JP2001195932A - Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet - Google Patents

Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet

Info

Publication number
JP2001195932A
JP2001195932A JP2000006078A JP2000006078A JP2001195932A JP 2001195932 A JP2001195932 A JP 2001195932A JP 2000006078 A JP2000006078 A JP 2000006078A JP 2000006078 A JP2000006078 A JP 2000006078A JP 2001195932 A JP2001195932 A JP 2001195932A
Authority
JP
Japan
Prior art keywords
heat treatment
metal composite
ceramic sheet
heat
composite superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006078A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
慎一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000006078A priority Critical patent/JP2001195932A/en
Priority to PCT/JP2001/000032 priority patent/WO2001052274A1/en
Priority to AU2001224064A priority patent/AU2001224064A1/en
Publication of JP2001195932A publication Critical patent/JP2001195932A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of heat-treating a metallic composite superconductive rod wire using a heat-treating ceramic sheet, and a method of fabricating a superconductive magnet. SOLUTION: A metallic composite superconductive rod wire 1 made of a single core strand or multi-core strand of a bismuth-based oxide superconductor and coated with silver or silver alloy is put upon, and wound with a heat- treating ceramic sheet 2 consisting of an alumina fiber, a zirconia powder and a binder, to thereby fabricate a pan-cake shape coil 3. Then, the coil 3 is heat- treated. The volume ratio of the alumina fiber to the zirconia powder is in the range of 9:1 to 1:9, and the binder is made to disappear by the heat- treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、金属複合超電導
線材の熱処理用セラミックシート及びそれを用いた金属
複合超電導線材の熱処理方法、並びに超電導マグネット
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sheet for heat treating a metal composite superconducting wire, a method for heat treating a metal composite superconducting wire using the same, a superconducting magnet and a method for producing the same.

【0002】[0002]

【従来の技術】超電導線材の典型的なものとしては、Nb
Ti、Nb3Al、Nb3Sn等があり、超電導材料を金属と複合し
た金属複合超電導線材を作製し、高い臨界電流密度を得
るための熱処理を行う。また、別の超電導線材の典型的
なものとしては、酸化物超電導材料があり、酸化物超電
導体の粉末またはその原料粉末を金属パイプ内に充填
し、伸線あるいは圧延等の塑性加工を施して、金属複合
超電導線材を作製し、高い臨界電流密度を得るための熱
処理を行う。
2. Description of the Related Art A typical superconducting wire is Nb.
A metal composite superconducting wire made of a superconducting material, such as Ti, Nb 3 Al, or Nb 3 Sn, is produced with a metal and subjected to heat treatment to obtain a high critical current density. Another typical superconducting wire is an oxide superconducting material.The powder of the oxide superconductor or its raw material powder is filled in a metal pipe and subjected to plastic working such as drawing or rolling. Then, a metal composite superconducting wire is manufactured, and heat treatment for obtaining a high critical current density is performed.

【0003】これらの長尺の金属複合超電導線材を束あ
るいはコイルの状態で熱処理する場合、あるいは、超電
導マグネットを作製するためコイルの状態で熱処理する
場合、特に、超電導材料と複合する金属材料として、高
純度のCu、Al、あるいはAg等を用いると、金属複合超電
導線材同士が接合しやすく、所定の形状の金属複合超電
導線材あるは超電導マグネットを得ることが困難であ
る。
When these long metal composite superconducting wires are heat-treated in a bundle or coil state, or when heat-treated in a coil state to produce a superconducting magnet, particularly as a metal material to be combined with a superconducting material, If high-purity Cu, Al, Ag, or the like is used, the metal composite superconducting wires are easily joined to each other, and it is difficult to obtain a metal composite superconducting wire or a superconducting magnet having a predetermined shape.

【0004】このため、金属複合超電導線材同士が接合
するという問題を解決するため、従来、特開平6-243745
号公報に開示されているように、酸化物超電導材料を銀
または銀合金からなる金属で被覆した金属複合超電導線
材と、アルミナの粉末または繊維やマグネシア等の粉末
にバインダとなる有機系の糊化剤を少量添加したものを
漉き混み、加工して得られるセラミックスシートを隣り
合う金属複合超電導線材の間に介在させて、熱処理が行
われていた。
Therefore, in order to solve the problem that metal composite superconducting wires are joined to each other, a conventional method is disclosed in Japanese Patent Laid-Open No. 6-243745.
As disclosed in Japanese Patent Application Publication, a metal composite superconducting wire in which an oxide superconducting material is coated with a metal made of silver or a silver alloy, and an organic gelatinization that becomes a binder to a powder of alumina or a powder of fiber or magnesia. Heat treatment has been performed by mixing and adding a small amount of an agent to the resulting mixture, and interposing a ceramic sheet obtained by processing between adjacent metal composite superconducting wires.

【0005】また、超電導マグネットの作製において、
特開平2-246101号公報に開示されているように、コイル
状の金属複合超電導線材間の絶縁材料として、MgO、ZrO
2、Al2O3、SiO2を用いた熱処理を行い、MgO(マグネシ
ア)を用いることで金属複合超電導線材の金属被覆層が
反応することなく、高い臨界電流密度を有する超電導マ
グネットが得られると言われている。
In the production of a superconducting magnet,
As disclosed in JP-A-2-246101, as an insulating material between coiled metal composite superconducting wires, MgO, ZrO
2 , heat treatment using Al 2 O 3 , SiO 2, and using MgO (magnesia), a superconducting magnet with high critical current density can be obtained without reaction of the metal coating layer of the metal composite superconducting wire It is said.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述のアルミ
ナ繊維とバインダで構成されるセラミックスシートは、
アルミナ繊維が針状結晶のため、熱処理により軟化する
金属複合超電導線材の金属被覆層の表面に付着すると、
取り除くことが困難になり、熱処理後、金属複合超電導
線材の金属被覆層の表面に残りやすい問題がある。この
ため、この金属複合超電導線材を使って超電導ケーブル
や超電導マグネットを作製する場合、半田等の接触が悪
く、超電導ケーブルや超電導マグネットの作製が困難に
なったり、金属複合超電導線材の表面抵抗が高くなる問
題が生じる。一方、粒状のアルミナ粉末を使用すると、
熱処理において、シートの形状を維持できなくなり、金
属複合超電導線材同士が接触し、接合する問題が生じ
る。
However, the ceramic sheet composed of the alumina fiber and the binder described above is
When the alumina fiber adheres to the surface of the metal coating layer of the metal composite superconducting wire which is softened by heat treatment because of the needle crystal,
There is a problem that it becomes difficult to remove, and after the heat treatment, it tends to remain on the surface of the metal coating layer of the metal composite superconducting wire. For this reason, when making a superconducting cable or superconducting magnet using this metal composite superconducting wire, poor contact with solder etc. makes it difficult to produce the superconducting cable or superconducting magnet, or the surface resistance of the metal composite superconducting wire is high. Problem arises. On the other hand, when using granular alumina powder,
In the heat treatment, the shape of the sheet cannot be maintained, and the metal composite superconducting wires come into contact with each other and have a problem of joining.

【0007】マグネシア粉末は粒状結晶であり、金属複
合超電導線材の表面から取り除き易いが、金属複合超電
導線材の表面にマグネシアを塗布するため、スラリー状
にするため加えたバインダが熱処理中に消失すると、シ
ートの形状を維持することが困難になり、隣り合う金属
複合超電導線材同士が接触し、接合が起こる問題が生じ
る。また、マグネシア粉末の固まりの部分は、金属複合
超電導線材の内部で発生したガスを、外層金属部を介し
て放出することを遮るため、特に、酸化物超電導材料を
用いた金属複合超電導線材をマグネシア粉末とバインダ
で構成されるセラミックスシートを用いて熱処理した場
合、線材内部で発生したガスを放出しにくくなるため、
金属複合超電導線材の表面に局部的な膨れが多発する問
題点がある。更に、マグネシア粉末の固まりの部分は、
金属複合超電導線材を熱処理するときに必要な酸素分圧
の変化や還元雰囲気などの変化を直接、金属複合超電導
線材表面に伝えることができない原因になる。このた
め、超電導線材の重要な特性である臨界電流密度や臨界
温度が低下する問題が生じる場合がある。
[0007] Magnesia powder is a granular crystal and is easy to remove from the surface of the metal composite superconducting wire. However, since magnesia is applied to the surface of the metal composite superconducting wire, the binder added to make a slurry disappears during the heat treatment. It becomes difficult to maintain the shape of the sheet, and adjacent metal composite superconducting wires come into contact with each other, causing a problem of joining. In addition, the lump of the magnesia powder blocks the gas generated inside the metal composite superconducting wire from being released through the outer layer metal part. When heat treatment is performed using a ceramic sheet composed of powder and a binder, it is difficult to release the gas generated inside the wire,
There is a problem that local swelling frequently occurs on the surface of the metal composite superconducting wire. In addition, the mass of the magnesia powder
This is a cause that a change in oxygen partial pressure and a change in a reducing atmosphere, etc., required for heat-treating the metal composite superconducting wire cannot be directly transmitted to the surface of the metal composite superconducting wire. For this reason, the critical current density and the critical temperature, which are important characteristics of the superconducting wire, may be reduced.

【0008】更に、絶縁被覆されていない金属複合超電
導線材を使って、超電導マグネットを作製する場合、金
属複合超電導線材の間に絶縁材として、アルミナ繊維を
使ったセラミックスシートを介しても、バインダが消失
した後の繊維間の隙間を介して、金属複合超電導線材同
士が接触するため、絶縁が十分ではない問題が生じる。
Further, when a superconducting magnet is manufactured by using a metal composite superconducting wire that is not coated with an insulating material, the binder is formed even if a ceramic sheet using alumina fiber is used as an insulating material between the metal composite superconducting wires. Since the metal composite superconducting wires come into contact with each other through the gaps between the fibers after the disappearance, there is a problem that insulation is not sufficient.

【0009】マグネシア粉末を使用したセラミックシー
トを絶縁材として用い、超電導マグネットを作製する場
合、熱処理中にマグネシア粉末の固まりを形成するた
め、酸化雰囲気や還元雰囲気に調整する必要がある金属
複合超電導線材の熱処理雰囲気を調整するためのガスが
遮られ、金属複合超電導線材内部で、意図した超電導材
料形成の反応をコイル形状において実施できない問題が
生じる。
When a superconducting magnet is manufactured by using a ceramic sheet using magnesia powder as an insulating material, a metal composite superconducting wire must be adjusted to an oxidizing atmosphere or a reducing atmosphere in order to form a mass of magnesia powder during heat treatment. In this case, the gas for adjusting the heat treatment atmosphere is blocked, and the reaction of forming the intended superconducting material cannot be performed in the coil shape inside the metal composite superconducting wire.

【0010】本願発明の目的は、上述した問題点を解決
するため、金属複合超電導線材の熱処理用セラミックシ
ート及びそれを用いた金属複合超電導線材の熱処理方
法、更に超電導マグネット及びその製造方法を提供する
ものである。
An object of the present invention is to provide a ceramic sheet for heat treating a metal composite superconducting wire, a method for heat treating a metal composite superconducting wire using the same, a superconducting magnet and a method for manufacturing the same. Things.

【0011】[0011]

【問題を解決するための手段】本願発明では、上述した
技術的課題を解決するため、金属複合超電導線材の熱処
理において、アルミナ繊維とジルコニア粉末で構成され
た材料と、熱処理によって消失する材料からなるバイン
ダを主成分とする金属複合超電導線材の熱処理用セラミ
ックシートを用いる。好ましくは、前記アルミナ繊維と
前記ジルコニア粉末の体積比率は、9:1から1:9である金
属複合超電導線材の熱処理用セラミックシートを用い
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned technical problems, the present invention comprises, in a heat treatment of a metal composite superconducting wire, a material composed of alumina fiber and zirconia powder and a material which disappears by the heat treatment. A ceramic sheet for heat treatment of a metal composite superconducting wire having a binder as a main component is used. Preferably, a ceramic sheet for heat treatment of a metal composite superconducting wire having a volume ratio of the alumina fiber to the zirconia powder of 9: 1 to 1: 9 is used.

【0012】アルミナ繊維とジルコニア粉末で構成され
た材料と熱処理によって消失する材料からなるバインダ
を主成分とした熱処理用セラミックシートは、アルミナ
繊維で作られた網目にジルコニア粉末が止められるよう
に形成されるため、金属複合超電導線材の熱処理におい
て、バインダーが消失してもシートの形状を維持し、熱
処理による金属複合超電導線材同士の接触と接合を防止
でき、所定の形状の長尺金属複合超電導線材を得ること
ができる。
A ceramic sheet for heat treatment mainly composed of a binder composed of a material composed of alumina fiber and zirconia powder and a material that disappears by heat treatment is formed so that the zirconia powder is stopped in a mesh made of alumina fiber. Therefore, in the heat treatment of the metal composite superconducting wire, the shape of the sheet is maintained even if the binder disappears, contact and joining of the metal composite superconducting wires by heat treatment can be prevented, and a long metal composite superconducting wire of a predetermined shape can be formed. Obtainable.

【0013】この熱処理用セラミックシートを用い、金
属複合超電導線材を熱処理する場合、アルミナ繊維で作
られた網目にジルコニア粉末が止められるように形成さ
れ、シートの形状を維持するとともに、熱処理によりバ
インダを消失させ、シート内に隙間を設けることがで
き、ガス拡散がしやすいため、金属複合超電導線材の周
囲のガス雰囲気を調整することができる。特に、熱処理
時に酸素分圧の厳密な制御が必要なビスマス系酸化物超
電導体の場合、コイル状で熱処理すると、線材の全長に
わたって酸素分圧を均一にすることが困難となるが、金
属複合超電導線材表面に、ジルコニア粉末があると、ジ
ルコニアが酸素との酸素との結びつきを助けるため、金
属複合超電導線材内部のビスマス系酸化物超電導体に選
択的に酸素を供給する役割を有し、酸素分圧の均一化に
効果がある。
When a metal composite superconducting wire is heat-treated using this heat-treating ceramic sheet, the zirconia powder is formed so as to stop the zirconia powder in a mesh made of alumina fiber, and the shape of the sheet is maintained. The metal composite superconducting wire can be adjusted in gas atmosphere because the gap can be provided in the sheet and gas can be easily diffused. In particular, in the case of bismuth-based oxide superconductors that require strict control of the oxygen partial pressure during heat treatment, it is difficult to make the oxygen partial pressure uniform over the entire length of the wire by heat treatment in a coil shape. When zirconia powder is present on the surface of the wire, zirconia assists in binding oxygen to oxygen, and thus has the role of selectively supplying oxygen to the bismuth-based oxide superconductor inside the metal composite superconducting wire. This is effective for pressure equalization.

【0014】また、熱処理により金属複合超電導線材内
で発生したガスを金属被覆層を介して放出する際、熱処
理用セラミックシートにより遮られることがないため、
金属複合超電導線材の表面に現われる局部的な膨れの発
生を抑制することができる。特に、ビスマス系酸化物超
電導体を銀または銀合金で被覆した単芯あるいは多芯線
等の金属複合超電導線材を熱処理する場合、アルミナ繊
維とジルコニア粉末の体積比率が9:1から1:9である熱処
理用セラミックシートを用い、100〜300℃及び700〜820
℃の熱処理温度領域の昇温時間を5時間以上とする熱処
理を施すことにより、金属複合超電導線材内で発生した
ガスを金属被覆層を介して放出する際、熱処理用セラミ
ックシートにより遮られないため、金属複合超電導線材
の表面に現われる局部的な膨れを防止することができ、
所定の形状の高い臨界電流密度を有する金属複合超電導
線材を得ることができる。
Further, when the gas generated in the metal composite superconducting wire by the heat treatment is released through the metal coating layer, the gas is not blocked by the ceramic sheet for heat treatment.
Local swelling that appears on the surface of the metal composite superconducting wire can be suppressed. In particular, when heat-treating a metal composite superconducting wire such as a single-core or multi-core wire coated with a bismuth-based oxide superconductor with silver or a silver alloy, the volume ratio of alumina fiber and zirconia powder is 9: 1 to 1: 9. Using a ceramic sheet for heat treatment, 100-300 ° C and 700-820
When the gas generated in the metal composite superconducting wire is released through the metal coating layer by applying a heat treatment in which the temperature rise time of the heat treatment temperature region of 5 ° C. is 5 hours or more, it is not blocked by the ceramic sheet for heat treatment. , Can prevent local swelling appearing on the surface of the metal composite superconducting wire,
A metal composite superconducting wire having a predetermined shape and a high critical current density can be obtained.

【0015】本願発明の熱処理用セラミックシートを用
い、金属複合超電導線材を巻線して作製した超電導マグ
ネットを熱処理する場合、近接する金属複合超電導線材
の間にアルミナ繊維とジルコニア粉末で構成された材料
と熱処理によって消失する材料からなるバインダを主成
分とした熱処理用セラミックスシートを介することで、
熱処理後もシートの形状を維持し、電気的に絶縁された
超電導マグネットを得ることができる。好ましくは、前
記アルミナ繊維と前記ジルコニア粉末の体積比率は、9:
1から1:9である金属複合超電導線材の熱処理用セラミッ
クシートを用いることにより、熱処理後もシートの形状
を維持し、線材間が電気的に絶縁された、優れた超電導
特性を有する超電導マグネットを得ることができる。
When the ceramic sheet for heat treatment of the present invention is used to heat-treat a superconducting magnet produced by winding a metal composite superconducting wire, a material composed of alumina fiber and zirconia powder between adjacent metal composite superconducting wires is used. And through a ceramic sheet for heat treatment mainly composed of a binder made of a material that disappears by heat treatment,
The shape of the sheet is maintained after the heat treatment, and an electrically insulated superconducting magnet can be obtained. Preferably, the volume ratio of the alumina fiber and the zirconia powder is 9:
By using a ceramic sheet for heat treatment of a metal composite superconducting wire that is 1 to 1: 9, a superconducting magnet with excellent superconducting properties that maintains the shape of the sheet after heat treatment and is electrically insulated between the wires. Obtainable.

【0016】[0016]

【発明の実施の形態】以下、本願発明の実施の形態を説
明する。図1は、近接する金属複合超電導線材1の間に
熱処理用セラミックシート2を介して、巻き枠3にパン
ケーキ状に巻いた状態を示す図である。なお、図1にお
いて金属複合超電導線材1は、断面形状が平角の場合の
例である。その後、熱処理用治具4に載せて金属複合超
電導線材1と熱処理用セラミックスシート2を巻いたパ
ンケーキ状のコイルを加熱炉内に挿入し、熱処理を行
う。
Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a state in which the metal composite superconducting wire 1 is wound around a winding frame 3 in a pancake shape with a ceramic sheet 2 for heat treatment interposed therebetween. In FIG. 1, the metal composite superconducting wire 1 is an example in the case where the cross-sectional shape is a flat angle. Thereafter, a pancake-shaped coil in which the metal composite superconducting wire 1 and the ceramic sheet 2 for heat treatment are wound on the jig 4 for heat treatment is inserted into a heating furnace to perform heat treatment.

【0017】熱処理用セラミックシート2は、アルミナ
繊維とジルコニア粉末で構成された材料と、熱処理によ
って消失する材料からなるバインダを主成分とし、それ
ぞれを混合し、シートに加工することにより得られる。
なお、バインダーは、熱処理により消失する材料として
有機系の糊化剤を用いることができ、具体的にはセルロ
ース系接着剤、天然ゴム系接着剤等を用いることができ
る。
The ceramic sheet 2 for heat treatment is obtained by mixing a material composed of alumina fibers and zirconia powder and a binder composed of a material that disappears by heat treatment as a main component, and processing the mixture by mixing them.
As the binder, an organic gelatinizing agent can be used as a material that disappears by heat treatment, and specifically, a cellulose adhesive, a natural rubber adhesive, or the like can be used.

【0018】アルミナ繊維とジルコニア粉末で構成され
た材料とバインダーを主成分とする熱処理用セラミック
シートは、熱処理によりバインダーが消失しても、形状
を保持しにくいジルコニア粉末をそのアルミナ繊維で作
った網目で止めることにより、熱処理後においてもシー
トの形状を維持でき、また、バインダーを熱処理により
消失させることで、シート内に隙間を設けることがで
き、隙間を介して金属複合超電導線材の熱処理時の雰囲
気を調整することができる。
[0018] The ceramic sheet for heat treatment mainly comprising a material composed of alumina fiber and zirconia powder and a binder is a mesh made of zirconia powder made of the alumina fiber, the shape of which is difficult to maintain even if the binder disappears by the heat treatment. By stopping the heat treatment, the shape of the sheet can be maintained even after the heat treatment, and by eliminating the binder by the heat treatment, a gap can be provided in the sheet, and the atmosphere during the heat treatment of the metal composite superconducting wire through the gap can be provided. Can be adjusted.

【0019】熱処理用セラミックシートは、アルミナ繊
維が多いと熱処理後、金属複合超電導線材表面に残りや
すいため、アルミナ繊維の体積分率を下げる必要があ
り、一方、ジルコニア粉末が多いと線材表面から分離し
易いが、線材熱処理中にバインダが消失した際、原型を
とどめることが困難になり、熱処理中の隣り合う金属複
合超電導線材が接触することから、アルミナ繊維とジル
コニア粉末の体積比率は、9:1から1:9、特に、9:1から
1:5とすることが好ましい。このような熱処理用セラミ
ックシートは、熱処理が終了した状態においてもシート
の形状を維持するとともに、バインダが消失した後、シ
ート内に隙間を設けることができ、隣り合う金属複合超
電導線材同士が接合せず、分離し易く、熱処理雰囲気を
調整することができ、所定の形状の金属複合超電導線材
を得ることができる。また、熱処理後、熱処理用セラミ
ックシートを金属複合超電導線材と容易に分離できるこ
とから、超電導ケーブルや超電導マグネットを作製する
場合、半田等による接続が困難になったり、金属複合超
電導線材の接続抵抗が高くなる問題を解決することがで
きる。
If the ceramic sheet for heat treatment contains a large amount of alumina fiber, it tends to remain on the surface of the metal composite superconducting wire after heat treatment. Therefore, it is necessary to reduce the volume fraction of the alumina fiber. Although it is easy to do, when the binder disappears during the wire heat treatment, it becomes difficult to keep the prototype, and since the adjacent metal composite superconducting wire during the heat treatment comes into contact, the volume ratio of alumina fiber and zirconia powder is 9: 1 to 1: 9, especially 9: 1
It is preferably 1: 5. Such a ceramic sheet for heat treatment maintains the shape of the sheet even after the heat treatment is completed, and after the binder disappears, a gap can be provided in the sheet, and the adjacent metal composite superconducting wires are joined together. The metal composite superconducting wire can be easily separated, the heat treatment atmosphere can be adjusted, and the metal composite superconducting wire having a predetermined shape can be obtained. In addition, after heat treatment, the ceramic sheet for heat treatment can be easily separated from the metal composite superconducting wire, so when making a superconducting cable or a superconducting magnet, it becomes difficult to connect with solder or the like, or the connection resistance of the metal composite superconducting wire is high. Problem can be solved.

【0020】金属複合超電導線材の臨界電流などの超電
導特性の向上のため、熱処理雰囲気、特に酸素雰囲気を
調整する必要がある場合、ジルコニア粉末やアルミナ繊
維からなる熱処理用セラミックシートを用いると、ジル
コニア(ZrO)は選択的に酸素の拡散を行うので、金属
複合超電導線材の周りの酸素雰囲気と線材内部の酸素圧
を平衡にする効果があり、線材内外の酸素濃度を平衡に
する媒体として用いることができるので、超電導特性向
上の利点がある。特に、ビスマス系酸化物超電導体など
を銀または銀合金で被覆した単芯線あるいは多芯線とし
た金属複合超電導線材の超電導特性を向上できる利点が
ある。ただし、酸化物超電導体とジルコニア(ZrO)が
隣接すると、反応して劣化するため、少なくとも1μm以
上のジルコニア(ZrO)が、酸化物超電導体に直接拡散
しない壁を設ける必要がある。
When it is necessary to adjust the heat treatment atmosphere, particularly the oxygen atmosphere, in order to improve the superconducting characteristics such as the critical current of the metal composite superconducting wire, if a heat treatment ceramic sheet made of zirconia powder or alumina fiber is used, zirconia ( ZrO) selectively diffuses oxygen, so it has the effect of balancing the oxygen atmosphere around the metal composite superconducting wire and the oxygen pressure inside the wire, and can be used as a medium to balance the oxygen concentration inside and outside the wire. Therefore, there is an advantage of improving superconductivity. In particular, there is an advantage that the superconducting characteristics of a metal composite superconducting wire made of a single-core wire or a multi-core wire obtained by coating a bismuth-based oxide superconductor or the like with silver or a silver alloy can be improved. However, if the oxide superconductor and zirconia (ZrO) are adjacent to each other, they react and deteriorate, so that it is necessary to provide a wall in which at least 1 μm or more of zirconia (ZrO) does not directly diffuse into the oxide superconductor.

【0021】銀や銀合金等で被覆したビスマス系酸化物
超電導体などを用いた金属複合超電導線材において、熱
処理中に金属複合超電導線材の金属被覆層の表面の一部
が局部的に膨れるという問題が起こる場合がある。これ
は、酸化物超電導体に付着した吸着物(C、H2O、O2
ど)が熱処理中にガス化して体積膨張するため、金属被
覆層の表面の一部に局部的な膨れが生じる現象と考えら
れる。このような現象が生じた場合、酸化物超電導体の
臨界電流や臨界電流密度などの超電導特性の低下を招く
ため、ガスの発生する温度域の昇温時間を調整すること
により、金属複合線材の金属被覆層の粒界や開放端を介
してガスを放出することが必要である。特に、本願発明
の様に、金属複合線材を束あるいはコイル状にして熱処
理した場合、線材間にセラミックスシート等の介在物を
挿入するため、金属複合超電導線材の金属被覆層の表面
の一部に局部的な膨れが多発し、特に、マグネシア粉末
を使用した場合、金属被覆層の表面の一部に局部的な膨
れが顕著に現れる。これに対し、アルミナとジルコニア
の体積分率を調整した本願発明のセラミックスシートを
用い、熱処理の昇温時において、100〜300℃及び700〜8
20℃の温度領域の昇温時間を5時間以上、保持する熱処
理により、熱処理用セラミックスシート内の隙間及び金
属複合超電導線材の金属被覆層を介して、発生ガスを放
出し、金属被覆層の表面に現われる局部的な膨れを防止
することができる。
In a metal composite superconducting wire using a bismuth-based oxide superconductor coated with silver, a silver alloy, or the like, a problem that a part of the surface of the metal coating layer of the metal composite superconducting wire locally swells during heat treatment. May occur. This is because the adsorbate (C, H 2 O, O 2, etc.) attached to the oxide superconductor gasifies during the heat treatment and expands in volume, causing local swelling on a part of the surface of the metal coating layer Probably a phenomenon. When such a phenomenon occurs, the superconducting characteristics such as the critical current and the critical current density of the oxide superconductor are reduced. It is necessary to release gas through the grain boundaries and open ends of the metal coating. In particular, when a metal composite wire is bundled or coiled and heat-treated as in the present invention, an insert such as a ceramic sheet is inserted between the wires, so that a part of the surface of the metal coating layer of the metal composite superconducting wire is formed. Local swelling frequently occurs. Particularly, when magnesia powder is used, local swelling is remarkably exhibited on a part of the surface of the metal coating layer. On the other hand, using the ceramic sheet of the present invention in which the volume fraction of alumina and zirconia was adjusted, when the temperature of the heat treatment was raised, 100-300 ° C. and 700-8
Generated gas is released through the gaps in the ceramic sheet for heat treatment and the metal coating layer of the metal composite superconducting wire by heat treatment in which the temperature rise time in the temperature range of 20 ° C is maintained for 5 hours or more, and the surface of the metal coating layer is released. Local swelling appearing on the surface can be prevented.

【0022】絶縁被覆されていない金属複合超電導線材
を用い、超電導マグネットを作製する場合、各線材間に
絶縁材を挟んで絶縁を施す必要がある。超電導特性向上
のため、このコイル形状の超電導マグネットを熱処理を
施す場合、この絶縁材と線材との間に反応がないこと
や、ガスを拡散させて線材表面の雰囲気、例えば酸素分
圧の変化による酸化雰囲気あるいは還元雰囲気に制御す
ることが必要であり、本願発明の熱処理用セラミックス
シートは、アルミナ繊維とジルコニア粉末で構成された
材料とバインダーを主成分とする熱処理用セラミックシ
ートであることから、熱処理によりバインダーが消失し
ても、形状を保持しにくいジルコニア粉末をそのアルミ
ナ繊維で作った網目で止めることにより、熱処理後にお
いてもシートの形状を維持でき、超電導マグネットを構
成する金属複合超電導線材の間に絶縁層を形成すること
ができる。
When a superconducting magnet is manufactured using a metal composite superconducting wire that is not coated with an insulating material, it is necessary to insulate the wire with an insulating material interposed therebetween. When performing heat treatment on this coil-shaped superconducting magnet for the purpose of improving superconducting properties, there is no reaction between the insulating material and the wire, or gas is diffused to change the atmosphere on the wire surface, for example, a change in oxygen partial pressure. It is necessary to control to an oxidizing atmosphere or a reducing atmosphere, and the ceramic sheet for heat treatment of the present invention is a ceramic sheet for heat treatment mainly composed of a binder and a material composed of alumina fiber and zirconia powder. Even if the binder disappears, the shape of the sheet can be maintained even after the heat treatment by stopping the zirconia powder, which is difficult to maintain its shape, with the mesh made of the alumina fiber, so that the metal composite superconducting wire constituting the superconducting magnet can be maintained. Can be formed with an insulating layer.

【0023】金属複合超電導線材の熱処理と同様に、超
電導マグネットの熱処理用セラミックシートしては、ア
ルミナ繊維とジルコニア粉末の体積比率は、9:1から1:
9、特に、9:1から1:5とすることが好ましい。この熱
処理用セラミックシートを用いることにより、金属複合
超電導線材を巻線した超電導マグネットを熱処理する
際、バインダーを熱処理により消失させることで、セラ
ミックスシート内に隙間を設けることにより、隣り合う
金属複合超電導線材同士が接合せず、熱処理雰囲気を調
整することができ、超電導特性向上の利点がある。特
に、ビスマス系酸化物超電導体などを銀または銀合金で
被覆した単芯線あるいは多芯線からなる金属複合超電導
線材の超電導特性向上の利点がある。以下、実施例によ
り本願発明をより詳細に説明する。
As in the heat treatment of the metal composite superconducting wire, the volume ratio of alumina fiber to zirconia powder in the ceramic sheet for heat treatment of the superconducting magnet is from 9: 1 to 1: 1.
9, particularly preferably from 9: 1 to 1: 5. By using this ceramic sheet for heat treatment, when heat-treating a superconducting magnet wound with a metal composite superconducting wire, the binder is eliminated by heat treatment, and a gap is provided in the ceramic sheet, so that the adjacent metal composite superconducting wire Since they are not joined to each other, the heat treatment atmosphere can be adjusted, and there is an advantage of improving superconductivity. In particular, there is an advantage of improving the superconducting properties of a metal composite superconducting wire composed of a single core wire or a multicore wire in which a bismuth-based oxide superconductor or the like is coated with silver or a silver alloy. Hereinafter, the present invention will be described in more detail with reference to examples.

【0024】[0024]

【実施例】実施例1 Bi2O3、PbO、SrCO3、CaCO3、CuOを用いて、Bi:Pb:Sr:C
a:Cu=1.82:0.33:1.92:2.01:3.02の組成比の粉末を調整
した。この粉末を750℃で10時間及び800℃で8時間、熱
処理した後、得られた焼結体を粉末状にするため、自動
乳鉢を用いて粉砕を行った。次に、粉砕して得られた粉
末を850℃で4時間、熱処理した後、再び自動乳鉢を用い
て粉砕した。粉砕して得られた粉末を減圧下で加熱処理
した後、外径36mm、内径30mmの銀パイプに充填した。次
に、粉末を充填した銀パイプについて伸線加工行った。
更に伸線した線材を61本に束ねて、外径36mm、内径31mm
の銀パイプに嵌合し、ついで、伸線加工及び圧延加工を
施し、厚さ0.25mmのテープ形状の金属複合超電導線材を
得た。
EXAMPLE 1 Bi: Pb: Sr: C was prepared using Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO.
A powder having a composition ratio of a: Cu = 1.82: 0.33: 1.92: 2.01: 3.02 was prepared. This powder was heat-treated at 750 ° C. for 10 hours and at 800 ° C. for 8 hours, and then pulverized using an automatic mortar to make the obtained sintered body into a powder. Next, the powder obtained by the pulverization was heat-treated at 850 ° C. for 4 hours, and then pulverized again using an automatic mortar. The powder obtained by the pulverization was heat-treated under reduced pressure, and then filled in a silver pipe having an outer diameter of 36 mm and an inner diameter of 30 mm. Next, wire drawing was performed on the silver pipe filled with the powder.
Furthermore, bundle the drawn wire into 61 wires, outer diameter 36mm, inner diameter 31mm
Then, wire drawing and rolling were performed to obtain a tape-shaped metal composite superconducting wire having a thickness of 0.25 mm.

【0025】例1 以上の工程より作製したBi-Pb系2223相を有する酸化物
超電導材料を用いた金属複合超電導線材の間に、アルミ
ナ繊維、アルミナ繊維とマグネシア粉末、アルミナ繊維
とジルコニア粉末を混合したセラミックスシートを用
い、それぞれ重ね合わせて、直径50cmの巻き枠に巻いた
後、それぞれ大気中で、845℃で50時間と840℃で50時間
の熱処理を行った。なお、100〜300℃と700〜820℃の間
の昇温時間は、合計5時間とした。得られた試料につい
て、77Kにおける臨界電流密度の測定、セラミックスシ
ートの熱処理後の分解性、熱処理後の金属複合超電導線
材同士の接触状態(接合の有無)、及び金属被覆超電導線
材の金属被覆層の表面の局部的な膨れの状態を目視にて
観察した。その結果を表1に示す。これより、アルミナ
繊維単独、ジルコニア粉末単独、及びアルミナ繊維とマ
グネシア粉末を用いたセラミックシートを用いた場合に
比べ、アルミナ繊維とジルコニア粉末を混合したセラミ
ックスシートを用いた場合、臨界電流密度の高い金属被
覆超電導線材が得られことが分かった。特に、アルミナ
繊維とジルコニア粉末の体積比率が、9:1から1:9の熱処
理用セラミックスシートを用いた場合、特に、9:1から
1:5の熱処理用セラミックスシートを用いた場合、セラ
ミックスシートの熱処理後の各線材の接触、接合もな
く、更に、金属被覆層の表面の局部的な膨れの少ない、
高い臨界電流密度を有する金属被覆超電導線材が得られ
ることが分かった。
Example 1 Alumina fiber, alumina fiber and magnesia powder, and alumina fiber and zirconia powder were mixed between a metal composite superconducting wire using an oxide superconducting material having a Bi-Pb-based 2223 phase produced by the above steps. The ceramic sheets thus obtained were superposed on each other, wound on a winding frame having a diameter of 50 cm, and then heat-treated at 845 ° C. for 50 hours and at 840 ° C. for 50 hours in the air. In addition, the heating time between 100 to 300 ° C and 700 to 820 ° C was 5 hours in total. For the obtained sample, measurement of the critical current density at 77 K, decomposability after heat treatment of the ceramic sheet, contact state between metal composite superconducting wires after heat treatment (with or without bonding), and metal coating layer of metal-coated superconducting wire The state of local swelling on the surface was visually observed. The results are shown in Table 1. Thus, compared to the case where the alumina fiber alone, the zirconia powder alone, and the ceramic sheet using the alumina fiber and the magnesia powder were used, when the ceramic sheet in which the alumina fiber and the zirconia powder were mixed was used, the metal having a higher critical current density was used. It was found that a coated superconducting wire was obtained. In particular, when the volume ratio of alumina fiber and zirconia powder is 9: 1 to 1: 9 when using a ceramic sheet for heat treatment, particularly, from 9: 1.
When a ceramic sheet for heat treatment of 1: 5 is used, there is no contact or joining of each wire after heat treatment of the ceramic sheet, and further, there is little local swelling of the surface of the metal coating layer,
It has been found that a metal-coated superconducting wire having a high critical current density can be obtained.

【0026】例2 絶縁材としてセラミックスシートを用い、上記金属複合
超電導線材間にセラミックスシートを挟んだ状態でコイ
ル巻きして、内径60mmのパンケーキ状コイル(超電導マ
グネット)を作製した。その後、このパンケーキ状コイ
ルを大気雰囲気中で、845℃、50時間の熱処理を行っ
た。なお、100〜300℃と700〜820℃の間の昇温時間は、
合計5時間とした。作製したパンケーキ状コイルの77Kに
おける臨界電流密度、パンパンケーキ状コイルを構成す
る金属複合超電導線材間の接触状態の評価及びセラミッ
クスシートと金属複合超電導線材の金属被覆層である銀
との反応性を目視にて観察した。その結果を表2に示
す。パンケーキ状コイル(超電導マグネット)において
も、アルミナ繊維単独、ジルコニア粉末単独、及びアル
ミナ繊維とマグネシア粉末を用いた熱処理用セラミック
シートを用いた場合に比べ、アルミナ繊維とジルコニア
粉末を混合したセラミックスシートを用いた場合、臨界
電流密度の高いことが分かった。特に、アルミナ繊維と
ジルコニア粉末の体積比率が、9:1から1:9の熱処理用セ
ラミックスシートを用いた場合、熱処理後もセラミック
スシートの形状を維持し、金属複合超電導線材同士の接
触もなく、絶縁層を維持し、更に、パンケーキ状コイル
を構成する金属被覆超電導線材の金属被覆層の表面に局
部的な膨れの少ない、健全なパンケーキ状コイルが得ら
れることが分かった。
Example 2 A ceramic sheet was used as an insulating material, and a coil was wound with the ceramic sheet sandwiched between the above-described metal composite superconducting wires to produce a pancake coil (superconducting magnet) having an inner diameter of 60 mm. Thereafter, the pancake-shaped coil was subjected to a heat treatment at 845 ° C. for 50 hours in an air atmosphere. The heating time between 100-300 ° C and 700-820 ° C is
Total time was 5 hours. The critical current density of the fabricated pancake-like coil at 77K, the evaluation of the contact state between the metal composite superconducting wires constituting the pancake-like coil, and the reactivity of the ceramic sheet with the metal coating layer silver of the metal composite superconducting wire It was visually observed. Table 2 shows the results. Even in the case of a pancake-shaped coil (superconducting magnet), a ceramic sheet in which alumina fiber and zirconia powder are mixed is used as compared with a case in which alumina fiber alone, zirconia powder alone, and a ceramic sheet for heat treatment using alumina fiber and magnesia powder are used. When used, the critical current density was found to be high. In particular, when the volume ratio of alumina fiber and zirconia powder is 9: 1 to 1: 9, a ceramic sheet for heat treatment is used, the shape of the ceramic sheet is maintained even after the heat treatment, and there is no contact between the metal composite superconducting wires, It was found that a healthy pancake-like coil with less local swelling on the surface of the metal-coated layer of the metal-coated superconducting wire constituting the pancake-like coil while maintaining the insulating layer was obtained.

【0027】例3 例1の金属複合超電導線材の熱処理を実施した際、熱処
理の昇温速度が速い場合、金属複合超電導線材の金属被
覆層の表面の一部に局部的な膨れが生じた。このような
金属複合超電導線材の膨れは、臨界電流密度を低下させ
る原因となるため、この膨れ部のガスの主成分を示差熱
分析―質量分析(TG-MS)で評価したところ、100〜300
℃、700〜820℃の温度領域にて、H2O及びCO2が発生する
ことがわかった。そこで、熱処理の昇温速度を変化させ
て、100〜300℃の昇温時間、700〜820℃の間の昇温時間
及び100〜300℃と700〜820℃の間の昇温時間を変えた場
合に現われる、金属複合超電導線材の金属被覆層表面の
局部的な膨れの、単位長さ当たりの個数を測定した。そ
の結果を表3に示す。これより、 銀や銀合金等で被覆し
たビスマス系酸化物超電導体などを用いた金属複合超電
導線材を速い昇温速度で熱処理する場合、特に、金属複
合線材を束あるいはコイル状にして熱処理した場合、金
属複合超電導線材の金属被覆層の表面の一部に局部的な
膨れが生じやすくなるが、100〜300℃及び700〜820℃の
温度領域の昇温時間を5時間以上、保持する熱処理によ
り、セラミックスシート内の隙間及び金属複合超電導線
材の金属被覆層を介して、発生ガスの放出し、金属被覆
層の表面の一部に局部的な膨れが生じる現象を防止でき
ることが分かった。
Example 3 When the heat treatment of the metal composite superconducting wire of Example 1 was carried out, if the heat-up rate was high, local swelling occurred on a part of the surface of the metal coating layer of the metal composite superconducting wire. Since such swelling of the metal composite superconducting wire causes a reduction in critical current density, the main component of the gas in the swelling portion was evaluated by differential thermal analysis-mass spectrometry (TG-MS).
It was found that H 2 O and CO 2 were generated in a temperature range of 700 ° C. and 700-820 ° C. Therefore, the heating rate of the heat treatment was changed to change the heating time of 100 to 300 ° C, the heating time between 700 to 820 ° C, and the heating time between 100 to 300 ° C and 700 to 820 ° C. The number of local swelling per unit length of the surface of the metal coating layer of the metal composite superconducting wire, which appeared in each case, was measured. The results are shown in Table 3. Thus, when heat-treating a metal composite superconducting wire using a bismuth-based oxide superconductor coated with silver or a silver alloy at a high temperature rising rate, especially when heat-treating a metal composite wire in a bundle or coil shape However, local swelling is likely to occur on a part of the surface of the metal coating layer of the metal composite superconducting wire, but the heat-up time in the temperature range of 100 to 300 ° C and 700 to 820 ° C is maintained for 5 hours or more, and heat treatment is performed. It was found that the generated gas was released through the gaps in the ceramic sheet and the metal coating layer of the metal composite superconducting wire, thereby preventing the phenomenon of causing local swelling on a part of the surface of the metal coating layer.

【0028】実施例2 Bi2O3,SrCO3,CaCO3,CuO粉末を用いて、Bi:Sr:Ca:Cu=
2:2:1:2の組成比の粉末を調整した。この粉末を用い、
複数回、仮焼と粉砕を行い、Bi系2212組成の粉末を作製
した。この粉末を静水圧プレスにより焼結体にした後、
減圧下で加熱処理した。外径12mm、内径8mmの銀パイプ
に充填し、次に、粉末を充填した銀パイプについて伸線
加工行った。更に、伸線した線材を61本に束ねて、外径
12mm、内径10mmの銀パイプに嵌合し、ついで、伸線加工
及び圧延加工を施し、厚さ0.25mmのテープ形状の金属複
合超電導線材を得た。以上の工程より作製したBi系2212
相を有する酸化物超電導材料を用いた金属複合超電導線
材の間に、アルミナ繊維単独、ジルコニア粉末単独、ア
ルミナ繊維とマグネシア粉末、及びアルミナ繊維とジル
コニア粉末を混合したセラミックスシートを用い、それ
ぞれ重ね合わせて、直径50cmの巻き枠に巻いた後、それ
ぞれ大気中で、890℃で5分、860℃20時間、の熱処理を
行った。なお、100〜300℃と700〜820℃の間の昇温時間
は、合計5時間とした。得られた試料について、77Kにお
ける臨界電流密度の測定、セラミックスシートの熱処理
後の分解性、熱処理後の金属複合超電導線材同士の接触
状態(接合の有無)、及び金属被覆超電導線材の金属被覆
層の表面の局部的な膨れ状態を目視にて観察した。その
結果を表4に示す。Bi系2212相を有する酸化物超電導材
料を用いた金属複合超電導線材においても、アルミナ繊
維単独、ジルコニア粉末単独、及びアルミナ繊維とマグ
ネシア粉末を用いた熱処理用セラミックシートを用いた
場合に比べ、アルミナ繊維とジルコニア粉末を混合した
セラミックスシートを用いた場合、臨界電流密度の高い
金属被覆超電導線材が得られことが分かった。特に、ア
ルミナ繊維とジルコニア粉末の体積比率が、9:1から1:9
の熱処理用セラミックスシートを用いた場合、セラミッ
クスシートの熱処理後の分解性が良く、金属複合超電導
線材同士の接触もなく、更に、金属被覆層の表面に局部
的な膨れの少ない金属被覆超電導線材が得られることが
分かった。
Example 2 Using Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO powder, Bi: Sr: Ca: Cu =
A powder having a composition ratio of 2: 2: 1: 2 was prepared. Using this powder,
Calcination and pulverization were performed several times to prepare a powder of a Bi-based 2212 composition. After making this powder into a sintered body by isostatic pressing,
Heat treatment was performed under reduced pressure. A silver pipe having an outer diameter of 12 mm and an inner diameter of 8 mm was filled, and then the silver pipe filled with the powder was drawn. Furthermore, bundle the drawn wires into 61 wires,
It was fitted with a silver pipe having a diameter of 12 mm and an inner diameter of 10 mm, and then subjected to wire drawing and rolling to obtain a tape-shaped metal composite superconducting wire having a thickness of 0.25 mm. Bi-based 2212 produced by the above process
Alumina fiber alone, zirconia powder alone, alumina fiber and magnesia powder, and a ceramic sheet in which alumina fiber and zirconia powder are mixed between metal composite superconducting wires using an oxide superconducting material having a phase. After being wound on a winding frame having a diameter of 50 cm, each was subjected to a heat treatment at 890 ° C. for 5 minutes and 860 ° C. for 20 hours in the air. In addition, the heating time between 100 to 300 ° C and 700 to 820 ° C was 5 hours in total. For the obtained sample, measurement of the critical current density at 77 K, decomposability after heat treatment of the ceramic sheet, contact state between metal composite superconducting wires after heat treatment (with or without bonding), and metal coating layer of metal-coated superconducting wire The local swelling state of the surface was visually observed. Table 4 shows the results. The metal composite superconducting wire using the oxide superconducting material having the Bi-based 2212 phase also has a higher alumina fiber compared to the alumina fiber alone, the zirconia powder alone, and the ceramic sheet for heat treatment using alumina fiber and magnesia powder. It was found that a metal-coated superconducting wire having a high critical current density was obtained when a ceramic sheet in which zirconia powder and zirconia powder were mixed was used. In particular, the volume ratio of alumina fiber and zirconia powder is from 9: 1 to 1: 9
When the ceramic sheet for heat treatment is used, the decomposability of the ceramic sheet after the heat treatment is good, there is no contact between the metal composite superconducting wires, and further, the metal-coated superconducting wire having little local swelling on the surface of the metal coating layer is obtained. It turned out to be obtained.

【0029】[0029]

【発明の効果】以上、説明したように、本願発明のアル
ミナ繊維とジルコニア粉末を有するセラミックシートを
用いることにより、金属複合超電導線材の熱処理におい
て、バインダーが消失してもシートの形状を維持し、熱
処理による金属複合超電導線材同士の接合を防止でき、
所定の形状の長尺金属複合超電導線材を得ることができ
る。また、熱処理においてセラミックスシート内に隙間
を設けることができ、ガス拡散がしやすいため、金属複
合超電導線材の周囲のガス雰囲気を調整することができ
る。更に、熱処理により金属複合超電導線材内で発生し
たガスを外層金属部を介して放出する際、熱処理用セラ
ミックシートにより遮られることがないため、金属複合
超電導線材の表面に現われる局部的な膨れを抑制するこ
とができ、臨界電流の高い長尺の金属被覆超電導線材を
得ることができる。
As described above, by using the ceramic sheet having the alumina fiber and the zirconia powder of the present invention, the shape of the sheet is maintained even if the binder disappears in the heat treatment of the metal composite superconducting wire, It can prevent joining of metal composite superconducting wires by heat treatment,
A long metal composite superconducting wire having a predetermined shape can be obtained. In addition, a gap can be provided in the ceramic sheet during the heat treatment, and gas is easily diffused, so that the gas atmosphere around the metal composite superconducting wire can be adjusted. Furthermore, when the gas generated in the metal composite superconducting wire by heat treatment is released through the outer layer metal part, it is not blocked by the ceramic sheet for heat treatment, so local swelling that appears on the surface of the metal composite superconducting wire is suppressed. And a long metal-coated superconducting wire having a high critical current can be obtained.

【0030】更に、本願発明の熱処理用セラミックシー
トを用い、金属複合超電導線材を巻線して作製した超電
導マグネットを熱処理する場合、熱処理後もシートの形
状を維持し、電気的に絶縁された健全な超電導マグネッ
トを得ることができる。
Further, when a heat treatment is performed on a superconducting magnet produced by winding a metal composite superconducting wire using the ceramic sheet for heat treatment of the present invention, the shape of the sheet is maintained even after the heat treatment, and the electrically insulated sound is maintained. A superconducting magnet can be obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一実施例において用いられる、近接
する金属複合超電導線材の間に熱処理用セラミックシー
トを介して、パンケーキ状に巻いた状態を示した図であ
る。
FIG. 1 is a view showing a state of being wound into a pancake shape with a ceramic sheet for heat treatment interposed between adjacent metal composite superconducting wires used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 金属複合超電導線材 2 熱処理用セラミックシート 3 巻き枠 4 熱処理用治具 DESCRIPTION OF SYMBOLS 1 Metal composite superconducting wire 2 Ceramic sheet for heat treatment 3 Reel 4 Heat treatment jig

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】アルミナ繊維とジルコニア粉末で構成され
た材料と、熱処理によって消失する材料からなるバイン
ダを主成分とする金属複合超電導線材の熱処理用セラミ
ックシート。
1. A ceramic sheet for heat treatment of a metal composite superconducting wire mainly comprising a binder composed of a material composed of alumina fiber and zirconia powder and a material that disappears by heat treatment.
【請求項2】前記アルミナ繊維と前記ジルコニア粉末の
体積比率は、9:1から1:9であることを特徴とする請求項
1に記載の金属複合超電導線材の熱処理用セラミックシ
ート。
2. The ceramic sheet for heat-treating a metal composite superconducting wire according to claim 1, wherein a volume ratio of the alumina fiber and the zirconia powder is from 9: 1 to 1: 9.
【請求項3】近接する金属複合超電導線材の間に、請求
項1または2に記載の熱処理用セラミックシートを介し
て熱処理することを特徴とする金属複合超電導線材の熱
処理方法。
3. A heat treatment method for a metal composite superconducting wire, wherein the heat treatment is carried out between adjacent metal composite superconducting wires via the ceramic sheet for heat treatment according to claim 1 or 2.
【請求項4】前記金属複合超電導線材が、ビスマス系酸
化物超電導体を銀または銀合金で被覆した単芯線あるい
は多芯線であることを特徴とする請求項3に記載の金属
複合超電導線材の熱処理方法。
4. The heat treatment of a metal composite superconducting wire according to claim 3, wherein the metal composite superconducting wire is a single-core wire or a multi-core wire obtained by coating a bismuth-based oxide superconductor with silver or a silver alloy. Method.
【請求項5】請求項1または2に記載の熱処理用セラミ
ックスシートを用い、100〜300℃及び700〜820℃の熱処
理温度領域の昇温時間を5時間以上、保持することを特
徴とする請求項4に記載の金属複合超電導線材の熱処理
方法。
5. A heat treatment temperature range of 100 to 300 ° C. and 700 to 820 ° C. for at least 5 hours using the ceramic sheet for heat treatment according to claim 1 or 2. Item 6. A method for heat treating a metal composite superconducting wire according to Item 4.
【請求項6】金属複合超電導線材を巻線してなる超電導
マグネットにおいて、近接する金属複合超電導線材の間
に熱処理用セラミックスシートを介し、電気的に絶縁さ
れていることを特徴とする超電導マグネット。
6. A superconducting magnet formed by winding a metal composite superconducting wire, wherein the superconducting magnet is electrically insulated between adjacent metal composite superconducting wires via a ceramic sheet for heat treatment.
【請求項7】前記金属複合超電導線材が、ビスマス系酸
化物超電導体を銀または銀合金で被覆した単芯線あるい
は多芯線であることを特徴とする請求項6に記載の超電
導マグネット。
7. The superconducting magnet according to claim 6, wherein the metal composite superconducting wire is a single-core wire or a multi-core wire obtained by coating a bismuth-based oxide superconductor with silver or a silver alloy.
【請求項8】前記超電導マグネットにおいて、近接する
金属複合超電導線材の間に、請求項1または2に記載の
熱処理用セラミックスシートを介して熱処理することを
特徴とする請求項7に記載の超電導マグネットの製造方
8. The superconducting magnet according to claim 7, wherein the superconducting magnet is heat-treated between adjacent metal composite superconducting wires via the ceramic sheet for heat treatment according to claim 1 or 2. Manufacturing method
JP2000006078A 2000-01-11 2000-01-11 Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet Pending JP2001195932A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000006078A JP2001195932A (en) 2000-01-11 2000-01-11 Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet
PCT/JP2001/000032 WO2001052274A1 (en) 2000-01-11 2001-01-09 Ceramic sheet for heat-treating metal composite superconductive wires and method using the same for heat treating metal composite superconductive wires, and superconductive magnet and method of producing the same
AU2001224064A AU2001224064A1 (en) 2000-01-11 2001-01-09 Ceramic sheet for heat-treating metal composite superconductive wires and methodusing the same for heat treating metal composite superconductive wires, and sup erconductive magnet and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006078A JP2001195932A (en) 2000-01-11 2000-01-11 Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet

Publications (1)

Publication Number Publication Date
JP2001195932A true JP2001195932A (en) 2001-07-19

Family

ID=18534668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006078A Pending JP2001195932A (en) 2000-01-11 2000-01-11 Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet

Country Status (3)

Country Link
JP (1) JP2001195932A (en)
AU (1) AU2001224064A1 (en)
WO (1) WO2001052274A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023872A1 (en) * 2001-09-10 2003-03-20 Industrial Research Limited Parting agents for metal-clad high-temperature superconductor wires and tapes
JP2008511145A (en) * 2004-08-23 2008-04-10 シーメンス アクチエンゲゼルシヤフト Rectangular coil made of strip superconductor having high TC superconductor material and use thereof
KR100921966B1 (en) 2007-08-23 2009-10-15 한국기초과학지원연구원 Pretreatment method for superconducting magnet heat treatment
JP2020202316A (en) * 2019-06-11 2020-12-17 株式会社日立製作所 Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142245A (en) * 1993-11-17 1995-06-02 Mitsubishi Electric Corp High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
JP4013280B2 (en) * 1997-04-14 2007-11-28 住友電気工業株式会社 Structure having wire rod wound in coil, method for manufacturing the same, and spacer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023872A1 (en) * 2001-09-10 2003-03-20 Industrial Research Limited Parting agents for metal-clad high-temperature superconductor wires and tapes
JP2008511145A (en) * 2004-08-23 2008-04-10 シーメンス アクチエンゲゼルシヤフト Rectangular coil made of strip superconductor having high TC superconductor material and use thereof
KR100921966B1 (en) 2007-08-23 2009-10-15 한국기초과학지원연구원 Pretreatment method for superconducting magnet heat treatment
JP2020202316A (en) * 2019-06-11 2020-12-17 株式会社日立製作所 Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device
JP7214575B2 (en) 2019-06-11 2023-01-30 株式会社日立製作所 Wind & react type superconducting coil, method for manufacturing wind & react type superconducting coil, superconducting electromagnet device

Also Published As

Publication number Publication date
AU2001224064A1 (en) 2001-07-24
WO2001052274A1 (en) 2001-07-19

Similar Documents

Publication Publication Date Title
EP1096580B1 (en) Oxide superconducting wire having insulating coat and production method thereof
EP0282286B1 (en) Superconducting wire and method of manufacturing the same
JP2002093252A (en) Method of manufacturing oxide superconducting wire and pressure heat treatment device used for the method
JPH09129438A (en) Oxide superconductive coil and manufacture thereof
US20030130128A1 (en) Method of fabricating fine high temperature superconducting composites
EP0837512B1 (en) Improved performance of oxide dispersion strengthened superconductor composites
JP2001195932A (en) Ceramic sheet for heat-treatment of metallic composite superconductive rod wire, and method of heat-treating metallic composite rod wire using it, and superconductive magnet and method of fabricating superconductive magnet
JP4013280B2 (en) Structure having wire rod wound in coil, method for manufacturing the same, and spacer
EP0964458B1 (en) Method of manufacturing a high temperature oxide superconducting wire
JPH1092630A (en) Oxide superconducting coil
JP3522874B2 (en) Oxide superconducting coil, its manufacturing method and insulator used for it
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPH06243745A (en) Manufacture of high temperature superconducting wire material and high temperature superconducting coil
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPH03108704A (en) Manufacture of oxide superconducting coil
JP2637427B2 (en) Superconducting wire manufacturing method
JPH10321065A (en) Manufacture of superconducting wire material
JPS63241826A (en) Manufacture of superconducting wire
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP2757575B2 (en) Method for manufacturing high-temperature superconducting wire
JPH01220307A (en) High strength superconductive wire having high critical current density and its manufacture
JPH01102811A (en) Superconductive electric wire
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JPH11322439A (en) Ceramics sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201