Al2O3・SiO2 96.7 実施例9の触媒I Pd/SO4/ZrO2・Al2O3・SiO2 97.4 実施例10の触媒J Pd/SO4/ZrO2・Al2O3・SiO2 95.9 実施例11の触媒M Pd/Pt/SO4/ZrO2・Al2O3 98.5 実施例12の触媒N Pd/Pt/SO4/ZrO2・Al2O3 98.9 実施例13の触媒P Pd/Re/SO4/ZrO2・Al2O3 98.7 実施例14の触媒Q Pd/Ru/SO4/ZrO2・Al2O3 98.5 実施例15の触媒R Pd/Ru/SO4/ZrO2・Al2O3 98.1 実施例16の触媒S Pd/Co/SO4/ZrO2・Al2O3 98.5 実施例17の触媒T Pd/Mo/SO4/ZrO2・Al2O3 98.8 比較例2の触媒L* Pt/SO4/ZrO2・Al2O3 33.3 比較例3の触媒O* Pd/Pt/SO4/ZrO2・Al2O3 63.7 比較例4の市販脱硫触媒U* Co−Mo系 50.8 比較例5の市販脱硫触媒V* Co−Mo系 46.0
Table 4 shows the results of the hydrodesulfurization reaction together with the catalyst used. Table 4 Result of hydrodesulfurization reaction of light naphtha Catalyst composition Desulfurization rate (%) Catalyst A of Example 1 Pd / SO 4 / ZrO 2 .Al 2 O 3 97.2 Catalyst B of Example 2 Pd / SO 4 / ZrO 2 .Al 2 O 3 96.8 Catalyst C of Example 3 Pd / SO 4 / ZrO 2 .Al 2 O 3 96.5 Catalyst D of Example 4 D Pd / SO 4 / ZrO 2 .Al 2 O 3 96.0 catalyst E Pd / SO 4 / ZrO 2 · Al 2 O 3 98.5 catalyst F Pd / SO 4 / ZrO 2 · Al 2 O 3 97.0 example 7 example 6 example 5 Catalyst G Pd / SO 4 / ZrO 2 .Al 2 O 3 95.0 Catalyst H Pd / SO 4 / ZrO 2 .Al 2 O 3 .SiO 2 96.7 Catalyst of Example 8 Catalyst I Pd / SO of Example 9 4 / ZrO 2 .Al 2 O 3 .SiO 2 97.4 Catalyst J Pd / SO 4 of Example 10 / ZrO 2 .Al 2 O 3 .SiO 2 95.9 Catalyst M Pd / Pt / SO of Example 11 4 / ZrO 2 .Al 2 O 3 98.5 Catalyst N Pd / Pt / SO 4 / ZrO 2 .Al 2 O 3 98.9 of Example 12 Catalyst P Pd / Re / SO 4 / ZrO 2 of Example 13・ Al 2 O 3 98.7 Catalyst Q Pd of Example 14 / Ru / SO 4 / ZrO 2 .Al 2 O 3 98.5 Catalyst R Pd / Ru / SO 4 / ZrO 2 .Al 2 O 3 98.1 of Example 15 Catalyst S Pd / Co / SO of Example 16 4 / ZrO 2 · Al 2 O 3 98.5 Catalyst T Pd / Mo / SO 4 / ZrO 2 · Al 2 O 3 98.8 of Example 17 Catalyst L * Pt / SO 4 / ZrO 2 · of Comparative Example 2 Al 2 O 3 33.3 Catalyst O * Pd / Pt / SO 4 / ZrO 2 .Al 2 O 3 63.7 of Comparative Example 3 63.7 Commercial Desulfurization Catalyst U * Co-Mo System of Comparative Example 4 50.8 Comparative Example 5 Commercial desulfurization catalyst V * Co-Mo system 46.0

【0072】以上のデータから、本発明に従う触媒を使
用した実施例1〜17においては、いずれも95%以上
の高い脱硫率が達成できたことがわかる。本発明の触媒
の構成要件である、パラジウムを担持していない比較例
2(触媒L*)、および1.4〜2.1nmの細孔径を
有する細孔容積の割合が30〜70%、を満たさない比
較例3(触媒O*、22.7%)は、脱硫率が63.7
%であって、実施例の脱硫率よりも低い。
From the above data, it can be seen that in Examples 1 to 17 using the catalyst according to the present invention, a high desulfurization rate of 95% or more could be achieved. Comparative Example 2 not carrying palladium (catalyst L * ), which is a constituent element of the catalyst of the present invention, and a ratio of a pore volume having a pore diameter of 1.4 to 2.1 nm of 30 to 70%. In Comparative Example 3 not satisfying (catalyst O * , 22.7%), the desulfurization rate was 63.7.
%, Which is lower than the desulfurization rate of the example.

【0073】市販のCo−Mo系の脱硫触媒を使用した
比較例4および5は、反応前処理としての予備硫化をせ
ずに脱硫反応を行なった結果であって、実施例と比較す
ると、脱硫率はともに約50%と低い。
Comparative Examples 4 and 5 using a commercially available Co—Mo-based desulfurization catalyst are the results of performing a desulfurization reaction without performing preliminary sulfurization as a pre-reaction treatment. Both rates are as low as about 50%.

【0074】[0074]

【発明の効果】本発明に従う特定の物性を有する固体酸
触媒は、これを使用して炭化水素油の水素化脱硫を行な
うことにより、炭化水素油中に含まれているイオウ分を
効率よく低減することができる。従来の脱硫触媒では、
反応前処理として予備硫化が必須であったのに対して、
本発明の触媒では前処理の必要がなく、直接使用しても
高い脱硫活性を発揮する。また、本発明の触媒は、上記
実施例に挙げた160℃という比較的低い温度でも、高
い脱硫活性を示す。このように、本発明の触媒は炭化水
素化油の水素化脱硫に適用したとき、工業的に有利に水
素化脱硫を実施することを可能にする。
Industrial Applicability The solid acid catalyst having specific physical properties according to the present invention is used for hydrodesulfurization of a hydrocarbon oil to efficiently reduce sulfur contained in the hydrocarbon oil. can do. With conventional desulfurization catalysts,
While pre-sulfurization was essential as a pre-reaction treatment,
The catalyst of the present invention does not require pretreatment, and exhibits high desulfurization activity even when used directly. Further, the catalyst of the present invention shows high desulfurization activity even at the relatively low temperature of 160 ° C. mentioned in the above examples. As described above, when the catalyst of the present invention is applied to hydrodesulfurization of a hydrocarbon oil, it enables industrially advantageous hydrodesulfurization to be carried out.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 45/06 C10G 45/06 A 45/08 45/08 A 45/10 45/10 A (72)発明者 大塩 敦保 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 (72)発明者 萩原 和彦 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 (72)発明者 川上 敬士 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 Fターム(参考) 4G069 AA03 AA08 AA09 AA12 BA01A BA01B BA03A BA03B BA05A BA05B BB02A BB02B BB04A BB05C BB10A BB10B BC51A BC51C BC59A BC59B BC64A BC64B BC67A BC67B BC70A BC70B BC72A BC72B BC75A BC75B CC02 DA06 EA02Y EB14Y EC03Y EC07X EC07Y EC18X EC18Y EC22Y ED03 FA02 FB14 FB19 FB30 FB66 FB67 FB78 FC02 FC07 FC08 4H029 CA00 DA00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10G 45/06 C10G 45/06 A 45/08 45/08 A 45/10 45/10 A (72) Invention Person Atsushi Oshio 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Oil R & D Center (72) Inventor Kazuhiko Hagiwara 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Oil R & D Center (72) Inventor Keishi Kawakami 1134-2 Gongendo, Satte-shi, Saitama Cosmo Oil Co., Ltd. Research and Development Center F-term (reference) 4G069 AA03 AA08 AA09 AA12 BA01A BA01B BA03A BA03B BA05A BA05B BB02A BB02B BB04A BB05C BB10A BB10BBCBC BCBC BC BC BC BC70B BC72A BC72B BC75A BC75B CC02 DA06 EA02Y EB14Y EC03Y EC07X EC07Y EC18X EC18Y EC22Y ED03 FA02 FB14 FB19 FB30 FB66 FB67 FB78 F C02 FC07 FC08 4H029 CA00 DA00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウムの酸化物または水酸化物か
らなる担体に、触媒基準で、アルミナまたはシリカ・ア
ルミナを1〜30質量%、硫酸根をイオウ分にして1〜
3質量%、パラジウムを0.05〜10質量%担持させ
てなり、全細孔容積が0.1ml/g以上であって、その
うちで1.4〜2.1nmの細孔径を有する細孔が占め
る割合が30〜70%であることを特徴とする炭化水素
油の水素化脱硫触媒。
1. A carrier comprising zirconium oxide or hydroxide, alumina or silica-alumina in an amount of 1 to 30% by mass and a sulfate group in a sulfur content of 1 to 30% by mass on a catalyst basis.
3% by mass, and 0.05 to 10% by mass of palladium, and the total pore volume is 0.1 ml / g or more, and among them, pores having a pore size of 1.4 to 2.1 nm A hydrodesulfurization catalyst for a hydrocarbon oil, wherein the catalyst accounts for 30 to 70%.
【請求項2】 請求項1に記載の触媒に、さらに白金、
レニウム、ルテニウム、コバルトおよびモリブデンから
選んだ1種または2種以上を、触媒基準で、0.05〜
10質量%担持させたことを特徴とする水素化脱硫触
媒。
2. The catalyst according to claim 1, further comprising platinum.
One or more selected from rhenium, ruthenium, cobalt and molybdenum, from 0.05 to
A hydrodesulfurization catalyst, wherein the catalyst is supported by 10% by mass.
【請求項3】 請求項1または2に記載の水素化脱硫触
媒を製造する方法であって、水酸化ジルコニウム担体
を、これに硫酸根を与える処理剤で処理して、硫酸根を
イオウ分にして1〜3質量%担持させた後、パラジウム
化合物を含浸させてパラジウムを0.05〜10質量%
担持させ、550〜800℃の温度で焼成安定化した
後、アルミナまたはシリカ・アルミナを、触媒の1〜3
0質量%を占めるように混合して触媒形状に成形し、5
50〜800℃の温度に焼成して安定化することからな
る製造方法。
3. The method for producing a hydrodesulfurization catalyst according to claim 1, wherein the zirconium hydroxide support is treated with a treating agent that gives a sulfate group to the sulfate group to convert the sulfate group into a sulfur component. 1 to 3 mass%, and then impregnated with a palladium compound to make palladium 0.05 to 10 mass%.
After being supported and calcined and stabilized at a temperature of 550 to 800 ° C., alumina or silica-alumina was
0% by mass and mixed to form a catalyst.
A production method comprising firing and stabilizing at a temperature of 50 to 800 ° C.
【請求項4】 請求項1または2に記載の水素化脱硫触
媒を製造する方法であって、水酸化ジルコニウム担体に
パラジウム化合物を含浸させてパラジウムを0.05〜
10質量%担持させ、ついでこれに硫酸根を与える処理
剤で処理して、硫酸根をイオウ分にして1〜3質量%担
持させ、550〜800℃の温度で焼成安定化した後、
アルミナまたはシリカ・アルミナを、触媒の1〜30質
量%を占めるように混合して触媒形状に成形し、550
〜800℃の温度に焼成して安定化することからなる製
造方法。
4. The method for producing a hydrodesulfurization catalyst according to claim 1 or 2, wherein the palladium compound is impregnated into a zirconium hydroxide carrier to reduce the palladium content to 0.05 to 0.05%.
10% by mass, and then treated with a treating agent that gives a sulfate group to convert the sulfate group into a sulfur content, carry 1 to 3% by mass, stabilize the calcination at a temperature of 550 to 800 ° C.,
Alumina or silica-alumina is mixed so as to occupy 1 to 30% by mass of the catalyst, formed into a catalyst shape, and 550
A production method comprising firing and stabilizing at a temperature of about 800 ° C.
【請求項5】 請求項1または2に記載の水素化脱硫触
媒を製造する方法であって、水酸化ジルコニウム担体に
パラジウム化合物を含浸させてパラジウムを0.05〜
10質量%担持させた後、これにアルミナまたはシリカ
・アルミナを、触媒の1〜30質量%を占めるように混
合して成形し、続いて硫酸根を与える処理剤で処理し
て、硫酸根をイオウ分にして1〜3質量%担持させ、5
50〜800℃の温度に焼成して安定化することからな
る製造方法。
5. The method for producing a hydrodesulfurization catalyst according to claim 1 or 2, wherein the palladium compound is impregnated into a zirconium hydroxide support to reduce the palladium to 0.05 to 0.05%.
After supporting 10% by mass, alumina or silica-alumina is mixed with the mixture so as to occupy 1 to 30% by mass of the catalyst, molded, and then treated with a treating agent for providing a sulfate group, thereby reducing the sulfate group. 5 to 1% by weight of sulfur content
A production method comprising firing and stabilizing at a temperature of 50 to 800 ° C.
【請求項6】 請求項1または2に記載の水素化脱硫触
媒を製造する方法であって、水酸化ジルコニウム担体
を、これに硫酸根を与える処理剤で処理して、硫酸根を
イオウ分にして1〜3質量%担持させた後、これにアル
ミナまたはシリカ・アルミナを、触媒の1〜30質量%
を占めるように混合して成形し、続いてパラジウム化合
物を含浸させさせてパラジウムを0.05〜10質量%
担持させ、550〜800℃の温度に焼成して安定化す
ることからなる製造方法。
6. The method for producing a hydrodesulfurization catalyst according to claim 1, wherein the zirconium hydroxide support is treated with a treating agent which gives a sulfate group to the sulfate group to convert the sulfate group into a sulfur component. 1 to 30% by mass of the catalyst after supporting alumina or silica-alumina by 1 to 3% by mass.
, And then impregnated with a palladium compound to make palladium 0.05 to 10% by mass.
A production method comprising supporting and stabilizing by firing at a temperature of 550 to 800 ° C.
【請求項7】 請求項1または2に記載の水素化脱硫触
媒を製造する方法であって、水酸化ジルコニウム担体
を、これに硫酸根を与える処理剤で処理して、硫酸根を
イオウ分にして1〜3質量%担持させるとともに、パラ
ジウム化合物を含浸させさせてパラジウムを0.05〜
10質量%担持させ、550〜800℃の温度で焼成安
定化した後、アルミナまたはシリカ・アルミナを、触媒
の1〜30質量%を占めるように混合して成形し、55
0〜800℃の温度に焼成して安定化することからなる
製造方法。
7. The method for producing a hydrodesulfurization catalyst according to claim 1, wherein the zirconium hydroxide support is treated with a treating agent that gives a sulfate group to the sulfur group to convert the sulfate group into a sulfur component. And palladium compound impregnated with 0.05 to
After supporting 10 mass% and stabilizing by calcination at a temperature of 550 to 800 ° C, alumina or silica-alumina is mixed to form 1 to 30 mass% of the catalyst and molded.
A production method comprising sintering to a temperature of 0 to 800 ° C. for stabilization.
【請求項8】 請求項1または2に記載の水素化脱硫触
媒を製造する方法であって、水酸化ジルコニウム担体
に、アルミナまたはシリカ・アルミナを、触媒の1〜3
0質量%を占めるように混合し、成形した後、これに硫
酸根を与える処理剤で処理して、硫酸根をイオウ分にし
て1〜3質量%担持させ、続いてパラジウム化合物を含
浸させさせてパラジウムを0.05〜10質量%担持さ
せ、550〜800℃の温度に焼成して安定化すること
からなる製造方法。
8. The method for producing a hydrodesulfurization catalyst according to claim 1, wherein alumina or silica-alumina is added to the zirconium hydroxide support, and the catalyst is 1 to 3 times.
After mixing and shaping so as to occupy 0% by mass, the mixture is treated with a treating agent that gives a sulfate group, and the sulfate group is sulfur-supported by 1 to 3% by mass and subsequently impregnated with a palladium compound. By supporting 0.05 to 10% by mass of palladium and firing at a temperature of 550 to 800 ° C. for stabilization.
【請求項9】 請求項2に記載の水素化脱硫触媒を製造
する方法であって、請求項3ないし8のいずれかに記載
の製造方法において、白金、レニウム、ルテニウム、コ
バルトおよびモリブデンから選んだ1種または2種以上
を、触媒基準で0.05〜10質量%担持させる工程
を、焼成安定化に先立ついずれかの工程と同時に、また
は工程の間に実施することを包含する製造方法。
9. A method for producing the hydrodesulfurization catalyst according to claim 2, wherein the catalyst is selected from platinum, rhenium, ruthenium, cobalt and molybdenum. A production method comprising carrying out a step of supporting one or more kinds in an amount of 0.05 to 10% by mass on a catalyst basis simultaneously with or during any one of the steps prior to stabilization of calcination.
JP2000177066A 2000-06-13 2000-06-13 Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same Pending JP2001353444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177066A JP2001353444A (en) 2000-06-13 2000-06-13 Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177066A JP2001353444A (en) 2000-06-13 2000-06-13 Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001353444A true JP2001353444A (en) 2001-12-25

Family

ID=18678711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177066A Pending JP2001353444A (en) 2000-06-13 2000-06-13 Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001353444A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076071A1 (en) * 2002-03-08 2003-09-18 Petroleum Energy Center Hydrogenation desulfurization isomerization catalyst, process for producing the same and method of desulfurization isomerization for sulfurous hydrocarbon oil
JP2005035860A (en) * 2003-07-18 2005-02-10 Asahi Kasei Corp Porous crystalline zirconia material
WO2006137358A1 (en) * 2005-06-20 2006-12-28 Chiyoda Corporation Homogeneous, highly dispersed metal catalyst and process for producing the same
JP2006346631A (en) * 2005-06-17 2006-12-28 Chiyoda Corp Catalyst composition for hydrotreating hydrocarbon, its manufacturing method and method for hydro-refining hydrocarbon
CN114433136A (en) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 Hydrogenation catalyst and hydrogenation modification method of high-oxygen-content biomass oil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076071A1 (en) * 2002-03-08 2003-09-18 Petroleum Energy Center Hydrogenation desulfurization isomerization catalyst, process for producing the same and method of desulfurization isomerization for sulfurous hydrocarbon oil
US7691774B2 (en) 2002-03-08 2010-04-06 Petroleum Energy Center Hydrogenation desulfurization isomerization catalyst, process for producing the same and method of desulfurization isomerization for sulfurous hydrocarbon oil
JP2005035860A (en) * 2003-07-18 2005-02-10 Asahi Kasei Corp Porous crystalline zirconia material
JP4562360B2 (en) * 2003-07-18 2010-10-13 旭化成株式会社 Porous crystalline zirconia material and method for producing the same
JP2006346631A (en) * 2005-06-17 2006-12-28 Chiyoda Corp Catalyst composition for hydrotreating hydrocarbon, its manufacturing method and method for hydro-refining hydrocarbon
WO2006137358A1 (en) * 2005-06-20 2006-12-28 Chiyoda Corporation Homogeneous, highly dispersed metal catalyst and process for producing the same
US7985706B2 (en) 2005-06-20 2011-07-26 Chiyoda Corporation Uniformly, highly dispersed metal catalyst and process for producing the same
USRE46145E1 (en) 2005-06-20 2016-09-13 Chiyoda Corporation Uniformly, highly dispersed metal catalyst and process for producing the same
CN114433136A (en) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 Hydrogenation catalyst and hydrogenation modification method of high-oxygen-content biomass oil
CN114433136B (en) * 2020-10-31 2024-03-15 中国石油化工股份有限公司 Hydrogenation catalyst and hydro-upgrading method of high-oxygen-content biomass oil

Similar Documents

Publication Publication Date Title
US4196102A (en) Catalysts for demetallization treatment of _hydrocarbons supported on sepiolite
US4152250A (en) Demetallation of hydrocarbons with catalysts supported on sepiolite
EP1145763B1 (en) Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
BR112013005598B1 (en) silica-based material, process for producing the same, material supported with a noble metal, process for producing a carboxylic acid ester, and, process for producing a carboxylic acid
JP2003047860A (en) Catalyst for hydrogenation treatment of aromatic compound contained in hydrocarbon oil
MX2008016177A (en) A sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst.
EP2794090A1 (en) Process for preparing hydrocracking catalyst compositions
WO2017003319A1 (en) Catalyst for isomerisation of paraffin hydrocarbons and method of preparation thereof
RU2623432C1 (en) Method of preparation of carrier for catalyst of hydraulic cleaning of oil faces
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP2001353444A (en) Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JP2000197821A (en) Hydrogenation treatment catalyst and hydrogenation treatment method for hydrocarbon oil
US7297655B2 (en) Catalyst and its use in desulphurisation
USRE31036E (en) Catalysts for demetallization treatment of hydrocarbons supported on sepiolite
JP2001354973A (en) Method for hydrodesulfurizing hydrocarbon oil
USRE31039E (en) Catalysts for demetallization treatment of hydrocarbons supported on sepiolite
USRE31037E (en) Catalysts for demetallization treatment of hydrocarbons supported on sepiolite
JPH06127931A (en) Silica-alumina, its production and catalyst for hydrogenation
WO2004026465A1 (en) Catalyst particles and its use in desulphurisation
JP2002301372A (en) Solid acid catalyst, method for producing the same and method for hydrodesulfurizing and isomerizing light hydrocarbon oil using the same
JP2000233132A (en) Catalyst for hydrodesulfurization/isomerization of light hydrocarbon oil and production thereof
JPH08224471A (en) Fire resisting inorganic oxide catalyst carrier and hydrogenation catalyst using the same
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JP4245226B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP4485625B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition