JP2001194517A - Optical film - Google Patents

Optical film

Info

Publication number
JP2001194517A
JP2001194517A JP2000004241A JP2000004241A JP2001194517A JP 2001194517 A JP2001194517 A JP 2001194517A JP 2000004241 A JP2000004241 A JP 2000004241A JP 2000004241 A JP2000004241 A JP 2000004241A JP 2001194517 A JP2001194517 A JP 2001194517A
Authority
JP
Japan
Prior art keywords
film
optical path
light
optical
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004241A
Other languages
Japanese (ja)
Other versions
JP4548628B2 (en
Inventor
Seiji Umemoto
清司 梅本
Takao Suzuki
貴雄 鈴木
Toshihiko Ariyoshi
俊彦 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000004241A priority Critical patent/JP4548628B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to EP04003309A priority patent/EP1420273B1/en
Priority to KR1020010001874A priority patent/KR100769779B1/en
Priority to TW090100717A priority patent/TW526348B/en
Priority to EP04003308A priority patent/EP1420272A3/en
Priority to EP01100736A priority patent/EP1143270B1/en
Priority to US09/758,165 priority patent/US6747801B2/en
Publication of JP2001194517A publication Critical patent/JP2001194517A/en
Priority to US10/735,209 priority patent/US7227685B2/en
Priority to US10/734,224 priority patent/US6917473B2/en
Application granted granted Critical
Publication of JP4548628B2 publication Critical patent/JP4548628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop an optical film forming a transmissive, or reflective and transmissive combined, liquid crystal display device which is thin, lightweight and has bright and easy-to-see display by efficiently converting the optical path of the incident light from the side face direction into the viewing direction. SOLUTION: The optical film is provided with an adhesive layer 12 on one surface of a transparent film 11 with <=0.1 difference in refractive index between itself and its surface layer and a repeatingly projecting and recessing structure 13 equipped with an optical path converting slope A1 directed to nearly defined directions with 35-48 deg. inclined angle with respect to the film surface on the other surface of the transparent film. Consequently the optical film is utilized for the transmissive mode liquid crystal display by adhering it to the liquid crystal display panel, arranging an illuminator to the side face and efficiently converting the optical path of the light incident from the side face into the viewing direction of the panel. Furthermore, the optical film is utilized for the reflective mode liquid crystal display by providing a flat surface part between the optical path converting slopes of the optical film, efficiently making external light incident and reflecting the incident light via a reflection layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、側面入射光を効率よく視
認方向に光路変換して薄型軽量で明るくて見易い表示の
透過型や反射・透過両用型の液晶表示装置を形成しうる
光学フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical film capable of efficiently changing the optical path of side-incident light in a viewing direction to form a thin, lightweight, bright and easy-to-view transmissive or reflective / transmissive liquid crystal display device. .

【0002】[0002]

【発明の背景】TVやパソコン画面の大型化に伴う高重
量化の抑制、携帯パソコンや携帯電話等の小型軽量化な
どを目的に透過型液晶表示装置の更なる薄型軽量化が求
められる中、従来の直下型やサイドライト型導光板によ
るバックライトを設けたものでは、その薄型軽量化が困
難となっている。ちなみに直下型のバックライトでは液
晶表示パネルの直下に照明装置と共に光拡散板や反射板
が配置されて通例4mm以上の厚さとなり、サイドライト
型導光板でも光伝送の必要上1mm以上の板厚となりそれ
に光拡散板や反射板やプリズムシートなどを配置した場
合には通例3mm以上の厚さとなる。
BACKGROUND OF THE INVENTION In order to suppress the weight increase due to the enlargement of TV and personal computer screens and to reduce the size and weight of portable personal computers and mobile phones, further reduction in the thickness and weight of transmissive liquid crystal display devices is required. It is difficult to reduce the thickness and weight of a conventional backlight provided with a direct type or a sidelight type light guide plate. By the way, in the direct type backlight, the light diffusion plate and the reflection plate are arranged together with the illuminating device directly below the liquid crystal display panel, so that the thickness is usually 4 mm or more. Even for the sidelight type light guide plate, the plate thickness is 1 mm or more due to the need for light transmission. When a light diffusing plate, a reflecting plate, a prism sheet, or the like is disposed thereon, the thickness usually becomes 3 mm or more.

【0003】また前記した透過型液晶表示パネルとバッ
クライトの間に半透過型反射板を配置して外光による反
射モードにても視認できるようにした反射・透過両用型
の液晶表示装置も知られていた。半透過型反射板の配置
は、反射モードによる視認の可能化を目的とし、それな
しでは外光による反射モードでの視認が暗くて反射型の
液晶表示装置として実質的に機能しにくい。しかしなが
ら半透過型反射板の付加で更に嵩高高重量化することに
加えて、半透過型反射板では透過光と反射光に分散され
るため透過モードでの視認を暗くし、また反射モードで
も視認を暗くしてその明るさが高反射率の反射層による
反射専用のものに及びにくい問題点があった。
Also, a transflective liquid crystal display device in which a transflective reflector is disposed between the transmissive liquid crystal display panel and the backlight so that the transflective plate can be viewed even in a reflection mode by external light is known. Had been. The arrangement of the semi-transmissive reflector is intended to enable visibility in the reflection mode, without which the visibility in the reflection mode by external light is dark, and it is difficult to substantially function as a reflective liquid crystal display device. However, in addition to adding bulkiness and weight by adding a transflective reflector, the transflective reflector disperses the transmitted light and reflected light, so that the visibility in the transmission mode is darkened, and the visibility in the reflection mode is also reduced. There is a problem that it is difficult to make the brightness darker than that dedicated to reflection by a reflection layer having a high reflectance.

【0004】[0004]

【発明の技術的課題】本発明は、側面入射光を効率よく
視認方向に光路変換して薄型軽量で明るくて見易い表示
の透過型や反射・透過両用型の液晶表示装置を形成しう
る光学フィルムの開発を課題とする。
SUMMARY OF THE INVENTION The present invention relates to an optical film capable of efficiently converting the light incident on a side surface into a viewing direction to form a thin, lightweight, bright and easy-to-view transmissive or reflective / transmissive liquid crystal display device. The task is to develop

【0005】[0005]

【課題の解決手段】本発明は、透明フィルムの片面にそ
の表面層との屈折率差が0.1以内の粘着層を有し、か
つ前記透明フィルムの他面にフィルム面に対する傾斜角
が35〜48度で略一定方向を向く光路変換斜面を具備
する凹凸の繰り返し構造を有することを特徴とする光学
フィルムを提供するものである。
According to the present invention, a transparent film has an adhesive layer having a refractive index difference of 0.1 or less with respect to a surface layer on one side of the transparent film, and has an inclination angle of 35 with respect to the film surface on the other side of the transparent film. It is an object of the present invention to provide an optical film having a repeating structure of irregularities having an optical path changing slope which is oriented substantially at a constant angle of up to 48 degrees.

【0006】[0006]

【発明の効果】本発明の光学フィルムによれば、それを
側面に照明装置を有する液晶表示パネルの視認面に沿わ
せて配置することにより、前記側面からの入射光ないし
その伝送光を光学フィルムの光路変換斜面を介し液晶表
示パネルの視認方向に効率よく光路変換して透過モード
での液晶表示に利用でき、薄さと軽量性に優れ明るくて
表示品位に優れる透過型の液晶表示装置を形成すること
ができる。また光学フィルムの光路変換斜面間に平坦面
部分を設けることで外光を効率よく入射させることがで
きその入射光を反射層を介し反射させて反射モードでの
液晶表示に利用でき、前記した透過モード機構に加えて
反射モード機構も形成できて薄さと軽量性に優れ明るく
て表示品位に優れる反射・透過両用型の液晶表示装置を
形成することができる。
According to the optical film of the present invention, by arranging the optical film along the viewing surface of a liquid crystal display panel having an illuminating device on the side surface, the incident light from the side surface or the transmitted light thereof can be transmitted to the optical film. The light path is efficiently converted in the viewing direction of the liquid crystal display panel through the light path changing slope to be used for the liquid crystal display in the transmission mode, and a transmission type liquid crystal display device which is thin, lightweight, bright, and excellent in display quality is formed. be able to. In addition, by providing a flat surface portion between the optical path changing slopes of the optical film, external light can be efficiently incident, and the incident light can be reflected through a reflective layer to be used for a liquid crystal display in a reflection mode. In addition to the mode mechanism, a reflection mode mechanism can be formed, so that a reflection-transmission type liquid crystal display device which is excellent in thinness, lightness, brightness, and display quality can be formed.

【0007】前記の効果は、主に斜面反射による光路制
御式の光学フィルムとしたことによる。すなわち光路変
換斜面を介して側面からの入射光ないしその伝送光を反
射させることで指向性よく光路変換できて透過モードで
の良視認が達成されると共に、光路変換斜面間に容易に
平坦面を配置できてその平坦面を介し外光を透過させて
充分な外光入射を確保でき反射モードでの良視認も達成
される。図10に例示の如く散乱シート6等による粗面
を介した散乱反射方式では前記効果の達成は困難であ
る。ちなみに特開平5−158033号公報では液晶表
示パネルの側面より照明光を入射させて視認側セル基板
で全反射させその反射光を粗面型の反射板で散乱させて
表示に利用する反射型液晶表示装置を教示する。
The above-mentioned effect is mainly due to the use of an optical film of an optical path control type by oblique reflection. That is, by reflecting the incident light from the side surface or the transmitted light from the side surface through the optical path conversion slope, the optical path can be changed with good directivity, and good visibility in the transmission mode is achieved, and a flat surface can be easily formed between the optical path conversion slopes. It can be arranged and transmits external light through its flat surface to ensure sufficient external light incidence, and good visibility in the reflection mode is achieved. As shown in FIG. 10, it is difficult to achieve the above-mentioned effect by the scattering reflection method through the rough surface using the scattering sheet 6 or the like. Incidentally, in Japanese Patent Application Laid-Open No. H5-158033, a reflection type liquid crystal is used for display by illuminating light from a side surface of a liquid crystal display panel, totally reflecting the light on a viewing side cell substrate, and scattering the reflected light by a rough surface type reflection plate. Teach the display device.

【0008】しかし前記の場合、表示に利用できる光
は、散乱で全反射条件から外れてパネルより出射する光
であり、一般に散乱光は正反射方向をピークとする正規
分布を示すことから(第20回液晶討論会講演予稿集3
G510、東北大学;内田等)、前記の表示光は、正
面(垂直)方向より大きく傾斜した光で表示に有効利用
しにくく正面方向では暗い表示となる。さりとて粗面型
反射板による散乱を強くすると反射モードでの正面方向
の光量を低減させて、やはり表示に不利となる(SID 96
DIGEST P149-152)。従ってかかる粗面散乱反射方式で
は透過と反射の両モードに要求される散乱強さが背反関
係にあるため両者に有利な散乱強さとすることが困難で
ある。
However, in the above case, the light available for display is light that is emitted from the panel out of the condition of total reflection due to scattering. Generally, the scattered light has a normal distribution having a peak in the regular reflection direction. Proceedings of the 20th LCD Symposium 3
G510, Tohoku University; Uchida, etc.), the display light is light inclined at a greater angle than the front (vertical) direction and is difficult to use effectively for display, and becomes dark in the front direction. If the scattering by the rough reflector is increased, the amount of light in the front direction in the reflection mode is reduced, which is disadvantageous for display (SID 96).
DIGEST P149-152). Therefore, in the rough surface scattering / reflection method, since the scattering intensity required for both the transmission mode and the reflection mode is in a trade-off relationship, it is difficult to make the scattering intensity advantageous for both modes.

【0009】一方、本発明による斜面反射による光路制
御式の光学フィルムでは、ピークを示す正反射方向の光
の利用を主体とし、その反射光の光路を制御するもので
あることから表示に有利な指向性、就中、正面方向の指
向性を容易にもたせることができて明るい透過モードを
達成することができる。また反射モードにても光学フィ
ルムの当該斜面以外の平坦部分を利用して外光の効率的
な入射と反射透過を確保でき、反射と透過の両モードに
有利な状態に容易にバランスさせることができる。
[0009] On the other hand, the optical film of the present invention, which is of an optical path control type by oblique reflection, mainly uses light in the specular reflection direction showing a peak and controls the optical path of the reflected light, which is advantageous for display. Directivity, in particular, directivity in the front direction can be easily provided, and a bright transmission mode can be achieved. Also, even in the reflection mode, it is possible to ensure efficient incidence and reflection / transmission of external light by utilizing a flat portion other than the slope of the optical film, and to easily balance the light into a state advantageous for both the reflection mode and the transmission mode. it can.

