JP2001196630A - Method of manufacturing semiconductor light emitting element having enhanced external quantum efficiency - Google Patents

Method of manufacturing semiconductor light emitting element having enhanced external quantum efficiency

Info

Publication number
JP2001196630A
JP2001196630A JP2000004983A JP2000004983A JP2001196630A JP 2001196630 A JP2001196630 A JP 2001196630A JP 2000004983 A JP2000004983 A JP 2000004983A JP 2000004983 A JP2000004983 A JP 2000004983A JP 2001196630 A JP2001196630 A JP 2001196630A
Authority
JP
Japan
Prior art keywords
light emitting
layer
electrode material
semiconductor light
uppermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004983A
Other languages
Japanese (ja)
Other versions
JP3290640B2 (en
Inventor
Shokon Ba
少崑 馬
韓棕 ▲頼▼
Kanso Rai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUREN KODEN KAGI KOFUN YUGEN
KOKUREN KODEN KAGI KOFUN YUGENKOSHI
Original Assignee
KOKUREN KODEN KAGI KOFUN YUGEN
KOKUREN KODEN KAGI KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUREN KODEN KAGI KOFUN YUGEN, KOKUREN KODEN KAGI KOFUN YUGENKOSHI filed Critical KOKUREN KODEN KAGI KOFUN YUGEN
Priority to JP2000004983A priority Critical patent/JP3290640B2/en
Publication of JP2001196630A publication Critical patent/JP2001196630A/en
Application granted granted Critical
Publication of JP3290640B2 publication Critical patent/JP3290640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor light emitting element having an enhanced external quantum efficiency by roughening the upside of a semiconductor light emitting element. SOLUTION: The manufacturing method comprises a step of forming a multilayer structure including a semiconductor light emitting region on a semiconductor substrate, a step of forming a topmost layer covering the multilayer structure, a step of forming a layer containing an electrode material and covering the topmost layer, a step of heating and treating to diffuse the electrode material in the topmost layer, and a step of etching the electrode material- containing layer to form a top electrode on the topmost layer and expose a part of the topmost layer, and the exposed part of the topmost layer is a rough surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粗面処理法(surf
ace roughnening method)を用いることによって外部量
子効率が増加する発光ダイオード(LED)のような半導体
発光素子の製造工程に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rough surface treatment method (surf
The present invention relates to a process for manufacturing a semiconductor light emitting device such as a light emitting diode (LED) in which external quantum efficiency is increased by using an ace roughening method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】今日、
発光ダイオードのような半導体発光素子は、照明及び遠
隔制御のような幅広い応用に対して使用されている。半
導体発光素子の高い機能信頼性及び低い電力要求を保証
するため、素子にとっては外部量子効率ができるだけ高
いことが望まれる。
BACKGROUND OF THE INVENTION Today,
Semiconductor light emitting devices such as light emitting diodes are used for a wide range of applications such as lighting and remote control. In order to guarantee high functional reliability and low power requirements of a semiconductor light emitting device, it is desired that the device has as high an external quantum efficiency as possible.

【0003】原理的に、半導体発光素子の外部量子効率
は、内部量子効率と抽出効率とによって決まる。内部量
子効率は、材料の特性とその質とによって決まる。抽出
効率は、素子の内部から周囲大気あるいは密閉用エポキ
シへ放出された放射線の割合を意味する。抽出効率は、
放射線が素子の内部から出るときに生ずる損失によって
決まる。このような損失の主な原因の一つは、全反射の
ために半導体表面では放出することができない半導体材
料の高光学屈折係数(例えば、ガリウム砒素(GaAs)に
対する約3.6)に起因する放射線の割合である。GaAsの
場合には、全反射に対する臨界角が16.2°であること
は、大気への遷移(transition)の結果である。直接経
路によって、表面に対する垂直線に対して低めの角度で
境界線に入射する一部の放射線だけが放出される。しか
しながら、この放射線の一部はまだ、屈折係数における
急峻な変化によって生ずる部分反射を仮定している。透
過係数は境界面を直角にあたる放射線に対しては約68%
であり、境界面までの途中での放射線の吸収が無視され
るならば、発生放射線の約2.7%は平坦構造の場合に直接
経路上の半導体結晶から放出されうる。
[0003] In principle, the external quantum efficiency of a semiconductor light emitting device is determined by the internal quantum efficiency and the extraction efficiency. The internal quantum efficiency is determined by the properties of the material and its quality. Extraction efficiency refers to the proportion of radiation emitted from the interior of the device to the ambient atmosphere or sealing epoxy. The extraction efficiency is
It is determined by the losses that occur as radiation exits the interior of the device. One of the main causes of such losses is that radiation due to the high optical index of refraction of the semiconductor material (eg, about 3.6 for gallium arsenide (GaAs)) cannot be emitted at the semiconductor surface due to total internal reflection. Percentage. In the case of GaAs, the critical angle for total reflection of 16.2 ° is the result of a transition to the atmosphere. The direct path emits only some radiation incident on the boundary at a lower angle to the normal to the surface. However, some of this radiation still assumes partial reflections caused by sharp changes in the index of refraction. Transmission coefficient is about 68% for radiation perpendicular to the interface
If the absorption of radiation on the way to the interface is neglected, about 2.7% of the generated radiation can be emitted from semiconductor crystals on the direct path in the case of flat structures.

【0004】半導体発光素子の組立に関する先行技術の
中には、粗面処理法を用いることによって半導体発光素
子の外部量子効率をエンハンスするための方法を開示す
るものがある。それは、例えば、米国特許第5,898,192
号明細書、米国特許第5,429,954号明細書及び米国特許
第5,040,044号明細書である。
Some prior art techniques for assembling a semiconductor light emitting device disclose a method for enhancing the external quantum efficiency of a semiconductor light emitting device by using a roughening method. It is described, for example, in U.S. Pat.
No. 5,429,954 and U.S. Pat. No. 5,040,044.

【0005】しかしながら、それらの先行技術は、いか
なる種類の半導体発光素子にも応用可能な新しい粗面処
理法に対する必要性を示しているにすぎない。特に、Ga
P(100)面に形成される最上層は、通常、AlGaInPの活性
層を有する半導体発光素子のウィンドウ層(window lay
er)として働き、その表面を均一に粗面にすることはま
だ難しい。従って、新しい粗面処理法を、GaP、GaAsP、
AlGaAsのような通常の半導体材料で形成される半導体発
光素子の最上層(被覆層)に施すことができることが望
まれている。さらに、最上層は、該層を形成する半導体
材料の格子の方向に関わらず粗面処理法を用いて粗面化
することができる。粗面処理法を用いて粗面化された、
半導体発光素子の最上層は、均一な表面粗さを有してい
ることも望まれる。粗面処理法が再現可能であり、かつ
低コストであることも望まれる。本発明は、前述の要求
を満足することを目指している。
However, those prior arts only show the need for new roughening methods applicable to any kind of semiconductor light emitting device. In particular, Ga
The uppermost layer formed on the P (100) plane is usually a window layer of a semiconductor light emitting device having an active layer of AlGaInP.
er) and it is still difficult to roughen the surface uniformly. Therefore, a new roughening method, GaP, GaAsP,
It is desired to be able to be applied to the uppermost layer (coating layer) of a semiconductor light emitting device formed of a normal semiconductor material such as AlGaAs. Further, the uppermost layer can be roughened using a roughening method regardless of the direction of the lattice of the semiconductor material forming the layer. Roughened using a roughening method,
It is also desired that the uppermost layer of the semiconductor light emitting device has a uniform surface roughness. It is also desirable that the rough surface treatment method be reproducible and low cost. The present invention seeks to satisfy the aforementioned needs.

【0006】本発明の目的は、半導体発光素子の上部面
を粗面化することによって外部量子効率が向上した半導
体発光素子を製造する方法を提供することである。
It is an object of the present invention to provide a method for manufacturing a semiconductor light emitting device having an improved external quantum efficiency by roughening the upper surface of the semiconductor light emitting device.

【0007】本発明の別な目的は、いかなる種類の半導
体発光素子にも応用可能な新しい粗面処理法を提供する
こと、すなわち、ターゲット層(最上層)を形成する格
子の方向及びその材料に関わらず粗面処理法を実施する
ことができる方法を提供することである。
Another object of the present invention is to provide a new rough surface treatment method applicable to any kind of semiconductor light emitting device, that is, to change the direction of the lattice forming the target layer (top layer) and the material thereof. It is an object of the present invention to provide a method capable of performing a roughening method regardless of the case.

【0008】本発明の別な目的は、半導体発光素子の最
上層の表面を粗面化し、多重層構造の粗面化された面が
均一な表面粗さを有するような方法を提供することであ
る。
Another object of the present invention is to provide a method in which the surface of the uppermost layer of a semiconductor light emitting device is roughened, and the roughened surface of the multilayer structure has a uniform surface roughness. is there.

【0009】本発明の別な目的は、半導体発光素子の最
上層の表面を粗面化する方法を提供することである。さ
らに、その方法が、再現可能であり、低コストであるこ
とである。
Another object of the present invention is to provide a method for roughening the surface of the uppermost layer of a semiconductor light emitting device. Furthermore, the method is reproducible and low cost.

【0010】[0010]

【課題を解決するための手段】本発明は、半導体発光素
子を製造する方法を提供する。第一には、PN接合、二重
ヘテロ接合、あるいは多重量子井戸のような発光領域を
含む多重層構造を半導体基板上に形成する。その後、最
上層を形成し、かつ多重層構造で被覆する。次に、最上
層を被覆する電極材料を含む層を形成する。形成された
構造に対して加熱処理を行い、電極材料を最上層に拡散
させる。次に、電極材料を含む層を部分的にエッチング
して最上層上に上部電極を形成し、最上層の一部を露出
する。露出した最上層の一部は粗い面を有している。こ
の方法は、最上層の材料及び方向に関わりなく実施する
ことができ、均一な表面粗さを有する最上層を提供す
る。
SUMMARY OF THE INVENTION The present invention provides a method for manufacturing a semiconductor light emitting device. First, a multi-layer structure including a light emitting region such as a PN junction, a double hetero junction, or a multiple quantum well is formed on a semiconductor substrate. Thereafter, the top layer is formed and covered with a multilayer structure. Next, a layer containing an electrode material that covers the uppermost layer is formed. Heat treatment is performed on the formed structure to diffuse the electrode material to the uppermost layer. Next, the layer containing the electrode material is partially etched to form an upper electrode on the uppermost layer, and a part of the uppermost layer is exposed. Part of the exposed top layer has a rough surface. The method can be performed regardless of the material and orientation of the top layer and provides a top layer with uniform surface roughness.

【0011】本発明の利点及び精神は、添付図面を使っ
た詳細な説明によって理解できる。
The advantages and spirit of the present invention may be understood by the following detailed description with reference to the accompanying drawings.

【0012】図1から図5は、本発明による本発明の製
造方法を説明する概略断面図である。図6は、粗面化処
理を行わなかった場合のP型(100)向きGaPの最上層のC-
Vテストの結果である。図7は、本発明による粗面処理
を行ったP型(100)向きGaPの最上層のC-Vテストの結果
である。
FIGS. 1 to 5 are schematic cross-sectional views for explaining a manufacturing method of the present invention according to the present invention. FIG. 6 shows the uppermost layer of C-type (100) GaP without roughening.
These are the results of the V test. FIG. 7 shows the result of a CV test of the top layer of P-type (100) -oriented GaP subjected to the roughening treatment according to the present invention.

【0013】[0013]

【発明の実施の形態】本発明は、粗い表面によりエンハ
ンスされた外部量子効率を有する半導体発光素子の製造
方法を提供する。図1から図5は、本発明による方法を
示す概略断面図である。以下にこの方法を詳述する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method of manufacturing a semiconductor light emitting device having an external quantum efficiency enhanced by a rough surface. 1 to 5 are schematic sectional views showing a method according to the present invention. Hereinafter, this method will be described in detail.

【0014】第一には、連続して形成された複数のエピ
タキシャル層を含む多重層構造12を半導体基板11上
に形成する。特に、多重層構造12は、PN接合、二重ヘ
テロ接合、あるいは多重量子井戸のような発光領域を含
む。その後、図1に示すように最上層13を形成して最
上層12を被覆する。点線S-Sは、最上層13の上面を
示す。一実施形態においては、最上層13は、半導体発
光素子の設計通りに、被覆層、オーミック接触層、ある
いはウィンドウ層として働く。一実施形態においては、
最上層13は、GaP、GaAsP、AlGaAsを含むグループ、及
び同様の多重層構造12と整合がよい材料から選択され
た材料で形成してもよい。
First, a multilayer structure 12 including a plurality of epitaxial layers formed continuously is formed on a semiconductor substrate 11. In particular, the multilayer structure 12 includes a light emitting region such as a PN junction, a double heterojunction, or a multiple quantum well. Thereafter, as shown in FIG. 1, an uppermost layer 13 is formed and the uppermost layer 12 is covered. The dotted line SS indicates the upper surface of the uppermost layer 13. In one embodiment, the top layer 13 acts as a cover layer, ohmic contact layer, or window layer, as designed for the semiconductor light emitting device. In one embodiment,
The uppermost layer 13 may be formed of a material selected from a group including GaP, GaAsP, AlGaAs, and a material having a good matching with the similar multilayer structure 12.

【0015】次に、図2に示したように、最上層13を
被覆する電極材料を含む層14を形成する。最上層13
がP型半導体から成るならば、電極材料をP型の最上層
13に形成しなければならない、すなわち、電極材料は
BeAu、ZnAuなどを含むグループから選択されることに注
意すべきである。逆に、最上層13がN型半導体から成
るならば、電極材料をN型の最上層13に形成しなけれ
ばならない、すなわち、電極材料はGeAu、NiAu、SiAuな
どを含むグループから選択されることに注意してほし
い。
Next, as shown in FIG. 2, a layer 14 containing an electrode material for covering the uppermost layer 13 is formed. Top layer 13
Consists of a P-type semiconductor, the electrode material must be formed on the P-type top layer 13, ie, the electrode material is
Note that it is selected from the group including BeAu, ZnAu, etc. Conversely, if the top layer 13 is made of an N-type semiconductor, the electrode material must be formed on the N-type top layer 13, that is, the electrode material is selected from the group including GeAu, NiAu, SiAu, etc. Note that

【0016】図3に示したように、形成された構造に対
して加熱処理を行い、電極材料を表面のS-S結合を介し
て最上層13に拡散させる。
As shown in FIG. 3, a heat treatment is performed on the formed structure to diffuse the electrode material into the uppermost layer 13 via SS bonds on the surface.

【0017】次に、層14を被覆するエッチング停止層
(図示せず)を形成する。次いで、層14を部分的に露
出するパターンになるように、エッチング停止層の一部
を選択して除去する。その後、層14の露出部分の下の
最上層13の表面のS-S結合が露出して粗面化されるま
で、その層14の露出部分をエッチングする。それか
ら、エッチング停止層を除去する。こうして、図4に示
したように、上部電極15が最上層13に形成され、最
上層13の粗面化された形態は均一に分散したピットを
示す。
Next, an etch stop layer (not shown) covering layer 14 is formed. Next, a portion of the etch stop layer is selectively removed to provide a pattern that partially exposes layer 14. Thereafter, the exposed portions of layer 14 are etched until the SS bonds on the surface of top layer 13 below the exposed portions of layer 14 are exposed and roughened. Then, the etching stop layer is removed. Thus, as shown in FIG. 4, the upper electrode 15 is formed on the uppermost layer 13, and the roughened form of the uppermost layer 13 shows uniformly dispersed pits.

【0018】最上層13の粗面処理の間、従来のアプロ
ーチにおいては、最上層13が実質的にエッチング溶液
によってアタックされるが、本発明においては、最上層
13よりも、最上層13内に拡散していく電極材料が実
質的アタックされることに注目してほしい。本発明によ
る粗面処理法は、主に、最上層に拡散している電極材料
の加熱処理及びエッチングを用いていることは明らかで
ある。従って、本発明による粗面処理法は、再現可能で
かつ低コストな方法である。
During roughening of the top layer 13, in a conventional approach, the top layer 13 is substantially attacked by the etching solution, but in the present invention, the top layer 13 is more likely to be Note that the spreading electrode material is substantially attacked. It is clear that the roughening method according to the present invention mainly uses heat treatment and etching of the electrode material diffused in the uppermost layer. Therefore, the roughening method according to the present invention is a reproducible and low-cost method.

【0019】さらに、図5に示したように、半導体発光
素子を完成させるために、半導体基板11の下部面上に
下部電極16を形成する。
Further, as shown in FIG. 5, a lower electrode 16 is formed on the lower surface of the semiconductor substrate 11 to complete the semiconductor light emitting device.

【0020】実際的な応用において、前述の加熱工程の
条件、すなわち、等温及び時間は、使用する電極材料に
依存し、電極材料の最上層への拡散に対する十分な駆動
力を与えるように決められる。AlGaInPの活性層を有す
る半導体発光素子を例にとると、半導体発光素子の最上
層を形成するためにP型(100)面向きGaPを使用し、かつ
電極材料にはBeAuを使用する。この場合には、加熱処理
を400℃から600℃の間の温度で30分間行うことが望まし
い、本発明による粗面処理を最上層に施す。結果とし
て、最上層の粗面化された面の好適な形態の一つは、直
径約0.5μmでかつ深さ0.5μmの均一に分散したピット
を示す。
In practical applications, the conditions of the aforementioned heating step, ie, isothermal and time, depend on the electrode material used and are determined to provide sufficient driving force for diffusion of the electrode material to the top layer. . Taking a semiconductor light emitting device having an active layer of AlGaInP as an example, P-type (100) -oriented GaP is used to form the uppermost layer of the semiconductor light emitting device, and BeAu is used as an electrode material. In this case, the heat treatment is preferably performed at a temperature between 400 ° C. and 600 ° C. for 30 minutes. As a result, one preferred form of the roughened surface of the top layer shows uniformly dispersed pits about 0.5 μm in diameter and 0.5 μm deep.

【0021】表1を参照すると、前述の場合の輝度は約
96mcdである。前述の場合と同じ構造を有するが、粗面
処理を行っていない半導体発光素子の輝度は、約80mcd
である。前述の場合の外部量子効率のエンハンスされた
割合は約20%であることは明らかである。複数の種類
の、本発明による粗面処理行った半導体発光素子及び行
わなかった半導体発光素子の輝度も表1に掲載した。表
1に掲載した全ての半導体発光素子の外部量子効率が、
本発明による粗面処理法によってかなりエンハンスされ
ていることは明らかである。技術的な面においては、本
発明による粗面処理法は、本明細書において述べなかっ
た他の種類の半導体発光素子に対しても適用可能であ
る。
Referring to Table 1, the brightness in the above case is about
96mcd. The luminance of the semiconductor light emitting device having the same structure as that described above but not performing the roughening treatment is about 80 mcd.
It is. It is clear that the enhanced percentage of external quantum efficiency in the above case is about 20%. Table 1 also shows the luminances of a plurality of types of the semiconductor light emitting devices subjected to the roughening treatment according to the present invention and the semiconductor light emitting devices not subjected to the surface treatment. The external quantum efficiency of all the semiconductor light emitting devices listed in Table 1 is
It is evident that the roughening method according to the present invention has been considerably enhanced. Technically, the roughening method according to the present invention is applicable to other types of semiconductor light emitting devices not described in this specification.

【表1】 [Table 1]

【0022】さらに、本発明においては、本発明により
製造された半導体発光素子の表面電荷密度は、電極材料
の最上層への拡散によってかなりエンハンスされてい
る。AlGaInPの活性層を有する半導体発光素子を例にと
ると、半導体発光素子の最上層をP型(100)面向きGaPで
形成した場合でその最上層の粗面処理を行わなかった場
合のC-Vテストの結果を図6に、また、粗面処理を行っ
た場合のC-Vテストの結果を図7に示した。粗面処理の
後の前述の場合の表面電荷密度は、深さ0.05μm内にお
いては、約2桁増加する。表面電荷密度のエンハンスメ
ントは、本発明が半導体発光素子の外部量子効率をエン
ハンスすることができる理由の一つである。
Further, in the present invention, the surface charge density of the semiconductor light emitting device manufactured according to the present invention is considerably enhanced by the diffusion of the electrode material to the uppermost layer. Taking a semiconductor light-emitting device having an active layer of AlGaInP as an example, a CV test in which the uppermost layer of the semiconductor light-emitting device is formed of P-type (100) -oriented GaP and the uppermost layer is not subjected to roughening treatment 6 is shown in FIG. 6, and the result of the CV test in the case where the rough surface treatment was performed is shown in FIG. The surface charge density in the above case after roughening increases by about two orders of magnitude within a depth of 0.05 μm. The enhancement of the surface charge density is one of the reasons that the present invention can enhance the external quantum efficiency of a semiconductor light emitting device.

【0023】要約すると、本発明の区別可能な特徴と利
点は: 1.最上層の粗面処理の間は、最上層よりも電極材料が
エッチングされる。 2.粗面処理法は、最上層の材料及び格子の方向に関わ
らず、いかなる半導体発光素子に対しても適用可能であ
る。 3.本発明の粗面処理法によって粗面化された最上層の
表面は、均一な表面粗さを有する。 4.本発明による粗面処理法は、再現可能でかつ低コス
トの方法である。
In summary, the distinguishing features and advantages of the present invention are: During roughening of the top layer, the electrode material is etched more than the top layer. 2. The rough surface treatment method can be applied to any semiconductor light emitting device regardless of the material of the uppermost layer and the direction of the lattice. 3. The surface of the uppermost layer roughened by the roughening method of the present invention has a uniform surface roughness. 4. The roughening method according to the invention is a reproducible and low-cost method.

【0024】本発明はいくつかの好適な実施形態で説明
したが、使用してきた表現は限定のための表現ではなく
て説明のための表現であること、及び、添付したクレー
ムの範囲内での変化は、より広い実施形態における本発
明の範囲及び精神を逸脱することのないことを理解する
べきである。
Although the present invention has been described in terms of several preferred embodiments, the terms used have been used for description rather than for limitation, and, within the scope of the appended claims. It should be understood that changes may be made without departing from the scope and spirit of the invention in the broader embodiments.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による半導体発光素子の製造方法の
最初の段階を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an initial stage of a method for manufacturing a semiconductor light emitting device according to the present invention.

【図2】 図1で示した次の段階を示す概略断面図で
ある。
FIG. 2 is a schematic sectional view showing a next stage shown in FIG. 1;

【図3】 図2で示した次の段階を示す概略断面図で
ある。
FIG. 3 is a schematic sectional view showing a next stage shown in FIG. 2;

【図4】 図3で示した次の段階を示す概略断面図で
ある。
FIG. 4 is a schematic sectional view showing a next stage shown in FIG. 3;

【図5】 図4で示した次の段階を示す概略断面図で
ある。
FIG. 5 is a schematic sectional view showing a next stage shown in FIG. 4;

【図6】 半導体発光素子の最上層をP型(100)面向き
GaPで形成した場合でその最上層の粗面処理を行わなか
った場合のC-Vテストの結果を示す図である。
FIG. 6: The top layer of the semiconductor light emitting device is oriented to the P-type (100) plane
FIG. 9 is a diagram showing a result of a CV test in the case where the uppermost layer is not subjected to the rough surface treatment when formed of GaP.

【図7】 半導体発光素子の最上層をP型(100)面向き
GaPで形成した場合でその最上層の粗面処理を行った場
合のC-Vテストの結果を示す図である。
FIG. 7: The top layer of the semiconductor light emitting device is oriented to the P-type (100) plane
FIG. 8 is a diagram showing a result of a CV test in a case where a rough surface treatment is performed on the uppermost layer in the case of forming with GaP.

【符号の説明】[Explanation of symbols]

11 半導体基板 12 多重層構造 13 最上層 14 電極材料を含む層 15 上部電極 16 下部電極 Reference Signs List 11 semiconductor substrate 12 multilayer structure 13 uppermost layer 14 layer containing electrode material 15 upper electrode 16 lower electrode

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に半導体発光領域を含む
多重層構造を形成する段階と、 前記多重層構造を被覆する最上層を形成する段階と、 前記最上層を被覆する、電極材料を含む層を形成する段
階と、 前記電極材料が前記最上層に拡散するように加熱処理を
実施する段階と、 前記の電極材料を含む層をエッチングして、前記最上層
上に上部電極を形成し、かつ前記最上層の一部を露出す
る段階と、を備え、 前記最上層の露出した部分は粗い面である、半導体発光
素子の製造方法。
1. A step of forming a multilayer structure including a semiconductor light emitting region on a semiconductor substrate, a step of forming an uppermost layer covering the multilayer structure, and a layer including an electrode material, covering the uppermost layer. Forming a heat treatment so that the electrode material diffuses into the uppermost layer; etching a layer containing the electrode material to form an upper electrode on the uppermost layer; and Exposing a part of the uppermost layer, wherein the exposed part of the uppermost layer is a rough surface.
【請求項2】 さらに、半導体基板の下部面上に下部
電極を形成する段階を備えている請求項1に記載の半導
体発光素子の製造方法。
2. The method according to claim 1, further comprising forming a lower electrode on a lower surface of the semiconductor substrate.
【請求項3】 前記粗い面の形態が均一に分散したピ
ットを示す請求項1に記載の半導体発光素子の製造方
法。
3. The method according to claim 1, wherein the morphology of the rough surface indicates pits uniformly dispersed.
【請求項4】 前記発光領域がPN接合を備えている請
求項1に記載の半導体発光素子の製造方法。
4. The method according to claim 1, wherein the light emitting region has a PN junction.
【請求項5】 前記発光領域が二重ヘテロ接合を備え
ている請求項1に記載の半導体発光素子の製造方法。
5. The method according to claim 1, wherein the light emitting region has a double hetero junction.
【請求項6】 前記半導体発光領域が多重量子井戸を
備えている請求項1に記載の半導体発光素子の製造方
法。
6. The method according to claim 1, wherein the semiconductor light emitting region has a multiple quantum well.
【請求項7】 前記最上層が、GaP、GaAsP及びAlGaAs
を含むグループから選択された材料から成る請求項1に
記載の半導体発光素子の製造方法。
7. The method according to claim 7, wherein the uppermost layer is made of GaP, GaAsP and AlGaAs.
The method for manufacturing a semiconductor light emitting device according to claim 1, comprising a material selected from the group including:
【請求項8】 前記最上層をP型材料で形成し、前記
電極材料をBeAu及びZnAu含むグループから選択する請求
項7に記載の半導体発光素子の製造方法。
8. The method according to claim 7, wherein the uppermost layer is formed of a P-type material, and the electrode material is selected from a group including BeAu and ZnAu.
【請求項9】 前記最上層がN型材料から成り、前記
電極材料がGeAu、NiAu、SiAuなどを含むグループから選
択する請求項7に記載の半導体発光素子の製造方法。
9. The method according to claim 7, wherein the uppermost layer is made of an N-type material, and the electrode material is selected from a group including GeAu, NiAu, SiAu and the like.
【請求項10】 発光領域を備えている半導体化合物
の上部面を粗面化する方法であって、 前記上部面を被覆する電極材料層を形成する段階と、 前記電極材料の一部が前記上部面を介して半導体化合物
へ拡散するように加熱処理を行う段階と、 前記電極材料層上にエッチング停止膜を形成し、そのエ
ッチング停止膜の選択した一部を除去して、前記電極材
料層を部分的に露出する段階と、 前記電極材料層の露出した一部の下の上部面が露出さ
れ、かつ粗面化されるように、該電極材料の露出した一
部をエッチングし、その電極材料層の一部を前記半導体
化合物内に拡散させる段階と、 前記エッチング停止層を除去する段階と、を備えている
半導体化合物の粗面化方法。
10. A method for roughening an upper surface of a semiconductor compound having a light emitting region, the method comprising: forming an electrode material layer covering the upper surface; Performing a heat treatment so as to diffuse into the semiconductor compound through the surface, forming an etching stop film on the electrode material layer, removing a selected part of the etching stop film, and removing the electrode material layer. Partially exposing; etching the exposed part of the electrode material so that the upper surface below the exposed part of the electrode material layer is exposed and roughened, A method for roughening a semiconductor compound, comprising: diffusing a part of a layer into the semiconductor compound; and removing the etching stop layer.
【請求項11】 前記上部面の露出した一部の形態
が、均一に分散したピットを示す請求項10に記載の半
導体発光素子の製造方法。
11. The method for manufacturing a semiconductor light emitting device according to claim 10, wherein a part of the shape of the exposed upper surface shows uniformly dispersed pits.
【請求項12】 前記発光領域がPN接合を備えている
請求項10に記載の半導体発光素子の製造方法。
12. The method according to claim 10, wherein the light emitting region has a PN junction.
【請求項13】 前記発光領域が二重ヘテロ接合を備
えている請求項10に記載の半導体発光素子の製造方
法。
13. The method according to claim 10, wherein the light emitting region has a double hetero junction.
【請求項14】 前記発光領域が多重量子井戸を備え
ている請求項10に記載の半導体発光素子の製造方法。
14. The method according to claim 10, wherein the light emitting region has a multiple quantum well.
【請求項15】 前記上部面を、GaP、GaAsP及びAlGaA
sを含むグループから選択した材料から成る層によって
形成する請求項10に記載の半導体発光素子の製造方
法。
15. The method according to claim 15, wherein the upper surface is formed of GaP, GaAsP, and AlGaA.
The method for manufacturing a semiconductor light emitting device according to claim 10, wherein the semiconductor light emitting device is formed by a layer made of a material selected from a group including s.
【請求項16】 前記上部面をP型材料から成る層に
よって形成し、かつ前記電極材料層をBeAu及びZnAu含む
グループから選択した材料で形成する請求項15に記載
の半導体発光素子の製造方法。
16. The method according to claim 15, wherein the upper surface is formed of a layer made of a P-type material, and the electrode material layer is formed of a material selected from a group including BeAu and ZnAu.
【請求項17】 前記上部をがN型材料から成る層に
よって形成し、前記電極材料がGeAu、NiAu、SiAuなどを
含むグループから選択した材料で形成する請求項15に
記載の半導体発光素子の製造方法。
17. The semiconductor light emitting device according to claim 15, wherein the upper portion is formed of a layer made of an N-type material, and the electrode material is formed of a material selected from a group including GeAu, NiAu, SiAu, and the like. Method.
JP2000004983A 2000-01-13 2000-01-13 Method of manufacturing semiconductor light emitting device having enhanced external quantum efficiency and method of roughening semiconductor compound Expired - Lifetime JP3290640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004983A JP3290640B2 (en) 2000-01-13 2000-01-13 Method of manufacturing semiconductor light emitting device having enhanced external quantum efficiency and method of roughening semiconductor compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004983A JP3290640B2 (en) 2000-01-13 2000-01-13 Method of manufacturing semiconductor light emitting device having enhanced external quantum efficiency and method of roughening semiconductor compound

Publications (2)

Publication Number Publication Date
JP2001196630A true JP2001196630A (en) 2001-07-19
JP3290640B2 JP3290640B2 (en) 2002-06-10

Family

ID=18533696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004983A Expired - Lifetime JP3290640B2 (en) 2000-01-13 2000-01-13 Method of manufacturing semiconductor light emitting device having enhanced external quantum efficiency and method of roughening semiconductor compound

Country Status (1)

Country Link
JP (1) JP3290640B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956241B2 (en) 2002-04-05 2005-10-18 Kabushiki Kaisha Toshiba Semiconductor light emitting element with improved light extraction efficiency
WO2005106975A1 (en) * 2004-04-27 2005-11-10 Shin-Etsu Handotai Co., Ltd. Process for producing luminescent device and luminescent device
WO2005106976A1 (en) * 2004-04-27 2005-11-10 Shin-Etsu Handotai Co., Ltd. Process for producing luminescent device and luminescent device
JP2009010215A (en) * 2007-06-28 2009-01-15 Nichia Corp Semiconductor light-emitting element
CN102110749A (en) * 2010-11-15 2011-06-29 山东大学 Coarsening and etching method of large-area controllable surface of SiC substrate light emitting diode (LED) based on laser
WO2016079929A1 (en) * 2014-11-21 2016-05-26 信越半導体株式会社 Light emitting element and method for producing light emitting element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956241B2 (en) 2002-04-05 2005-10-18 Kabushiki Kaisha Toshiba Semiconductor light emitting element with improved light extraction efficiency
WO2005106975A1 (en) * 2004-04-27 2005-11-10 Shin-Etsu Handotai Co., Ltd. Process for producing luminescent device and luminescent device
WO2005106976A1 (en) * 2004-04-27 2005-11-10 Shin-Etsu Handotai Co., Ltd. Process for producing luminescent device and luminescent device
CN100433388C (en) * 2004-04-27 2008-11-12 信越半导体株式会社 Process for producing luminescent device and luminescent device
US7579205B2 (en) 2004-04-27 2009-08-25 Shin-Etsu Handotai Co., Ltd. Method of fabricating light emitting device and thus-fabricated light emitting device
US7663151B2 (en) 2004-04-27 2010-02-16 Shin-Etsu Handotai Co., Ltd. Method of fabricating light emitting device and thus-fabricated light emitting device
JP2009010215A (en) * 2007-06-28 2009-01-15 Nichia Corp Semiconductor light-emitting element
CN102110749A (en) * 2010-11-15 2011-06-29 山东大学 Coarsening and etching method of large-area controllable surface of SiC substrate light emitting diode (LED) based on laser
WO2016079929A1 (en) * 2014-11-21 2016-05-26 信越半導体株式会社 Light emitting element and method for producing light emitting element
JPWO2016079929A1 (en) * 2014-11-21 2017-06-15 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device

Also Published As

Publication number Publication date
JP3290640B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
US6277665B1 (en) Fabrication process of semiconductor light-emitting device with enhanced external quantum efficiency
TW575984B (en) Semiconductor light emitting device and its manufacturing method
TWI550910B (en) Semiconductor light emitting device
US6900068B2 (en) Light emitting diode and method of making the same
US8063557B2 (en) Light-emitting device having wavelength-converting materials therewithin
KR101004310B1 (en) Light emitting diode and method for manufacturing the same
US6083769A (en) Method for producing a light-emitting diode
KR100941766B1 (en) Light Emitting Diodes with redistributed metal pad and its manufacture method
US20080113460A1 (en) Laser Lift-Off of Sapphire From a Nitride Flip-Chip
US11721789B2 (en) Light-emitting diode device and method for manufacturing the same
JP4339822B2 (en) Light emitting device
CN101681957A (en) led with porous diffusing reflector
US10008634B2 (en) Thin-film flip-chip light emitting diode having roughening surface and method for manufacturing the same
JP2009059969A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, and method for fabricating semiconductor light-emitting element
JP2007533133A (en) Fabrication of reflective layer on semiconductor light emitting diode
KR100780175B1 (en) Method for Manufacturing Light Emitting Diode
TWI557938B (en) Devices and light emitting diodes and methods of fabricating the same
US7812361B2 (en) Light emitting diode
US7772600B2 (en) Light emitting device having zener diode therein and method of fabricating the same
GB2547123A (en) LED vertical chip structure with special coarsening morphology and preparation method therefor
TW201432945A (en) High performance light emitting diode with vias
US10453995B2 (en) Light-emitting device and manufacturing method thereof
JP3290640B2 (en) Method of manufacturing semiconductor light emitting device having enhanced external quantum efficiency and method of roughening semiconductor compound
TWI723002B (en) Light emitting device with trench beneath a top contact
KR970024329A (en) LIGHT EMITTING DIODE WITH IMPROVED LUMINOUS EFFICIENCY

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

R150 Certificate of patent or registration of utility model

Ref document number: 3290640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term