JP2001199795A - Method for producing silicon single crystal ingot - Google Patents

Method for producing silicon single crystal ingot

Info

Publication number
JP2001199795A
JP2001199795A JP2000008965A JP2000008965A JP2001199795A JP 2001199795 A JP2001199795 A JP 2001199795A JP 2000008965 A JP2000008965 A JP 2000008965A JP 2000008965 A JP2000008965 A JP 2000008965A JP 2001199795 A JP2001199795 A JP 2001199795A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
nitrogen
crystal ingot
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000008965A
Other languages
Japanese (ja)
Other versions
JP4080657B2 (en
Inventor
Osamu Kubota
治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2000008965A priority Critical patent/JP4080657B2/en
Publication of JP2001199795A publication Critical patent/JP2001199795A/en
Application granted granted Critical
Publication of JP4080657B2 publication Critical patent/JP4080657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silicon single crystal ingot, capable of solving unevenness of BMD density on a wafer surface caused by an OSF ring in pulling out the silicon single crystal ingot doped with nitrogen by CZ method. SOLUTION: This silicon single crystal ingot is characterized by pulling it out using Czochralski method from a molten silicon liquid 7 obtained by doping nitrogen N to a polysilicon, having 1×1013-1.2×1015 atoms/cm3 nitrogen concentration and setting <=200 min passing time through 1,100-700 deg.C temperature zone for solving the unevenness of the BMD density on the wafer surface caused by the OSF ring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコン単結晶イン
ゴットの製造方法に係わり、特に窒素ドーピングシリコ
ン単結晶インゴットのOSFリングに起因するBMD密
度のウェーハ面内における不均一性を解消するシリコン
単結晶インゴットの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon single crystal ingot, and more particularly to a silicon single crystal ingot for eliminating non-uniformity in BMD density in a wafer surface due to an OSF ring of a nitrogen-doped silicon single crystal ingot. And a method for producing the same.

【0002】[0002]

【従来の技術】半導体デバイスに用いられるシリコンウ
エーハは、主としてポリシリコンからCZ法により引上
げられた単結晶インゴットをスライスして製造される。
2. Description of the Related Art A silicon wafer used for a semiconductor device is mainly manufactured by slicing a single crystal ingot pulled from a polysilicon by a CZ method.

【0003】CZ法は、石英ルツボ内に供給された原料
のポリシリコンを加熱溶融し、このシリコン融液に種結
晶の先端を接触させ、なじませた後、シリコン単結晶イ
ンゴットを育成し引上げるものである。
[0003] In the CZ method, polysilicon as a raw material supplied into a quartz crucible is heated and melted, and the tip of a seed crystal is brought into contact with the silicon melt to be blended. Then, a silicon single crystal ingot is grown and pulled up. Things.

【0004】このようにして製造されたシリコンウェー
ハに、このシリコンウェーハの結晶表面に存在する重金
属などの不純物をゲッタリングするために、BMD(B
ulk Micro Defect:酸素析出物)を利
用したIG法(Intrinsic Getterin
g)が用いられている。
[0004] In order to getter impurities such as heavy metals present on the crystal surface of the silicon wafer, a BMD (B
IG method (Intrinsic Getterin) using ULK Micro Defect (oxygen precipitate)
g) is used.

【0005】近年、半導体デバイスの高密度化が進んで
おり、これに伴ってシリコン単結晶インゴットにも低酸
素化が要求されている。一方、このシリコン単結晶イン
ゴットから製造されるシリコンウェーハ中のBMDはI
G法のために不可欠のものであるが、低酸素化のために
BMDが低減している。
[0005] In recent years, the density of semiconductor devices has been increasing, and accordingly, low oxygen in silicon single crystal ingots has been required. On the other hand, the BMD in a silicon wafer manufactured from this silicon single crystal ingot is IMD
Although indispensable for the G method, BMD is reduced due to low oxygen.

【0006】そこで、ポリシリコン融液中に窒素をドー
ピングして、シリコンウェーハの結晶中に酸素の析出を
促進させることが行われているが、窒素ドーピングは同
時に、このようにして製造されたシリコンウェーハが熱
酸化処理を受けたときに、OSF(Oxidation
induced Stacking Fault:酸
化誘起積層欠陥)リングと呼ばれるリング状の酸化誘起
積層欠陥を生じ易くする。このOSFリングは結晶育成
中の熱履歴に強く依存してリング径が変化し、冷却速度
を速くすることでOSFリング径が大きくなり、また、
冷却速度を遅くすることでOSFリング径が小さくな
る。
[0006] Therefore, it has been practiced to dope nitrogen into the polysilicon melt to promote the precipitation of oxygen in the crystal of the silicon wafer. At the same time, nitrogen doping is performed on the silicon thus produced. When a wafer is subjected to a thermal oxidation process, an OSF (Oxidation
Induced Stacking Fault (Oxidation-Induced Stacking Fault) A ring-shaped oxidation-induced stacking fault called a ring is easily generated. This OSF ring changes its ring diameter strongly depending on the heat history during crystal growth, and the OSF ring diameter increases by increasing the cooling rate.
By reducing the cooling rate, the OSF ring diameter becomes smaller.

【0007】さらに冷却速度を十分速くすることでウェ
ーハ作成面より外側にOSFリングを排除することがで
き、また、十分に冷却速度を遅くすることでOSFリン
グを消滅させることができる。さらに、OSFリングは
ドーパントとその濃度にも影響を受け、窒素をある濃度
以上ドーピングした場合にOSFリングが発生しやすく
なる。
Further, by making the cooling rate sufficiently high, the OSF ring can be eliminated outside the wafer forming surface, and by making the cooling rate sufficiently slow, the OSF ring can be eliminated. Further, the OSF ring is also affected by the dopant and its concentration, and when nitrogen is doped at a certain concentration or more, the OSF ring is easily generated.

【0008】結晶育成中での冷却過程において、シリコ
ン融液に窒素をドーピングすることで、OSFのもとに
なるOSF核が結晶育成中に形成される温度領域が拡大
され、この温度領域を結晶が通過すると、この体験時間
が長くなることからOSF核が形成されやすくなる。
In the cooling process during the crystal growth, the temperature region in which the OSF nucleus, which is the source of the OSF, is formed during the crystal growth is expanded by doping the silicon melt with nitrogen. Pass, the experience time becomes longer, so that an OSF nucleus is easily formed.

【0009】このためOSFリングをウェーハ作成面よ
り外周側に排除しようとした場合、窒素をドーピングし
ないときに比べて、さらに冷却速度を速めなければなら
ない。このことは窒素のドーピング濃度に依存し、結晶
中の窒素濃度が1.2×10 15atoms/cm
上で顕著に現れる。
For this reason, the OSF ring should be
Doping with nitrogen,
The cooling rate must be faster than when it is not
Absent. This depends on the nitrogen doping concentration and the crystal
The nitrogen concentration in the inside is 1.2 × 10 Fifteenatoms / cm3Less than
Appears prominently above.

【0010】また、このOSFリング近傍には、BMD
密度が著しく低くなる範囲が存在し、BMD密度が著し
く低く、ウェーハ面内におけるBMD密度が不均一とな
り、この不均一部分では、他の部分に比べてゲッタリン
グ能力が不足し、所定のゲッタリング能力が得られず、
酸化膜耐圧を低下させ、半導体デバイスの歩留を低下さ
せていた。
Also, in the vicinity of the OSF ring, a BMD
There is a range in which the density is extremely low, the BMD density is extremely low, and the BMD density in the wafer surface becomes non-uniform. In this non-uniform part, the gettering ability is insufficient compared to other parts, and the predetermined gettering Ability is not obtained,
This has reduced the withstand voltage of the oxide film and reduced the yield of semiconductor devices.

【0011】特開平5―294780号公報には、ポリ
シリコン融液中に窒素をドーピングする方法が行われて
いるが、窒素ドーピングによりセコエッチピットの発生
を効果的に抑制することができるが、OSFリングに起
因するBMD密度のウェーハ面内における不均一性を解
消するものではない。
Japanese Patent Application Laid-Open No. 5-294780 discloses a method of doping nitrogen into a polysilicon melt. The nitrogen doping can effectively suppress the generation of Secco etch pits. This does not eliminate the non-uniformity of the BMD density in the wafer surface caused by the OSF ring.

【0012】さらに、特開平11―116391号公報
には、低速引上げにより育成されるシリコン単結晶が結
晶成長時に、1150〜1080℃の温度域を通過する
時間を20分以下にし、グローイン欠陥の密度とサイズ
を同時に低減し、酸化耐圧特性良品率に優れたシリコン
単結晶の製造方法に関するものであるが、窒素ドーピン
グされたシリコン単結晶においてOSFリングに起因す
るBMD密度のウェーハ面内における不均一性を解消す
るものではない。
Further, Japanese Patent Application Laid-Open No. 11-116391 discloses that the time during which a silicon single crystal grown by low-speed pulling passes through a temperature range of 1150 to 1080 ° C. during crystal growth is set to 20 minutes or less, and the density of glow-in defects is reduced. The method relates to a method for manufacturing a silicon single crystal having an excellent non-defective rate of oxidation withstand voltage characteristics by simultaneously reducing the size and size of the silicon single crystal. However, the non-uniformity in the wafer surface of the BMD density due to the OSF ring in the nitrogen-doped silicon single crystal Does not eliminate the problem.

【0013】[0013]

【発明が解決しようとする課題】そこで、CZ法により
窒素をドーピングしたシリコン単結晶インゴットの引上
げにおいて、OSFリングに起因するBMD密度のウェ
ーハ面内における不均一性を解消するシリコン単結晶イ
ンゴットの製造方法が要望されている。
Accordingly, in pulling a silicon single crystal ingot doped with nitrogen by the CZ method, a method of manufacturing a silicon single crystal ingot which eliminates in-wafer non-uniformity of BMD density due to an OSF ring. There is a need for a method.

【0014】本発明は上述した事情を考慮してなされた
もので、CZ法により窒素をドーピングしたシリコン単
結晶インゴットの引上げにおいて、OSFリングに起因
するBMD密度のウェーハ面内における不均一性を解消
するシリコン単結晶インゴットの製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and eliminates in-wafer non-uniformity of BMD density due to an OSF ring in pulling a silicon single crystal ingot doped with nitrogen by the CZ method. It is an object of the present invention to provide a method for producing a silicon single crystal ingot.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、ポリシリコンに窒素
をドーピングしたシリコン融液からチョクラルスキー法
を用いて引上げられ、その結晶中の窒素濃度は1×10
13〜1.2×1015atoms/cmであり、結
晶育成中に結晶が体験する1100〜700℃の温度領
域の通過時間を200分以下となるようにし、OSFリ
ングに起因するBMD密度のウェーハ面内における不均
一性を解消することを特徴とするシリコン単結晶インゴ
ットの製造方法であることを要旨としている。
Means for Solving the Problems According to the first aspect of the present invention, which has been made to achieve the above object, according to the present invention, polysilicon is doped from a silicon melt doped with nitrogen by using the Czochralski method, Nitrogen concentration is 1 × 10
13 to 1.2 × 10 15 atoms / cm 3 , the passing time of the temperature range of 1100 to 700 ° C. experienced by the crystal during crystal growth is set to 200 minutes or less, and the BMD density caused by the OSF ring is reduced. The gist of the invention is to provide a method for manufacturing a silicon single crystal ingot, which is characterized by eliminating non-uniformity in a wafer surface.

【0016】本願請求項2の発明では、上記結晶中の酸
素濃度は0.7×1018〜1.2×1018atom
s/cmであることを特徴とする請求項1に記載のシ
リコン単結晶インゴットの製造方法であることを要旨と
している。
According to the second aspect of the present invention, the oxygen concentration in the crystal is 0.7 × 10 18 to 1.2 × 10 18 atom.
The gist of the present invention is a method for producing a silicon single crystal ingot according to claim 1, wherein the method is s / cm 3 .

【0017】[0017]

【発明の実施の形態】以下、本発明に係わるシリコン単
結晶インゴットの製造方法の実施の形態を添付図面を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a silicon single crystal ingot according to the present invention will be described below with reference to the accompanying drawings.

【0018】図1に示すように、本発明に係わるシリコ
ン単結晶インゴットの製造方法に用いられるCZ法は、
単結晶引上装置1のチャンバ2内に設置した石英ガラス
ルツボ3に原料であるポリシリコンを充填し、さらに、
窒素Nをドーピングするためのドーパントとして、育成
中の窒素濃度が1×1013〜1.2×1015ato
ms/cmになるように窒化珪素を所定量入れ、さら
に酸素濃度が所定濃度、例えば、酸素濃度は0.7×1
18〜1.2×1018atoms/cmになるよ
うに調整し、石英ガラスルツボ3の外周に設けたヒータ
4によってポリシリコンを加熱溶解し、しかる後、この
窒素がドーピングされたシリコン融液5にシードチャッ
ク6に取付けた種結晶7を浸漬し、シードチャック7お
よび石英ガラスルツボ4を同方向または逆方向に所定の
回転数で回転させながらシードチャック7を引上げてシ
リコン単結晶インゴット8を成長させ、所定の引上げ速
度で引上げることにより行われる。さらに、この育成工
程において、育成中の結晶が体験する1100〜700
℃の温度領域を通過する時間を200分以下にする。
As shown in FIG. 1, the CZ method used in the method for manufacturing a silicon single crystal ingot according to the present invention is as follows.
A quartz glass crucible 3 installed in a chamber 2 of a single crystal pulling apparatus 1 is filled with polysilicon as a raw material, and further,
As a dopant for doping nitrogen N, the nitrogen concentration during growth is 1 × 10 13 to 1.2 × 10 15 at.
ms / cm 3 , a predetermined amount of silicon nitride is added, and the oxygen concentration is a predetermined concentration, for example, the oxygen concentration is 0.7 × 1.
0 18 to 1.2 × 10 18 atoms / cm 3 , the polysilicon is heated and melted by the heater 4 provided on the outer periphery of the quartz glass crucible 3, and then the silicon doped with nitrogen is melted. The seed crystal 7 attached to the seed chuck 6 is immersed in the liquid 5, and the seed chuck 7 is pulled up while rotating the seed chuck 7 and the quartz glass crucible 4 in the same direction or in the opposite direction at a predetermined number of revolutions, and the silicon single crystal ingot 8 is pulled up. Is grown and pulled up at a predetermined pulling rate. Further, in this growing step, the crystal being grown experiences 1100-700.
The time to pass through the temperature range of ° C. is set to 200 minutes or less.

【0019】なお、上記のような所定の範囲に酸素濃度
を調整する方法は、一般に用いられている方法、例え
ば、ルツボ回転数の制御、雰囲気圧力の制御、導入ガス
流量の制御、シリコン融液の温度分布、対流の調整の諸
手段を講じることによって、容易に行うことが可能であ
る。このように、酸素濃度を0.7×1018〜1.2
×1018atoms/cmに調整することにより、
結晶欠陥の成長を抑制することができるとともに、表面
層でのBMDの形成を防止することもでき、また、バル
ク部では、窒素の存在により酸素析出が促進されるの
で、低酸素濃度にしても均一かつ十分にBMDを析出さ
せることができ、さらにOSFの形成も抑制できる。
The method of adjusting the oxygen concentration to a predetermined range as described above is a commonly used method, for example, controlling the crucible rotation speed, controlling the atmospheric pressure, controlling the flow rate of the introduced gas, controlling the silicon melt. By taking various measures for adjusting the temperature distribution and the convection of the gas, it can be easily performed. As described above, the oxygen concentration is set to 0.7 × 10 18 to 1.2.
By adjusting to × 10 18 atoms / cm 3 ,
In addition to suppressing the growth of crystal defects, it is also possible to prevent the formation of BMD in the surface layer. In the bulk portion, since the presence of nitrogen promotes the precipitation of oxygen, even if the oxygen concentration is low, BMD can be uniformly and sufficiently precipitated, and formation of OSF can be suppressed.

【0020】上記のように育成中の窒素濃度を1×10
13〜1.2×1015atoms/cmになるよう
にし、酸素濃度を所定濃度、好ましくは0.7×10
18〜1.2×1018atoms/cmに調整し、
さらに、育成中の結晶が体験する1100〜700℃の
温度領域を通過する時間を200分以下にすることによ
り、低酸素濃度のシリコン融液であっても、窒素ドーピ
ングをすることにより酸素の析出を促進させて、OSF
リング形状の近傍に発生するBMD密度の低濃度域の改
善が行えて、BMD密度を面内に均一にでき、イントリ
ンシックゲッタリングによる重金属等の不純物含有量低
減効果を改善できる。また、高速での引上げも可能であ
るので、シリコン単結晶引上げの生産性も向上させるこ
とができる。
As described above, the nitrogen concentration during growth is 1 × 10
13 to 1.2 × 10 15 atoms / cm 3 and an oxygen concentration of a predetermined concentration, preferably 0.7 × 10 15 atoms / cm 3.
18 was adjusted to ~1.2 × 10 18 atoms / cm 3 ,
Further, by making the time of passing through the temperature range of 1100 to 700 ° C. experienced by the growing crystal 200 minutes or less, even in the case of a silicon melt having a low oxygen concentration, oxygen doping can be performed by nitrogen doping. Promote OSF
The low concentration region of the BMD density generated near the ring shape can be improved, the BMD density can be made uniform in the plane, and the effect of reducing the content of impurities such as heavy metals by intrinsic gettering can be improved. Further, since pulling at a high speed is also possible, productivity of pulling a silicon single crystal can be improved.

【0021】[0021]

【実施例】試験1: 図1に示すようなシリコン単結晶
引上装置を用い、本発明に係わるシリコン単結晶引上げ
方法により、育成中の窒素濃度が窒素濃度を1×10
13〜1.2×1015atoms/cm、酸素濃度
を0.7×1018〜1.2×1018atoms/c
として、直径8インチのシリコンインゴットを引上
げ、BMD密度の不均一の有無を調べた。育成中の結晶
が体験する1100〜700℃の温度領域を通過する時
間を変化させるため、表1に示すように引上げ速度を変
えた。
EXAMPLE 1 Test 1 : Using a silicon single crystal pulling apparatus as shown in FIG. 1, the nitrogen concentration during the growth was 1 × 10 5 by the silicon single crystal pulling method according to the present invention.
13 to 1.2 × 10 15 atoms / cm 3 and oxygen concentration of 0.7 × 10 18 to 1.2 × 10 18 atoms / c
As m 3, pulling up the silicon ingot having a diameter of 8 inches were examined for heterogeneity of BMD density. The pulling speed was changed as shown in Table 1 in order to change the time that the growing crystal experiences in passing through the temperature range of 1100 to 700 ° C.

【0022】(結果):試験結果を表1に示す。(Results): The test results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】・育成中の結晶が体験する1100〜70
0℃の温度領域を通過する時間が、200分以下で、比
較例1〜比較例3に比べて高速引上げの実施例1、実施
例2は、ともにBMD密度の不均一が存在しないことが
確認された。 ・これに対して、200分を超え、実施例1、実施例2
に比べて低速引上げの比較例1〜比較例3では、いずれ
もBMD密度の不均一が確認された。
1100-70 experienced by the growing crystal
It was confirmed that the time required to pass through the temperature range of 0 ° C. was 200 minutes or less, and in Examples 1 and 2 in which the high-speed pulling was performed as compared with Comparative Examples 1 to 3, there was no unevenness in the BMD density. Was done. -On the other hand, more than 200 minutes, Example 1 and Example 2
In Comparative Examples 1 to 3 in which pulling was performed at a low speed, non-uniformity of the BMD density was confirmed.

【0025】[0025]

【発明の効果】本発明に係わるシリコン単結晶インゴッ
トの製造方法によれば、CZ法により窒素をドーピング
したシリコン単結晶インゴットの引上げにおいて、OS
Fリングに起因するBMD密度のウェーハ面内における
不均一性を解消するシリコン単結晶インゴットを製造す
ることができるシリコン単結晶インゴットの製造方法を
提供できる。
According to the method for manufacturing a silicon single crystal ingot according to the present invention, in pulling a silicon single crystal ingot doped with nitrogen by the CZ method, an OS
A method for manufacturing a silicon single crystal ingot capable of manufacturing a silicon single crystal ingot that eliminates non-uniformity of the BMD density in the wafer plane due to the F ring can be provided.

【0026】すなわち、ポリシリコンに窒素をドーピン
グしたシリコン融液からチョクラルスキー法を用いて引
上げられ、その結晶中の窒素濃度は1×1013〜1.
2×1015atoms/cmであり、結晶育成中に
結晶が体験する1100〜700℃の温度領域の通過時
間を200分以下とするシリコン単結晶インゴットの製
造方法であるので、OSFリングに起因するBMD密度
のウェーハ面内における不均一性を解消することがで
き、イントリンシックゲッタリングによる重金属等の不
純物含有量低減効果を改善できる。さらに、高速での引
上げも可能であるので、シリコン単結晶引上げの生産性
も向上させることができる。
That is, it is pulled up from a silicon melt obtained by doping nitrogen into polysilicon using the Czochralski method, and the nitrogen concentration in the crystal is 1 × 10 13 to 1 × 10 13 .
2 × 10 15 atoms / cm 3, which is a method for producing a silicon single crystal ingot in which the passage time in the temperature range of 1100 to 700 ° C. experienced by the crystal during crystal growth is 200 minutes or less. The non-uniformity of the BMD density in the wafer surface can be eliminated, and the effect of reducing the content of impurities such as heavy metals by intrinsic gettering can be improved. Further, since pulling at a high speed is also possible, productivity of pulling a silicon single crystal can be improved.

【0027】また、結晶中の酸素濃度は0.7×10
18〜1.2×1018atoms/cmであるの
で、低酸素濃度のシリコン単結晶インゴットが得られる
とともに、OSFの形成を抑制できるとともに、OSF
リングに起因するBMD密度のウェーハ面内における不
均一性を解消することができる。
The oxygen concentration in the crystal is 0.7 × 10
Since it is 18 to 1.2 × 10 18 atoms / cm 3 , a silicon single crystal ingot having a low oxygen concentration can be obtained, and the formation of OSF can be suppressed.
The non-uniformity of the BMD density in the wafer surface due to the ring can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるシリコン単結晶インゴットの引
上げに用いられる単結晶引上装置の説明図。
FIG. 1 is an explanatory view of a single crystal pulling apparatus used for pulling a silicon single crystal ingot according to the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン単結晶引上装置 2 チャンバ 3 石英ガラスルツボ 4 ヒータ 5 シリコン融液 6 シードチャック 7 種結晶 8 シリコン単結晶インゴット N 窒素 DESCRIPTION OF SYMBOLS 1 Silicon single crystal pulling apparatus 2 Chamber 3 Quartz glass crucible 4 Heater 5 Silicon melt 6 Seed chuck 7 Seed crystal 8 Silicon single crystal ingot N Nitrogen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリシリコンに窒素をドーピングしたシ
リコン融液からチョクラルスキー法を用いて引上げら
れ、その結晶中の窒素濃度は1×1013〜1.2×1
15atoms/cmであり、結晶育成中に結晶が
体験する1100〜700℃の温度領域の通過時間を2
00分以下となるようにし、OSFリングに起因するB
MD密度のウェーハ面内における不均一性を解消するこ
とを特徴とするシリコン単結晶インゴットの製造方法。
1. A silicon melt obtained by doping a polysilicon with nitrogen by a Czochralski method and having a nitrogen concentration of 1 × 10 13 to 1.2 × 1 in the crystal.
0 15 atoms / cm 3 , and the passage time of the temperature range of 1100 to 700 ° C. experienced by the crystal during crystal growth is 2
00 minutes or less, and B due to the OSF ring
A method for producing a silicon single crystal ingot, wherein non-uniformity of MD density in a wafer surface is eliminated.
【請求項2】 上記結晶中の酸素濃度は0.7×10
18〜1.2×10 atoms/cmであること
を特徴とする請求項1に記載のシリコン単結晶インゴッ
トの製造方法。
2. The oxygen concentration in the crystal is 0.7 × 10
18 ~1.2 × 10 1 8 atoms / method for manufacturing a silicon single crystal ingot according to claim 1, wherein the cm 3.
JP2000008965A 2000-01-18 2000-01-18 Method for producing silicon single crystal ingot Expired - Lifetime JP4080657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008965A JP4080657B2 (en) 2000-01-18 2000-01-18 Method for producing silicon single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008965A JP4080657B2 (en) 2000-01-18 2000-01-18 Method for producing silicon single crystal ingot

Publications (2)

Publication Number Publication Date
JP2001199795A true JP2001199795A (en) 2001-07-24
JP4080657B2 JP4080657B2 (en) 2008-04-23

Family

ID=18537170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008965A Expired - Lifetime JP4080657B2 (en) 2000-01-18 2000-01-18 Method for producing silicon single crystal ingot

Country Status (1)

Country Link
JP (1) JP4080657B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093814A (en) * 2000-09-19 2002-03-29 Memc Japan Ltd Substrate single crystal of silicon epitaxial wafer, and its manufacturing method
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
JP2004304095A (en) * 2003-04-01 2004-10-28 Sumitomo Mitsubishi Silicon Corp Silicon wafer, and manufacturing method thereof
JP2007186376A (en) * 2006-01-12 2007-07-26 Siltronic Ag Epitaxial wafer and method of manufacturing epitaxial wafer
CN109338459A (en) * 2018-12-12 2019-02-15 中国电子科技集团公司第四十六研究所 A kind of N doping method preparing low COP defect silicon single crystal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093814A (en) * 2000-09-19 2002-03-29 Memc Japan Ltd Substrate single crystal of silicon epitaxial wafer, and its manufacturing method
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
JP2004304095A (en) * 2003-04-01 2004-10-28 Sumitomo Mitsubishi Silicon Corp Silicon wafer, and manufacturing method thereof
US7273647B2 (en) 2003-04-01 2007-09-25 Sumitomo Mitsubishi Silicon Corporation Silicon annealed wafer and silicon epitaxial wafer
JP4670224B2 (en) * 2003-04-01 2011-04-13 株式会社Sumco Silicon wafer manufacturing method
JP2007186376A (en) * 2006-01-12 2007-07-26 Siltronic Ag Epitaxial wafer and method of manufacturing epitaxial wafer
CN109338459A (en) * 2018-12-12 2019-02-15 中国电子科技集团公司第四十六研究所 A kind of N doping method preparing low COP defect silicon single crystal
CN109338459B (en) * 2018-12-12 2021-01-12 中国电子科技集团公司第四十六研究所 Nitrogen doping method for preparing low COP defect silicon single crystal

Also Published As

Publication number Publication date
JP4080657B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4147599B2 (en) Silicon single crystal and manufacturing method thereof
JP4224966B2 (en) Manufacturing method of silicon single crystal wafer, manufacturing method of epitaxial wafer, evaluation method of silicon single crystal wafer
JP2001146498A (en) Silicon single crystal wafer, method for producing the same and soi wafer
US6517632B2 (en) Method of fabricating a single crystal ingot and method of fabricating a silicon wafer
KR20070069040A (en) Annealed wafer and manufacturing method of annealed wafer
WO2008029579A1 (en) Silicon single-crystal wafer and process for producing the same
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
JP2023547027A (en) Crystal pulling furnace, method and single crystal silicon ingot for producing single crystal silicon ingot
JP2001106594A (en) Method for producing epitaxial wafer
JP3614019B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JPH10208987A (en) Silicon wafer for hydrogen thermal treatment and manufacture thereof
JPH11322491A (en) Production of silicon single crystal wafer and silicon single crystal wafer
WO2004040045A1 (en) Method for producing silicon wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP2002145698A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
WO2004101868A1 (en) Method for producing single crystal and single crystal
JP3353681B2 (en) Silicon wafer and crystal growing method
JP2001199794A (en) Silicon single crystal ingot, method for producing the same and method for producing silicon wafer
JP4750916B2 (en) Method for growing silicon single crystal ingot and silicon wafer using the same
JP4463950B2 (en) Method for manufacturing silicon wafer
JPH11236293A (en) High quality silicon single crystal wafer
JP3900816B2 (en) Silicon wafer manufacturing method
JP3724535B2 (en) High quality silicon single crystal
JP2007210820A (en) Method of manufacturing silicon single crystal
JPH11199380A (en) Silicon wafer and crystal growth

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050208

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4080657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term