【0010】[0010]

【発明の実施形態】本発明による光学フィルムは、透明
フィルムの片面にその表面層との屈折率差が0.1以内
の粘着層を有し、かつ前記透明フィルムの他面にフィル
ム面に対する傾斜角が35〜48度で略一定方向を向く
光路変換斜面を具備する凹凸の繰り返し構造を有するも
のからなる。その例を図1(a)〜(h)に示した。1
が光学フィルムで、11が透明フィルム、12が粘着
層、13が光路変換斜面A1を具備する凹凸すなわち光
路変換手段Aの繰り返し構造層であり、14は剥離シー
トである。図1(g)に例示の如く光路変換手段Aの繰
り返し構造は、透明フィルム11と同体に形成されてい
てもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical film according to the present invention has an adhesive layer having a refractive index difference of 0.1 or less with respect to the surface layer on one side of the transparent film, and has an inclined surface with respect to the film surface on the other side of the transparent film. It has a repeating structure of irregularities having an optical path changing slope having an angle of 35 to 48 degrees and oriented in a substantially constant direction. Examples are shown in FIGS. 1 (a) to 1 (h). 1
Is an optical film, 11 is a transparent film, 12 is an adhesive layer, 13 is irregularities having an optical path changing slope A1, that is, a repeating structure layer of the optical path changing means A, and 14 is a release sheet. As shown in FIG. 1 (g), the repeating structure of the optical path changing means A may be formed integrally with the transparent film 11.

【0011】光学フィルム1は、図7に例示した如く側
面に照明装置5を有する液晶表示パネルPの視認面に沿
う方向に配置し、前記照明装置による側面方向からの入
射光ないしその伝送光を矢印の如く光路変換斜面A1を
介し反射させ透明フィルム11の当該斜面を有しない面
側に、従って液晶表示パネルPの視認方向に光路変換し
て透明フィルムより出射させ、その出射光を液晶表示パ
ネル等の照明光(表示光)として利用できるようにする
ことを目的とする。
The optical film 1 is arranged in the direction along the viewing surface of the liquid crystal display panel P having the illuminating device 5 on the side surface as illustrated in FIG. 7, and the incident light or the transmitted light from the side direction by the illuminating device is transmitted. The light is reflected through the light path changing slope A1 as shown by the arrow, and the light path is changed to the side of the transparent film 11 not having the slope, that is, in the viewing direction of the liquid crystal display panel P, and the light is emitted from the transparent film. It is an object of the present invention to be able to use as illumination light (display light).

【0012】透明フィルム11は、前記した目的を達成
する点より図1に例示した如く側面方向からの入射光な
いしその伝送光を所定方向に反射して光路変換する斜面
A1をフィルムの片面に有するものとされる。その場
合、本発明にては光路変換を介して正面方向への指向性
に優れる照明光を得る点より図1に示した如く、フィル
ム面A4に対する傾斜角θ1が35〜48度で、略一定
方向を向く光路変換斜面A1を具備する凹凸すなわち光
路変換手段Aの繰り返し構造を有するものとされる。
The transparent film 11 has, on one side of the film, an inclined surface A1 for reflecting the incident light from the lateral direction or the transmitted light in a predetermined direction and changing the optical path, as illustrated in FIG. It is assumed. In this case, in the present invention, as shown in FIG. 1, the inclination angle θ1 with respect to the film surface A4 is substantially constant at 35 to 48 degrees from the point of obtaining illumination light having excellent directivity in the front direction via optical path conversion. The optical path changing means A has a concavo-convex pattern having an optical path changing slope A1 facing the direction, that is, a repeating structure of the optical path changing means A.

【0013】前記した光路変換斜面A1を有する光路変
換手段Aの例を図1(a)〜(h)に示した。その
(a)〜(c)、(g)、(h)では光路変換手段Aが
断面略三角形のものからなり、(d)、(e)では断面
略四角形、(f)では断面略五角形のものからなる。ま
た(a)では二等辺三角形による2面の光路変換斜面A
1を有し、(b)、(g)、(h)では光路変換斜面A
1と傾斜角が斜面A1よりも大きい急斜面A2を有する
光路変換手段Aを有するものからなる。
FIGS. 1A to 1H show examples of the optical path changing means A having the above-described optical path changing slope A1. In (a) to (c), (g), and (h), the optical path conversion means A has a substantially triangular cross section, and in (d) and (e), a substantially rectangular cross section, and in (f), a substantially pentagonal cross section. Consist of things. Also, in (a), two optical path conversion slopes A by isosceles triangles
1, (b), (g) and (h) show the optical path changing slope A
1 and an optical path changing means A having a steep slope A2 whose inclination angle is larger than the slope A1.

【0014】一方、(c)では光路変換斜面A1と傾斜
角が小さい緩斜面A3とを単位とする光路変換手段Aが
隣接連続状態の繰返し構造としてフィルム片側の全面に
形成されたものからなる。さらに(a)〜(c)、
(e)、(g)、(h)では凹部(溝)からなる光路変
換手段Aを有するものからなり、(d)、(f)では凸
部(突起)からなる光路変換手段Aを有するものからな
る。
On the other hand, in (c), an optical path changing means A having a light path converting slope A1 and a gentle slope A3 having a small inclination angle as a unit is formed on the entire surface on one side of the film as a repetitive structure of an adjacent continuous state. (A) to (c),
(E), (g), and (h) have optical path conversion means A having concave portions (grooves), and (d) and (f) have optical path conversion means A having convex portions (projections). Consists of

【0015】従って前記した例のように光路変換手段
は、等辺面ないし同じ傾斜角の斜面からなる凸部又は凹
部にても形成できるし、光路変換斜面と急斜面又は緩斜
面ないし傾斜角が相違する斜面からなる凸部又は凹部に
ても形成でき、その斜面形態は光を入射させる側面方向
の数や位置にて適宜に決定することができる。耐擦傷性
の向上による斜面機能の維持の点よりは、凸部よりも凹
部からなる光路変換手段として形成されていることが斜
面等が傷付きにくくて有利である。
Therefore, as in the above-described example, the optical path changing means can be formed on a convex portion or a concave portion having an equilateral surface or a slope having the same inclination angle, and the optical path changing slope is different from a steep slope or a gentle slope or an inclination angle. It can also be formed in a convex portion or a concave portion formed of a slope, and the form of the slope can be appropriately determined by the number and position of the side direction in which light is incident. Rather than maintaining the slope function by improving the scratch resistance, it is advantageous that the slope is hardly damaged by being formed as an optical path changing means composed of concave portions rather than convex portions.

【0016】上記した正面方向への指向性等の特性を達
成する点などより好ましい光学フィルムは、光路変換斜
面A1が向く略一定方向を光が入射する側面方向と対面
する方向としたものである。従って例えば図8の如く光
学フィルム1の2側面以上の側面方向から光を入射させ
る場合には、その数と位置に対応して光路変換斜面A1
を有する光学フィルムとしたものが好ましく用いられ
る。
A more preferable optical film, for example, in achieving the above-described characteristics such as directivity in the front direction, is such that the substantially constant direction in which the optical path changing slope A1 faces is a direction facing the side direction in which light enters. . Therefore, for example, when light is incident from two or more side surfaces of the optical film 1 as shown in FIG.
An optical film having the following is preferably used.

【0017】ちなみに図8の如く光学フィルムの対向す
る2側面を光が入射する側面方向とする場合には、図1
(a)の如き断面略二等辺三角形からなる光路変換手段
Aによる2面の光路変換斜面A1や、図1(d)、
(e)、(f)の如き断面略台形ないし四角形又は断面
略五角形からなる光路変換手段Aによる2面の光路変換
斜面A1をその稜線が前記側面方向に沿う方向となる状
態で有するものの如く、略一定方向を向く光路変換斜面
がその一面を基準にそれとは反対方向を向く面を含む状
態で2面以上有する光学フィルム1が好ましく用いられ
る。
When the two opposing sides of the optical film are directed to the side where light enters as shown in FIG.
As shown in FIG. 1 (d), two optical path conversion slopes A1 by the optical path conversion means A having a substantially isosceles triangle in cross section as shown in FIG.
(E) As shown in (f), there are two optical path changing slopes A1 formed by the optical path changing means A having a substantially trapezoidal or quadrangular or substantially pentagonal cross section in such a state that the ridge line is in the direction along the side direction. An optical film 1 having two or more surfaces in which the optical path changing slope facing in a substantially constant direction includes a surface facing in the opposite direction based on one surface is preferably used.

【0018】また光学フィルムの縦横で隣接する2側面
を光が入射する側面方向とする場合には、その側面に対
応して稜線が縦横の両方向に沿う状態で光路変換斜面A
1を有する光学フィルムが好ましく用いられる。さらに
は対向及び縦横を含む3側面以上を光が入射する側面方
向とする場合には、前記の組合せからなる光路変換斜面
A1を有する光学フィルムが好ましく用いられる。
In the case where two sides adjacent to each other in the vertical and horizontal directions of the optical film are set to the side direction in which light is incident, the optical path changing slope A is set in such a manner that the ridge lines are in both vertical and horizontal directions corresponding to the side surfaces.
An optical film having 1 is preferably used. Further, in the case where three or more side surfaces including the opposing and vertical and horizontal sides are the side directions on which light is incident, an optical film having an optical path changing slope A1 composed of the above combination is preferably used.

【0019】上記したように光路変換斜面A1は、側面
方向よりの入射光ないしその伝送光の内、その面A1に
入射する光を反射して光路変換する役割をする。その場
合、図1(a)に例示の如く光路変換斜面A1のフィル
ム面に対する傾斜角θ1を35〜48度とすることによ
り側面方向よりの入射光ないしその伝送光をフィルム面
に対し垂直性よく光路変換して正面への指向性に優れる
照明光を効率よく得ることができる。
As described above, the optical path changing slope A1 plays a role of reflecting the light incident on the surface A1 out of the incident light from the side direction or the transmitted light, and changing the optical path. In this case, as shown in FIG. 1 (a), by setting the inclination angle θ1 of the optical path changing slope A1 with respect to the film surface to 35 to 48 degrees, incident light from the side direction or transmitted light thereof can be made perpendicular to the film surface. By changing the optical path, illumination light having excellent directivity to the front can be efficiently obtained.

【0020】前記の傾斜角θ1が35度未満では反射光
の光路が正面方向より30度以上の方向に大きくずれて
表示に有効利用しにくく正面方向の輝度に乏しくなり、
48度を超えると側面方向よりの入射光ないしその伝送
光を全反射させる条件から外れて光路変換斜面よりの漏
れ光が多くなり側面方向よりの入射光の光利用効率に乏
しくなる。正面への指向性に優れる光路変換や漏れ光の
抑制等の点より光路変換斜面A1の好ましい傾斜角θ1
は、伝送光のスネルの法則による屈折に基づく全反射条
件などを考慮して38〜45度、就中40〜44度であ
る。
If the inclination angle θ1 is less than 35 degrees, the optical path of the reflected light is greatly shifted in the direction of 30 degrees or more from the front direction, making it difficult to use it effectively for display, resulting in poor brightness in the front direction.
When the angle exceeds 48 degrees, the condition for totally reflecting the incident light or the transmitted light from the side direction is deviated, and the leakage light from the optical path conversion slope increases, resulting in poor light utilization efficiency of the incident light from the side direction. A preferable inclination angle θ1 of the optical path conversion slope A1 from the viewpoint of optical path conversion having excellent directivity to the front and suppression of leak light.
Is 38 to 45 degrees, especially 40 to 44 degrees, considering the total reflection condition based on refraction of transmission light according to Snell's law.

【0021】上記の光路変換斜面A1を具備する光路変
換手段Aは、光学フィルムの薄型化を目的に凹凸の繰返
し構造として形成される。その場合、側面方向からの入
射光を後方に反射し対向側面側に効率よく伝送して光学
フィルム全面で可及的に均一に発光させる点よりは、図
1に例示の如くフィルム面に対する傾斜角が5度以下、
就中4度以下、特に3度以下の緩斜面A3ないし当該傾
斜角が略0度のフィルム面A4からなる平坦面を含む構
造とすることが好ましい。従って図1(b)、(e)、
(g)、(h)に例示の急斜面A2を含む光路変換手段
Aでは、その急斜面の角度を35度以上、就中50度以
上、特に60度以上としてフィルム面A4の幅を広くで
きる構造とすることが好ましい。
The optical path changing means A having the above-described optical path changing slope A1 is formed as a repeating structure of irregularities for the purpose of reducing the thickness of the optical film. In this case, the angle of inclination with respect to the film surface as illustrated in FIG. 1 is more than the point of reflecting the incident light from the side direction backward and efficiently transmitting the light to the opposite side surface to emit light as uniformly as possible over the entire optical film. Is less than 5 degrees,
In particular, it is preferable to adopt a structure including a flat surface including a gentle slope A3 of 4 degrees or less, particularly 3 degrees or less, or a film surface A4 having the inclination angle of about 0 degrees. Therefore, FIGS. 1 (b), (e),
In the optical path changing means A including the steep slope A2 illustrated in (g) and (h), the angle of the steep slope is 35 degrees or more, particularly 50 degrees or more, and particularly 60 degrees or more, so that the width of the film surface A4 can be widened. Is preferred.

【0022】また前記の緩斜面A3やフィルム面A4か
らなる平坦面は、図7、8の例の如く光学フィルム1の
背面側に反射層4を配置した場合に、外光の入射部分及
びその入射光の反射層4を介した反射光の透過部分とし
て機能させることができ、これにより照明装置を消灯し
た外光による反射モードでの表示を可能として反射・透
過両用型の液晶表示装置の形成を可能とする。
The flat surface consisting of the gentle slope A3 and the film surface A4 has a portion where external light is incident and a portion where the external light is incident when the reflective layer 4 is disposed on the back side of the optical film 1 as shown in FIGS. It is possible to function as a transmission part of the reflected light through the reflection layer 4 of the incident light, thereby enabling the display in the reflection mode by the external light with the lighting device turned off to form a reflective / transmission type liquid crystal display device. Is possible.

【0023】前記の場合、特に図1(c)の如き斜面A
1、A3による光路変換手段Aの隣接繰返し構造からな
るときには、その緩斜面A3のフィルム面に対する傾斜
角の角度差を光学フィルムの全体で5度以内、就中4度
以内、特に3度以内、さらに最寄りの緩斜面間の傾斜角
の差を1度以内、就中0.3度以内、特に0.1度以内
とすることが好ましい。これは緩斜面A3を介した反射
光路を大きく変化させないこと、特に最寄りの緩斜面間
で大きく変化させないことを目的とする。図1(f)の
如き斜面A1、A3による光路変換手段Aの場合も前記
に準じうる。
In the above case, in particular, the slope A as shown in FIG.
1. When the optical path conversion means A is formed of a repeating structure adjacent to A3, the angle difference between the gentle slope A3 and the film surface is within 5 degrees, preferably within 4 degrees, especially within 3 degrees, of the entire optical film. Further, it is preferable that the difference in the inclination angle between the nearest gentle slopes is within 1 degree, preferably within 0.3 degree, particularly within 0.1 degree. The purpose of this is to prevent the reflected light path through the gentle slope A3 from largely changing, particularly not to change greatly between the nearest gentle slopes. The case of the optical path changing means A using the slopes A1 and A3 as shown in FIG.

【0024】また外光モードによる明るい表示を得る点
よりは、フィルム面に対する傾斜角が5度以下の緩斜面
A3やフィルム面A4からなる平坦面の占有面積ないし
幅を光路変換手段Aを形成したフィルム片面に基づいて
当該傾斜角が35度以上の斜面A1やA2によるそれの
10倍以上、就中12倍以上、特に15倍以上とするこ
とが好ましい。これは外光の入射効率とその反射層を介
した反射光の透過効率の向上を目的とする。
The light path conversion means A is formed by occupying an area or width of a gentle slope A3 having a tilt angle with respect to the film surface of 5 degrees or less or a flat surface composed of the film surface A4, rather than obtaining a bright display in the external light mode. Based on one side of the film, the inclination angle is preferably 10 times or more, more preferably 12 times or more, especially 15 times or more, that of the slopes A1 and A2 having the inclination angle of 35 degrees or more. This aims at improving the incident efficiency of external light and the transmission efficiency of reflected light through the reflective layer.

【0025】光路変換手段Aは、図2〜4に例示の如く
その稜線が光が入射する側面方向に平行又は傾斜状態で
沿うように設けられるがその場合、光路変換手段Aは図
2、3の例の如く光学フィルム1の一端から他端にわた
り連続して形成されていてもよいし、図4の例の如く断
続的に不連続に形成されていてもよい。
As shown in FIGS. 2 to 4, the optical path converting means A is provided so that its ridge line is parallel or inclined along the side of the light incidence side. May be formed continuously from one end to the other end of the optical film 1, or may be formed discontinuously and discontinuously as in the example of FIG.

【0026】前記した不連続に形成する場合、伝送光の
入射効率や光路変換効率などの点よりその溝又は突起か
らなる凹凸の側面方向に沿う方向の長さを深さ又は高さ
の5倍以上とすることが好ましく、また光学フィルム上
での均一発光化の点より前記長さを500μm以下、就
中10〜480μm、特に50〜450μmとすることが
好ましい。
In the case of discontinuous formation as described above, the length along the side surface direction of the concave / convex formed by the groove or the protrusion is five times the depth or the height in view of the incident efficiency of the transmission light and the optical path conversion efficiency. The length is preferably at least 500 μm, more preferably 10 to 480 μm, and particularly preferably 50 to 450 μm, from the viewpoint of achieving uniform light emission on the optical film.

【0027】光路変換手段Aを形成する斜面は、直線面
や屈折面や湾曲面等の適宜な面形態に形成されていてよ
く、光路変換手段Aの断面形状やそれを介した光路変換
斜面A1の繰返しピッチについては特に限定はない。光
路変換斜面A1が透過(点灯)モードでの輝度決定要因
となることより光学フィルム上での発光の均一性や、反
射・透過両用型では外光モードでの発光の均一性などに
応じて適宜に決定でき、その分布密度にて光路変換光量
を制御することができる。
The slope forming the optical path conversion means A may be formed in an appropriate surface form such as a straight surface, a refraction surface, a curved surface, etc., and the cross-sectional shape of the optical path conversion means A and the optical path conversion slope A1 through the same. Is not particularly limited. Since the light path conversion slope A1 is a factor in determining the luminance in the transmission (lighting) mode, the light emission uniformity on the optical film, and in the reflection / transmission type, the uniformity of the light emission in the external light mode as appropriate. And the distribution path density can be used to control the optical path conversion light quantity.

【0028】従って斜面A1、2、3の傾斜角等がシー
トの全面で一定な形状であってもよいし、吸収ロスや先
の光路変換による伝送光の減衰に対処して光学フィルム
上での発光の均一化を図ることを目的に、図5の例の如
く光が入射する側の側面から遠離るほど光路変換手段A
を大きくしてもよい。
Therefore, the inclination angles of the slopes A1, 2, and 3 may be constant over the entire surface of the sheet, or may be reduced on the optical film in consideration of absorption loss and attenuation of transmission light due to the previous optical path conversion. For the purpose of achieving uniform light emission, as shown in the example of FIG.
May be increased.

【0029】また図2、3の例の如く一定ピッチの光路
変換手段Aとすることもできるし、図4、6の例の如く
光が入射する側の側面から遠離るほど徐々にピッチを狭
くして光路変換手段Aの分布密度を多くしたものとする
こともできる。さらにランダムピッチにて光学フィルム
上での発光の均一化を図ることもでき、ランダムピッチ
は画素との干渉によるモアレの防止の点よりも有利であ
る。よって光路変換手段Aは、ピッチに加えて形状等も
異なる凹凸の組合せからなっていてもよい。なお図2〜
6において矢印方向が光の伝送方向である。
The optical path changing means A may have a constant pitch as shown in the examples of FIGS. 2 and 3. Alternatively, the pitch may be gradually narrowed as the distance from the light incident side increases as shown in the examples of FIGS. Then, the distribution density of the optical path changing means A can be increased. Furthermore, the light emission on the optical film can be made uniform at a random pitch, and the random pitch is more advantageous than the prevention of moiré due to interference with pixels. Therefore, the optical path conversion means A may be composed of a combination of irregularities having different shapes and the like in addition to the pitch. In addition, FIG.
In 6, the direction of the arrow is the light transmission direction.

【0030】反射・透過両用型の液晶表示装置とする場
合、光路変換斜面A1が液晶表示パネルの画素とオーバ
ーラップすると表示光の透過不足で不自然な表示となる
ことがあり、それを防止する点などよりはそのオーバー
ラップ面積を可及的に小さくして平坦面A3、4を介し
た充分な光透過率を確保することが好ましい。かかる点
より液晶表示パネルの画素ピッチが一般に100〜30
0μmであることも考慮して光路変換斜面A1は、その
フィルム面に対する投影幅に基づいて40μm以下、就
中3〜20μm、特に5〜15μmとなるように形成する
ことが好ましい。かかる投影幅は、一般に蛍光管のコヒ
ーレント長が20μm程度とされている点などより回折
による表示品位の低下を防止する点よりも好ましい。
In the case of a reflection / transmission type liquid crystal display device, if the optical path changing slope A1 overlaps the pixels of the liquid crystal display panel, the display light may be insufficiently transmitted, resulting in an unnatural display. It is preferable to make the overlap area as small as possible rather than a point to secure a sufficient light transmittance through the flat surfaces A3 and A4. From this point, the pixel pitch of the liquid crystal display panel is generally 100 to 30.
Considering that it is 0 μm, it is preferable that the optical path conversion slope A1 is formed so as to be 40 μm or less, preferably 3 to 20 μm, particularly 5 to 15 μm based on the projection width to the film surface. Such a projection width is more preferable than the point where the coherent length of the fluorescent tube is generally set to about 20 μm, and the like, from the viewpoint of preventing the deterioration of display quality due to diffraction.

【0031】一方、前記の点よりは光路変換斜面A1の
間隔の大きいことが好ましいが、他方で光路変換斜面は
上記したように側面方向よりの入射光の光路変換による
実質的な照明光形成の機能部分であるから、その間隔が
広すぎると点灯時の照明が疎となって不自然な表示とな
る場合がありそれらを鑑みた場合、光路変換斜面A1の
繰返しピッチは、5mm以下、就中20μm〜3mm、特に
50μm〜2mmとすることが好ましい。
On the other hand, it is preferable that the distance between the optical path changing slopes A1 is larger than the above-mentioned point. On the other hand, the optical path changing slope A1 substantially forms the illumination light by the light path changing of the incident light from the side as described above. Since it is a functional part, if the interval is too wide, the lighting at the time of lighting may be sparse and unnatural display may occur. In view of them, the repetition pitch of the optical path conversion slope A1 is 5 mm or less, especially It is preferably from 20 μm to 3 mm, particularly preferably from 50 μm to 2 mm.

【0032】また凹凸の繰返し構造からなる光路変換手
段の場合、液晶表示パネルの画素と干渉してモアレを生
じる場合がある。モアレの防止は、その繰返し構造のピ
ッチ調節で行いうるが、上記したように繰返し構造のピ
ッチには好ましい範囲がある。従ってそのピッチ範囲で
モアレが生じる場合の解決策が問題となる。本発明にお
いては図3の例の如く画素に対して凹凸の繰返し構造を
交差状態で配列しうるように凹凸の稜線を側面方向に対
し傾斜する状態に形成してモアレを防止する方式が好ま
しい。
In the case of an optical path changing means having a repeating structure of irregularities, moire may occur due to interference with pixels of a liquid crystal display panel. Moire can be prevented by adjusting the pitch of the repeating structure, but as described above, the pitch of the repeating structure has a preferable range. Therefore, a solution for a case where moire occurs in the pitch range becomes a problem. In the present invention, as shown in the example of FIG. 3, it is preferable to form a ridge line of the unevenness so as to be inclined with respect to the lateral direction so that the repeating structure of the unevenness can be arranged in an intersecting state with respect to the pixel to prevent moire.

【0033】前記の場合、側面方向に対する傾斜角θ2
が大きすぎると光路変換斜面A1を介した反射に偏向を
生じて光路変換の方向に大きな偏りが発生し表示品位の
低下原因となりやすいことから、その稜線の側面方向に
対する傾斜角θ2は、±30度以内、就中±25度以
内、±20度以内とすることが好ましい。なお±の符号
は側面方向を基準とした稜線の傾斜方向を意味する。液
晶表示パネルの解像度が低くてモアレを生じない場合や
モアレを無視しうる場合には、かかる稜線は側面方向に
平行なほど好ましい。
In the above case, the inclination angle θ2 with respect to the side surface direction
Is too large, the reflection via the optical path conversion slope A1 is deflected, and a large deviation occurs in the direction of the optical path conversion, which tends to deteriorate the display quality. Therefore, the inclination angle θ2 of the ridge line with respect to the side surface direction is ± 30. It is preferable that the temperature be within ± 25 degrees, particularly within ± 25 degrees, and within ± 20 degrees. The sign of ± means the inclination direction of the ridgeline with respect to the side direction. In the case where the resolution of the liquid crystal display panel is low and moire is not generated or when moire is negligible, it is preferable that the ridge line is parallel to the side direction.

【0034】光路変換手段を有する透明フィルムは、例
えば熱可塑性樹脂を所定の形状を形成しうる金型に加熱
下に押付て形状を転写する方法、加熱溶融させた熱可塑
性樹脂あるいは熱や溶媒を介して流動化させた樹脂を所
定の形状に成形しうる金型に充填する方法、熱や紫外
線、あるいは電子性等の放射線で重合処理しうる液状樹
脂を所定の形状を形成しうる型に充填ないし流延して重
合処理する方法などの適宜な方法で形成することができ
る。
The transparent film having an optical path changing means can be prepared by, for example, pressing a thermoplastic resin into a mold capable of forming a predetermined shape under heating to transfer the shape, or heating and melting the thermoplastic resin or heat or solvent. A method of filling a resin that has been fluidized through a mold into a mold that can be formed into a predetermined shape, and filling a mold that can form a predetermined shape with a liquid resin that can be polymerized with heat, ultraviolet light, or radiation such as electronicity It can be formed by an appropriate method such as a method of casting and performing a polymerization treatment.

【0035】光路変換手段を有する透明フィルムの好ま
しい形成方法は例えば、透明フィルムの片面に紫外線な
いし放射線等で重合処理しうる硬化型樹脂を塗工し、そ
の塗工層を金型の所定凹凸構造の形成面に密着させて紫
外線や放射線等の照射により硬化処理した後、金型より
その透明フィルムを剥離回収する方法の如く、所定の凹
凸構造を有する金型を介して透明フィルムの片面に光路
変換斜面を具備する凹凸の繰り返し構造を付加する方法
である。
A preferred method of forming a transparent film having an optical path changing means is, for example, to apply a curable resin which can be polymerized by ultraviolet rays or radiation to one surface of the transparent film, and apply the coating layer to a predetermined uneven structure of a mold. After being cured by irradiation with ultraviolet light or radiation or the like in close contact with the formation surface of the transparent film, an optical path is formed on one side of the transparent film through a mold having a predetermined uneven structure as in a method of peeling and collecting the transparent film from the mold. This is a method of adding a repeating structure of irregularities having a conversion slope.

【0036】前記の如く光路変換手段を有する透明フィ
ルムは、光路変換手段を有する状態に一体成形して得る
こともできるし、透明フィルムの片面に光路変換手段を
付加する方法にても得ることができる。後者の場合、付
加する光路変換手段と透明フィルムの屈折率差が大きい
と界面反射等にて出射効率が大きく低下する場合があ
り、それを防止する点より透明フィルムと付加する光路
変換手段との屈折率差を可及的に小さくすること、就中
0.10以内、特に0.05以内とすることが好まし
い。またその場合、透明フィルムよりも付加する光路変
換手段の屈折率を高くすることが出射効率の点より好ま
しい。
As described above, the transparent film having the light path changing means can be obtained by integrally molding with the light path changing means, or can be obtained by a method in which the light path changing means is added to one side of the transparent film. it can. In the latter case, the output efficiency may be greatly reduced due to interface reflection or the like if the refractive index difference between the optical path conversion means to be added and the transparent film is large, and the transparent film and the optical path conversion means to be added from the point of preventing the emission efficiency. It is preferable that the difference in the refractive index be as small as possible, particularly within 0.10, particularly within 0.05. In that case, it is preferable to increase the refractive index of the optical path changing means to be added, as compared with the transparent film, from the viewpoint of emission efficiency.

【0037】なお透明フィルムや光路変換手段は、照明
装置等を介して入射させる光の波長域に応じそれに透明
性を示す適宜な材料にて形成しうる。ちなみに可視光域
では、例えばアクリル系樹脂やポリカーボネート系樹
脂、セルロース系樹脂やノルボルネン系樹脂等で代表さ
れる透明樹脂、熱や紫外線、電子線等の放射線で重合処
理しうる硬化型樹脂などがあげられる。
The transparent film and the optical path changing means can be formed of an appropriate material exhibiting transparency in accordance with the wavelength range of light incident via an illumination device or the like. Incidentally, in the visible light region, for example, acrylic resins, polycarbonate resins, transparent resins represented by cellulose resins, norbornene resins, and the like, curable resins that can be polymerized with heat, ultraviolet rays, radiation such as electron beams, and the like. Can be

【0038】就中、複屈折を示さないか、複屈折の小さ
い材料を用いてキャスティング方式などにより位相差の
小さい透明フィルムとすることが好ましい。また接着処
理にて透明フィルムに内部応力が発生する場合があり、
かかる内部応力による位相差の発生を防止する点よりは
光弾性係数の小さい材料を用いることが好ましい。透明
フィルムの厚さは、適宜に決定しうるが一般には薄型化
などの点より300μm以下、就中5〜200μm、特に
10〜100μmとされる。なお透明フィルムは、図1
(h)の例の如く同種又は異種の樹脂からなる2層以上
の重畳体11A、Bとして形成されていてもよく、1種
の材料による一体的単層物として形成されている必要は
ない。
In particular, it is preferable to use a material having no birefringence or a material having a small birefringence to form a transparent film having a small phase difference by a casting method or the like. In addition, internal stress may be generated in the transparent film by the bonding process,
It is preferable to use a material having a small photoelastic coefficient from the viewpoint of preventing the occurrence of a phase difference due to such internal stress. The thickness of the transparent film can be appropriately determined, but is generally 300 μm or less, especially 5 to 200 μm, particularly 10 to 100 μm from the viewpoint of thinning. The transparent film is shown in FIG.
As in the example of (h), it may be formed as two or more layers of superimposed bodies 11A and 11B made of the same or different kinds of resins, and need not be formed as an integrated single layer of one kind of material.

【0039】光学フィルムは、図1の例の如く透明フィ
ルム11の凹凸の繰り返し構造13を有しない面に粘着
層12を設けたものとされる。かかる粘着層12は、液
晶表示パネル等の支持部材に光学フィルムを接着するた
めのものでありその粘着層を介した接着処理は、光路変
換手段Aの光路変換斜面A1を介した反射効率、ひいて
は側面方向よりの入射光の有効利用による輝度向上など
を目的とする。粘着層の形成には、ゴム系やアクリル
系、ビニルアルキルエーテル系やシリコーン系、ポリエ
ステル系やポリウレタン系、ポリエーテル系やポリアミ
ド系、スチレン系などの適宜なポリマーをベースポリマ
ーとする粘着剤などを用いうる。就中アクリル酸ないし
メタクリル酸のアルキルエステルを主体とするポリマー
をベースポリマーとするアクリル系粘着剤の如く透明性
や耐候性や耐熱性などに優れるものが好ましく用いられ
る。
As shown in the example of FIG. 1, the optical film has an adhesive layer 12 provided on a surface of the transparent film 11 which does not have the repeating structure 13 of irregularities. The adhesive layer 12 is for bonding an optical film to a support member such as a liquid crystal display panel, and the bonding treatment via the adhesive layer is performed by the reflection efficiency through the optical path conversion slope A1 of the optical path conversion means A, and hence the reflection efficiency. The purpose is to improve the luminance by effectively utilizing the incident light from the side direction. The adhesive layer is formed by using an adhesive having a base polymer of a suitable polymer such as a rubber, an acrylic, a vinyl alkyl ether or a silicone, a polyester or a polyurethane, a polyether, a polyamide, or a styrene. Can be used. Among them, those excellent in transparency, weather resistance, heat resistance and the like, such as an acrylic pressure-sensitive adhesive having a polymer mainly composed of an alkyl ester of acrylic acid or methacrylic acid as a base polymer, are preferably used.

【0040】前記において本発明では図9に矢印で例示
した如く屈折率差による界面反射で光が光学フィルム内
に閉じ込められて出射できなくなることを防止し、出射
できずに損失となる光量を抑制する点より、透明フィル
ムとの屈折率差が0.1以内、就中0.08以内、特に
0.05以内の粘着層が用いられる。また粘着層は、そ
れに例えばシリカやアルミナ、チタニアやジルコニア、
酸化錫や酸化インジウム、酸化カドミウムや酸化アンチ
モン等の導電性のこともある無機系粒子や、架橋又は未
架橋ポリマー等の有機系粒子などの適宜な透明粒子を1
種又は2種以上含有させて光拡散型のものとすることも
できる。なお粘着層に対してはそれを実用に供するまで
の間、異物の混入等の防止を目的に図1の例の如く剥離
シート14を仮着してカバーしておくことが好ましい。
さらに前記と同様の理由で粘着層を接着する前記支持部
材との屈折率差も0.15以内、就中0.10以内、特
に0.05以内であることが好ましい。
In the present invention, as shown by arrows in FIG. 9, the present invention prevents light from being confined in the optical film due to interfacial reflection due to a difference in refractive index and cannot be emitted, and the amount of light that cannot be emitted and is lost is suppressed. For this reason, an adhesive layer having a difference in refractive index from the transparent film within 0.1, particularly within 0.08, particularly within 0.05 is used. The adhesive layer is, for example, silica or alumina, titania or zirconia,
Appropriate transparent particles such as inorganic particles that may be conductive, such as tin oxide, indium oxide, cadmium oxide, and antimony oxide, and organic particles, such as a crosslinked or uncrosslinked polymer.
A light-diffusing type may be used by containing two or more species. It is preferable to temporarily cover the pressure-sensitive adhesive layer with a release sheet 14 as shown in the example of FIG. 1 for the purpose of preventing entry of foreign matter and the like until the pressure-sensitive adhesive layer is put to practical use.
Further, for the same reason as described above, the difference in the refractive index from the support member to which the adhesive layer is adhered is preferably within 0.15, more preferably within 0.10, particularly preferably within 0.05.

【0041】光学フィルムは、透明フィルムの光路変換
斜面を形成した面にその光路変換斜面の保護を目的とし
たシート等の基材を密着配置したものであってもよい。
また光学フィルムは、図7、8に例示した如くその透明
フィルム11の光路変換斜面を形成した面に反射層4を
密着配置したものであってもよい。かかる反射層は、透
明フィルムの光路変換斜面を形成した面よりの漏れ光を
反射反転させて再入射させることによる光利用効率の向
上や反射・透過両用型の液晶表示装置の形成を目的とす
る。
The optical film may be a transparent film in which a substrate such as a sheet for protecting the optical path changing slope is closely attached to the surface on which the optical path changing slope is formed.
The optical film may be one in which the reflective layer 4 is disposed in close contact with the surface of the transparent film 11 on which the optical path changing slope is formed, as illustrated in FIGS. Such a reflective layer is intended to improve the light use efficiency by reversing and re-injecting the light leaking from the surface of the transparent film on which the optical path conversion slope is formed, and to form a liquid crystal display device for both reflection and transmission. .

【0042】反射層は、従来に準じた白色シートなどの
適宜なものにて形成することができる。就中、例えばア
ルミニウムや銀、金や銅やクロム等の高反射率の金属な
いしその合金の粉末をバインダ樹脂中に含有させた塗工
層、前記の金属等や誘電体多層膜を真空蒸着方式やスパ
ッタリング方式等の適宜な薄膜形成方式で付設してなる
層、前記の塗工層や付設層をフィルム等からなる基材で
支持した反射シート、金属箔などからなる高反射率の反
射層が好ましく、反射・透過両用型の液晶表示装置を形
成する場合に特に好ましい。
The reflection layer can be formed of an appropriate material such as a conventional white sheet. Above all, for example, a coating layer containing a powder of a high reflectivity metal such as aluminum, silver, gold, copper, chromium, or an alloy thereof in a binder resin, the above-mentioned metal, etc. and a dielectric multilayer film are formed by a vacuum deposition method. A layer formed by an appropriate thin film forming method such as a sputtering method or the like, a reflective sheet having the above-mentioned coating layer or the attached layer supported by a substrate made of a film or the like, a reflective layer having a high reflectivity made of a metal foil or the like. It is particularly preferable when a reflective / transmissive liquid crystal display device is formed.

【0043】形成する反射層は、光拡散機能を示すもの
であってもよい。拡散反射面にて反射光を拡散させるこ
とにより正面方向への指向性の向上を図ることができ、
また粗面化による場合には密着によるニュートンリング
の発生を防止して視認性を向上させることができる。
The reflection layer to be formed may have a light diffusion function. By diffusing the reflected light on the diffuse reflection surface, directivity in the front direction can be improved,
In the case of roughening, the occurrence of Newton rings due to close contact can be prevented, and visibility can be improved.

【0044】光拡散型の反射層の形成は、例えばサンド
ブラストやマット処理等による表面の粗面化方式や、粒
子添加方式などの適宜な方式で表面を微細凹凸構造とし
たフィルム基材等にその微細凹凸構造を反映させた反射
層を設ける方式などにより行うことができる。その表面
の微細凹凸構造を反映させた微細凹凸構造の反射層の形
成は、例えば真空蒸着方式やイオンプレーティング方
式、スパッタリング方式等の蒸着方式やメッキ方式など
の適宜な方式で金属をフィルム基材等の表面に付設する
方法などにより行うことができる。
The light-diffusing reflection layer is formed on a film substrate or the like having a fine uneven structure on the surface by an appropriate method such as a surface roughening method by sandblasting or matting, or a particle addition method. It can be performed by a method of providing a reflection layer reflecting the fine uneven structure. The formation of the reflective layer having a fine uneven structure reflecting the fine uneven structure on the surface is performed by, for example, applying a metal to a film base by an appropriate method such as an evaporation method such as a vacuum evaporation method, an ion plating method, or a sputtering method, or a plating method. It can be carried out by a method of attaching to the surface of the like.

【0045】本発明による光学フィルムは、照明装置等
による側面方向からの入射光ないしその伝送光を光路変
換斜面を介し視認に有利な垂直性に優れる方向に光路変
換して光の利用効率よく出射し、また外光に対しても良
好な透過性を示し、図7,8に例示した如く1又は2以
上の側面に照明装置5、51を配置した液晶表示パネル
Pの視認背面側(バック)や視認側(フロン)に配置し
て明るくて見やすい透過型や低消費電力性に優れる反射
・透過両用型の液晶表示装置などの種々の装置を形成す
ることができる。
The optical film according to the present invention converts the incident light or the transmitted light from the side direction of the lighting device or the like through the optical path changing slope into an optical path which is advantageous for visual recognition and emits the light with high light utilization efficiency. In addition, it shows good transparency to external light, and as shown in FIGS. 7 and 8, the viewing back side (back) of the liquid crystal display panel P in which the lighting devices 5 and 51 are arranged on one or more side surfaces. Various devices such as a transmissive liquid crystal display device which is bright and easy to see by arranging it on the viewing side (fluorocarbon) and a reflective / transmissive liquid crystal display device excellent in low power consumption can be formed.

【0046】ちなみに前記した液晶表示装置によれば、
照明装置を介した側面方向よりの入射光の殆どが液晶表
示パネルにおける各層の厚さ比に基づいてその上下のセ
ル基板21、28を介し屈折の法則による反射を介して
後方に伝送され、パネル表面よりの出射(漏れ)が防止
されつつ光学フィルム1の光路変換斜面A1に入射した
光が効率よく視認方向、特に正面方向に光路変換され、
他の光は全反射にて後方に伝送されて後方における光路
変換斜面A1に入射し効率よく視認方向に光路変換され
てパネル表示面の全面において明るさに優れる表示を達
成することができる。
By the way, according to the above-mentioned liquid crystal display device,
Most of the incident light from the side direction through the lighting device is transmitted rearward via the upper and lower cell substrates 21 and 28 via reflection based on the law of refraction based on the thickness ratio of each layer in the liquid crystal display panel, The light incident on the optical path changing slope A1 of the optical film 1 is efficiently converted in the viewing direction, particularly in the front direction, while emission (leakage) from the surface is prevented,
Other light is transmitted backward by total reflection, enters the optical path conversion slope A1 at the rear, is efficiently optical path-converted in the viewing direction, and can achieve a display with excellent brightness over the entire panel display surface.

【0047】前記において液晶表示パネルPとしては、
少なくとも液晶セルを有する適宜な透過型のもの、すな
わち図7、8の例の如くセル基板21、28の間にシー
ル材24を介し液晶25を封入してなる液晶セルを少な
くとも有して、光学フィルム1を配置した側からの入射
光を液晶等による制御を介し表示光として他方側より出
射するものを用いることができ、その種類について特に
限定はない。
In the above description, as the liquid crystal display panel P,
An optical system having at least a suitable transmission type having at least a liquid crystal cell, that is, a liquid crystal cell in which a liquid crystal 25 is sealed between cell substrates 21 and 28 via a sealing material 24 as shown in FIGS. It is possible to use one that emits incident light from the side on which the film 1 is disposed as display light from the other side through control by a liquid crystal or the like, and the type is not particularly limited.

【0048】ちなみに前記した液晶セルの具体例として
は、TN液晶セルやSTN液晶セル、IPS液晶セルや
HAN液晶セル、OCB液晶セルやVA液晶セルの如き
ツイスト系や非ツイスト系、ゲストホスト系や強誘電性
液晶系の液晶セル、あるいは光拡散型の液晶セルなどが
あげられ、液晶の駆動方式も例えばアクティブマトリク
ス方式やパッシブマトリクス方式などの適宜なものであ
ってよい。その液晶の駆動は通例、図7、8に例示の如
く一対のセル基板21、28の内側に設けた透明電極2
2、27を介して行われる。
Incidentally, specific examples of the above-mentioned liquid crystal cell include twisted and non-twisted systems such as TN liquid crystal cell, STN liquid crystal cell, IPS liquid crystal cell, HAN liquid crystal cell, OCB liquid crystal cell and VA liquid crystal cell, guest host system, and the like. A liquid crystal cell of a ferroelectric liquid crystal system, a liquid crystal cell of a light diffusion type, or the like can be given, and a driving method of the liquid crystal may be an appropriate method such as an active matrix method or a passive matrix method. The driving of the liquid crystal is usually performed by a transparent electrode 2 provided inside a pair of cell substrates 21 and 28 as illustrated in FIGS.
Via steps 2 and 27.

【0049】セル基板については、ガラスや樹脂などか
ら適宜な透明基板を用いることができ、就中、表示品位
等の点より光学的に等方性の材料からなるものが好まし
い。また輝度や表示品位の向上等の点より青ガラス板に
対する無アルカリガラス板の如く無色透明性に優れるも
のが好ましく、さらに軽量性等の点よりは樹脂基板が好
ましい。セル基板の厚さについては、特に限定はなく液
晶の封入強度などに応じて適宜に決定しうる。一般には
光伝送効率と薄型軽量性のバランスなどの点より10μ
m〜5mm、就中50μm〜2mm、特に100μm〜1mmの
厚さとされる。
As the cell substrate, an appropriate transparent substrate made of glass, resin, or the like can be used. In particular, a substrate made of an optically isotropic material is preferable from the viewpoint of display quality and the like. Further, a material having excellent colorless transparency such as a non-alkali glass plate with respect to a blue glass plate is preferable in terms of improvement of luminance and display quality, and a resin substrate is more preferable in terms of lightness and the like. The thickness of the cell substrate is not particularly limited, and can be appropriately determined according to the sealing strength of the liquid crystal and the like. Generally, it is 10μ from the point of balance between light transmission efficiency and thin and light weight.
m to 5 mm, preferably 50 μm to 2 mm, especially 100 μm to 1 mm.

【0050】液晶セルの形成に際しては必要に応じ、液
晶を配向させるためのラビング処理膜等からなる配向膜
やカラー表示のためのカラーフィルタなどの適宜な機能
層の1層又は2層以上を設けることができる。なお図例
の如く、配向膜23、26は通常、透明電極22、27
の上に形成され、また図外のカラーフィルタは通常、セ
ル基板21、28の一方における基板と透明電極の間に
設けられる。
In forming the liquid crystal cell, if necessary, one or two or more appropriate functional layers such as an alignment film such as a rubbing film for aligning liquid crystal and a color filter for color display are provided. be able to. As shown in the figure, the alignment films 23 and 26 usually have transparent electrodes 22 and 27.
And a color filter (not shown) is usually provided between one of the cell substrates 21 and 28 and the transparent electrode.

【0051】液晶表示パネルは、図7、8の例の如く液
晶セルに偏光板31、34や位相差板32、33、光拡
散層等の適宜な光学層の1層又は2層以上を付加したも
のであってもよい。偏光板は直線偏光を利用した表示の
達成を目的とし、位相差板は液晶の複屈折性による位相
差の補償等による表示品位の向上などを目的とする。ま
た光拡散層は、表示光の拡散による表示範囲の拡大や光
学フィルムの斜面を介した輝線状発光の平準化による輝
度の均一化、液晶表示パネル内の伝送光の拡散による光
学フィルムへの入射光量の増大などを目的とする。
In the liquid crystal display panel, as shown in FIGS. 7 and 8, one or more suitable optical layers such as polarizing plates 31, 34, retardation plates 32, 33, and light diffusing layers are added to the liquid crystal cell. May be done. A polarizing plate aims at achieving display using linearly polarized light, and a retardation plate aims at improving display quality by compensating for a phase difference due to birefringence of liquid crystal and the like. In addition, the light diffusion layer expands the display range by diffusing display light, equalizes brightness by leveling bright line-like light emission through the slope of the optical film, and enters the optical film by diffusing transmission light in the liquid crystal display panel. The purpose is to increase the amount of light.

【0052】前記の偏光板としては、適宜なものを用い
ることができ特に限定はない。高度な直線偏光の入射に
よる良好なコントラスト比の表示を得る点などよりは、
例えばポリビニルアルコール系フィルムや部分ホルマー
ル化ポリビニルアルコール系フィルム、エチレン・酢酸
ビニル共重合体系部分ケン化フィルムの如き親水性高分
子フィルムにヨウ素や二色性染料等の二色性物質を吸着
させて延伸したものからなる吸収型偏光フィルムやその
片側又は両側に透明保護層を設けたものなどの如く偏光
度の高いものが好ましく用いうる。
As the above-mentioned polarizing plate, an appropriate polarizing plate can be used, and there is no particular limitation. Rather than obtaining a display with a good contrast ratio due to the incidence of highly linearly polarized light,
For example, a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, an ethylene-vinyl acetate copolymer-based partially saponified film is adsorbed with a dichroic substance such as iodine or a dichroic dye and stretched. A high-polarization film such as an absorption-type polarizing film made of such a film or a film provided with a transparent protective layer on one or both sides thereof can be preferably used.

【0053】前記透明保護層の形成には、透明性や機械
的強度、熱安定性や水分遮蔽性などに優れるものが好ま
しく用いられ、その例としてはアセテート系樹脂やポリ
エステル系樹脂、ポリエーテルスルホン系樹脂やポリカ
ーボネート系樹脂、ポリアミド系樹脂やポリイミド系樹
脂、ポリオレフィン系樹脂やアクリル系樹脂、ポリエー
テル系樹脂やポリ塩化ビニル、スチレン系樹脂やノルボ
ルネン系樹脂の如きポリマー、あるいはアクリル系やウ
レタン系、アクリルウレタン系やエポキシ系、シリコー
ン系等の熱硬化型ないし紫外線硬化型の樹脂などがあげ
られる。透明保護層は、フィルムとしたものの接着方式
やポリマー液等の塗布方式などにより付与することがで
きる。
For the formation of the transparent protective layer, those having excellent transparency, mechanical strength, heat stability and moisture shielding property are preferably used. Examples thereof include acetate resins, polyester resins, and polyether sulfone. Resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin or acrylic resin, polyether resin or polyvinyl chloride, polymer such as styrene resin or norbornene resin, or acrylic or urethane resin, Examples thereof include thermosetting or ultraviolet-curing resins such as acrylic urethane, epoxy, and silicone. The transparent protective layer can be provided by a bonding method of a film or a coating method of a polymer liquid or the like.

【0054】用いる偏光板、特に視認側の偏光板は、外
光の表面反射による視認阻害の防止を目的にノングレア
処理や反射防止処理を施したものであってもよい。ノン
グレア処理は、サンドブラスト方式やエンボス加工方式
等の粗面化方式、シリカ等の透明粒子の配合方式などの
種々の方式で表面を微細凹凸構造化することにより施す
ことができ、反射防止処理は、干渉性の蒸着膜を形成す
る方式などにて施すことができる。またノングレア処理
や反射防止処理は、前記の表面微細凹凸構造や干渉膜を
付与したフィルムの接着方式などにても施すことができ
る。なお偏光板は、図例の如く液晶セルの両側に設ける
こともできるし、液晶セルの片側にのみ設けることもで
きる。
The polarizing plate to be used, in particular, the polarizing plate on the viewing side, may have been subjected to a non-glare treatment or an anti-reflection treatment for the purpose of preventing the visibility from being inhibited by surface reflection of external light. Non-glare treatment can be performed by forming a fine uneven structure on the surface by various methods such as a roughening method such as a sand blast method or an embossing method, a method of blending transparent particles such as silica, etc. It can be applied by a method of forming a coherent vapor deposition film. The non-glare treatment and the anti-reflection treatment can also be applied to the above-mentioned method of bonding a film provided with a fine surface unevenness structure or an interference film. The polarizing plate can be provided on both sides of the liquid crystal cell as shown in the drawing, or can be provided only on one side of the liquid crystal cell.

【0055】一方、位相差板としても例えば前記の透明
保護層で例示したものなどの適宜なポリマーからなるフ
ィルムを一軸や二軸等の適宜な方式で延伸処理してなる
複屈折性フィルム、ネマチック系やディスコティック系
等の適宜な液晶ポリマーの配向フィルムやその配向層を
透明基材で支持したものなどの適宜なものを用いること
ができ、熱収縮性フィルムの加熱収縮力の作用下に厚さ
方向の屈折率を制御したものなどであってもよい。
On the other hand, a birefringent film obtained by stretching a film made of a suitable polymer such as those exemplified in the above-mentioned transparent protective layer by a suitable method such as uniaxial or biaxial is also used as a retardation plate. An appropriate film such as an alignment film of a liquid crystal polymer such as a liquid crystal polymer or a discotic one or a film in which the alignment layer is supported by a transparent substrate can be used. The refractive index in the vertical direction may be controlled.

【0056】図例の如く補償用の位相差板32、33は
通例、視認側又は/及び背面側の偏光板31、34と液
晶セルの間に必要に応じて配置され、その位相差板には
波長域などに応じて適宜なものを用いうる。また位相差
板は、位相差等の光学特性の制御を目的に2層以上を重
畳して用いることもできる。
As shown in the figure, the compensating retardation plates 32 and 33 are usually arranged as necessary between the polarizing plates 31 and 34 on the viewing side and / or the back side and the liquid crystal cell. Can be appropriately selected depending on the wavelength range or the like. Further, the retardation plate may be used by superposing two or more layers for the purpose of controlling optical characteristics such as retardation.

【0057】また光拡散層についても前記のノングレア
層に準じた表面微細凹凸構造を有する塗工層や拡散シー
トなどによる適宜な方式にて設けることができる。光拡
散層は、上記した透明粒子配合の粘着層12に準じて図
例の如く偏光板34と位相差板33の接着を兼ねる粘着
層35として配置することもでき、これにより薄型化を
図かることができる。光拡散層は、偏光板よりも外側
(視認側)に配置することもできるが、図例の如く偏光
板34よりも液晶セル側に配置することで外光が偏光板
で吸収された後に光拡散層に入射することとなり、光拡
散層を介した後方散乱による反射損を抑制できて有利で
ある。
The light diffusion layer can also be provided by an appropriate method using a coating layer or a diffusion sheet having a fine surface irregularity structure according to the non-glare layer. The light diffusion layer can be disposed as an adhesive layer 35 also serving as an adhesive between the polarizing plate 34 and the retardation plate 33 as shown in the figure according to the above-mentioned adhesive layer 12 containing transparent particles, thereby achieving a reduction in thickness. be able to. The light diffusion layer can be arranged on the outer side (viewing side) of the polarizing plate. However, by arranging the light diffusion layer on the liquid crystal cell side of the polarizing plate 34 as shown in the figure, light is absorbed after external light is absorbed by the polarizing plate. Since the light is incident on the diffusion layer, reflection loss due to back scattering through the light diffusion layer can be advantageously suppressed.

【0058】一方、液晶表示パネルの側面に配置する照
明装置は、液晶表示装置の照明光として利用する光を液
晶表示パネルの側面から入射させることを目的とする。
これによりパネルのバックやフロントに配置する光学フ
ィルムとの組合せにて液晶表示装置の薄型軽量化を図る
ことができる。照明装置としては適宜なものを用いるこ
とができ、例えば(冷,熱)陰極管等の線状光源、発光
ダイオード等の点光源やそれを線状や面状等に配列した
アレイ体、あるいは点光源と線状導光板を組合せて点光
源からの入射光を線状導光板を介し線状光源に変換する
ようにした照明装置などが好ましく用いうる。
On the other hand, the illumination device arranged on the side surface of the liquid crystal display panel aims to make light used as illumination light for the liquid crystal display device enter from the side surface of the liquid crystal display panel.
This makes it possible to reduce the thickness and weight of the liquid crystal display device in combination with an optical film disposed on the back or front of the panel. Any suitable lighting device can be used. For example, a linear light source such as a (cold or hot) cathode tube, a point light source such as a light-emitting diode, or an array in which the light sources are arranged linearly or in a plane, or a point light source An illumination device or the like in which a light source and a linear light guide plate are combined to convert incident light from a point light source into a linear light source via the linear light guide plate can be preferably used.

【0059】図7、8の例の如く照明装置5、51は、
液晶表示パネルPにおける1又は2以上の側面に配置す
ることができる。照明装置を2以上の側面に配置する場
合、その複数の側面は図8の例の如く対向する側面の組
合せであってもよいし、縦横に交差する側面の組合せで
あってもよく、それらを併用した3側面以上の組合せで
あってもよい。
As shown in the examples of FIGS.
It can be arranged on one or more side surfaces of the liquid crystal display panel P. When the lighting device is arranged on two or more side surfaces, the plurality of side surfaces may be a combination of opposing side surfaces as in the example of FIG. 8, or may be a combination of side surfaces that cross vertically and horizontally. A combination of three or more sides may be used.

【0060】照明装置は、その点灯による透過モードで
の視認を可能とするものであり、反射・透過両用型の液
晶表示装置の場合に外光による反射モードにて視認する
ときには点灯の必要がないので、その点灯・消灯を切り
替えうるものとされる。その切り替え方式には任意な方
式を採ることができ、従来方式のいずれも採ることがで
きる。なお照明装置は、発光色を切り替えうる異色発光
式のものであってもよく、また異種の照明装置を介して
異色発光させうるものとすることもできる。
The illuminating device enables visual recognition in the transmission mode by turning on the light. In the case of a reflective / transmission type liquid crystal display device, it is not necessary to turn on the light when viewing in the reflection mode by external light. Therefore, it can be switched between lighting and extinguishing. An arbitrary method can be adopted as the switching method, and any of the conventional methods can be adopted. Note that the illumination device may be of a different color emission type capable of switching the emission color, or may be of a different color emission type through different types of illumination devices.

【0061】図例の如く照明装置5、51に対しては、
必要に応じ発散光を液晶表示パネルPの側面に導くため
にそれを包囲するリフレクタ52などの適宜な補助手段
を配置した組合せ体とすることもできる。リフレクタと
しては、高反射率の金属薄膜を付設した樹脂シートや白
色シートや金属箔などの適宜な反射シートを用いうる。
リフレクタは、その端部を液晶表示パネルのセル基板等
の端部に接着する方式などにて照明装置の包囲を兼ねる
固定手段として利用することもできる。
As shown in the figure, for the lighting devices 5 and 51,
If necessary, a combination may be provided in which appropriate auxiliary means such as a reflector 52 surrounding the liquid crystal display panel P are arranged to guide the divergent light to the side surface. As the reflector, a suitable reflection sheet such as a resin sheet, a white sheet, or a metal foil provided with a high-reflectance metal thin film can be used.
The reflector can be used as a fixing means that also surrounds the lighting device by, for example, bonding the end to an end of a liquid crystal display panel such as a cell substrate.

【0062】なお本発明において上記した液晶表示装置
を形成する液晶セルや偏光板や位相差板等の光学素子な
いし部品は、全体的又は部分的に積層一体化されて固着
されていてもよいし、分離容易な状態に配置されていて
もよい。界面反射の抑制によるコントラストの低下防止
などの点よりは固着状態にあることが好ましい。その固
着密着処理には、粘着剤等の適宜な透明接着剤を用いる
ことができ、その透明接着層に上記した透明粒子等を含
有させて拡散機能を示す接着層などとすることもでき
る。
In the present invention, optical elements or components such as a liquid crystal cell, a polarizing plate, and a retardation plate forming the liquid crystal display device described above may be entirely or partially laminated and integrated and fixed. , May be arranged in an easily separable state. It is preferable to be in a fixed state rather than to prevent reduction in contrast by suppressing interface reflection. An appropriate transparent adhesive such as a pressure-sensitive adhesive can be used in the adhesion and adhesion treatment, and the transparent adhesive layer can be made to contain the above-mentioned transparent particles and the like to form an adhesive layer having a diffusion function.

【0063】また前記の光学素子ないし部品、特に視認
側のそれには例えばサリチル酸エステル系化合物やベン
ゾフェノン系化合物、ベンゾトリアゾール系化合物やシ
アノアクリレート系化合物、ニッケル錯塩系化合物等の
紫外線吸収剤で処理する方式などにより紫外線吸収能を
もたせることもできる。
The above-mentioned optical element or component, particularly on the visual side, is treated with an ultraviolet absorber such as a salicylate compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex salt compound, or the like. UV absorption ability can be imparted by such means.

【0064】[0064]

【実施例】実施例1 予め所定形状に加工した金型にアクリル系の紫外線硬化
型樹脂(東亞合成社製、アロニックスUV−3701)
をスポイトにて滴下充填し、その上に厚さ80μmのト
リアセチルセルロース(TAC)フィルム(表面ケン化
処理物)を静置しゴムローラで密着させて余分な樹脂と
気泡を除去しメタルハライドランプにて紫外線を照射し
て硬化処理した後、金型から剥離し所定寸法に裁断して
屈折率1.49のTACフィルムに屈折率1.533の
光路変換手段層を有する透明フィルムを得、その光路変
換手段を有しない面に屈折率1.47の粘着層を付設し
て光学フィルムを得た。
Example 1 Acrylic UV-curable resin (Aronix UV-3701 manufactured by Toagosei Co., Ltd.) was placed in a mold previously processed into a predetermined shape.
Is dropped and filled with a dropper, and an 80 μm-thick triacetylcellulose (TAC) film (surface-saponified product) is allowed to stand still thereon, and is adhered tightly with a rubber roller to remove excess resin and air bubbles, and then a metal halide lamp is used. After being cured by irradiating ultraviolet rays, it is peeled from the mold and cut into a predetermined size to obtain a transparent film having a TAC film having a refractive index of 1.49 and an optical path changing means layer having a refractive index of 1.533. An optical film was obtained by attaching an adhesive layer having a refractive index of 1.47 to the surface having no means.

【0065】なお前記の光学フィルムは、幅60mm、奥
行45mmであり、稜線が幅方向に平行でかつ連続したプ
リズム状凹部を210μmのピッチで有し(図1c)、
その光路変換斜面A1の傾斜角が42.5〜43度の範
囲で、緩斜面A3の傾斜角が1.8〜3.5度の範囲で
変化し、最寄り緩斜面の傾斜角変化が0.1度以内にあ
り、光路変換斜面のフィルム面に対する投影幅が10〜
16μm、緩斜面/光路変換斜面のフィルム面に対する
投影面積比が12倍以上のものからなる。
The above-mentioned optical film has a width of 60 mm and a depth of 45 mm, and has prism-shaped concave portions whose ridges are parallel and continuous in the width direction at a pitch of 210 μm (FIG. 1c).
The inclination angle of the light path conversion slope A1 changes in the range of 42.5 to 43 degrees, the inclination angle of the gentle slope A3 changes in the range of 1.8 to 3.5 degrees, and the inclination change of the nearest gentle slope changes to 0. Within 1 degree, the projection width of the optical path conversion slope to the film surface is 10 to 10.
The projection surface ratio of the gentle slope / optical path changing slope to the film surface is 12 μm or more.

【0066】次に市販のTN型液晶セルの視認側に樹脂
微粒子含有の粘着層をTACフィルムに設けてなる光拡
散フィルムを接着し、そのセルの表裏に偏光板を貼着し
てなるノーマリーホワイトの透過型TN液晶表示パネル
の側面に冷陰極管を配置して銀蒸着の反射シートからな
るリフレクタにて包囲し、その両端部をパネルの上下面
に接着して冷陰極管を固定した後その視認背面側の偏光
板に前記の光学フィルムをその粘着層を介し光路変換斜
面が冷陰極管と平行に対面するように接着し、光学フィ
ルムの背面に白色ポリエステルフィルムからなる反射板
を配置して透過型の液晶表示装置を得た。
Next, a light diffusion film comprising a TAC film having an adhesive layer containing resin fine particles adhered to the viewing side of a commercially available TN type liquid crystal cell, and a polarizing plate is adhered to the front and back of the cell. After disposing a cold cathode tube on the side surface of a white transmissive TN liquid crystal display panel and surrounding it with a reflector made of a silver-evaporated reflective sheet, bonding both ends to the upper and lower surfaces of the panel and fixing the cold cathode tube The optical film is adhered to the polarizing plate on the viewing back side via the adhesive layer such that the optical path conversion slope faces in parallel with the cold cathode tube, and a reflecting plate made of a white polyester film is arranged on the back of the optical film. Thus, a transmission type liquid crystal display device was obtained.

【0067】実施例2 光路変換斜面A1の傾斜角が約42度で、急斜面A2と
の頂角が70度、平坦面A4の面積が光路変換斜面と急
斜面のフィルム面に対する投影合計面積の10倍以上の
光路変換手段(図1b)を有する光学フィルムとしたほ
かは、それを用いて実施例1に準じ透過型の液晶表示装
置を得た。
Embodiment 2 The inclination angle of the light path changing slope A1 is about 42 degrees, the apex angle with the steep slope A2 is 70 degrees, and the area of the flat surface A4 is 10 times the total projected area of the light path changing slope and the steep slope on the film surface. A transmissive liquid crystal display device was obtained in accordance with Example 1 by using the optical film having the above-described optical path changing means (FIG. 1b).

【0068】実施例3 傾斜角が約42度でフィルム面に対する投影幅が10μ
mの光路変換斜面A1と傾斜角が約55度の急斜面A2
からなる長さ80μmの光路変換手段(図1b)をその
長さ方向が幅方向に略平行な状態で有し、かつその光路
変換手段を奥行方向の光入射側より遠離るほど徐々に高
密度に配置してなる光学フィルム(図6)としたほか
は、それを用いて実施例1に準じ透過型の液晶表示装置
を得た。なお平坦面A4の面積は、光路変換斜面と急斜
面のフィルム面に対する投影合計面積の10倍以上であ
る。
Example 3 An inclination angle of about 42 degrees and a projection width on a film surface of 10 μm
m of the optical path conversion slope A1 and a steep slope A2 having an inclination angle of about 55 degrees.
An optical path converting means (FIG. 1b) having a length of 80 μm and having a length direction substantially parallel to the width direction, and the optical path converting means gradually increasing in density with distance from the light incident side in the depth direction A transmissive liquid crystal display device was obtained in the same manner as in Example 1 except that the optical film (FIG. 6) was used. The area of the flat surface A4 is 10 times or more the total projected area of the optical path changing slope and the steep slope on the film surface.

【0069】実施例4 傾斜角が約42度でフィルム面に対する投影幅が10μ
mの光路変換斜面A1による二等辺三角形からなる長さ
80μmの光路変換手段(図1a)をその長さ方向が幅
方向に平行な状態で有し、かつその光路変換手段を奥行
方向の光入射側より中央部に向けて徐々に高密度となる
ようにランダムに配置してなる光学フィルム(図4)と
しそれを用いて対向する2側面に冷陰極管を配置したほ
かは、実施例1に準じ透過型の液晶表示装置を得た。な
お平坦面A4の面積は、2面の光路変換斜面の合計面積
の10倍以上である。
Example 4 An inclination angle of about 42 degrees and a projection width on a film surface of 10 μm
An optical path converting means (FIG. 1a) having a length of 80 μm and consisting of an isosceles triangle formed by an optical path converting slope A1 having a length of m is provided in a state where its length direction is parallel to the width direction, and the optical path converting means is provided with light incident in the depth direction. Example 1 was the same as Example 1 except that an optical film (FIG. 4) was randomly arranged so that the density gradually increased from the side toward the center, and the cold cathode tubes were arranged on two opposite sides using the optical film. A semi-transmissive liquid crystal display device was obtained. The area of the flat surface A4 is at least 10 times the total area of the two optical path changing slopes.

【0070】実施例5 傾斜角が約42度でフィルム面に対する投影幅が10μ
mの光路変換斜面A1を2面有する長さ80μmで断面略
四角形の溝からなる光路変換手段(図1e)をその長さ
方向が幅方向に略平行な状態で有し、かつその光路変換
手段を奥行方向の光入射側より中央部に向けて徐々に高
密度となるようにランダムに配置してなる光学フィルム
としそれを用いたほかは、実施例4に準じ2側面入射式
の透過型液晶表示装置を得た。なお平坦面A4の面積
は、光路変換手段による面積の10倍以上である。
Example 5 An inclination angle of about 42 degrees and a projection width on a film surface of 10 μm
optical path changing means (FIG. 1e) having a groove having a length of 80 μm and having a substantially rectangular cross section having two optical path changing slopes A1 having a length of approximately m and having a length direction substantially parallel to the width direction. Is an optical film that is randomly arranged so that the density gradually increases from the light incident side in the depth direction toward the center from the light incident side in the depth direction. A display device was obtained. Note that the area of the flat surface A4 is at least 10 times the area of the optical path conversion unit.

【0071】実施例6 光路変換手段を形成した面に銀蒸着膜からなる反射層を
設けた光学フィルムを用いて背面の反射板を省略したほ
かは実施例2に準じ反射・透過両用型の液晶表示装置を
得た。
Example 6 A reflective / transmissive liquid crystal according to Example 2, except that an optical film having a reflective layer made of a silver vapor-deposited film was provided on the surface on which the optical path changing means was formed, and the back reflector was omitted. A display device was obtained.

【0072】比較例1 光学フィルムに変えて、サンドブラスト加工による散乱
シートを用いたほかは実施例1に準じ透過型の液晶表示
装置(図10)を得た。なお散乱シートは、粗面を視認
背面側として配置した。
Comparative Example 1 A transmissive liquid crystal display device (FIG. 10) was obtained according to Example 1, except that a scattering sheet produced by sandblasting was used instead of the optical film. In addition, the scattering sheet was arrange | positioned with the rough surface as the visual back side.

【0073】比較例2 光路変換斜面の傾斜角が約30度で、急斜面との頂角が
70度、平坦部A4の面積が光路変換斜面と急斜面のフ
ィルム面に対する投影合計面積の10倍以上の光路変換
手段(図1b)を有する光学フィルムとしたほかは、そ
れを用いて実施例1に準じ透過型の液晶表示装置を得
た。
Comparative Example 2 The inclination angle of the optical path changing slope was about 30 degrees, the apex angle with the steep slope was 70 degrees, and the area of the flat portion A4 was 10 times or more the total projected area of the optical path changing slope and the steep slope on the film surface. A transmissive liquid crystal display device was obtained in accordance with Example 1, except that an optical film having an optical path changing means (FIG. 1b) was used.

【0074】比較例3 視認背面側にシボ状の粗面を有する厚さ1.2mmの導光
板の側面に冷陰極管を配置して銀蒸着の反射シートから
なるリフレクタにて包囲し、その両端部を導光板の上下
面に接着してそれを白色ポリエステルフィルムからなる
反射板の上に配置し、その上に光拡散板を介して市販の
ノーマリーホワイトの透過型TN液晶パネルを配置して
透過型の液晶表示装置を得た。
Comparative Example 3 A cold-cathode tube was placed on the side of a 1.2 mm thick light guide plate having a textured rough surface on the viewer's back side, and was surrounded by a reflector made of a silver-evaporated reflection sheet. The part is adhered to the upper and lower surfaces of the light guide plate, and it is arranged on a reflector made of a white polyester film, and a commercially available normally white transmissive TN liquid crystal panel is arranged thereon via a light diffusion plate. A transmissive liquid crystal display was obtained.

【0075】比較例4 散乱面に銀蒸着膜からなる反射層を設けた比較例1の散
乱フィルムを用いて背面の反射板を省略したほかは実施
例6に準じ反射・透過両用型の液晶表示装置を得た。
COMPARATIVE EXAMPLE 4 A reflective / transmissive liquid crystal display according to Example 6, except that the scattering film of Comparative Example 1 in which a reflective layer made of a silver vapor-deposited film was provided on the scattering surface was used and the back reflector was omitted. The device was obtained.

【0076】比較例5 光路変換手段を形成した面に銀蒸着膜からなる反射層を
設けた比較例2の光学フィルムを用いて背面の反射板を
省略したほかは実施例6に準じ反射・透過両用型の液晶
表示装置を得た。
COMPARATIVE EXAMPLE 5 Reflection / transmission according to Example 6, except that the back reflector was omitted using the optical film of Comparative Example 2 in which a reflective layer made of a silver vapor-deposited film was provided on the surface on which the optical path changing means was formed. A dual-use liquid crystal display device was obtained.

【0077】評価試験 実施例、比較例で得た透過型又は反射・透過両用型の液
晶表示装置について、液晶表示パネルに電圧を印加しな
い状態で冷陰極管を点灯させ透過モードによる装置中央
部での正面輝度を輝度計(トプコン社製、BM7)にて
調べた。またそれに準じ冷陰極管を消灯したリング状照
明による外光を15度の角度で入射させる反射モードに
おける白状態での正面輝度も調べた。その結果を次表に
示した。
Evaluation Test With regard to the transmissive or reflective / transmissive liquid crystal display devices obtained in the examples and comparative examples, the cold cathode tubes were turned on in the state where no voltage was applied to the liquid crystal display panel, and the central portion of the device was operated in the transmissive mode. Was examined with a luminance meter (BM7, manufactured by Topcon Corporation). Further, the front luminance in the white state in the reflection mode in which external light from the ring-shaped illumination with the cold-cathode tube turned off was incident at an angle of 15 degrees was also examined. The results are shown in the following table.

【0078】 [0078]

【0079】表より、実施例では透過モードにおいて比
較例1、2、4、5に比べて優れた正面輝度が達成され
ていることがわかる。これは比較例1、2、4、5では
透過モードにおいて光源とは反対の方向に光が出射され
て正面方向の輝度に乏しく表示に寄与しにくい出射光で
あったことによる。特に比較例1、4ではどの方位にお
いても出射光に乏しかった。
From the table, it can be seen that in the example, in the transmissive mode, superior front luminance was achieved as compared with the comparative examples 1, 2, 4, and 5. This is because in Comparative Examples 1, 2, 4, and 5, light was emitted in the direction opposite to the light source in the transmission mode, and the emitted light had poor brightness in the front direction and hardly contributed to display. In particular, in Comparative Examples 1 and 4, the emitted light was poor in any direction.

【0080】また実施例4、5では2灯式による輝度の
向上が顕著で、比較例3のサイドライト型導光板以上の
明るさが得られていることがわかる。なお比較例3のサ
イドライト型導光板による方式では、その導光板による
厚さ増が顕著に現れて、薄型化が困難であった。さらに
透過モードにおいて液晶表示パネルに電圧を印加した状
態での視認でも実施例では問題はなく良好な表示品位で
あった。また実施例2で光拡散フィルムを除去した状態
では、見やすさの点で光拡散フィルムがあるときよりも
劣るが、正面輝度の点では遜色はなかった。
Further, in Examples 4 and 5, the improvement in luminance by the two-lamp system is remarkable, and it can be seen that the brightness is higher than that of the sidelight type light guide plate of Comparative Example 3. In the method using the sidelight type light guide plate of Comparative Example 3, the thickness increase due to the light guide plate was remarkable, and it was difficult to reduce the thickness. Furthermore, in the transmission mode, there was no problem in visual recognition in a state where a voltage was applied to the liquid crystal display panel, and the display quality was good. Further, in the state where the light diffusion film was removed in Example 2, the visibility was inferior to the case where the light diffusion film was provided, but the front luminance was not inferior.

【0081】一方、反射モードにおいても液晶表示パネ
ルへの電圧印加状態において、実施例6及び比較例4、
5では像の乱れ等のない表示であったが、比較例4、5
では実施例6よりも暗かった。以上より実施例では透過
モードにおいて明るい表示が達成されており、また実施
例6の反射モードにおいても明るい表示が達成されてこ
れより本発明にて導光板による嵩高化、高重量化を回避
してフィルム方式による薄型軽量化を達成しつつ、表示
品位の良好な透過型や反射・透過両用型の液晶表示装置
を形成できることがわかる。
On the other hand, even in the reflection mode, when the voltage is applied to the liquid crystal display panel, Example 6 and Comparative Example 4,
In Example 5, the display was free from image distortion and the like.
Was darker than Example 6. As described above, in the embodiment, a bright display is achieved in the transmission mode, and also in the reflection mode of the sixth embodiment, a bright display is achieved. Thus, according to the present invention, bulkiness and weight increase by the light guide plate can be avoided. It can be seen that a transmissive or reflective / transmissive liquid crystal display device with good display quality can be formed while achieving a thin and light weight by the film method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光学フィルム例(光路変換斜面)の側面説明図FIG. 1 is an explanatory side view of an example of an optical film (optical path conversion slope).

【図2】光路変換斜面の平面説明図FIG. 2 is an explanatory plan view of an optical path changing slope;

【図3】他の光路変換斜面の平面説明図FIG. 3 is an explanatory plan view of another optical path changing slope;

【図4】更に他の光路変換斜面の平面説明図FIG. 4 is an explanatory plan view of still another optical path conversion slope;

【図5】他の光学フィルム例の側面説明図FIG. 5 is a side view of another optical film example.

【図6】更に他の光学フィルム例の側面説明図FIG. 6 is an explanatory side view of still another optical film example.

【図7】透過型(反射・透過両用型)液晶表示装置例の
説明断面図
FIG. 7 is an explanatory sectional view of an example of a transmissive (reflective / transmissive) liquid crystal display device.

【図8】他の透過型(反射・透過両用型)液晶表示装置
例の説明断面図
FIG. 8 is an explanatory sectional view of another example of a transmissive (reflective / transmissive) liquid crystal display device.

【図9】屈折率と光路の関係の説明図FIG. 9 is an explanatory diagram of a relationship between a refractive index and an optical path.

【図10】従来の透過型液晶表示装置例の説明断面図FIG. 10 is an explanatory sectional view of an example of a conventional transmission type liquid crystal display device.

【符号の説明】[Explanation of symbols]

1:光学フィルム 11:透明フィルム 12:粘着層 13:光路変換手段層 A:光路変換手段 A1:光路変換斜面 A3、4:平坦面 4:反射層 P:液晶表示パネル 5、51:照明装置 21、28:セル基板 25:液晶層 31、34:偏光板 32、33:位相差板 1: Optical film 11: Transparent film 12: Adhesive layer 13: Optical path conversion means layer A: Optical path conversion means A1: Optical path conversion slope A3, 4: Flat surface 4: Reflective layer P: Liquid crystal display panel 5, 51: Illumination device 21 , 28: cell substrate 25: liquid crystal layer 31, 34: polarizing plate 32, 33: retardation plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有吉 俊彦 大阪府茨木市下穂積1丁目1番2号日東電 工株式会社内 Fターム(参考) 2H038 AA55 BA01 2H042 CA12 CA17 2H091 FA14Z FA23Z FA32Z FB02 FC17 FD06 LA11 LA17 LA18 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshihiko Ariyoshi 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 2H038 AA55 BA01 2H042 CA12 CA17 2H091 FA14Z FA23Z FA32Z FB02 FC17 FD06 LA11 LA17 LA18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 透明フィルムの片面にその表面層との屈
折率差が0.1以内の粘着層を有し、かつ前記透明フィ
ルムの他面にフィルム面に対する傾斜角が35〜48度
で略一定方向を向く光路変換斜面を具備する凹凸の繰り
返し構造を有することを特徴とする光学フィルム。
1. A transparent film having an adhesive layer having a refractive index difference of 0.1 or less with respect to a surface layer on one surface of the transparent film, and having an inclination angle of 35 to 48 degrees with respect to the film surface on the other surface of the transparent film. An optical film having a repeating structure of irregularities having an optical path changing slope directed in a certain direction.
【請求項2】 請求項1において、略一定方向を向く光
路変換斜面がその一面を基準にそれとは反対方向を向く
面を含む状態で2面以上あり、粘着層が剥離シートでカ
バーされた光学フィルム。
2. The optical system according to claim 1, wherein there are two or more optical path changing slopes oriented in a substantially constant direction including a surface oriented in the opposite direction with respect to one surface, and the adhesive layer is covered with a release sheet. the film.
【請求項3】 請求項1又は2において、光路変換斜面
のフィルム面に対する傾斜角が38〜45度である光学
フィルム。
3. The optical film according to claim 1, wherein the inclination angle of the optical path changing slope with respect to the film surface is 38 to 45 degrees.
【請求項4】 請求項1〜3において、光路変換斜面が
断面略二等辺三角形又はそれ以外の断面略三角形の溝構
造に基づくものである光学フィルム。
4. The optical film according to claim 1, wherein the optical path changing slope is based on a groove structure having an approximately isosceles triangle in cross section or another triangle in cross section.
【請求項5】 請求項1〜4において、光路変換斜面が
断面略四角形又は断面略五角形の溝又は突起構造に基づ
くものである光学フィルム。
5. The optical film according to claim 1, wherein the optical path conversion slope is based on a groove or projection structure having a substantially rectangular cross section or a substantially pentagonal cross section.
【請求項6】 請求項1〜5において、フィルム面に対
する傾斜角が5度以下の平坦面をフィルム片面における
占有面積に基づいて当該傾斜角が35度以上の斜面の1
0倍以上有する光学フィルム。
6. A method according to claim 1, wherein the flat surface having an inclination angle of not more than 5 degrees with respect to the film surface is one of the inclined surfaces having an inclination angle of not less than 35 degrees based on the occupied area on one side of the film.
Optical film having 0 times or more.
【請求項7】 請求項1〜4又は6において、光路変換
斜面を具備する凹凸構造がフィルム面に対する傾斜角3
8〜45度の光路変換斜面と当該傾斜角が5度以下で幅
が光路変換斜面の10倍以上の平坦面からなり、かつフ
ィルムの一端から他端にわたる断面略三角形の連続溝に
基づくものである光学フィルム。
7. The method according to claim 1, wherein the uneven structure having the optical path changing slope has an inclination angle of 3 with respect to the film surface.
It is based on an optical path changing slope of 8 to 45 degrees, a flat surface having an inclination angle of 5 degrees or less and a flat surface having a width of 10 times or more the optical path changing slope, and a substantially triangular continuous groove extending from one end to the other end of the film. Some optical films.
【請求項8】 請求項1〜6において、光路変換斜面を
具備する凹凸構造が断面略三〜五の多角形の不連続な溝
に基づき、その不連続溝の長さが深さの5倍以上で、光
路変換斜面がフィルム面に対する傾斜角38〜45度で
溝の長さ方向に形成されており、フィルム片面に占める
当該不連続溝部分の面積が10%以下である光学フィル
ム。
8. The uneven structure according to claim 1, wherein the concave-convex structure having the optical path changing slope is based on a discontinuous groove having a polygonal cross section of approximately three to five, and the length of the discontinuous groove is five times the depth. As described above, the optical film in which the optical path changing slope is formed in the groove length direction at an inclination angle of 38 to 45 degrees with respect to the film surface, and the area of the discontinuous groove portion occupying one surface of the film is 10% or less.
【請求項9】 請求項1〜8において、光路変換斜面を
具備する凹凸構造を形成した面に反射層を密着配置して
なる光学フィルム。
9. The optical film according to claim 1, wherein a reflection layer is closely attached to a surface having an uneven structure having an optical path changing slope.
【請求項10】 請求項1〜9において、光路変換斜面
の稜線が透明フィルムの一辺に対して平行な又は±30
度以内で傾斜する光学フィルム。
10. The method according to claim 1, wherein the ridge line of the optical path changing slope is parallel to one side of the transparent film or ± 30.
An optical film that tilts within a degree.
【請求項11】 請求項1〜10において、粘着層が光
拡散型のものである光学フィルム。
11. The optical film according to claim 1, wherein the adhesive layer is a light diffusion type.
JP2000004241A 2000-01-13 2000-01-13 Optical film Expired - Fee Related JP4548628B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000004241A JP4548628B2 (en) 2000-01-13 2000-01-13 Optical film
KR1020010001874A KR100769779B1 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
TW090100717A TW526348B (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
EP04003308A EP1420272A3 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
EP04003309A EP1420273B1 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
EP01100736A EP1143270B1 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
US09/758,165 US6747801B2 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
US10/735,209 US7227685B2 (en) 2000-01-13 2003-12-15 Optical film and liquid-crystal display device
US10/734,224 US6917473B2 (en) 2000-01-13 2003-12-15 Optical film and liquid-crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004241A JP4548628B2 (en) 2000-01-13 2000-01-13 Optical film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010011646A Division JP2010122707A (en) 2010-01-22 2010-01-22 Optical film

Publications (2)

Publication Number Publication Date
JP2001194517A true JP2001194517A (en) 2001-07-19
JP4548628B2 JP4548628B2 (en) 2010-09-22

Family

ID=18533049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004241A Expired - Fee Related JP4548628B2 (en) 2000-01-13 2000-01-13 Optical film

Country Status (1)

Country Link
JP (1) JP4548628B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030945B2 (en) 2001-08-22 2006-04-18 Nitto Denko Corporation Liquid-crystal display device
JP2009282492A (en) * 2008-05-22 2009-12-03 Bonkuu Ho Diffusion member for display
JP2010507103A (en) * 2006-10-06 2010-03-04 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド System and method for reducing visual artifacts in a display
US7736045B2 (en) 2001-10-04 2010-06-15 Mitsubishi Rayon Co., Ltd. Area light source and lightguide used therefore
CN105929476A (en) * 2015-02-27 2016-09-07 三星Sdi株式会社 Polarizing Plate And Liquid Crystal Display Comprising The Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509537A (en) * 1995-09-22 1998-09-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flat panel image display device
JP2000009937A (en) * 1998-06-25 2000-01-14 Nitto Denko Corp Optical member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269489A (en) * 1996-02-02 1997-10-14 Hitachi Ltd Manufacture of liquid crystal display device and light transmission plate for rear illuminating part
JPH11352900A (en) * 1998-04-06 1999-12-24 Casio Comput Co Ltd Display device
JP3507719B2 (en) * 1998-02-17 2004-03-15 大日本印刷株式会社 Anti-glare film, polarizing element and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509537A (en) * 1995-09-22 1998-09-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flat panel image display device
JP2000009937A (en) * 1998-06-25 2000-01-14 Nitto Denko Corp Optical member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030945B2 (en) 2001-08-22 2006-04-18 Nitto Denko Corporation Liquid-crystal display device
US7736045B2 (en) 2001-10-04 2010-06-15 Mitsubishi Rayon Co., Ltd. Area light source and lightguide used therefore
JP2010507103A (en) * 2006-10-06 2010-03-04 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド System and method for reducing visual artifacts in a display
JP2009282492A (en) * 2008-05-22 2009-12-03 Bonkuu Ho Diffusion member for display
CN105929476A (en) * 2015-02-27 2016-09-07 三星Sdi株式会社 Polarizing Plate And Liquid Crystal Display Comprising The Same
US10775539B2 (en) 2015-02-27 2020-09-15 Samsung Sdi Co., Ltd. Polarizing plate and liquid crystal display comprising the same
CN105929476B (en) * 2015-02-27 2021-12-07 三星Sdi株式会社 Polarizing plate and liquid crystal display including the same
US11988811B2 (en) 2015-02-27 2024-05-21 Samsung Sdi Co., Ltd. Polarizing plate and liquid crystal display comprising the same

Also Published As

Publication number Publication date
JP4548628B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4609962B2 (en) Optical film
JP4439084B2 (en) Liquid crystal display
JP4442836B2 (en) Optical film
KR100769779B1 (en) Optical film and liquid-crystal display device
JP4197572B2 (en) Reflective liquid crystal display
JP2002148615A (en) Optical film and reflection type liquid crystal display device
JP2001174815A (en) Liquid crystal display device
JP4144829B2 (en) Reflective and transmissive liquid crystal display device
KR100681103B1 (en) Optical path changing polarizer
JP2001228315A (en) Reflecting plate and liquid crystal display device
JP2003066445A (en) Liquid crystal display device
JP2002006143A (en) Light guide plate, surface light source device and reflective liquid crystal display device
JP4548628B2 (en) Optical film
JP2001194529A (en) Optical path conversion polarizing plate
JP2003131227A (en) Liquid crystal display device
JP4462517B2 (en) Optical film and liquid crystal display device
JP2010122707A (en) Optical film
JP2004258358A (en) Reflective liquid crystal display device
JP4845920B2 (en) Reflective and transmissive liquid crystal display device
JP4462514B2 (en) Optical film and liquid crystal display device
JP4978918B2 (en) Liquid crystal display
JP4916054B2 (en) Transmission type liquid crystal display device
JP2001350016A (en) Polarizing plate for conversion of optical path
JP2003066444A (en) Liquid crystal display device
JP2003121841A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160716

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees