JP2001202943A - Battery - Google Patents

Battery

Info

Publication number
JP2001202943A
JP2001202943A JP2000011431A JP2000011431A JP2001202943A JP 2001202943 A JP2001202943 A JP 2001202943A JP 2000011431 A JP2000011431 A JP 2000011431A JP 2000011431 A JP2000011431 A JP 2000011431A JP 2001202943 A JP2001202943 A JP 2001202943A
Authority
JP
Japan
Prior art keywords
explosion
filter
particles
storage battery
proof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000011431A
Other languages
Japanese (ja)
Other versions
JP4581168B2 (en
Inventor
Seiji Anzai
誠二 安齋
Kei Ishimaki
圭 石牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000011431A priority Critical patent/JP4581168B2/en
Publication of JP2001202943A publication Critical patent/JP2001202943A/en
Application granted granted Critical
Publication of JP4581168B2 publication Critical patent/JP4581168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide with low cost and with high productivity a battery, equipped with a filter for explosion protection made of a synthetic resin keeping water repellency up to the end of the battery service life, having stable explosion protection performance and having provisions against clogging. SOLUTION: The battery is equipped with a porous filter for explosion protection on an exhaust gas line. The porous filter is formed of sintered polypropylene powder, containing particles of 300 μm in diameter or less with a fraction of particles of 600 μm in diameter or larger within the limit of 5 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特に自動車用蓄電池
の防爆機能構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an explosion-proof function of a storage battery for an automobile.

【0002】[0002]

【従来の技術】従来、自動車用蓄電池に使用されている
防爆構成としては、多くの技術が紹介されている。その
中で多孔性を有するフィルタ材を防爆フィルタとして液
口栓本体内部に装着する方法が主に採用されており、特
開昭54−50841号公報等に開示されている。液口
栓本体へのフィルタ装着方法や形状等に関しては種々の
方法が考案、実用化されているが、いずれもフィルタの
材質はアルミナ粒子体を焼結したセラミック製であっ
た。このようなアルミナを焼結したセラミックを用いて
多孔体を製造する場合には1000℃を越える極めて高
い温度下で長時間の焼結を必要とすることや、後工程に
てセラミック焼結体の表面に撥水性オイルをコーティン
グする等の撥水処理を施すことが重要不可欠である等の
理由により製造コスト面で極めて不利であった。このよ
うな製造コスト面での不利に加えて、特に電解液に希硫
酸を使用している鉛畜電池においては使用期間に経過と
ともに撥水剤の機能が低下する欠点があった。特に自動
車用鉛畜電池においては、例えば75℃程度の比較的高
温で数年間にわたって使用されるため、蓄電池の使用期
間にわたってフィルタの撥水性を良好な状態に維持する
ことは極めて困難であり、ある程度使用期間が過ぎると
撥水性は極度に低下してフィルタに目詰まりが発生する
等の不具合が見られることがあった。このような不具合
を解決するために撥水性を有する合成樹脂で多孔体を作
製することが行われてきている。しかしながら合成樹脂
で作製した多孔体は安定した通気度を得ることが困難で
あり、防爆性能も非常にばらつきの大きいものであっ
た。このため、特定範囲の粒子径を有する合成樹脂粉体
を分離して用いることが考えられるが、このような分離
により原料の歩留まりが低下して結果としてコストは低
下しないと言う問題があった。
2. Description of the Related Art Conventionally, many technologies have been introduced as explosion-proof configurations used for automobile storage batteries. Among them, a method of attaching a porous filter material as an explosion-proof filter to the inside of a liquid stopper body is mainly adopted, and is disclosed in Japanese Patent Application Laid-Open No. 54-50841. Various methods have been devised and put into practical use with respect to the method of attaching the filter to the liquid port plug body, the shape, and the like, but the material of the filter was ceramic made of alumina particles sintered. When a porous body is manufactured using such a ceramic obtained by sintering alumina, it is necessary to perform sintering for a long time at an extremely high temperature exceeding 1000 ° C. This is extremely disadvantageous in terms of manufacturing cost because it is essential to perform a water-repellent treatment such as coating a surface with a water-repellent oil. In addition to such disadvantages in manufacturing cost, in particular, in lead-acid batteries using dilute sulfuric acid as the electrolyte, there is a disadvantage that the function of the water-repellent agent deteriorates as the use period elapses. In particular, since lead-acid batteries for automobiles are used for several years at a relatively high temperature of, for example, about 75 ° C., it is extremely difficult to maintain the water repellency of the filter in a good state over the life of the storage battery. After the period of use, the water repellency is extremely reduced, and a problem such as clogging of the filter may be observed. In order to solve such a problem, a porous body has been produced from a synthetic resin having water repellency. However, it is difficult to obtain a stable air permeability of a porous body made of a synthetic resin, and the explosion-proof performance has a very large variation. For this reason, it is conceivable to separate and use synthetic resin powder having a specific range of particle diameters. However, there is a problem that such separation lowers the yield of raw materials and does not result in a reduction in cost.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記したよう
に蓄電池寿命末期まで撥水機能を有する合成樹脂材で構
成されるとともに、安定した防爆性能を有する防爆フィ
ルタを備えた蓄電池を安価に提供することを目的とす
る。
SUMMARY OF THE INVENTION As described above, the present invention provides an inexpensive storage battery comprising a synthetic resin material having a water-repellent function until the end of the storage battery life and having an explosion-proof filter having stable explosion-proof performance. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】前記した課題を解決する
ために、本発明の請求項1記載に係る発明は防爆用の多
孔性フィルタをガス排気経路途中に備えた蓄電池におい
て、前記多孔性フィルタはポリプロピレン樹脂粉体の焼
結体からなり、前記ポリプロピレン樹脂粉体は300μ
m以下の径を有する粒子を含み、さらに600μm以上
の粒子径を有する粒子の割合を5重量%を上限として含
有するものである。
According to a first aspect of the present invention, there is provided a storage battery provided with an explosion-proof porous filter in a gas exhaust path. Is made of a sintered body of polypropylene resin powder, and the polypropylene resin powder is 300 μ
m and particles having a particle diameter of 600 μm or more, with the upper limit being 5% by weight.

【0005】また、本発明の請求項2記載に係る発明は
請求項1に記載の蓄電池において、ポリプロピレン樹脂
粉体中の300μm以下の粒子径を有する粒子の割合は
20重量%以下とした。
According to a second aspect of the present invention, in the storage battery according to the first aspect, the proportion of particles having a particle diameter of 300 μm or less in the polypropylene resin powder is set to 20% by weight or less.

【0006】また、本発明の請求項3記載に係る発明は
請求項1または2のいずれかに記載する構成を有する蓄
電池において、ポリプロピレン樹脂粉体中の600μm
以上の粒子径を有する粒子の割合をx重量%とし、30
0μm以下の粒子径を有する粒子の割合をy重量%とし
た時にy/x≧1.5とした。
According to a third aspect of the present invention, there is provided a storage battery having the structure according to any one of the first and second aspects, wherein the 600 μm
The ratio of the particles having the above particle diameter is x weight%, and 30
When the ratio of particles having a particle diameter of 0 μm or less is defined as y weight%, y / x ≧ 1.5.

【0007】さらに、本発明の請求項4記載に係る発明
は請求項1ないし3のいずれか1項に記載の構成を有す
る蓄電池において、多孔性フィルタに単位通過面積当た
り0.177リットル/分・mm2(開口径φ6mm、
すなわち28.27mm2の場合で5リットル/分)で
気体を通過させた時の圧力損失を1.9kPa以上とし
た。
Further, according to a fourth aspect of the present invention, there is provided a storage battery having the configuration according to any one of the first to third aspects, wherein the porous filter has a capacity of 0.177 liter / min. mm 2 (opening diameter φ6mm,
That is, the pressure loss when gas was passed at a rate of 5 liters / minute in the case of 28.27 mm 2 was set to 1.9 kPa or more.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を以下に説明
する。
Embodiments of the present invention will be described below.

【0009】熱可塑性合成樹脂よりなるフィルタ部品の
生産過程は、従来主に使用されてきたアルミナよりなる
フィルタ部品と殆ど同等であるが、原材料調達や焼結温
度、焼結時間等に効率的な改善を図っている。まず原材
料については従来原石を粉砕しアルミナ成分を分離、一
定サイズの粒子体を選定し、さらにいくつかの結合材を
混合させるものであった。本発明での蓄電池に用いるフ
ィルタは主に工業成型用品としての汎用のポリプロピレ
ンホモポリマー(以下PP樹脂と云う)を分級して60
0μm以上と300μm以下の粒子径を有するPP樹脂
粉体を分離する。残った300μmから600μmの粒
子径を有するPP樹脂粉体に少なくとも600μm以上
の粒子径のPP樹脂粉体を5重量%以下の割り合いで混
合する。その後、粒子径300μm以下のPP樹脂粉体
を粉体全重量の20重量%以下になるように配合する。
また、600μm以上の粒子径の樹脂粉体重量百分率x
と300μm以下の粒子径の樹脂粉体重量百分率yとの
比率(y/x)を1.5以上に確保するように混合して
原料粉体を得る。ここまでの製造工程で2段階の分級操
作を行っているが、例えばyの値があらかじめ確認され
ていればこのy値に応じたx値を確保するだけの600
μm以上の粒子径を有するPP樹脂を混合すればよい。
次にこのPP樹脂原料粉体を本発明例ではおおよそ20
0℃程度の低温、かつ30分以下の短時間で焼結工程を
行う。この焼結工程において従来のアルミナを用いた工
程では1000℃を超える高温炉にて10時間以上焼結
させるため、バッチ式生産を行っていたものに対して本
発明によるものでは低温、短時間で焼結工程が完了でき
るので容易に連続生産することができる。このようにし
て得たフィルタの通気性のばらつきは非常に少なく、安
定した防爆性能を有している。また、従来は鉛畜電池室
内側からの電解液である硫酸成分の這い上がり等に伴う
硫酸の付着での各種不具合を防止する目的で、焼結後撥
水性オイルを防爆フィルタにコーティングしていたが、
樹脂自身の撥水特性により撥水性オイルによる後処理が
不要となる。また、広範囲の粒子径のPP樹脂粉体を利
用することができるので、原料の歩留まりの低下をより
一層抑制することができる。この防爆フィルタを電池セ
ルから外部への排気経路途中に設けることにより本発明
の蓄電池を構成することができる。
The production process of a filter component made of a thermoplastic synthetic resin is almost the same as that of a filter component made of alumina which has been mainly used in the past, but it is efficient in procuring raw materials, sintering temperature and sintering time. We are improving. First, as for raw materials, conventionally, a raw stone was pulverized to separate an alumina component, particles of a certain size were selected, and some binders were further mixed. The filter used in the storage battery according to the present invention is mainly classified into a general-purpose polypropylene homopolymer (hereinafter referred to as a PP resin) as an industrial molded article, and classified into 60.
A PP resin powder having a particle diameter of 0 μm or more and 300 μm or less is separated. The remaining PP resin powder having a particle diameter of 300 μm to 600 μm is mixed with a PP resin powder having a particle diameter of at least 600 μm or more in a proportion of 5% by weight or less. Thereafter, a PP resin powder having a particle diameter of 300 μm or less is blended so as to be 20% by weight or less of the total weight of the powder.
Further, the resin powder weight percentage x of the particle diameter of 600 μm or more x
The raw material powder is obtained by mixing so that the ratio (y / x) of the weight percentage y of the resin powder having a particle diameter of 300 μm or less to 1.5 or more is secured. In the manufacturing process up to this point, a two-stage classification operation has been performed. For example, if the value of y is confirmed in advance, it is only necessary to secure an x value corresponding to the y value.
What is necessary is just to mix the PP resin which has a particle diameter of a micrometer or more.
Next, this PP resin raw material powder is used for approximately 20
The sintering step is performed at a low temperature of about 0 ° C. and for a short time of 30 minutes or less. In the conventional sintering process using alumina, sintering is performed in a high-temperature furnace exceeding 1000 ° C. for 10 hours or more. Since the sintering process can be completed, continuous production can be easily performed. The filter thus obtained has very little variation in air permeability, and has stable explosion-proof performance. In addition, conventionally, a water-repellent oil was coated on an explosion-proof filter after sintering in order to prevent various problems due to adhesion of sulfuric acid due to crawling of a sulfuric acid component as an electrolytic solution from the inside of a lead-acid battery chamber. But,
Post-treatment with a water-repellent oil becomes unnecessary due to the water-repellent properties of the resin itself. In addition, since a PP resin powder having a wide range of particle diameters can be used, a decrease in the yield of raw materials can be further suppressed. By providing this explosion-proof filter in the middle of the exhaust path from the battery cell to the outside, the storage battery of the present invention can be configured.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。ま
ず、汎用のポリプロピレン樹脂粉体Aを用意した。この
ポリプロピレン樹脂粉体Aを粒子径300μmと600
μmで分級操作した。その結果、ポリプロピレン樹脂粉
体Aに含まれる粒子径300μm以下の粉体(以下粉体
αと云う)はポリプロピレン樹脂粉体A重量の20重量
%であった。同じく粒子径300μmから600μmの
粉体(以下粉体βと云う)は70重量%、粒子径600
μm以上の粉体(以下粉体γと云う)は10重量%であ
った。これらの各粒子径を有する粉体α、β、γを様々
の比率で混合し、原料粉体を作製した。これらの原料粉
体を成形型に充填し200℃中で20分間加熱して焼結
させて表1に示す蓄電池用の防爆フィルタを作製した。
Embodiments of the present invention will be described below. First, general-purpose polypropylene resin powder A was prepared. This polypropylene resin powder A was prepared with a particle diameter of 300 μm and a particle diameter of 600 μm.
Classification was performed using μm. As a result, the powder having a particle size of 300 μm or less (hereinafter referred to as powder α) contained in the polypropylene resin powder A was 20% by weight of the weight of the polypropylene resin powder A. Similarly, powder having a particle diameter of 300 μm to 600 μm (hereinafter referred to as powder β) is 70% by weight,
The powder having a particle size of μm or more (hereinafter referred to as powder γ) was 10% by weight. Powders α, β, and γ having these respective particle diameters were mixed at various ratios to prepare raw material powders. These raw material powders were filled in a mold, heated at 200 ° C. for 20 minutes, and sintered to produce an explosion-proof filter for a storage battery shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示した防爆フィルタA〜Iそれぞれ
100個づつ作製し、防爆フィルタの通気性を測定し
た。実験的には防爆フィルタの片面に加圧チャンバーを
装着し、他の片面は開放された状態とし、加圧チャンバ
ー内の内圧を上昇させていき、加圧チャンバーからの防
爆フィルタを通過する空気流量が防爆フィルタ開口面積
当たり0.177リットル/分・mm2の流量となった
時点での加圧チャンバー内の内圧を圧力損失として測定
し、この圧力損失値を通気性の指標とした。この圧力損
失値の測定結果を表2に示す。なお、フィルタの開口サ
イズはφ6(28.274mm2)としたので実際の空
気流量は5リットル/分・mm2である。なお、フィル
タの厚みは4.0mmとした。
One hundred explosion-proof filters A to I shown in Table 1 were manufactured, and the air permeability of the explosion-proof filters was measured. Experimentally, a pressurized chamber was installed on one side of the explosion-proof filter, the other side was left open, the internal pressure in the pressurized chamber was increased, and the air flow from the pressurized chamber through the explosion-proof filter Was measured as a pressure loss at the time when the flow rate became 0.177 liter / min · mm 2 per explosion-proof filter opening area, and this pressure loss value was used as an index of gas permeability. Table 2 shows the measurement results of the pressure loss values. Since the opening size of the filter was φ6 (28.274 mm 2 ), the actual air flow rate was 5 l / min · mm 2 . The thickness of the filter was 4.0 mm.

【0013】[0013]

【表2】 [Table 2]

【0014】次に防爆性能と圧力損失値との関係を確認
するために表2で示した各圧力損失値別にフィルタを選
別し、このフィルタを組み込んだ液栓を用いて55D2
3型電池(12V48Ah)を作製した。これらの電池
を完全充電状態とした後、30Aの定電流で充電し、充
電開始後30秒目の時点で液栓近傍に電気スパークを発
生させた。その結果、圧力損失値が1.8kPa以下で
電気スパークが電槽内の酸素・水素ガスに引火した。よ
って圧力損失値は1.9以上に確保する必要があること
が判り、防爆フィルタA、B、EおよびFは防爆フィル
タとして機能しないことが確認できた。次にこれらの電
池を90℃中で13.8Vの定電圧過充電を4週間行っ
た時の電槽の状態を確認した。その結果、圧力損失値が
初期の状態で6.5kPa以上のものについて防爆フィ
ルタに見詰まりが発生し、その結果電槽内圧が上昇し、
電槽の膨れが発生していた。これらの結果から防爆フィ
ルタC、D、G、H、Iについて圧力損失値の最小値が
1.9kPa以上で、かつ最大値が6.5kPa未満と
いう条件を満たすことが確認できた。
Next, in order to confirm the relationship between the explosion-proof performance and the pressure loss value, a filter was selected for each pressure loss value shown in Table 2, and a 55D2 filter was installed using a liquid stopper incorporating the filter.
A type 3 battery (12V48Ah) was produced. After these batteries were fully charged, they were charged at a constant current of 30 A, and an electric spark was generated near the liquid tap 30 seconds after the start of charging. As a result, the electric spark ignited the oxygen / hydrogen gas in the battery case when the pressure loss value was 1.8 kPa or less. Therefore, it was found that it was necessary to secure the pressure loss value to 1.9 or more, and it was confirmed that the explosion-proof filters A, B, E, and F did not function as explosion-proof filters. Next, the condition of the battery case when these batteries were subjected to constant voltage overcharge of 13.8 V at 90 ° C. for 4 weeks was confirmed. As a result, the explosion-proof filter is clogged for those having a pressure loss value of 6.5 kPa or more in the initial state, and as a result, the internal pressure of the battery case increases,
The battery case had swelled. From these results, it was confirmed that the minimum values of the pressure loss values of the explosion-proof filters C, D, G, H, and I satisfied the condition that they were 1.9 kPa or more and the maximum values were less than 6.5 kPa.

【0015】また、防爆フィルタB、CおよびIの比較
から粉体γを含有しない場合には粉体αの含有量を20
重量%以下とする必要があることが判る。粉体γの粒子
を添加する場合には少なくともその含有量を5重量%以
下に確保する必要があり、粉体αの含有量yを少なくと
も粉体γの含有量xの1.5倍以上に混合することが好
ましいことが判る。なぜならばy/x=1.0とした防
爆フィルタHについても適当な圧力損失値を示したが、
最低圧力損失値が1.9kPaと防爆性能を有する最低
値であったため、より安全を確保するにはy/x≧1.
5の構成とすることが好ましい。特に粉体γを含有して
このような条件を満たす防爆フィルタDおよびGは、粒
子径を300μm以上600μm以下に限定した防爆フ
ィルタHよりもはるかに圧力損失値のばらつきが少なく
好ましいことが確認できた。また、防爆フィルタD、G
およびHは従来選別して除去せざるを得なかった大きな
粒子径もしくは小さな粒子径を有効に利用できるので、
原材料の歩留まり向上のために特に好ましいことが判
る。
From the comparison of the explosion-proof filters B, C and I, when the powder γ is not contained, the content of
It is understood that it is necessary to be not more than% by weight. In the case of adding the particles of the powder γ, it is necessary to ensure that the content is at least 5% by weight or less. It turns out that mixing is preferable. This is because the explosion-proof filter H with y / x = 1.0 also showed an appropriate pressure loss value.
Since the minimum pressure loss value was 1.9 kPa, which is the lowest value having explosion-proof performance, y / x ≧ 1.
5 is preferable. In particular, it can be confirmed that the explosion-proof filters D and G satisfying such conditions by containing the powder γ have a much smaller variation in pressure loss value than the explosion-proof filter H whose particle diameter is limited to 300 μm or more and 600 μm or less. Was. Explosion-proof filters D and G
And H can effectively use a large particle diameter or a small particle diameter, which had to be removed by screening before.
It turns out that it is particularly preferable for improving the yield of raw materials.

【0016】[0016]

【発明の効果】前記したように、本発明の構成によれば
防爆性能や耐目詰まり性を十分に確保した上で生産性の
高い防爆フィルタを装着した蓄電池を安価に提供できる
ことから、工業上、極めて有用である。
As described above, according to the configuration of the present invention, it is possible to provide a storage battery equipped with a high-productivity explosion-proof filter while ensuring sufficient explosion-proof performance and clogging resistance. Very useful.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 防爆用の多孔性フィルタをガス排気経路
途中に備えた蓄電池において、前記多孔性フィルタはポ
リプロピレン樹脂粉体の焼結体からなり、前記ポリプロ
ピレン樹脂粉体は300μm以下の径を有する粒子を含
むとともに、600μm以上の径を有する粒子を5重量
%を上限として含有することを特徴とする蓄電池。
1. A storage battery provided with an explosion-proof porous filter in the middle of a gas exhaust path, wherein said porous filter is made of a sintered body of polypropylene resin powder, and said polypropylene resin powder has a diameter of 300 μm or less. A storage battery comprising particles and particles having a diameter of 600 μm or more in an amount of up to 5% by weight.
【請求項2】 ポリプロピレン樹脂粉体中の300μm
以下の径を有する粒子の割合を20重量%以下としたこ
とを特徴とする請求項1に記載の蓄電池。
2. 300 μm in polypropylene resin powder
The storage battery according to claim 1, wherein the proportion of particles having the following diameters is set to 20% by weight or less.
【請求項3】 ポリプロピレン樹脂粉体中の600μm
以上の径を有する粒子の割合をx重量%とし、300μ
m以下の径を有する粒子の割合をy重量%とした時にy
/x≧1.5としたことを特徴とする請求項1または2
に記載の蓄電池。
3. 600 μm in polypropylene resin powder
The ratio of the particles having the above diameter is x weight%, and
When the proportion of particles having a diameter of less than m
3. The method according to claim 1, wherein /x≧1.5.
A storage battery according to claim 1.
【請求項4】 多孔性フィルタに単位開口面積当たり
0.177リットル/分・mm2で気体を通過させた時
の圧力損失を1.9kPa以上としたことを特徴とする
請求項1ないし3のいずれか1項に記載の蓄電池。
4. The method according to claim 1, wherein a pressure loss when gas is passed through the porous filter at a rate of 0.177 liter / min.mm 2 per unit opening area is 1.9 kPa or more. The storage battery according to claim 1.
JP2000011431A 2000-01-20 2000-01-20 Storage battery Expired - Fee Related JP4581168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000011431A JP4581168B2 (en) 2000-01-20 2000-01-20 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000011431A JP4581168B2 (en) 2000-01-20 2000-01-20 Storage battery

Publications (2)

Publication Number Publication Date
JP2001202943A true JP2001202943A (en) 2001-07-27
JP4581168B2 JP4581168B2 (en) 2010-11-17

Family

ID=18539293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000011431A Expired - Fee Related JP4581168B2 (en) 2000-01-20 2000-01-20 Storage battery

Country Status (1)

Country Link
JP (1) JP4581168B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059730A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2009165234A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Gas insulated switchgear and gas filter device
JP2015192020A (en) * 2014-03-28 2015-11-02 新神戸電機株式会社 lithium ion capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450841A (en) * 1977-09-29 1979-04-21 Yuasa Battery Co Ltd Storage battery
JPS6110853A (en) * 1984-06-27 1986-01-18 Matsushita Electric Ind Co Ltd Enclosed lead storage battery
JPS61232558A (en) * 1985-04-06 1986-10-16 Sumitomo Electric Ind Ltd Rechargeable battery
JPS6467861A (en) * 1987-08-21 1989-03-14 Globe Union Inc Material and method for decelerating explosion for battery
JPH01221855A (en) * 1988-03-01 1989-09-05 Yuasa Battery Co Ltd Valve device for enclosed lead-acid battery
JPH09330689A (en) * 1996-06-11 1997-12-22 Shin Kobe Electric Mach Co Ltd Sealed alkaline storage battery
JP2001185112A (en) * 1999-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Lead battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450841A (en) * 1977-09-29 1979-04-21 Yuasa Battery Co Ltd Storage battery
JPS6110853A (en) * 1984-06-27 1986-01-18 Matsushita Electric Ind Co Ltd Enclosed lead storage battery
JPS61232558A (en) * 1985-04-06 1986-10-16 Sumitomo Electric Ind Ltd Rechargeable battery
JPS6467861A (en) * 1987-08-21 1989-03-14 Globe Union Inc Material and method for decelerating explosion for battery
JPH01221855A (en) * 1988-03-01 1989-09-05 Yuasa Battery Co Ltd Valve device for enclosed lead-acid battery
JPH09330689A (en) * 1996-06-11 1997-12-22 Shin Kobe Electric Mach Co Ltd Sealed alkaline storage battery
JP2001185112A (en) * 1999-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Lead battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059730A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2009165234A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Gas insulated switchgear and gas filter device
JP2015192020A (en) * 2014-03-28 2015-11-02 新神戸電機株式会社 lithium ion capacitor

Also Published As

Publication number Publication date
JP4581168B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
AU2016200591B2 (en) Lead-acid battery
EP2628812A1 (en) Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
EP3059796B1 (en) Lead-acid battery
JP2012019223A (en) Tantalum powder for production of solid electrolyte capacitors
JP2001202943A (en) Battery
JP4698291B2 (en) Alkaline storage battery
Černý et al. Comparative study of porous iron electrodes
JP5105766B2 (en) Alkaline storage battery, method for manufacturing the same, and assembled battery device
JP4457451B2 (en) Automotive lead-acid battery
EP3933970A1 (en) Positive electrode for alkaline secondary battery, and alkaline secondary battery
WO2020066763A1 (en) Lead battery
EP3499613B1 (en) Nickel hydrogen secondary battery
JPS6137733B2 (en)
CN115003634B (en) Method for producing mixture of positive electrode active material particles of nickel-lithium-rich composite transition metal oxide
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
EP4064446A1 (en) Composite separator and electrochemical device using the same
EP3937301A1 (en) Separator and electrochemical device using the same
JPH0837008A (en) Paste type lead-acid battery
JPS6276159A (en) Manufacture of fuel electrode for fuel cell of molten carbonate type
Kim et al. Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts
CN113904064A (en) Separator and electrochemical device using the same
JPH08203522A (en) Nickel active substance for alkaline battery and manufacture thereof
CN116154403A (en) High-performance surface coating diaphragm of lithium power battery and preparation method and application thereof
JP2005251598A (en) Separator for alkaline storage battery, and alkaline storage battery
JPH05225984A (en) Manufacture of porous substrate for battery pole plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees