JP2003066445A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2003066445A
JP2003066445A JP2001251284A JP2001251284A JP2003066445A JP 2003066445 A JP2003066445 A JP 2003066445A JP 2001251284 A JP2001251284 A JP 2001251284A JP 2001251284 A JP2001251284 A JP 2001251284A JP 2003066445 A JP2003066445 A JP 2003066445A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
crystal display
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001251284A
Other languages
Japanese (ja)
Other versions
JP4814452B2 (en
Inventor
Seiji Umemoto
清司 梅本
Yuuki Nakano
勇樹 中野
Riyouji Kinoshita
亮児 木下
Ichiro Amino
一郎 網野
Toshihiko Ariyoshi
俊彦 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2001251284A priority Critical patent/JP4814452B2/en
Priority to US10/225,532 priority patent/US7030945B2/en
Publication of JP2003066445A publication Critical patent/JP2003066445A/en
Application granted granted Critical
Publication of JP4814452B2 publication Critical patent/JP4814452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a self-illuminative and outside light-illuminative (dually illuminative) liquid crystal display device provided with a translucent and reflective layer, which is made so thin and lightweight that it is difficult to be achieved in the case of the liquid crystal display having a side light type light guide plate and has excellent display quality. SOLUTION: This liquid crystal display device has a liquid crystal display panel (1) provided with at least a liquid crystal cell formed by using a rear side substrate and a visible side substrate each of which is prepared by forming at least a transparent layer (14 or 24) of the refractive index lower than that of a transparent substrate (10 or 20) and the translucent and reflective layer (11) for transmitting and reflecting light or a transparent electrode (21) on the substrate (10 or 20). This display has also illuminators (5) arranged on two or more side faces of the panel (1) and optical path controlling layers (4, 41). The layer (4 or 41) has the refractive indexes higher than that of the layer (14 or 24) and a plurality of optical path changing slopes (A1, B1) which are formed on the outsides of the rear side substrate or the visible side substrate and each of which has 35-48 deg. angle of inclination with respect to the reference plane of the rear side substrate or the visible side substrate. The illuminators (5) are arranged at least on the different side faces of the panel (1), namely, on the side face of each of the substrates (10 and 20).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、薄型軽量化が容易な表示
品位に優れる外光・照明両用型の液晶表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external light / illumination type liquid crystal display device which is easy to be thin and lightweight and has excellent display quality.

【0002】[0002]

【発明の背景】ハーフミラー等の半透過反射層を内蔵す
る外光・照明両用型の液晶表示装置が携帯パソコンや携
帯電話等の携帯型機器などとして広く普及している。斯
かる携帯型機器では、その携帯性を更に高めるため小型
化や薄型化等による軽量化が強く求められている。しか
しながら照明モードでの視認を可能とするバックライト
に例え従来では薄さに優れるサイドライト式導光板を用
いても、その厚さが普通2mm以上の厚さとなり、装置全
体の薄型軽量化がほぼ限界となっている実状である。
BACKGROUND OF THE INVENTION External light / illumination type liquid crystal display devices incorporating a semi-transmissive reflective layer such as a half mirror have been widely used as portable devices such as portable personal computers and mobile phones. In such portable devices, there is a strong demand for weight reduction by downsizing, thinning, and the like in order to further enhance portability. However, even if a sidelight type light guide plate, which has been excellent in thinness in the past, is used as an example of a backlight that can be visually recognized in an illumination mode, the thickness is usually 2 mm or more, and the overall thickness and weight of the device can be reduced. This is the limit.

【0003】前記に鑑みて、光出射手段を具備する光学
フィルムを液晶セルの視認側表面に設けてなる液晶表示
パネルの側面より光を入射させ、パネル内の伝送光を前
記の光出射手段を介し反射させてパネルを照明するよう
にした外光・照明両用式の反射型液晶表示装置が提案さ
れている(特開2000−147499号公報)。これ
はサイドライト型導光板よりも遙かに薄い光学フィルム
にて液晶表示パネルの照明システムを実現してその薄型
軽量化を達成したものである。
In view of the above, light is made incident from the side surface of a liquid crystal display panel provided with an optical film having a light emitting means on the viewing side surface of a liquid crystal cell, and the transmitted light in the panel is transmitted by the light emitting means. A reflection type liquid crystal display device for both external light and illumination which is adapted to illuminate the panel through reflection has been proposed (Japanese Patent Laid-Open No. 2000-147499). This is an illumination system for a liquid crystal display panel realized by using an optical film much thinner than the side light type light guide plate, thereby achieving a reduction in thickness and weight.

【0004】しかしながら、最近のセル基板の薄型化に
伴いパネル側面からの光の入射効率が著しく低下し、表
示輝度に乏しい問題点があった。またセル基板の厚さに
対して、側面方向の光の伝送距離が長い場合、すなわち
面積が相対的に大きい場合、輝度分布を均一化させるこ
とが難しい問題点もあった。斯かる問題は、半透過反射
層を内蔵する外光・照明両用型の液晶表示装置の場合も
同様である。
However, with the recent thinning of the cell substrate, the incident efficiency of light from the side surface of the panel is significantly reduced, and there is a problem that the display brightness is poor. There is also a problem that it is difficult to make the luminance distribution uniform when the light transmission distance in the lateral direction is long with respect to the thickness of the cell substrate, that is, when the area is relatively large. Such a problem also applies to an external light / illumination type liquid crystal display device incorporating a semi-transmissive reflective layer.

【0005】[0005]

【発明の技術的課題】本発明は、サイドライト型導光板
では達成が困難な薄型軽量化を実現でき、表示輝度やそ
の均一性に優れて表示品位も良好な半透過反射層具備の
外光・照明両用型の液晶表示装置の開発を課題とする。
DISCLOSURE OF THE INVENTION The present invention provides an external light provided with a semi-transmissive reflective layer, which can realize a thin and lightweight structure which is difficult to achieve with a sidelight type light guide plate, and which is excellent in display brightness and its uniformity and has good display quality.・ Developing a dual-purpose lighting LCD device.

【0006】[0006]

【課題の解決手段】本発明は、透明基板にその基板より
も低屈折率の透明層及び光を透過しかつ反射する半透過
反射層を少なくとも有する背面側基板と、透明基板にそ
の基板よりも低屈折率の透明層及び透明電極を少なくと
も有する視認側基板とを、それらの電極側を対向させて
配置した間に液晶を挟持してなる液晶セルを少なくとも
具備する液晶表示パネルにおける2以上の側面に照明装
置を有し、かつ前記背面側基板と視認側基板の外側にそ
の基板の基準平面に対する傾斜角が35〜48度の光路
変換斜面の複数を有すると共に、前記最寄りの低屈折率
の透明層よりも屈折率が高い光路制御層を設けてなり、
前記の照明装置が背面側と視認側の各基板の側面であっ
て、かつ液晶表示パネルの異なる側面に少なくとも配置
されてなることを特徴とする液晶表示装置を提供するも
のである。
According to the present invention, there is provided a transparent substrate having at least a transparent layer having a refractive index lower than that of the substrate and a semi-transmissive reflective layer for transmitting and reflecting light, and a transparent substrate having a transparent substrate more than the substrate. Two or more side surfaces in a liquid crystal display panel including at least a liquid crystal cell in which a liquid crystal cell is sandwiched between a viewing-side substrate having at least a transparent layer having a low refractive index and a transparent electrode, the electrode sides facing each other. And a plurality of optical path changing slopes having an inclination angle of 35 to 48 degrees with respect to a reference plane of the substrates on the outside of the back side substrate and the viewing side substrate, and the nearest low refractive index transparent substrate. An optical path control layer having a higher refractive index than the layer is provided,
The present invention provides a liquid crystal display device, characterized in that the illuminating device is arranged at least on the side surfaces of the back side and the viewing side of the respective substrates, and on different side surfaces of the liquid crystal display panel.

【0007】[0007]

【発明の効果】本発明によれば、照明装置の側面配置と
薄さに優れる光路制御層にてバックライト機構を形成で
き、視認側と背面側の両セル基板を利用してパネル側面
に配置した照明装置からの入射光を対向の側面方向に効
率よく伝送しつつ、その伝送光を視認側と背面側に配置
の光路制御層を介し液晶表示パネルの視認側に効率よく
光路変換して照明モードの液晶表示に利用でき、また半
透過反射層を介し外光モードでの液晶表示も達成でき
て、薄さと軽量性に優れると共に、明るくてその均一性
に優れ、表示品位に優れる外光・照明両用型の液晶表示
装置を得ることができる。
According to the present invention, a backlight mechanism can be formed by an optical path control layer which is excellent in side surface arrangement and thinness of an illuminating device, and can be arranged on the side surface of a panel by utilizing both the visible side and rear side cell substrates. While efficiently transmitting the incident light from the lighting device in the opposite side direction, the transmitted light is efficiently converted to the viewing side of the liquid crystal display panel through the optical path control layer disposed on the viewing side and the back side for illumination. It can be used for mode liquid crystal display, and it can also achieve liquid crystal display in the external light mode through the semi-transmissive reflective layer. It is excellent in thinness and lightness, and it is bright and excellent in its uniformity, and it has excellent display quality. It is possible to obtain an illumination type liquid crystal display device.

【0008】前記は、視認側と背面側の両方のセル基板
に設けた低屈折率の透明層、斜面反射式の光路制御層、
及び半透過反射層を用いたことによる。すなわち低屈折
率の透明層に基づく全反射による閉じ込め効果でパネル
側面からの入射光を対向の側面方向に効率よく伝送でき
て、画面全体での明るさの均一性が向上し良好な表示品
位が達成される。低屈折率の透明層がないと後方への伝
送効率に乏しくて照明装置から遠離るほど画面が暗くな
り見づらい表示となる。
The above are low-refractive-index transparent layers provided on both the viewing-side and back-side cell substrates, an oblique-path-type optical path control layer,
And by using the semi-transmissive reflective layer. That is, the incident light from the side surface of the panel can be efficiently transmitted to the opposite side surface by the confinement effect by the total reflection based on the low refractive index transparent layer, the uniformity of the brightness on the entire screen is improved, and the good display quality is obtained. To be achieved. If the transparent layer with a low refractive index is not provided, the rearward transmission efficiency is poor, and the farther away from the lighting device, the darker the screen becomes and the display becomes difficult to see.

【0009】一方、光路制御層によりその光路変換斜面
を介し側面からの入射光ないしその伝送光を反射させて
指向性よく光路変換でき、薄型化も達成することができ
る。粗面等を介した散乱反射方式では前記指向性の達成
は困難である。また光路制御層と液晶表示パネルとを組
合せたことにより、従来のサイドライト式導光板では達
成が困難な極めて薄い光出射手段とすることができる。
ちなみに200μm以下、就中100μm以下の光路制御
層の形成も可能である。
On the other hand, the optical path control layer can reflect the incident light or the transmitted light from the side surface through the optical path conversion slope, can change the optical path with good directivity, and can achieve a thin structure. It is difficult to achieve the above-mentioned directivity by the scattering reflection method via a rough surface or the like. Further, by combining the optical path control layer and the liquid crystal display panel, it is possible to provide an extremely thin light emitting means which is difficult to achieve with the conventional sidelight type light guide plate.
Incidentally, it is also possible to form an optical path control layer having a thickness of 200 μm or less, especially 100 μm or less.

【0010】他方、半透過反射層の使用により、その透
過率と反射率をバランスさせて照明モードと外光モード
の両方において明るさに優れる液晶表示を達成すること
ができる。
On the other hand, by using the semi-transmissive reflective layer, it is possible to achieve a liquid crystal display having excellent brightness in both the illumination mode and the external light mode by balancing the transmittance and the reflectance.

【0011】[0011]

【発明の実施形態】本発明による液晶表示装置は、透明
基板にその基板よりも低屈折率の透明層及び光を透過し
かつ反射する半透過反射層を少なくとも有する背面側基
板と、透明基板にその基板よりも低屈折率の透明層及び
透明電極を少なくとも有する視認側基板とを、それらの
電極側を対向させて配置した間に液晶を挟持してなる液
晶セルを少なくとも具備する液晶表示パネルにおける2
以上の側面に照明装置を有し、かつ前記背面側基板と視
認側基板の外側にその基板の基準平面に対する傾斜角が
35〜48度の光路変換斜面の複数を有すると共に、前
記最寄りの低屈折率の透明層よりも屈折率が高い光路制
御層を設けてなり、前記の照明装置が背面側と視認側の
各基板の側面であって、かつ液晶表示パネルの異なる側
面に少なくとも配置されてなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal display device according to the present invention includes a transparent substrate, a rear substrate having at least a transparent layer having a refractive index lower than that of the transparent substrate, and a semi-transmissive reflective layer for transmitting and reflecting light. A liquid crystal display panel including at least a liquid crystal cell in which a liquid crystal cell is sandwiched between a viewing side substrate having at least a transparent layer having a lower refractive index than that substrate and a transparent electrode, and the electrode sides thereof are opposed to each other. Two
The illuminating device is provided on the above side surface, and a plurality of optical path changing slopes having an inclination angle of 35 to 48 degrees with respect to the reference plane of the substrates are provided outside the back side substrate and the viewing side substrate, and the nearest low refractive index. An optical path control layer having a refractive index higher than that of a transparent layer having a refractive index is provided, and the lighting device is disposed at least on the side surfaces of the respective substrates on the back side and the viewing side, and on different side surfaces of the liquid crystal display panel. It is a thing.

【0012】前記した液晶表示装置の例を図1に示し
た。1が液晶表示パネル、4、41が光路制御層で、A
1、B1が光路変換斜面、10が背面側の透明基板で、
11が電極を兼ねることもある半透過反射層、14が低
屈折率の透明層、20が視認側の透明基板で、21が透
明電極、24が低屈折率の透明層、30が液晶、5、5
2が照明装置である。なお12、22は配向膜、15、
25は偏光板、16、26は位相差板、23はカラーフ
ィルタ、6は光反射層である。
An example of the above-mentioned liquid crystal display device is shown in FIG. Reference numeral 1 is a liquid crystal display panel, and 4 and 41 are optical path control layers.
1, B1 is an optical path changing slope, and 10 is a rear transparent substrate,
Reference numeral 11 is a semi-transmissive reflective layer that may also serve as an electrode, 14 is a low refractive index transparent layer, 20 is a transparent substrate on the viewing side, 21 is a transparent electrode, 24 is a low refractive index transparent layer, 30 is a liquid crystal, 5 5,
2 is a lighting device. In addition, 12 and 22 are alignment films, 15,
Reference numeral 25 is a polarizing plate, 16 and 26 are retardation plates, 23 is a color filter, and 6 is a light reflection layer.

【0013】液晶表示パネル1としては、図例の如く透
明基板10にその基板よりも低屈折率の透明層14及び
光を透過しかつ反射する半透過反射層11を少なくとも
有する背面側基板(10)と、透明基板20にその基板
よりも低屈折率の透明層24、及び透明電極21を少な
くとも有する視認側基板(20)とを、それらの電極1
1、21の側を対向させて配置した間に液晶30を挟持
してなる液晶セルを少なくとも具備して、背面側からの
入射光を液晶等による制御を介し表示光として他方の視
認側より出射する適宜なものを用いることができ、その
種類について特に限定はない。なお図中の31は、透明
基板10、20の間に液晶30を封入するためのシール
材である。
As the liquid crystal display panel 1, as shown in the drawing, a rear substrate (10) having at least a transparent substrate 10 having a transparent layer 14 having a lower refractive index than the substrate and a semi-transmissive reflective layer 11 for transmitting and reflecting light. ), And a viewing-side substrate (20) having at least a transparent layer 24 having a lower refractive index than the transparent substrate 20 and the transparent electrode 21 on the transparent substrate 20.
At least a liquid crystal cell having a liquid crystal 30 sandwiched between the first and the second side facing each other is provided, and incident light from the back side is emitted as display light from the other viewing side through control by the liquid crystal or the like. Any suitable material can be used, and the type thereof is not particularly limited. Note that reference numeral 31 in the figure is a sealing material for enclosing the liquid crystal 30 between the transparent substrates 10 and 20.

【0014】ちなみに前記した液晶セルの具体例として
は、液晶の配向形態に基づいてTN液晶セルやSTN液
晶セル、垂直配向セルやHANセル、OCBセルの如き
ツイスト系や非ツイスト系、ゲストホスト系や強誘電性
液晶系のもの、光拡散を利用したものなどがあげられ、
液晶の駆動方式も例えばアクティブマトリクス方式やパ
ッシブマトリクス方式などの適宜なものであってよい。
Incidentally, specific examples of the above-mentioned liquid crystal cell include twist type, non-twist type, guest host type such as TN liquid crystal cell, STN liquid crystal cell, vertical alignment cell, HAN cell, OCB cell based on the alignment form of liquid crystal. And ferroelectric liquid crystals, and those that utilize light diffusion.
The liquid crystal drive system may be an appropriate system such as an active matrix system or a passive matrix system.

【0015】視認側や背面側のセル基板には照明光や表
示光の透過を可能とするため透明基板が用いられる。そ
の透明基板は、ガラスや樹脂などの適宜な材料で形成で
き就中、複屈折を可及的に抑制して光損失を低減する点
などより光学的に等方性の材料からなるものが好まし
い。また輝度や表示品位の向上等の点より青ガラス板に
対する無アルカリガラス板の如く無色透明性に優れるも
のが好ましく、さらに軽量性等の点よりは樹脂基板が好
ましい。
A transparent substrate is used for the cell substrate on the viewing side or the back side in order to allow transmission of illumination light or display light. The transparent substrate can be made of an appropriate material such as glass or resin, and is preferably made of an optically isotropic material in view of suppressing birefringence as much as possible and reducing optical loss. . Further, from the viewpoint of improving the brightness and display quality, it is preferable to use one having excellent colorless transparency such as a non-alkali glass plate with respect to a blue glass plate, and a resin substrate is preferable from the viewpoint of lightness and the like.

【0016】背面側及び視認側の両基板に設ける低屈折
率の透明層は、表示画面全体における明るさの均一性の
向上を目的とする。すなわち背面側又は視認側の基板を
形成する透明基板よりも屈折率の低い層を設けること
で、図1に折れ線矢印β1、β2として示した如く、照
明装置5、52からの入射光が背面側基板10又は視認
側基板20の内部を伝送される際に、その伝送光を背面
側基板10と透明層14、又は視認側基板20と透明層
24との屈折率差を介し全反射させて背面側又は視認側
の基板内に効率よく閉じ込める。
The low-refractive-index transparent layers provided on both the back-side substrate and the viewing-side substrate are intended to improve the uniformity of brightness on the entire display screen. That is, by providing a layer having a lower refractive index than the transparent substrate forming the substrate on the back side or the viewing side, the incident light from the illumination devices 5, 52 is reflected on the back side as shown by broken line arrows β1 and β2 in FIG. When transmitted inside the substrate 10 or the viewing-side substrate 20, the transmitted light is totally reflected through the refractive index difference between the back-side substrate 10 and the transparent layer 14 or the viewing-side substrate 20 and the transparent layer 24 to cause the back surface. Efficiently confined within the substrate on the viewing side or the viewing side.

【0017】前記の結果、伝送光を対向の側面側(後
方)に効率よく伝送して、照明装置から遠い位置におけ
る光路制御層4、41の光路変換斜面A1、B1にも伝
送光を均等性よく供給し、その斜面による反射を介し折
れ線矢印α1、α2として示した如く光路変換して表示
画面全体における明るさの均一性を向上させる。
As a result, the transmitted light is efficiently transmitted to the opposite side surface (rear side), and the transmitted light is evenly distributed to the optical path conversion slopes A1 and B1 of the optical path control layers 4 and 41 at positions far from the illumination device. It is supplied well and the light path is changed through the reflection by the inclined surface as shown by the polygonal arrows α1 and α2 to improve the uniformity of brightness on the entire display screen.

【0018】また低屈折率の透明層は、前記の伝送光が
液晶層に入射して複屈折や散乱を受け、それにより伝送
状態が部分的に変化して伝送光が減少したり不均一化す
ることを防止して表示が暗くなることや、照明装置近傍
での表示が後方においてゴースト化して表示品位を低下
させることの防止なども目的とする。
Further, in the low refractive index transparent layer, the transmitted light is incident on the liquid crystal layer and is subjected to birefringence and scattering, whereby the transmitted state is partially changed and the transmitted light is reduced or nonuniform. It is also intended to prevent the display from being darkened and to prevent the display near the lighting device from becoming a ghost in the rear to deteriorate the display quality.

【0019】さらに低屈折率の透明層は、カラーフィル
タ等を配置した場合にそれによる伝送光の吸収による急
激な減衰を防止して伝送光の減少を回避することも目的
とする。照明装置からの入射光が液晶層内を伝送される
ものでは液晶層で伝送光が散乱されて不均一な伝送状態
となり、出射光の不均一化やゴーストを生じて表示像が
見ずらくなりやすい。
Further, the transparent layer having a low refractive index is also intended to prevent abrupt attenuation due to absorption of transmitted light due to the arrangement of a color filter or the like, thereby avoiding a decrease in transmitted light. In the case where the incident light from the lighting device is transmitted through the liquid crystal layer, the transmitted light is scattered in the liquid crystal layer and becomes a non-uniform transmission state, making the output light non-uniform and ghosts, making the displayed image difficult to see. Cheap.

【0020】低屈折率の透明層は、背面側又は視認側の
基板を形成する透明基板よりも屈折率の低い例えば無機
系や有機系の低屈折率誘電体の如き適宜な材料を用いて
真空蒸着方式やスピンコート方式などの適宜な方式で形
成することができ、その材料や形成方法について特に限
定はない。前記した全反射による後方への伝送効率等の
点より透明層と透明基板の屈折率差は、大きいほど有利
であり、就中0.05以上、特に0.1〜0.4である
ことが好ましい。
The low-refractive-index transparent layer is formed by vacuuming an appropriate material such as an inorganic or organic low-refractive-index dielectric material having a lower refractive index than the transparent substrate forming the backside or viewing side substrate. It can be formed by an appropriate method such as a vapor deposition method or a spin coating method, and there is no particular limitation on the material and the forming method. The larger the difference in refractive index between the transparent layer and the transparent substrate is, the more advantageous it is from the viewpoint of the rearward transmission efficiency due to the above-mentioned total reflection. Particularly, it is preferably 0.05 or more, particularly 0.1 to 0.4. preferable.

【0021】前記程度の屈折率差では外光モードによる
表示品位に殆ど影響しない。ちなみに当該屈折率差が
0.1の場合、その界面での外光の反射率は0.1%以
下であり、その反射損による明るさやコントラストの低
下は極めて小さいものである。
The above-mentioned difference in refractive index has almost no effect on the display quality in the external light mode. By the way, when the refractive index difference is 0.1, the reflectance of external light at the interface is 0.1% or less, and the decrease in brightness and contrast due to the reflection loss is extremely small.

【0022】低屈折率の透明層の配置位置は適宜に決定
しうるが、前記した伝送光の閉じ込め効果や液晶層への
浸入防止などの点より、図例の如く透明基板10、20
と半透過反射層11又は透明電極21の間に位置させる
ことが好ましい。また透明基板10、20と半透過反射
層11又は透明電極21の間にカラーフィルタ23を配
置する場合には、カラーフィルタによる伝送光の吸収損
を防止する点より、そのカラーフィルタよりも基板1
0、20側に位置させることが好ましい。従って通例、
低屈折率の透明層14、24は背面側の透明基板10又
は視認側の透明基板20に直接設けられる。
The arrangement position of the transparent layer having a low refractive index can be appropriately determined, but in view of the effect of confining the transmitted light and the prevention of intrusion into the liquid crystal layer, the transparent substrates 10 and 20 as shown in FIG.
It is preferably located between the semi-transmissive reflective layer 11 and the transparent electrode 21. When the color filter 23 is arranged between the transparent substrates 10 and 20 and the semi-transmissive reflective layer 11 or the transparent electrode 21, the substrate 1 is more preferable than the color filter because it prevents absorption loss of transmitted light due to the color filter.
It is preferably located on the 0, 20 side. Therefore, as a rule,
The low refractive index transparent layers 14 and 24 are directly provided on the rear transparent substrate 10 or the visible transparent substrate 20.

【0023】前記の場合、基板における透明層の付設面
は平滑なほど、よって透明層は平滑なほど伝送光の散乱
防止に有利で好ましく、また表示光への影響防止の点よ
りも好ましい。なお前記の点より通例の場合、図1の例
の如くカラーフィルタ23は、視認側基板20の側に位
置させることが好ましい。
In the above case, the smoother the surface of the substrate on which the transparent layer is attached, and the smoother the transparent layer is, the more advantageous in preventing the scattering of transmitted light, and the more preferable in terms of preventing the influence on the display light. In the case of the above-mentioned point, it is preferable that the color filter 23 is located on the viewing side substrate 20 side as in the example of FIG.

【0024】低屈折率の透明層の厚さは、薄すぎると波
動のしみだし現象で上記した閉じ込め効果に薄れる場合
があることより、全反射効果の維持の点より厚いほど有
利である。その厚さは全反射効果等の点より適宜に決定
しうる。一般には波長380〜780nmの可視光に対す
る、特に短波長側の波長380nmの光に対する全反射効
果等の点より、屈折率×層厚で算出される光路長に基づ
いて1/4波長(95nm)以上、就中1/2波長(19
0nm)以上、特に1波長(380nm)以上の厚さである
ことが好ましく、さらには600nm以上の厚さであるこ
とが好ましい。
If the thickness of the transparent layer having a low refractive index is too thin, the confinement effect described above may be diminished due to the phenomenon of wave bleeding. Therefore, it is more advantageous to maintain the total reflection effect. The thickness can be appropriately determined in view of the total reflection effect and the like. In general, from the viewpoint of total reflection effect on visible light having a wavelength of 380 to 780 nm, particularly light having a wavelength of 380 nm on the short wavelength side, a quarter wavelength (95 nm) based on the optical path length calculated by the refractive index x layer thickness. Above all, half wavelength (19
The thickness is preferably 0 nm) or more, more preferably 1 wavelength (380 nm) or more, and further preferably 600 nm or more.

【0025】背面側や視認側のセル基板10、20の厚
さについては、特に限定はなく液晶の封入強度などに応
じて適宜に決定しうる。一般には照明装置からの入射光
の伝送基板としての入射効率や伝送効率等と薄型軽量性
とのバランスなどの点より、10μm〜5mm、就中50
μm〜2mm、特に100μm〜1mmの厚さとされる。
The thickness of the cell substrate 10 or 20 on the back side or the viewing side is not particularly limited and can be appropriately determined according to the strength of liquid crystal filling. Generally, from the viewpoint of the balance between the incident efficiency and the transmission efficiency of the incident light from the lighting device as a transmission substrate and the thinness and lightness, 10 μm to 5 mm, especially 50
The thickness is from μm to 2 mm, especially from 100 μm to 1 mm.

【0026】背面側と視認側の透明基板の厚さは、同じ
であってもよいし、相違していてもよい。なお透明基板
は同厚板であってもよいし、光路制御層の傾斜配置によ
る光路変換斜面への伝送光の入射効率の向上を目的に、
横断面楔形の如く厚さが部分的に相違するものであって
もよい。
The thickness of the transparent substrate on the back side and the thickness of the transparent substrate on the viewing side may be the same or different. The transparent substrate may be the same thickness plate, or for the purpose of improving the incidence efficiency of the transmitted light on the optical path conversion slope by the inclined arrangement of the optical path control layer,
It may have a partially different thickness such as a wedge-shaped cross section.

【0027】また背面側と視認側の透明基板は、平面寸
法が同じであってもよいし、相違していてもよい。背面
側及び視認側の基板を照明装置からの入射光の伝送基板
として用いる点よりは、図例の如く照明装置5、52を
配置する側の側面において、背面側基板10(又は視認
側基板20)が形成する側面よりも視認側基板(又は背
面側基板)の形成する側面が突出する状態にあること
が、その突出側面に照明装置を配置した場合の入射効率
等の点より好ましい。
Further, the transparent substrate on the rear side and the transparent substrate on the visible side may have the same plane dimension or may have different plane dimensions. Rather than using the back side and viewing side substrates as transmission substrates for incident light from the lighting device, the back side substrate 10 (or the viewing side substrate 20) is provided on the side surface on which the lighting devices 5 and 52 are arranged as shown in the figure. It is preferable that the side surface formed by the viewing-side substrate (or the back-side substrate) is projected more than the side surface formed by (1) from the viewpoint of incidence efficiency when the illumination device is arranged on the protruding side surface.

【0028】背面側の透明基板に設ける半透過反射層
は、図1の例の如く照明モード時の背面側からのバック
ライト光α2を透過させ、かつ視認側からのフロントラ
イト光α1を反射させると共に、外光モード時に入射外
光を反射させることを目的とする。これにより外光・照
明両用型の液晶表示装置を実現することができる。
The semi-transmissive reflection layer provided on the transparent substrate on the rear side transmits the backlight light α2 from the rear side in the illumination mode and reflects the front light light α1 from the viewing side as in the example of FIG. At the same time, it is intended to reflect incident external light in the external light mode. This makes it possible to realize a liquid crystal display device for both external light and illumination.

【0029】半透過反射層は、例えばハーフミラーや開
口を設けた反射層の如く、光を透過し、かつ反射する適
宜な層として形成することができる。就中、ハーフミラ
ーの如き金属薄膜や、開口を設けた金属層が液晶セル内
での機能維持性などの点より好ましい。
The semi-transmissive reflective layer can be formed as an appropriate layer that transmits and reflects light, such as a half mirror or a reflective layer having an opening. Above all, a metal thin film such as a half mirror or a metal layer provided with an opening is preferable from the viewpoint of maintaining the function in the liquid crystal cell.

【0030】半透過反射層における光の透過率と反射率
の割合は、照明モード時と外光モード時の明るさのバラ
ンスなどにより適宜に決定することができる。一般には
透過率に基づいて5〜95%、就中15〜85%、特に
25〜75%とされる。ちなみに前記したハーフミラー
方式では、その膜厚を制御することにより、開口方式で
はその開口の占有率を制御することにより光の透過率と
反射率の割合を変えることができる。
The ratio between the light transmittance and the reflectance of the semi-transmissive reflective layer can be appropriately determined by the balance of brightness in the illumination mode and the external light mode. Generally, the transmittance is 5 to 95%, especially 15 to 85%, and particularly 25 to 75%. By the way, in the half mirror system described above, the film thickness is controlled, and in the aperture system, the occupancy of the aperture is controlled, whereby the ratio of the light transmittance and the reflectance can be changed.

【0031】なお半透過反射層を前記した開口方式で形
成する場合、液晶セルにおける画素サイズの5〜95
%、就中15〜85%、特に25〜75%の大きさの開
口を画素の配置に可及的に対応させて分布させることが
表示画面での明るさの均一性を高める点より好ましい。
開口を有する半透過反射層は、反射板の打ち抜き方式や
反射層のエッチング方式、所定の開口を設けたマスクを
介して反射材を蒸着する方式などの適宜な方式で形成す
ることができる。
When the semi-transmissive reflective layer is formed by the above-mentioned aperture method, the pixel size of the liquid crystal cell is 5 to 95.
%, Especially 15 to 85%, especially 25 to 75% of the openings are preferably distributed in correspondence with the arrangement of pixels as much as possible from the viewpoint of improving the uniformity of brightness on the display screen.
The semi-transmissive reflective layer having an opening can be formed by an appropriate method such as a punching method of a reflecting plate, an etching method of a reflecting layer, or a method of depositing a reflecting material through a mask provided with a predetermined opening.

【0032】半透過反射層は、外光の利用効率の向上な
いし外光モード時における明るさの均一性の向上の点よ
り、凹凸表面にて入射外光を散乱反射するように形成さ
れていることが好ましい。半透過反射層が金属箔の如き
厚膜からなる場合には例えば、その表面をバフ処理等の
粗面化方式で処理する方法にても凹凸式光散乱面を形成
することができる。
The semi-transmissive reflective layer is formed so as to scatter and reflect incident external light on the uneven surface in order to improve the utilization efficiency of external light or improve the uniformity of brightness in the external light mode. It is preferable. When the semi-transmissive reflective layer is made of a thick film such as a metal foil, the uneven light-scattering surface can be formed by a method of treating the surface by a roughening method such as buffing.

【0033】一方、蒸着方式等による薄膜からなる半透
過反射層の場合には例えば、透明基板の表面を凹凸式光
散乱面としてその凹凸が反映した薄膜を形成する方式な
どにより、入射外光を散乱反射させうる半透過反射層を
形成することができる。その際、上記した低屈折率透明
層の平滑性を維持する点よりは、表面平滑な透明基板を
用いて低屈折率透明層を設け、その上に表面凹凸構造の
層を設けることが好ましい。
On the other hand, in the case of a semi-transmissive reflective layer formed of a thin film by a vapor deposition method or the like, for example, a method of forming a thin film reflecting the unevenness by using the surface of a transparent substrate as a light-scattering surface of the uneven surface is used. A semi-transmissive reflective layer capable of being scattered and reflected can be formed. At this time, from the viewpoint of maintaining the smoothness of the low-refractive-index transparent layer, it is preferable to provide the low-refractive-index transparent layer using a transparent substrate having a smooth surface, and to provide the layer having the surface uneven structure thereon.

【0034】前記した後者の方式の場合には、半透過反
射層の表裏面が散乱反射面となるため表示品位を向上さ
せうる利点がある。すなわち照明モードにおいて基板内
部の伝送光が光路変換されて半透過反射層に到達したと
きに、その表裏面で散乱反射されて伝送距離が短くな
る。また半透過反射層を透過した伝送光もその殆どが、
視認側又は背面側の反対側の基板内部に閉じ込められて
出射防止されたり、液晶層やカラーフィルター層等によ
る吸収や位相差発生などの影響で出射防止されたりす
る。
In the case of the latter method described above, the front and back surfaces of the semi-transmissive reflection layer are scattering reflection surfaces, and therefore, there is an advantage that the display quality can be improved. That is, in the illumination mode, when the transmission light inside the substrate undergoes optical path conversion and reaches the semi-transmissive reflection layer, it is scattered and reflected by the front and back surfaces thereof, and the transmission distance is shortened. Also, most of the transmitted light transmitted through the semi-transmissive reflective layer is
It is confined inside the substrate on the side opposite to the viewing side or the back side to prevent emission, or is prevented from being emitted due to absorption by the liquid crystal layer, the color filter layer, or the like and generation of a phase difference.

【0035】前記の結果、半透過反射層や駆動回路によ
る吸収で伝送光が急激に減少することを抑制できる。ま
た半透過反射層の透過に基づく液晶層の複屈折や光散乱
に基づく部分的な変化による伝送光の減少や不均一性の
発生で表示が暗くなること、光源側に近い部分での表示
が後方で影響するゴースト現象が発生することを抑制す
ることができる。開口式の半透過反射層の場合も同様で
ある。
As a result of the above, it is possible to prevent the transmitted light from abruptly decreasing due to absorption by the semi-transmissive reflective layer and the drive circuit. In addition, the display becomes dark due to the reduction of transmitted light and the occurrence of non-uniformity due to the partial change due to the birefringence of the liquid crystal layer due to the transmission of the semi-transmissive reflective layer and the light scattering. It is possible to suppress the occurrence of a ghost phenomenon that affects the rear side. The same applies to the case of the aperture type semi-transmissive reflective layer.

【0036】半透過反射層は、液晶駆動用の回路を形成
する電極を兼ねるものとして設けるができる。図1がそ
の例を示している。また半透過反射層とは別体のものと
して液晶駆動用の回路を形成する透明電極を設けるがで
きる。後者において凹凸式光散乱面を有する半透過反射
層の上に透明電極を設ける場合、その透明電極が凹凸化
しないことが好ましい。
The semi-transmissive / reflecting layer can be provided also as an electrode forming a circuit for driving a liquid crystal. FIG. 1 shows an example thereof. Further, a transparent electrode forming a circuit for driving a liquid crystal can be provided separately from the semi-transmissive reflective layer. In the latter case, when a transparent electrode is provided on the semi-transmissive reflective layer having an uneven light-scattering surface, it is preferable that the transparent electrode is not uneven.

【0037】前記した透明電極の凹凸化の防止は、例え
ば凹凸式光散乱面を有する半透過反射層の上に、レベリ
ングを目的とした表面平滑な透明絶縁層を設け、その上
に透明電極を形成する方式などにて行うことができる。
その透明絶縁層は、例えば透明樹脂の塗工層などの適宜
な方式で形成することができる。また液晶表示装置は、
背面側基板における低屈折率の透明層と半透過反射層の
間に、液晶駆動用の回路を設けたものとして形成するこ
ともできる。
To prevent the above-mentioned unevenness of the transparent electrode, for example, a transparent insulating layer having a smooth surface for leveling is provided on a semi-transmissive reflective layer having an uneven light-scattering surface, and the transparent electrode is provided thereon. It can be performed by a forming method or the like.
The transparent insulating layer can be formed by an appropriate method such as a transparent resin coating layer. In addition, the liquid crystal display device,
It can also be formed by providing a liquid crystal driving circuit between the transparent layer having a low refractive index and the semi-transmissive reflective layer on the rear substrate.

【0038】視認側の透明基板、及び必要に応じて背面
側の透明基板に設ける透明電極は、例えばITO等の従
来に準じた適宜な材料にて形成することができる。液晶
セルの形成に際しては必要に応じ、液晶を配向させるた
めのラビング処理膜等からなる配向膜やカラー表示のた
めのカラーフィルタなどの適宜な機能層の1層又は2層
以上を設けることができる。
The transparent substrate on the visible side and, if necessary, the transparent electrode provided on the transparent substrate on the back side can be formed of an appropriate material in accordance with the prior art such as ITO. When forming a liquid crystal cell, one or more layers of suitable functional layers such as an alignment film made of a rubbing film for aligning liquid crystals and a color filter for color display may be provided, if necessary. .

【0039】なお図例の如く、配向膜12、22は通
常、電極11、21の上に、特に液晶と接触するように
形成され、またカラーフィルタ23は通常、セル基板1
0、20の一方における透明基板と電極の間に設けられ
る。なお図例では視認側基板20にカラーフィルタ23
が設けられている。
As shown in the drawing, the alignment films 12 and 22 are usually formed on the electrodes 11 and 21 so as to be in contact with the liquid crystal, and the color filter 23 is usually formed on the cell substrate 1.
It is provided between the transparent substrate and the electrode on one of 0 and 20. In the illustrated example, the color filter 23 is provided on the viewing side substrate 20.
Is provided.

【0040】液晶表示パネルは、図1、図2の例の如く
液晶セルに偏光板15、25や位相差板16、26、光
拡散層等の適宜な光学層の1層又は2層以上を必要に応
じて付加したものであってもよい。偏光板は直線偏光を
利用した表示の達成を目的とし、位相差板は液晶の複屈
折性による位相差の補償等による表示品位の向上などを
目的とする。
The liquid crystal display panel includes one or more suitable optical layers such as polarizing plates 15 and 25, retardation plates 16 and 26, and a light diffusing layer in the liquid crystal cell as shown in the examples of FIGS. It may be added if necessary. The polarizing plate is intended to achieve display using linearly polarized light, and the retardation plate is intended to improve display quality by compensating for retardation due to birefringence of liquid crystal.

【0041】また光拡散層は、表示光の拡散による表示
範囲の拡大や光路制御層の光路変換斜面を介した輝線状
発光の平準化による輝度の均一化、液晶表示パネル内の
伝送光の拡散による光路制御層への入射光量の増大など
を目的とし、背面側の光路制御層4と視認側の偏光板2
5の間の適宜な位置に1層又は2層以上を配置すること
ができる。
The light diffusing layer expands the display range by diffusing the display light, equalizes the brightness by leveling the bright line emission through the optical path conversion slope of the optical path control layer, and diffuses the transmitted light in the liquid crystal display panel. The optical path control layer 4 on the back side and the polarizing plate 2 on the viewing side for the purpose of increasing the amount of light incident on the optical path control layer due to
One layer or two or more layers can be arranged at an appropriate position between 5.

【0042】前記の偏光板としては、適宜なものを用い
ることができ特に限定はない。高度な直線偏光の入射に
よる良好なコントラスト比の表示を得る点などよりは、
例えばポリビニルアルコール系フィルムや部分ホルマー
ル化ポリビニルアルコール系フィルム、エチレン・酢酸
ビニル共重合体系部分ケン化フィルムの如き親水性高分
子フィルムにヨウ素や二色性染料等の二色性物質を吸着
させて延伸したものからなる吸収型偏光フィルムや、そ
の片側又は両側に透明保護層を設けたものなどの如く偏
光度の高いものが好ましく用いうる。
As the polarizing plate, an appropriate one can be used without any particular limitation. Rather than obtaining a good contrast ratio display due to the incidence of highly linearly polarized light,
For example, a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene / vinyl acetate copolymer partially saponified film is adsorbed with a dichroic substance such as iodine or a dichroic dye and stretched. An absorptive polarizing film made of the above, or a film having a high degree of polarization such as a film having a transparent protective layer provided on one side or both sides thereof can be preferably used.

【0043】前記透明保護層の形成には、透明性や機械
的強度、熱安定性や水分遮蔽性などに優れるものが好ま
しく用いられる。その例としてはアセテート系樹脂やポ
リエステル系樹脂、ポリエーテルスルホン系樹脂やポリ
カーボネート系樹脂、ポリアミド系樹脂やポリイミド系
樹脂、ポリオレフィン系樹脂やアクリル系樹脂、ポリエ
ーテル系樹脂やポリ塩化ビニル、スチレン系樹脂やノル
ボルネン系樹脂の如きポリマー、あるいはアクリル系や
ウレタン系、アクリルウレタン系やエポキシ系、シリコ
ーン系等の熱硬化型ないし紫外線硬化型の樹脂などがあ
げられる。
For forming the transparent protective layer, those having excellent transparency, mechanical strength, thermal stability and moisture shielding property are preferably used. Examples include acetate-based resins and polyester-based resins, polyethersulfone-based resins and polycarbonate-based resins, polyamide-based resins and polyimide-based resins, polyolefin-based resins and acrylic-based resins, polyether-based resins, polyvinyl chloride, and styrene-based resins. Examples thereof include polymers such as and norbornene resins, and thermosetting or ultraviolet curing resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone resins.

【0044】透明保護層は、フィルムとしたものの接着
方式やポリマー液等の塗布方式などにより付与すること
ができる。従って斯かる透明保護層の形成技術は、上記
した透明絶縁層の形成に適用することもできる。
The transparent protective layer can be provided by an adhesive method of a film or a coating method of polymer liquid or the like. Therefore, the technique for forming such a transparent protective layer can be applied to the formation of the above-mentioned transparent insulating layer.

【0045】一方、位相差板としても例えば前記の透明
保護層で例示したものなどの適宜なポリマーからなるフ
ィルムを一軸や二軸等の適宜な方式で延伸処理してなる
複屈折性フィルム、ネマチック系やディスコティック系
等の適宜な液晶ポリマーの配向フィルムやその配向層を
透明基材で支持したものなどの適宜なものを用いること
ができる。熱収縮性フィルムの加熱収縮力の作用下に厚
さ方向の屈折率を制御したものなどであってもよい。
On the other hand, as the retardation plate, a birefringent film or a nematic film obtained by subjecting a film made of a suitable polymer such as those exemplified in the above-mentioned transparent protective layer to a stretching treatment by a suitable method such as uniaxial or biaxial. An appropriate film such as an oriented film of an appropriate liquid crystal polymer such as a system or discotic type, or an oriented film in which the oriented layer is supported by a transparent substrate can be used. It may be one in which the refractive index in the thickness direction is controlled under the action of the heat shrinkage force of the heat shrinkable film.

【0046】補償用の位相差板16、26は通例、図例
の如く視認側又は/及び背面側の偏光板15、25と液
晶セルの間に必要に応じて配置され、その位相差板には
波長域などに応じて適宜なものを用いうる。また位相差
板は、位相差等の光学特性の制御を目的に2層以上を重
畳して用いることもできる。
The retardation plates 16 and 26 for compensation are usually arranged between the polarizing plates 15 and 25 on the viewing side and / or the rear side and the liquid crystal cell as necessary as shown in the drawing, and the retardation plates are provided on the retardation plates. May be appropriately selected depending on the wavelength range and the like. Further, the retardation plate may be used by superposing two or more layers for the purpose of controlling optical characteristics such as retardation.

【0047】また光拡散層についても表面微細凹凸構造
を有する塗工層や拡散シートなどによる適宜な方式にて
設けることができる。光拡散層は、透明粒子配合の粘着
層として偏光板や位相差板の接着を兼ねる層として形成
することもでき、それにより薄型化を図ることもでき
る。その粘着層の形成には、ゴム系やアクリル系、ビニ
ルアルキルエーテル系やシリコーン系、ポリエステル系
やポリウレタン系、ポリエーテル系やポリアミド系、ス
チレン系などの適宜なポリマーをベースポリマーとする
粘着剤などを用いうる。
The light diffusing layer can also be provided by an appropriate method using a coating layer having a surface fine uneven structure or a diffusing sheet. The light diffusing layer can be formed as a pressure-sensitive adhesive layer containing transparent particles and also as a layer that also serves as an adhesive for a polarizing plate and a retardation plate, thereby making it possible to reduce the thickness. To form the adhesive layer, a rubber-based, acrylic-based, vinyl alkyl ether-based, silicone-based, polyester-based, polyurethane-based, polyether-based, polyamide-based, styrene-based, or other suitable polymer-based adhesive is used as a base polymer. Can be used.

【0048】就中、アクリル酸ないしメタクリル酸のア
ルキルエステルを主体とするポリマーをベースポリマー
とするアクリル系粘着剤の如く、透明性や耐候性や耐熱
性などに優れるものが好ましく用いられる。また粘着層
に配合することのある前記の透明粒子としては、例えば
平均粒径が0.5〜20μmのシリカやアルミナ、チタ
ニアやジルコニア、酸化錫や酸化インジウム、酸化カド
ミウムや酸化アンチモン等からなる導電性のこともある
無機系粒子、架橋又は未架橋のポリマー等からなる有機
系粒子などの適宜なものを1種又は2種用いることがで
きる。
Among them, those having excellent transparency, weather resistance, heat resistance and the like are preferably used, such as an acrylic pressure-sensitive adhesive whose base polymer is a polymer mainly composed of an alkyl ester of acrylic acid or methacrylic acid. The transparent particles that may be added to the adhesive layer include, for example, silica or alumina having an average particle size of 0.5 to 20 μm, titania or zirconia, tin oxide or indium oxide, conductive material such as cadmium oxide or antimony oxide. One kind or two kinds of appropriate particles such as inorganic particles which may have properties and organic particles composed of a crosslinked or uncrosslinked polymer can be used.

【0049】液晶表示パネルの側面に配置する照明装置
は、液晶表示装置の照明光として利用する光を液晶表示
パネルの側面から入射させることを目的とする。これに
よりパネルの両側に配置する光路制御層との組合せにて
液晶表示装置の薄型軽量化を図ることができる。照明装
置としては適宜なものを用いることができる。ちなみに
その例としては(冷,熱)陰極管等の線状光源、発光ダ
イオード等の点光源や、それを線状や面状等に配列した
アレイ体、あるいは点光源と線状導光板を組合せて点光
源からの入射光を線状導光板を介し線状光源に変換する
ようにした照明装置などがあげられる。
The illuminating device arranged on the side surface of the liquid crystal display panel aims to make light used as illumination light of the liquid crystal display device incident from the side surface of the liquid crystal display panel. This makes it possible to reduce the thickness and weight of the liquid crystal display device in combination with the optical path control layers arranged on both sides of the panel. Any appropriate lighting device can be used. By the way, as an example, a linear light source such as a (cold, heat) cathode tube, a point light source such as a light emitting diode, an array body in which they are arranged in a linear or planar shape, or a combination of a point light source and a linear light guide plate Illumination device and the like which converts incident light from a point light source into a linear light source through a linear light guide plate.

【0050】図1の例の如く照明装置5、52は、液晶
表示パネルにおける2以上の異なる側面に少なくとも配
置され、かつ視認側と背面側の各基板に対して別体のも
のとして配置される。その複数の側面は図1の例の如く
対向する側面の組合せであってもよいし、縦横に交差す
る側面の組合せであってもよく、それらを併用した3側
面以上の組合せであってもよい。斯かる異側面配置方式
により、光源位置の機械的な干渉を防止することができ
る。また照明装置の点灯/消灯をそれぞれ独立に切り替
えうるようにすることで、各照明装置の点灯又は消灯を
制御して明るさを段階的に変えることができる。なお照
明装置は、同一基板の複数の側面に配置することもでき
る。
As shown in the example of FIG. 1, the illuminating devices 5 and 52 are arranged at least on two or more different side surfaces of the liquid crystal display panel, and are arranged separately from the viewing side substrate and the rear side substrate. . The plurality of side surfaces may be a combination of side surfaces that face each other as in the example of FIG. 1, a combination of side surfaces that intersect in the vertical and horizontal directions, or a combination of three or more side surfaces that use them in combination. . This different side surface arrangement method can prevent mechanical interference of the light source position. Further, by turning on / off the illumination devices independently, it is possible to control the illumination or extinction of each illumination device to change the brightness stepwise. Note that the lighting device can be arranged on a plurality of side surfaces of the same substrate.

【0051】図1の例の如き対向側面に照明装置を配置
する方式は、出射光の角度特性を相互に補完しあい、ま
た照明装置より遠離る対向端側での明るさの現象も相互
に補完しあって、輝度の向上や画面全体での輝度の均一
性の向上の点などより有利である。またその場合、上記
した図例の如く照明装置を配置する基板の側面を他方の
基板が形成する側面よりも突出させることで、照明装置
の配置作業性や光源ホルダによる包囲保持作業も向上
し、照明装置からの入射光が液晶層に入射することも抑
制することができる。
The method of arranging the illuminating device on the opposite side surfaces as in the example of FIG. 1 mutually complements the angular characteristics of the emitted light, and also complements the phenomenon of brightness on the opposite end side farther from the illuminating device. Therefore, it is more advantageous in terms of improving the brightness and improving the uniformity of the brightness on the entire screen. Further, in that case, by making the side surface of the substrate on which the lighting device is arranged project more than the side surface formed by the other substrate as shown in the above-described example, the workability of arranging the lighting device and the work of surrounding and holding by the light source holder are also improved. It is also possible to prevent incident light from the lighting device from entering the liquid crystal layer.

【0052】照明装置は、その点灯による照明モードで
の視認を可能とするものである。外光・照明両用型では
外光による外光モードにて視認するときには点灯の必要
がないので、その点灯・消灯を切り替えうるものとされ
る。その切り替え方式には任意な方式を採ることがで
き、従来方式のいずれも採ることができる。なお照明装
置は、発光色を切り替えうる異色発光式のものであって
もよく、また異種の照明装置を介して異色発光させうる
ものとすることもできる。
The lighting device enables visual recognition in the lighting mode by turning on the lighting device. Since the external light / illumination dual type does not require lighting when visually recognized in the external light mode by external light, it is possible to switch between lighting and extinguishing. As the switching method, any method can be adopted, and any conventional method can be adopted. The illuminating device may be of a different color emission type capable of switching emission colors, or may be of a type capable of emitting different color light through different types of illuminating devices.

【0053】図例の如く照明装置5、52に対しては、
必要に応じ発散光を液晶表示パネルの側面に導くため
に、それを包囲する光源ホルダ51などの適宜な補助手
段を配置した組合せ体とすることもできる。光源ホルダ
としては、例えば高反射率の金属薄膜を付設した樹脂シ
ートや白色シート、金属箔や樹脂成形品などの如く、少
なくとも照明装置側が光を反射する適宜な反射シートを
用いうる。
As shown in the figure, for the lighting devices 5 and 52,
In order to guide the divergent light to the side surface of the liquid crystal display panel as required, a combination body in which an appropriate auxiliary means such as a light source holder 51 surrounding it is arranged may be used. As the light source holder, for example, a resin sheet or a white sheet provided with a metal thin film having high reflectance, a metal foil, a resin molded product, or the like, and an appropriate reflection sheet at least the light reflecting the light can be used.

【0054】光源ホルダは、照明装置の包囲を兼ねる保
持手段として利用することもできる。その場合、光源ホ
ルダの端部を背面側又は視認側の基板の上下面の端部に
接着する方式などにて照明装置を包囲保持することがで
きる。なお光源ホルダの端部を介し視認側基板の上面の
端部から背面側基板の下面の端部に跨る状態で接着する
方式などにて照明装置を包囲保持する方式なども適用す
ることができる。
The light source holder can also be used as a holding means that also serves as an enclosure for the lighting device. In that case, the illumination device can be surrounded and held by a method of adhering the end portion of the light source holder to the end portions of the upper and lower surfaces of the substrate on the back side or the viewing side. It is also possible to apply a method of surrounding and holding the illuminating device, such as a method of adhering in a state of extending from the end of the upper surface of the viewing side substrate to the end of the lower surface of the back side substrate through the end of the light source holder.

【0055】背面側に配置する光路制御層4は、図1に
矢印α2で示した如く、液晶表示パネル1の側面に配置
した照明装置5からの入射光ないしその伝送光を、光路
変換斜面A1を介し当該パネルの視認側に光路変換させ
て、照明光(表示光)として利用することを目的とし、
液晶表示パネル1の背面側基板10の外側に配置され
る。
The optical path control layer 4 arranged on the rear surface side makes incident light from the illuminating device 5 arranged on the side surface of the liquid crystal display panel 1 or transmitted light thereof, as shown by an arrow α2 in FIG. For the purpose of converting the optical path to the viewing side of the panel through and using it as illumination light (display light),
It is arranged outside the rear substrate 10 of the liquid crystal display panel 1.

【0056】一方、視認側に配置する光路制御層41
は、図1に矢印α1で示した如く、液晶表示パネル1の
側面に配置した照明装置52からの入射光ないしその伝
送光を、光路変換斜面B1を介し当該パネルの背面側に
光路変換させ、半透過反射層11で反射逆進させて照明
光(表示光)として利用することを目的とし、液晶表示
パネル1の視認側基板20の外側に配置される。
On the other hand, the optical path control layer 41 arranged on the viewing side.
As shown by the arrow α1 in FIG. 1, the incident light from the illumination device 52 arranged on the side surface of the liquid crystal display panel 1 or its transmitted light is converted to the rear surface side of the panel via the optical path conversion slope B1. It is arranged on the outside of the viewing side substrate 20 of the liquid crystal display panel 1 for the purpose of being reflected and moved backward by the semi-transmissive reflection layer 11 and used as illumination light (display light).

【0057】前記の目的より光路制御層4、41は、図
1の例の如く照明装置5、52からの入射光を反射して
所定方向に光路変換するために、背面側又は視認側の基
板の基準平面(仮想水平面)に対する傾斜角が35〜4
8度の光路変換斜面A1、B1を有するものとされる。
For the above-mentioned purpose, the optical path control layers 4 and 41 are substrates on the back side or the viewing side in order to reflect the incident light from the illuminating devices 5 and 52 and change the optical path in a predetermined direction as in the example of FIG. Angle of inclination with respect to the reference plane (virtual horizontal plane) of 35 to 4
It is assumed to have the optical path changing slopes A1 and B1 of 8 degrees.

【0058】また光路制御層は、薄型化を目的に前記光
路変換斜面の複数を有するものとされる。さらに光路制
御層は、背面側又は視認側の基板に設けた最寄りの低屈
折率の透明層よりも屈折率の高い層として形成される。
光路制御層の屈折率が当該透明層のそれよりも低いと照
明装置からの入射光ないしその伝送光が背面側又は視認
側の基板内に閉じ込められやすく、光路制御層への入射
が阻害され表示光として利用しにくくなる。
The optical path control layer has a plurality of the optical path conversion slopes for the purpose of thinning. Further, the optical path control layer is formed as a layer having a higher refractive index than the nearest transparent layer having a low refractive index provided on the back side or the viewing side substrate.
When the refractive index of the optical path control layer is lower than that of the transparent layer, the incident light from the lighting device or its transmitted light is easily trapped in the substrate on the back side or the viewing side, and the incidence on the optical path control layer is hindered and displayed. It becomes difficult to use it as light.

【0059】光路制御層は、前記した所定の光路変換斜
面の複数を有するものとする点を除き、適宜な形態のも
のとして形成することができる。光路変換等を介して正
面方向への指向性に優れる表示光を得る点よりは、照明
装置を配置した側面すなわち入射側面と対面する光路変
換斜面A1、B1を具備する光出射手段A、Bの複数を
有する光路制御層4、41,特にプリズム状凸凹からな
る光路変換斜面A1、B1を具備する光出射手段A、B
の複数を有する光路制御層が好ましい。
The optical path control layer can be formed in an appropriate form except that it has a plurality of predetermined optical path conversion slopes. From the point of obtaining the display light having excellent directivity in the front direction through the optical path conversion or the like, the light emitting means A and B including the optical path conversion slopes A1 and B1 facing the side surface on which the illuminating device is arranged, that is, the incident side surface is provided. Light emitting means A and B having a plurality of optical path control layers 4 and 41, in particular, optical path conversion slopes A1 and B1 formed of prismatic irregularities.
An optical path control layer having a plurality of

【0060】前記した光路変換斜面ないしプリズム状凸
凹を有する光出射手段の例を図3(a)〜(e)に示し
た。その(a)〜(c)では光出射手段Aが横断面三角
形のものからなり、(d)、(e)では横断面四角形の
ものからなる。また(a)では二等辺三角形による2面
の光路変換斜面A1を有し、(b)では光路変換斜面A
1と基準平面に対する傾斜角が斜面A1よりも大きい急
斜面A2を有する光出射手段Aを有するものからなる。
An example of the light emitting means having the above-mentioned optical path changing slope or prismatic unevenness is shown in FIGS. 3 (a) to 3 (e). In (a) to (c), the light emitting means A has a triangular cross section, and in (d) and (e), it has a quadrangular cross section. Further, (a) has two optical path conversion slopes A1 formed by an isosceles triangle, and (b) has optical path conversion slopes A1.
1 and a light emitting means A having a steep slope A2 whose inclination angle with respect to the reference plane is larger than the slope A1.

【0061】(c)では光路変換斜面A1と基準平面に
対する傾斜角が小さい緩斜面A2とを単位とする光出射
手段Aが隣接連続状態で光路制御層片側の全面に形成さ
れたものからなり、(d)では凸部(突起)からなる光
出射手段Aを、(e)では凹部(溝)からなる光出射手
段Aを有するものからなる。なお図3では、光出射手段
Aに基づいて光路変換斜面A1と急斜面又は緩斜面A2
を説明したが、光出射手段B、従ってその光路変換斜面
B1と急斜面又は緩斜面B2についても光出射手段Aに
準じて形成することができる(以下同じ)。
In (c), the light emitting means A, which is composed of the optical path changing slope A1 and the gentle slope A2 having a small inclination angle with respect to the reference plane, is formed on the entire surface on one side of the optical path control layer in the adjacent continuous state. (D) has a light emitting means A consisting of convex portions (protrusions), and (e) has a light emitting means A consisting of concave portions (grooves). In FIG. 3, the optical path conversion slope A1 and the steep slope or gentle slope A2 based on the light emitting means A are used.
However, the light emitting means B, and hence the optical path conversion slope B1 and the steep slope or the gentle slope B2 can be formed according to the light emitting means A (the same applies hereinafter).

【0062】従って前記した例のように光出射手段は、
等辺面ないし同じ傾斜角の斜面からなる凸部又は凹部に
ても形成できるし、光路変換斜面と急斜面又は緩斜面な
いし傾斜角が相違する斜面からなる凸部又は凹部にても
形成でき、その斜面形態は入射側面の数や位置に応じて
適宜に決定することができる。耐擦傷性の向上による斜
面機能の維持の点よりは、凸部よりも凹部からなる光出
射手段として形成されていることが斜面等が傷付きにく
くて有利である。
Therefore, as in the above example, the light emitting means is
It can be formed on a convex portion or a concave portion that is an equilateral surface or a slope having the same inclination angle, or can be formed on a convex portion or a concave portion that is formed by an optical path conversion slope and a steep slope or a gentle slope or a slope having a different inclination angle. The form can be appropriately determined according to the number and position of the incident side surfaces. From the viewpoint of maintaining the slope function by improving scratch resistance, it is advantageous that the slope is less likely to be scratched because the light emitting means is formed of concave portions rather than convex portions.

【0063】上記した正面方向への指向性等の特性を達
成する点などより好ましい光路制御層は、図例の如く基
準平面に対する傾斜角が35〜48度の光路変換斜面A
1、B1を入射側面に対面して有するものである。従っ
て同一基板の2側面以上に照明装置を配置して2以上の
入射側面を有する場合には、その数と位置に対応して光
路変換斜面A1、B1を有する光路制御層としたものが
好ましく用いられる。
An optical path control layer more preferable in terms of achieving the above-mentioned characteristics such as directivity in the front direction is an optical path conversion slope A having an inclination angle of 35 to 48 degrees with respect to a reference plane as shown in the figure.
1 and B1 are faced to the incident side surface. Therefore, when the illuminating device is arranged on two or more side surfaces of the same substrate and has two or more incident side surfaces, an optical path control layer having the optical path conversion slopes A1 and B1 corresponding to the number and the position thereof is preferably used. To be

【0064】ちなみに同一基板の対向する2側面に照明
装置を配置する場合には、図3(a)の如き横断面二等
辺三角形からなる光出射手段A、Bによる2面の光路変
換斜面A1、B1や、図3(d)、(e)の如き横断面
台形からなる光出射手段A、Bによる2面の光路変換斜
面A1、B1をその稜線が入射側面に沿う方向となる状
態で有する光路制御層4、41が好ましく用いられる。
By the way, when the illuminating device is arranged on the two opposite side surfaces of the same substrate, the two light path changing slopes A1 by the light emitting means A and B having the cross section of an isosceles triangle as shown in FIG. B1 and an optical path having two optical path conversion slopes A1 and B1 formed by the light emitting means A and B each having a trapezoidal transverse cross section as shown in FIGS. 3D and 3E, with their ridges extending along the incident side surface. Control layers 4, 41 are preferably used.

【0065】また液晶表示パネルの縦横で隣接する2側
面に照明装置を配置する場合には、その側面に対応して
稜線が縦横の両方向に沿う状態で光路変換斜面A1、B
1を有する光路制御層が好ましく用いられる。さらには
対向及び縦横を含む3側面以上に照明装置を配置する場
合には、前記の組合せからなる光路変換斜面A1、B1
を有する光路制御層が好ましく用いられる。
Further, when the illuminating device is arranged on the two side surfaces adjacent to each other in the vertical and horizontal directions of the liquid crystal display panel, the optical path conversion slopes A1 and B are formed with the ridge lines corresponding to the side surfaces in both the vertical and horizontal directions.
An optical path control layer having 1 is preferably used. Furthermore, when arranging the illuminating device on three or more side surfaces including facing and vertical and horizontal directions, the optical path conversion slopes A1 and B1 composed of the above combinations are provided.
An optical path control layer having is preferably used.

【0066】前記した光路変換斜面A1、B1は、照明
装置を介した入射側面よりの入射光ないしその伝送光の
内、その面A1、B1に入射する光を反射し、液晶表示
パネルの視認方向に光路変換してパネル表示に利用しう
る光を供給する役割をする。その場合、光路変換斜面A
1、B1の基準平面に対する傾斜角を35〜48度とす
ることにより、図1に折線矢印α1、α2で例示した如
く、側面入射光ないしその伝送光を基準平面に対し垂直
性よく光路変換して、正面への指向性に優れる表示光を
効率よく得ることができる。
The above-mentioned optical path changing slopes A1 and B1 reflect the light incident on the surfaces A1 and B1 of the incident light or the transmitted light from the incident side surface through the illuminating device, and the viewing direction of the liquid crystal display panel. It serves to supply light that can be used for panel display by changing the optical path. In that case, the optical path conversion slope A
By setting the inclination angles of 1 and B1 with respect to the reference plane to 35 to 48 degrees, the side incident light or its transmitted light can be converted into a light path with good perpendicularity to the reference plane, as illustrated by the broken line arrows α1 and α2 in FIG. Thus, it is possible to efficiently obtain display light having excellent directivity to the front.

【0067】光路変換斜面の傾斜角が35度未満では反
射光の光路が正面方向より大きくずれて表示に有効利用
しにくく正面方向の輝度に乏しくなり、48度を超える
と側面入射光ないしその伝送光を全反射させる条件から
外れて光路変換斜面よりの漏れ光が多くなり側面入射光
の光利用効率に乏しくなる。
When the inclination angle of the optical path conversion slope is less than 35 degrees, the optical path of the reflected light is largely deviated from the front direction and it is difficult to effectively use it for display, and the brightness in the front direction is poor. When it exceeds 48 degrees, side incident light or its transmission is transmitted. The condition for totally reflecting the light deviates from the condition for causing total reflection of light, and the amount of leaked light from the optical path conversion slope increases, resulting in poor light utilization efficiency of side incident light.

【0068】正面への指向性に優れる光路変換や漏れ光
の抑制等の点より光路変換斜面A1、B1の好ましい傾
斜角は、液晶表示パネル内を伝送される光のスネルの法
則による屈折に基づく全反射条件などを考慮して38〜
45度、就中40〜44度である。ちなみにガラス板の
一般的な全反射条件は約42度であり、従ってその場
合、側面入射光は±42度の範囲に集約された状態で伝
送されつつ、光路変換斜面に入射することとなる。
The preferable inclination angles of the optical path conversion slopes A1 and B1 are based on the refraction of the light transmitted through the liquid crystal display panel according to Snell's law from the viewpoints of the optical path conversion excellent in the directivity to the front and the suppression of leakage light. 38-
It is 45 degrees, especially 40 to 44 degrees. By the way, the general condition for total reflection of a glass plate is about 42 degrees. Therefore, in this case, the side incident light is incident on the optical path changing slope while being transmitted while being collected in a range of ± 42 degrees.

【0069】光路変換斜面A1、B1を具備する光出射
手段A、Bは、上記のように光路制御層の薄型化を目的
に図3、4に例示の如く複数が設けられる。その場合、
入射側面からの入射光を後方に反射し、対向側面側に効
率よく伝送して液晶表示全面で可及的に均一に発光させ
る点よりは、基準平面に対する傾斜角が10度以下、就
中5度以下、特に3度以下の緩斜面A2、B2、ないし
当該傾斜角が略0度の平坦面A3、B3を含む構造とす
ることが好ましい。
A plurality of light emitting means A and B having the optical path changing slopes A1 and B1 are provided as shown in FIGS. 3 and 4 for the purpose of thinning the optical path control layer as described above. In that case,
From the point that the incident light from the incident side surface is reflected backward and is efficiently transmitted to the opposite side surface side to emit light as uniformly as possible over the entire surface of the liquid crystal display, the inclination angle with respect to the reference plane is 10 degrees or less, especially 5 It is preferable that the structure includes gentle slopes A2 and B2 having a degree of 3 degrees or less, or flat planes A3 and B3 having an inclination angle of substantially 0 degree.

【0070】従って図3(b)に例示の急斜面A2(B
2)を含む光出射手段A(B)では、その急斜面の角度
を35度以上、就中50度以上、特に60度以上として
平坦面A3(B3)の幅を広くできる構造とすることが
好ましい。
Therefore, the steep slope A2 (B) illustrated in FIG. 3 (b) is used.
In the light emitting means A (B) including 2), it is preferable to make the angle of the steep slope 35 degrees or more, particularly 50 degrees or more, and particularly 60 degrees or more so that the width of the flat surface A3 (B3) can be widened. .

【0071】光出射手段A(B)は、図3、4に例示の
如くその稜線が照明装置5(52)を配置した液晶表示
パネル1の入射側面に平行又は傾斜状態で沿うように設
けられる。その場合、光出射手段A(B)は、図3の例
の如く光路制御層の一端から他端にわたり連続して形成
されていてもよいし、図4の例の如く断続的に不連続に
形成されていてもよい。
As shown in FIGS. 3 and 4, the light emitting means A (B) is provided such that its ridge line is parallel or inclined to the incident side surface of the liquid crystal display panel 1 in which the illuminating device 5 (52) is arranged. . In that case, the light emitting means A (B) may be formed continuously from one end to the other end of the optical path control layer as in the example of FIG. 3, or intermittently discontinuous as in the example of FIG. It may be formed.

【0072】光出射手段A(B)を不連続に形成する場
合、伝送光の入射効率や光路変換効率などの点よりその
溝又は突起からなる凹凸の入射側面に沿う方向の長さを
深さ又は高さの5倍以上とすることが好ましく、またパ
ネル表示面の均一発光化の点より前記長さを500μm
以下、就中10〜480μm、特に50〜450μmとす
ることが好ましい。なお図3、4では半透過反射層を省
略している。
When the light emitting means A (B) is discontinuously formed, the depth in the direction along the incident side surface of the unevenness formed by the grooves or protrusions is made deep in view of the incident efficiency of the transmitted light and the optical path conversion efficiency. Alternatively, it is preferable that the height is 5 times or more, and the length is 500 μm in view of uniform light emission on the panel display surface.
Hereafter, it is preferably 10 to 480 μm, particularly preferably 50 to 450 μm. The semi-transmissive reflective layer is omitted in FIGS.

【0073】光出射手段A、Bの横断面形状やそれを介
した光路変換斜面A1、B1のピッチについては特に限
定はない。光路変換斜面A1、B1が照明モードでの輝
度決定要因となることより、パネル表示面における発光
の均一性などに応じて適宜に決定でき、その分布密度に
て光路変換光量を制御することができる。
The cross-sectional shape of the light emitting means A and B and the pitch of the optical path changing slopes A1 and B1 passing through them are not particularly limited. Since the optical path conversion slopes A1 and B1 are the factors that determine the brightness in the illumination mode, the optical path conversion slopes A1 and B1 can be appropriately determined according to the uniformity of light emission on the panel display surface, and the optical path conversion light amount can be controlled by the distribution density. .

【0074】従って斜面の傾斜角等が光路制御層の全面
で一定な形状であってもよいし、吸収ロスや先の光路変
換による伝送光の減衰に対処してパネル表示面の発光の
均一化を図ることを目的に、図5に例示の如く入射側面
から遠離るほど光出射手段A(B)を大きくしてもよ
い。
Therefore, the slope angle and the like of the slope may be constant over the entire surface of the optical path control layer, or the light emission on the panel display surface can be made uniform by coping with absorption loss and attenuation of transmitted light due to the previous optical path conversion. For the purpose of achieving the above, the light emitting means A (B) may be made larger as the distance from the incident side surface is increased as illustrated in FIG.

【0075】また図5に例示の如く、一定ピッチの光出
射手段A(B)とすることもできるし、図6に例示の如
く入射側面から遠離るほど徐々にピッチを狭くして、光
出射手段A(B)の分布密度を多くしたものとすること
もできる。さらにランダムピッチにてパネル表示面にお
ける発光の均一化を図ることもできる。
Further, as shown in FIG. 5, the light emitting means A (B) having a constant pitch can be used, or as shown in FIG. It is also possible to increase the distribution density of the means A (B). Further, the light emission on the panel display surface can be made uniform at random pitches.

【0076】加えて光出射手段A、Bが不連続な溝又は
突起からなる凹凸の場合には、その凹凸の大きさや形
状、分布密度や稜線の方向等を不規則なものとしたり、
その不規則な又は規則的ないし画一的な凹凸をランダム
に配置して、パネル表示面における発光の均一化を図る
こともできる。よって前記した例の如くパネル表示面で
の発光の均一化は、光出射手段A、Bに適宜な方式を適
用して達成することができる。なお図5、6において、
矢印方向が入射側面からの入射光の伝送方向である。
In addition, in the case where the light emitting means A and B are unevenness formed of discontinuous grooves or protrusions, the size and shape of the unevenness, the distribution density, the direction of the ridge line, etc. may be irregular.
It is also possible to randomly arrange the irregular or regular or uniform irregularities to achieve uniform light emission on the panel display surface. Therefore, uniform light emission on the panel display surface as in the above example can be achieved by applying an appropriate method to the light emitting means A and B. In addition, in FIGS.
The arrow direction is the transmission direction of the incident light from the incident side surface.

【0077】光路変換斜面は、上記のように側面入射光
の光路変換による実質的な照明光形成の機能部分である
から、その間隔が広すぎると点灯時の照明が疎となって
不自然な表示となる場合がある。その防止の点より、光
路変換斜面A1、B1のピッチは、2mm以下、就中20
μm〜1mm、特に50μm〜0.5mmとすることが好まし
い。
As described above, the light path changing slope is a functional portion for substantially forming illumination light by changing the light path of the side incident light. Therefore, if the interval is too wide, the illumination at the time of lighting becomes sparse and unnatural. It may be displayed. From the viewpoint of prevention, the pitch of the optical path conversion slopes A1 and B1 is 2 mm or less, especially 20.
The thickness is preferably 1 μm to 1 mm, and more preferably 50 μm to 0.5 mm.

【0078】一方、複数の光路変換斜面、特に入射側面
方向に連続した光路変換斜面を介した照明光が液晶セル
の画素と干渉してモアレを生じる場合がある。モアレの
防止は、光路変換斜面のピッチ調節で行いうるが、その
ピッチには前記のように好ましい範囲がある。従って前
記の好ましいピッチ範囲でモアレが生じる場合の解決策
が問題となる。
On the other hand, the illuminating light passing through the plurality of optical path converting slopes, particularly the optical path converting slopes continuous in the incident side surface direction, may interfere with the pixels of the liquid crystal cell to cause moire. Moire can be prevented by adjusting the pitch of the optical path conversion slope, and the pitch has a preferable range as described above. Therefore, a solution when moire occurs in the above-mentioned preferable pitch range becomes a problem.

【0079】前記の場合、画素に対して光路変換斜面が
交差状態で配列しうるように、凹凸の稜線を入射側面に
対し傾斜する状態に形成してモアレを防止する方式が好
ましい。その場合、入射側面に対する傾斜角が大きすぎ
ると光路変換斜面を介した反射に偏向を生じて光路変換
の方向に大きな偏りが発生し、表示品位の低下原因とな
りやすい。
In the above case, it is preferable to form moire by forming the ridge lines of the unevenness in a state of being inclined with respect to the incident side surface so that the optical path conversion slopes can be arranged in an intersecting state with respect to the pixels. In that case, if the inclination angle with respect to the incident side surface is too large, the reflection through the optical path conversion inclined surface is deflected, and a large deviation occurs in the direction of the optical path conversion, which is likely to cause deterioration of display quality.

【0080】前記した光路変換方向の偏りによる表示品
位の低下防止の点よりは、当該凹凸の稜線の入射側面に
対する傾斜角を、±30度以内、就中±25度以内とす
ることが好ましい。なお、±の符号は入射側面を基準と
した稜線の傾斜方向を意味する。液晶セルの解像度が低
くてモアレを生じない場合やモアレを無視しうる場合に
は、かかる稜線は入射側面に平行なほど好ましい。
From the viewpoint of preventing the display quality from deteriorating due to the deviation of the optical path changing direction, it is preferable that the inclination angle of the ridge line of the unevenness with respect to the incident side surface is within ± 30 degrees, especially within ± 25 degrees. The sign ± means the inclination direction of the ridgeline with respect to the incident side surface. When the resolution of the liquid crystal cell is low and moiré does not occur or when moiré can be ignored, it is preferable that the ridge line be parallel to the incident side surface.

【0081】前記の点より液晶セルの画素ピッチが一般
に100〜300μmであることも考慮して光路変換斜
面は、その基準平面に対する投影幅に基づいて40μm
以下、就中3〜20μm、特に5〜15μmとなるように
形成することが好ましい。かかる投影幅は、一般に蛍光
管のコヒーレント長が20μm程度とされている点など
より回折による表示品位の低下を防止する点よりも好ま
しい。
From the above point, considering that the pixel pitch of the liquid crystal cell is generally 100 to 300 μm, the optical path conversion slope is 40 μm based on the projection width to the reference plane.
In the following, it is preferable that the thickness is 3 to 20 μm, especially 5 to 15 μm. Such a projection width is more preferable than the point that the deterioration of display quality due to diffraction is prevented because the coherent length of the fluorescent tube is generally about 20 μm.

【0082】光路制御層は、照明装置の波長域に応じそ
れに透明性を示し、かつ上記低屈折率の透明層よりも高
屈折率の適宜な材料にて形成しうる。ちなみに可視光域
では、上記の透明保護層等で例示したポリマーないし硬
化型樹脂やガラスなどがあげられる。複屈折を示さない
か、複屈折の小さい材料で形成した光路制御層が好まし
い。
The optical path control layer may be formed of an appropriate material that exhibits transparency depending on the wavelength range of the illuminating device and has a higher refractive index than the transparent layer having a low refractive index. By the way, in the visible light range, the polymers, the curable resins, and the glass exemplified in the above transparent protective layer and the like can be mentioned. An optical path control layer formed of a material that does not exhibit birefringence or has low birefringence is preferable.

【0083】また界面反射でパネル内部に閉じ込められ
て出射できない損失光量を抑制し、側面入射光ないしそ
の伝送光を光路制御層、特にその光路変換斜面に効率よ
く供給する点より、上記低屈折率の透明層よりも屈折率
が0.05以上、就中0.08以上、特に0.1〜0.
4高い光路制御層であることが好ましい。
Further, from the point of suppressing the amount of lost light that is confined inside the panel due to interface reflection and cannot be emitted, and efficiently supplies the side incident light or its transmitted light to the optical path control layer, especially the optical path conversion slope, the above low refractive index is obtained. The refractive index is 0.05 or more, more preferably 0.08 or more, especially 0.1 to 0.
It is preferably a high optical path control layer.

【0084】さらに照明装置からの入射光ないしその伝
送光を背面側又は視認側の基板から最寄りの光路制御層
に効率よく入射させて、光路変換斜面を介し明るい表示
を達成する点より、背面側又は視認側の最寄り基板との
屈折率差が0.15以内、就中0.10以内、特に0.
05以内の光路制御層であること、殊に当該最寄り透明
基板よりも高い屈折率の光路制御層であることが好まし
い。
Further, the incident light from the illuminating device or its transmitted light is efficiently incident on the nearest optical path control layer from the substrate on the rear side or the viewing side to achieve a bright display through the optical path conversion slope, and thus the rear side. Alternatively, the difference in refractive index from the closest substrate on the viewing side is within 0.15, particularly within 0.10, and particularly, 0.
It is preferable that the optical path control layer is within 05, and in particular, the optical path control layer having a refractive index higher than that of the nearest transparent substrate.

【0085】上記のように背面側及び視認側の両基板に
対して光路制御層と照明装置を配置することにより、セ
ル基板の薄型化に対応して液晶表示パネル全体での入射
光量の増大を図ることができ、明るい表示を達成するこ
とができる。なお背面側又は視認側の基板に対して配置
する光路制御層は、同じ形態の光出射手段を具備する同
一又は異種のものであってもよいし、異なる形態の光出
射手段を具備する異種のものであってもよい。
As described above, by disposing the optical path control layer and the illuminating device on both the back side substrate and the viewing side substrate, the amount of incident light in the entire liquid crystal display panel can be increased in response to the thinning of the cell substrate. A bright display can be achieved. The optical path control layers arranged on the back side or the viewing side substrate may be the same or different types having the light emitting means of the same form, or different types having the light emitting means of different forms. It may be one.

【0086】光路制御層は、切削法にても形成でき適宜
な方法で形成することができる。量産性等の点より好ま
しい製造方法としては、例えば熱可塑性樹脂を所定の形
状を形成しうる金型に加熱下に押付て形状を転写する方
法、加熱溶融させた熱可塑性樹脂あるいは熱や溶媒を介
して流動化させた樹脂を所定の形状に成形しうる金型に
充填する方法、熱や紫外線ないし放射線等で重合処理し
うるモノマーやオリゴマーや液状樹脂を所定の形状を形
成しうる型に充填ないし流延して重合処理する方法があ
げられる。
The optical path control layer can be formed by a cutting method and can be formed by an appropriate method. As a preferable manufacturing method from the viewpoint of mass productivity and the like, for example, a method of transferring a shape by pressing a thermoplastic resin under heat to a mold capable of forming a predetermined shape, a heat-melted thermoplastic resin or heat or a solvent is used. A method of filling a resin that has been fluidized through a mold that can be molded into a predetermined shape, a monomer or oligomer that can be polymerized by heat, ultraviolet rays or radiation, or a liquid resin is filled into a mold that can form a predetermined shape. Or a method of polymerizing by casting.

【0087】また支持フィルムに予め紫外線ないし放射
線等で重合処理しうる前記の液状樹脂等を塗工し、その
塗工層を所定の形状を形成しうる型で成形して重合処理
する方法や、所定の形状を形成しうる型に前記の液状樹
脂等を充填し、その上に支持フィルムを配置して紫外線
ないし放射線等を照射して重合処理する方法などもあげ
られる。
Further, a method in which the above-mentioned liquid resin or the like which can be polymerized with ultraviolet rays or radiation is applied to the support film in advance, and the coating layer is molded with a mold capable of forming a predetermined shape and polymerized, There is also a method in which a mold capable of forming a predetermined shape is filled with the above liquid resin or the like, a support film is placed on the mold, and ultraviolet rays or radiation is irradiated to perform a polymerization treatment.

【0088】前記の場合、透明な支持フィルムを用いて
そのフィルムと一体化した光路制御層を形成することも
できるし、形成後に支持フィルムと剥離して当該塗工層
や充填層に基づく成形層のみからなる光路制御層を形成
することもできる。その場合には透明フィルムである必
要はない。剥離は、支持フィルムを剥離剤で表面処理す
る方法などにより達成することができる。
In the above case, a transparent support film can be used to form an optical path control layer integrated with the film, or after formation, the optical path control layer can be peeled off from the support film to form a molding layer based on the coating layer or the filling layer. It is also possible to form an optical path control layer consisting of only. In that case, it need not be a transparent film. Peeling can be achieved by, for example, a method of surface-treating the support film with a release agent.

【0089】従って光路制御層は、背面側又は視認側の
基板等に直接その所定形態を付与して形成することもで
きるし、所定の形態を付与した透明シート等として形成
することもできる。光路制御層の厚さは、適宜に決定し
うるが一般には薄型化などの点より300μm以下、就
中5〜200μm、特に10〜100μmとされる。なお
光出射手段の横断面に基づく三〜五角形等の形状は、厳
密な多角形を意味せず、製造技術等に基づく角部の丸み
や面の角度変化などが許容される。
Therefore, the optical path control layer can be formed by directly giving a predetermined form to the back side or the viewing side substrate, or can be formed as a transparent sheet or the like having a predetermined form. Although the thickness of the optical path control layer can be appropriately determined, it is generally 300 μm or less, preferably 5 to 200 μm, and particularly 10 to 100 μm in view of reduction in thickness. The shape such as a trigonal to pentagonal shape based on the cross section of the light emitting means does not mean a strict polygonal shape, and the roundness of the corners and the angle change of the surface based on the manufacturing technology and the like are allowed.

【0090】光路制御層は、液晶表示パネルの背面側及
び視認側に配置されるがその場合、図1に例示の如くそ
の斜面形成面すなわち光出射手段A、Bを形成した面を
外表面側にして配置することが、光出射手段A、Bの光
路変換斜面A1、B1を介した反射効率、ひいては側面
入射光の有効利用による輝度向上の点などより好まし
い。
The optical path control layer is disposed on the back side and the viewing side of the liquid crystal display panel. In that case, the slope forming surface, that is, the surface on which the light emitting means A and B are formed is the outer surface side as illustrated in FIG. It is preferable to dispose the light emitting means A and B in terms of the reflection efficiency through the optical path conversion slopes A1 and B1 of the light emitting means A and B, and further from the viewpoint of improving the brightness by effectively utilizing the side incident light.

【0091】光路制御層、特に視認側の光路制御層は、
外光の表面反射による視認阻害の防止を目的にノングレ
ア処理や反射防止処理を施したものであってもよい。ノ
ングレア処理は、サンドブラスト方式やエンボス加工方
式等の粗面化方式、シリカ等の透明粒子の配合方式や透
明粒子を配合した樹脂の塗工方式などの種々の方式で表
面を微細凹凸構造化することにより施すことができ、反
射防止処理は、干渉性の蒸着膜を形成する方式などにて
施すことができる。
The optical path control layer, particularly the optical path control layer on the viewing side,
A non-glare treatment or an anti-reflection treatment may be performed for the purpose of preventing visual inhibition due to surface reflection of external light. The non-glare treatment is to make the surface a fine concavo-convex structure by various methods such as a surface roughening method such as a sand blast method or an embossing method, a method of mixing transparent particles such as silica or a method of coating a resin containing transparent particles. The antireflection treatment can be performed by a method of forming an interfering vapor deposition film or the like.

【0092】またノングレア処理や反射防止処理は、前
記の表面微細凹凸構造や干渉膜を付与したフィルムの接
着方式などにても施すことができる。なお偏光板は、図
例の如く液晶セルの両側に設けることもできるし、液晶
セルの片側にのみ設けることもできる。また前記した表
面微細凹凸構造化技術は、上記した光拡散層、半透過反
射層又は/及び透明基板の表面を凹凸式光散乱面とする
場合に適用することができる。さらに粘着層に配合する
上記した透明粒子は、前記のノングレア処理等にも用い
ることができる。
The non-glare treatment and the antireflection treatment can also be applied by the above-mentioned method of adhering a film provided with a surface fine uneven structure or an interference film. The polarizing plates may be provided on both sides of the liquid crystal cell as shown in the figure, or may be provided on only one side of the liquid crystal cell. Further, the above-described surface fine unevenness structuring technique can be applied when the surface of the light diffusion layer, the semi-transmissive reflective layer, and / or the transparent substrate described above is used as the uneven light scattering surface. Further, the above-mentioned transparent particles mixed in the adhesive layer can be used for the above-mentioned non-glare treatment and the like.

【0093】光路制御層を前記の如く透明シート等とし
て独立に形成した場合には、図例の如くその透明シート
等を上記した最寄りの低屈折率の透明層14、24より
も高い屈折率の接着層18、28、就中その透明シート
等と可及的に等しい屈折率の接着層、特にその透明シー
ト等と背面側又は視認側の透明基板との中間の屈折率の
接着層を介して液晶表示パネルに接着することが側面入
射光の有効利用による輝度向上の点などより好ましい。
When the optical path control layer is independently formed as a transparent sheet or the like as described above, the transparent sheet or the like has a refractive index higher than that of the nearest transparent layer 14 or 24 having a low refractive index as described above. Through the adhesive layers 18 and 28, and in particular, the adhesive layer having the same refractive index as that of the transparent sheet or the like, especially the intermediate adhesive layer between the transparent sheet or the like and the transparent substrate on the back side or the viewing side. Adhesion to the liquid crystal display panel is preferable from the standpoint of improving brightness by effectively utilizing side incident light.

【0094】従って前記接着層の屈折率は、上記した光
路制御層に準じうる。よって光路制御層と接着層の屈折
率は、最寄りの低屈折率の透明層よりも0.05以上高
いことが好ましい。接着層は、適宜な透明接着剤にて形
成でき、その接着剤の種類について特に限定はない。接
着処理作業の簡便性などの点よりは粘着層による接着方
式が好ましい。その粘着層については上記に準じること
ができ、上記した光拡散型の粘着層とすることもでき
る。
Therefore, the refractive index of the adhesive layer can be similar to that of the optical path control layer described above. Therefore, the refractive index of the optical path control layer and the adhesive layer is preferably higher than that of the nearest transparent layer having a low refractive index by 0.05 or more. The adhesive layer can be formed with an appropriate transparent adhesive, and the type of the adhesive is not particularly limited. The adhesive method using an adhesive layer is preferable from the viewpoint of simplicity of the adhesive treatment work. The adhesive layer can be based on the above, and the above-mentioned light diffusion type adhesive layer can also be used.

【0095】図1の例の如く、背面側の光路制御層4の
外側には必要に応じて光反射層6を配置することもでき
る。斯かる光反射層は、背面側の光路制御層を介した反
射光が液晶セル内部の半透過反射層にて反射反転されら
れて出射できなくなることを、再度その光反射層で反射
反転させて液晶セル方向に戻して光の利用効率、ひいて
は輝度を向上させることを目的とする。
As in the example shown in FIG. 1, a light reflection layer 6 can be disposed outside the optical path control layer 4 on the back side, if necessary. Such a light-reflecting layer is reflected and inverted again by the light-reflecting layer that the light reflected through the optical path control layer on the back side is reflected and inverted by the semi-transmissive reflecting layer inside the liquid crystal cell and cannot be emitted. The purpose is to return to the direction of the liquid crystal cell to improve the light utilization efficiency and thus the brightness.

【0096】また視認側の光路制御層を介した反射光の
半透過反射層を透過した光、及び外光モードにおいて半
透過反射層を透過した外光を反射反転させて液晶セル方
向に戻し、光の利用効率、ひいては輝度の向上にも有効
である。さらに背面側の光路制御層よりの漏れ光を反射
反転させて再入射させることによる光利用効率の向上に
も有効である。
Further, the light transmitted through the semi-transmissive reflective layer of the reflected light through the optical path control layer on the viewing side and the external light transmitted through the semi-transmissive reflective layer in the external light mode are reflected and inverted to return to the liquid crystal cell direction, It is also effective in improving the light utilization efficiency and, in turn, the brightness. Further, it is also effective in improving the light use efficiency by reflecting and inverting the leaked light from the optical path control layer on the back side and re-incident it.

【0097】光反射層は、従来に準じた白色シートなど
の適宜なものにて形成することができる。就中、例えば
アルミニウムや銀、金や銅やクロム等の高反射率の金属
ないしその合金の粉末をバインダ樹脂中に含有させた塗
工層、前記の金属等や誘電体多層膜を真空蒸着方式やス
パッタリング方式等の適宜な薄膜形成方式で付設してな
る金属薄膜等の層、前記の塗工層や付設層をフィルム等
からなる基材で支持した反射シート、金属箔などからな
る高反射率の光反射層、特に少なくとも金属薄膜を有す
る光反射層が反射効率等の点より好ましい。なお斯かる
光反射層の形成技術は、上記した半透過反射層の形成に
適用することができる。
The light-reflecting layer can be formed of an appropriate material such as a white sheet according to the related art. Above all, for example, a coating layer in which a powder of a metal or an alloy thereof having a high reflectance such as aluminum, silver, gold, copper, chromium, etc. is contained in a binder resin, the above metal, etc. and a dielectric multilayer film are vacuum deposited. Layer with a thin metal film attached by an appropriate thin film forming method such as a sputtering method or a sputtering method, a reflection sheet in which the coating layer or the additional layer is supported by a base material such as a film, and a high reflectance including a metal foil The light-reflecting layer, particularly, the light-reflecting layer having at least a metal thin film is preferable in terms of reflection efficiency. The technique for forming such a light reflection layer can be applied to the formation of the above-mentioned semi-transmissive reflection layer.

【0098】光反射層は、背面側の光路制御層の裏面に
隙間なく密着付設されていてもよい。隙間なく密着した
光反射層の形成は、光路制御層に対して例えば金属薄膜
を真空蒸着する方式、フィルム状の柔軟な光反射層を光
路制御層の形状に対応させて接着する方式などにより行
うことができる。後者の場合、接着層の屈折率は光路制
御層よりも小さいことが、伝送光を界面の屈折率差に基
づく全反射で効率的に伝送できて好ましい。
The light reflecting layer may be closely attached to the back surface of the optical path control layer on the back surface side without a gap. The formation of the light-reflecting layer in close contact with no space is performed by, for example, a method of vacuum-depositing a metal thin film on the optical path control layer, a method of adhering a film-like flexible light-reflecting layer in accordance with the shape of the optical path control layer, and the like. be able to. In the latter case, the refractive index of the adhesive layer is preferably smaller than that of the optical path control layer, because transmitted light can be efficiently transmitted by total reflection based on the difference in the refractive index of the interface.

【0099】また光反射層は、図1の例の如く背面側の
光路制御層4の光出射手段Aとは離れて光路制御層の裏
面に密着する状態、さらにはその裏面よりも離れた状態
で設けることもできる。このように光路制御層との間に
空気層が介在する状態で配置された光反射層の形成に
は、高反射率の金属シートや高反射率の金属薄膜をフィ
ルム等の支持基材に設けた反射シート、さらには発泡プ
ラスチックフィルムなどの白色フィルムなどが好ましく
用いられる。
Further, the light reflection layer is in a state in which it is in close contact with the back surface of the light path control layer apart from the light emitting means A of the light path control layer 4 on the back surface side as in the example of FIG. Can also be provided. In order to form the light-reflecting layer in such a manner that the air layer is interposed between the light-path control layer and the light-reflecting layer, a metal sheet having a high reflectance or a metal thin film having a high reflectance is provided on a supporting substrate such as a film. A reflective sheet and a white film such as a foamed plastic film are preferably used.

【0100】ちなみに図1の例では光反射層6bが支持
基材6aに付設した金属薄膜からなり、それが光利用効
率の向上を目的に光路制御層4よりも低屈折率の接着層
6cを介して接着されている。なお前記の反射シート等
からなる光反射層で背面側又は/及び視認側の側面に配
置した照明装置を密着包囲して、上記した光源ホルダを
兼用させることもできる。この方式は、照明装置による
光を基板側面に高度に集中させることができて輝度向上
の点より有利である。
By the way, in the example of FIG. 1, the light reflection layer 6b is made of a metal thin film attached to the supporting base material 6a, and it has an adhesive layer 6c having a refractive index lower than that of the optical path control layer 4 for the purpose of improving the light utilization efficiency. Are glued through. It is also possible to use the light source holder as described above by closely surrounding the lighting device arranged on the back side and / or the side surface on the viewing side with the light reflecting layer made of the above-mentioned reflecting sheet or the like. This method is advantageous in that the light from the lighting device can be highly concentrated on the side surface of the substrate and the brightness is improved.

【0101】光反射層は、鏡面であってもよいが、モア
レ防止の観点よりは光拡散機能を示すものが好ましい。
前記の如く光反射層は、背面側の光路制御層の外側に単
に重ね置いた状態にあってもよいし、接着方式や蒸着方
式などで密着配置された状態にあってもよい。図1の例
の如く光出射手段の斜面に光反射層を密着配置した場合
には、反射効果の向上で漏れ光をほぼ完全に防止でき視
角特性や輝度をより向上させうる利点などもある。
The light reflecting layer may be a mirror surface, but from the viewpoint of preventing moire, a layer having a light diffusing function is preferable.
As described above, the light reflecting layer may be simply placed on the outside of the optical path control layer on the back side, or may be closely attached by an adhesive method or a vapor deposition method. When the light reflecting layer is closely arranged on the slope of the light emitting means as in the example of FIG. 1, there is an advantage that the leaking light can be almost completely prevented by the improvement of the reflection effect and the viewing angle characteristics and the brightness can be further improved.

【0102】前記した光拡散型の反射層の形成は、例え
ばサンドブラストやマット処理等による表面の粗面化方
式や、粒子添加方式などの適宜な方式で表面を微細凹凸
構造としたフィルム等の支持基材などに、その微細凹凸
構造を反映させた光反射層を設ける方式などにより行う
ことができる。その光反射層の形成は、例えば真空蒸着
方式やイオンプレーティング方式、スパッタリング方式
等の蒸着方式やメッキ方式などの適宜な方式で金属を支
持基材等の表面に付設する方法などにより行うことがで
きる。斯かる光拡散型の反射層の形成技術は、上記した
半透過反射層の形成に適用することができる。
The formation of the above-mentioned light diffusion type reflection layer is carried out by supporting a film having a fine uneven structure on the surface by an appropriate method such as a surface roughening method by sandblasting or matting, or a particle addition method. It can be carried out by a method of providing a light reflecting layer reflecting the fine concavo-convex structure on a substrate or the like. The formation of the light-reflecting layer can be performed by a method of attaching a metal to the surface of the supporting substrate or the like by an appropriate method such as a vapor deposition method such as a vacuum vapor deposition method, an ion plating method, a sputtering method, or a plating method. it can. The technique for forming such a light diffusion type reflection layer can be applied to the formation of the above-mentioned semi-transmissive reflection layer.

【0103】本発明による液晶表示装置によれば、照明
モードにおいて入射側面よりの入射光の殆どが背面側及
び視認側の基板を介し、屈折の法則による反射を介して
後方に伝送されパネル表面よりの出射(漏れ)が防止さ
れつつ、光路制御層の光路変換斜面A1、B1に入射し
た光が効率よくパネルの表裏方向に垂直指向性よく光路
変換され、他の伝送光も全反射にて後方にさらに伝送さ
れて後方における光路変換斜面A1、B1に入射し効率
よくパネルの表裏方向に垂直指向性よく光路変換され
る。
According to the liquid crystal display device of the present invention, in the illumination mode, most of the incident light from the incident side surface is transmitted rearward through the substrates on the back side and the viewing side and through the reflection according to the law of refraction to the rear side of the panel. The light incident on the optical path conversion slopes A1 and B1 of the optical path control layer is efficiently converted to the front and back directions of the panel with good vertical directivity, and other transmitted light is also totally reflected backward. Is further transmitted to the optical path changing slopes A1 and B1 at the rear side, and the optical path is efficiently changed in the front and back directions of the panel with good vertical directivity.

【0104】次に前記の光路変換斜面で光路変換された
光は、半透過反射層に到達しそれを透過した光(背面
側)及びそれに反射された光(視認側)が液晶セルに入
射して表示光が形成され、パネル表示面の全面において
明るさの均一性に優れる表示を達成する。一方、外光モ
ードでは視認側より入射した外光が半透過反射層に到達
し、それに反射された光が液晶セルで表示光とされて、
パネル表示面の全面において明るさの均一性に優れる表
示が達成される。
Next, the light whose light path has been changed by the above-mentioned light path changing slope reaches the semi-transmissive reflection layer, and the light transmitted through it (back side) and the light reflected by it (viewing side) enter the liquid crystal cell. As a result, display light is formed to achieve display with excellent brightness uniformity over the entire display surface of the panel. On the other hand, in the external light mode, external light incident from the viewing side reaches the semi-transmissive reflective layer, and the light reflected by it is used as display light in the liquid crystal cell,
A display with excellent brightness uniformity is achieved on the entire panel display surface.

【0105】背面側の光路制御層の外側に光反射層を設
けた場合には、上記の如く光利用効率が向上して明るさ
がより向上する。従って外光、又は照明装置からの光を
効率よく利用して明るくて見やすく表示品位に優れる外
光・照明両用型の液晶表示装置を形成することができ
る。
When the light reflection layer is provided outside the optical path control layer on the back side, the light utilization efficiency is improved and the brightness is further improved as described above. Therefore, it is possible to form an external light / illumination type liquid crystal display device which is bright and easy to see and is excellent in display quality by efficiently utilizing external light or light from the lighting device.

【0106】なお本発明において上記した液晶表示装置
を形成する光路制御層や液晶セル、偏光板や位相差板等
の光学素子ないし部品は、全体的又は部分的に積層一体
化されて固着されていてもよいし、分離容易な状態に配
置されていてもよい。界面反射の抑制によるコントラス
トの低下防止などの点よりは固着状態にあることが好ま
しい。その固着密着処理には、粘着剤等の適宜な透明接
着剤を用いることができ、その透明接着層に上記した透
明粒子等を含有させて拡散機能を示す接着層などとする
こともできる。
In the present invention, the optical elements or parts such as the optical path control layer, the liquid crystal cell, the polarizing plate and the retardation plate forming the above-mentioned liquid crystal display device are wholly or partially laminated and fixed integrally. Alternatively, they may be arranged in an easily separable state. The fixed state is preferable from the standpoint of preventing the reduction of the contrast by suppressing the interface reflection. An appropriate transparent adhesive such as a pressure-sensitive adhesive can be used for the fixing and adhesion treatment, and the transparent adhesive layer can be made to contain the above-mentioned transparent particles or the like to form an adhesive layer having a diffusion function.

【0107】また前記の光学素子ないし部品、特に視認
側のそれには例えばサリチル酸エステル系化合物やベン
ゾフェノン系化合物、ベンゾトリアゾール系化合物やシ
アノアクリレート系化合物、ニッケル錯塩系化合物等の
紫外線吸収剤で処理する方式などにより紫外線吸収能を
もたせることもできる。
The above-mentioned optical elements or parts, especially those on the viewing side, are treated with an ultraviolet absorber such as a salicylate compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex salt compound. For example, it is possible to have an ultraviolet absorbing ability.

【0108】[0108]

【実施例】参考例1 厚さ0.7mm、屈折率1.52の無アルカリガラス板に
フッ化マグネシウムを真空蒸着して厚さ600nm、屈折
率1.38の低屈折率透明層を形成し、その上に表面微
細凹凸構造の樹脂層を設けた。次にその上にアルミニウ
ムを真空蒸着し、エッチング方式で250μm角の開口
を20%の開口率で均等に分布するように形成して電極
を兼ねる半透過反射層を設け、その上にポリビニルアル
コール溶液をスピンコートしてその乾燥膜をラビング処
理して背面側の基板を得た。一方、前記と同様の無アル
カリガラス板に低屈折率透明層とITO透明導電層を形
成し、その透明電極をエッチングして2分割した後、そ
の上にラビング処理膜を設けて視認側基板を得た。
EXAMPLES Reference Example 1 Magnesium fluoride was vacuum-deposited on a non-alkali glass plate having a thickness of 0.7 mm and a refractive index of 1.52 to form a low refractive index transparent layer having a thickness of 600 nm and a refractive index of 1.38. Then, a resin layer having a surface fine uneven structure was provided thereon. Next, aluminum is vacuum-deposited on it, and openings of 250 μm square are formed by etching so as to be evenly distributed with an opening ratio of 20% to provide a semi-transmissive reflective layer which also serves as an electrode, on which a polyvinyl alcohol solution is provided. Was spin-coated and the dried film was rubbed to obtain a backside substrate. On the other hand, a low-refractive-index transparent layer and an ITO transparent conductive layer are formed on an alkali-free glass plate similar to the above, the transparent electrode is etched and divided into two, and a rubbing treatment film is provided on the transparent electrode to form the viewing side substrate. Obtained.

【0109】ついで前記の背面側基板と視認側基板をそ
のラビング面をラビング方向が直交するように対向させ
てギャップ調節材を配し、周囲をエポキシ樹脂でシール
したのち液晶(メルク社製、ZLI−4792)を注入
してTN系液晶セルを形成し、その両面に位相差板付き
偏光板を貼着してノーマリーホワイトの液晶パネルを得
た。そのパネルサイズは、幅25mm、長さ37mmで、そ
の長さ方向の背面側及び視認側の基板の一側面が他方側
の基板よりも約3mm突出したものである。次にそのパネ
ルの対向側面における背面側と視認側の各基板の突出側
面に直径1.8mmの冷陰極管を中心対応させて配置し、
銀蒸着のポリエステルフィルムで包囲してフィルム端部
を各基板の表裏面の端部に両面粘着テープで接着し冷陰
極管を保持固定した。
Then, the back side substrate and the viewing side substrate are made to face each other so that the rubbing surfaces thereof are orthogonal to each other, a gap adjusting material is arranged, and the periphery is sealed with an epoxy resin, and then liquid crystal (ZLI manufactured by Merck & Co., Inc.) is used. -4792) was injected to form a TN liquid crystal cell, and polarizing plates with retardation plates were attached to both surfaces thereof to obtain a normally white liquid crystal panel. The panel size is 25 mm in width and 37 mm in length, and one side surface of the substrate on the back side and the viewing side in the length direction protrudes by about 3 mm from the substrate on the other side. Next, a cold cathode tube having a diameter of 1.8 mm is arranged so as to correspond to the center on the rear side of the opposite side of the panel and the protruding side of each substrate on the viewing side.
The film was surrounded by a silver vapor-deposited polyester film, and the ends of the film were adhered to the front and back ends of each substrate with double-sided adhesive tape to hold and fix the cold cathode tube.

【0110】参考例2 背面側及び視認側の基板にフッ化マグネシウムからなる
低屈折率透明層を設けないほかは参考例1に準じて液晶
パネルを得た。
Reference Example 2 A liquid crystal panel was obtained in the same manner as in Reference Example 1, except that the low-refractive-index transparent layers made of magnesium fluoride were not provided on the back and viewing side substrates.

【0111】参考例3 予め所定形状に加工した金型にアクリル系の紫外線硬化
型樹脂(東亞合成社製、アロニックスUV−3701)
をスポイトにて滴下充填し、その上に厚さ60μmのポ
リカーボネート(PC)フィルムを静置しゴムローラで
密着させて余分な樹脂と気泡を除去しメタルハライドラ
ンプにて紫外線を照射して硬化処理した後、金型から剥
離し所定寸法に裁断してPCフィルムを剥離し、屈折率
1.51の光路制御層(透明シート)を得、その光路制
御層を有しない面に屈折率1.51のアクリル系粘着層
を付設した。
Reference Example 3 Acrylic UV curable resin (Aronix UV-3701, manufactured by Toagosei Co., Ltd.) was applied to a mold which had been processed into a predetermined shape in advance.
After dropping and filling with a dropper, a polycarbonate (PC) film with a thickness of 60 μm was left standing and adhered with a rubber roller to remove excess resin and bubbles, and after being irradiated with ultraviolet rays with a metal halide lamp and cured. Then, the PC film is peeled off from the mold and cut into a predetermined size to obtain an optical path control layer (transparent sheet) having a refractive index of 1.51, and an acrylic film having a refractive index of 1.51 is provided on the surface having no optical path controlling layer. A system adhesive layer was attached.

【0112】なお前記の透明シートは、幅22mm、長さ
28mmであり、稜線が幅方向にわたり21度の角度で傾
斜するプリズム状凹部を190μmのピッチで連続して
有し、その光路変換斜面の傾斜角が42度で急斜面との
頂角が70度であり(図3b)、光路変換斜面の基準平
面に対する投影幅が7〜12μmで、平坦部(A3)の
面積が光路変換斜面と急斜面の基準平面に対する投影合
計面積の10倍以上のものからなる。
The transparent sheet has a width of 22 mm and a length of 28 mm, and has prism-shaped concave portions whose ridge lines are inclined at an angle of 21 degrees over the width direction in a continuous manner at a pitch of 190 μm. The inclination angle is 42 degrees, the apex angle with the steep slope is 70 degrees (FIG. 3b), the projection width of the optical path conversion slope with respect to the reference plane is 7 to 12 μm, and the area of the flat portion (A3) is between the optical path conversion slope and the steep slope. It consists of 10 times or more of the total projected area with respect to the reference plane.

【0113】参考例4 異なる金型を用いて参考例3に準じ粘着層付の透明シー
トを得た。この透明シートは、傾斜角が約42度で基準
平面に対する投影幅が10μmの光路変換斜面と傾斜角
が約75度の急斜面からなる長さ80μmの光出射手段
(図3b)をその長さ方向が入射側面に平行な状態で有
し、かつその光出射手段を長さ方向の入射側面より遠離
るほど徐々に高密度に配置したものであり(図5、図
7)、平坦部(A3)の面積は、光路変換斜面と急斜面
の基準平面に対する投影合計面積の10倍以上である。
Reference Example 4 A transparent sheet with an adhesive layer was obtained according to Reference Example 3 using different molds. This transparent sheet has a light emitting means (FIG. 3b) having a length of 80 μm, which comprises an optical path changing slope having a slope of about 42 ° and a projection width of 10 μm on a reference plane and a steep slope having a slope of about 75 °. Is parallel to the incident side surface, and the light emitting means is arranged at a higher density as the distance from the incident side surface in the longitudinal direction increases (FIGS. 5 and 7), and the flat portion (A3). Area is 10 times or more the total projected area of the optical path conversion slope and the steep slope with respect to the reference plane.

【0114】参考例5 サンドブラストにて表面を粗面化加工した金型を用いた
ほかは参考例3に準じ粘着層付の透明シートを得た。
Reference Example 5 A transparent sheet with an adhesive layer was obtained according to Reference Example 3 except that a mold whose surface was roughened by sandblasting was used.

【0115】参考例6 異なる金型を用いて参考例3に準じ粘着層付の透明シー
トを得た。この透明シートは、プリズム状凹部を190
μmのピッチで連続して有し(図3b)、その光路変換
斜面の傾斜角が30度で急斜面との頂角が70度、光路
変換斜面の基準平面に対する投影幅が7〜12μmで、
平坦部(A3)の面積が光路変換斜面と急斜面の基準平
面に対する投影合計面積の10倍以上のものからなる。
Reference Example 6 A transparent sheet with an adhesive layer was obtained according to Reference Example 3 using different molds. This transparent sheet has a prism-shaped recess 190
It has continuously at a pitch of μm (FIG. 3b), the inclination angle of the optical path conversion slope is 30 degrees, the apex angle with the steep slope is 70 degrees, and the projection width of the optical path conversion slope with respect to the reference plane is 7 to 12 μm.
The flat part (A3) has an area of 10 times or more of the total projected area of the optical path conversion slope and the steep slope with respect to the reference plane.

【0116】参考例7 参考例3に準じて形成した光路制御層の光出射手段形成
面にアルミニウムを真空蒸着して光反射層を設けた透明
シートを得た。
Reference Example 7 Aluminum was vacuum-deposited on the light emitting means forming surface of the optical path control layer formed according to Reference Example 3 to obtain a transparent sheet provided with a light reflecting layer.

【0117】参考例8 透明なプラスチックフィルムの表面にアルミニウムを真
空蒸着して光反射シートを得た。
Reference Example 8 Aluminum was vacuum-deposited on the surface of a transparent plastic film to obtain a light reflecting sheet.

【0118】参考例9 透明なプラスチックフィルムの表面にアルミニウムを真
空蒸着し、その上に屈折率1.41の粘着層を形成して
光反射シートを得た。
Reference Example 9 Aluminum was vacuum-deposited on the surface of a transparent plastic film, and an adhesive layer having a refractive index of 1.41 was formed thereon to obtain a light reflecting sheet.

【0119】実施例1 参考例1の液晶パネルの背面側及び視認側に参考例3の
透明シートを光路変換斜面が対応の照明装置と対面する
ようにその粘着層を介して接着し、その背面側に参考例
8の光反射シートを周辺のみ粘着層を介し接着して液晶
表示装置を得た。
Example 1 The transparent sheet of Reference Example 3 was adhered to the rear side and the viewing side of the liquid crystal panel of Reference Example 1 via the adhesive layer so that the optical path conversion slope faces the corresponding illuminating device, and the back side thereof. The light-reflecting sheet of Reference Example 8 was adhered to the side only through the adhesive layer to obtain a liquid crystal display device.

【0120】実施例2 光反射シートとして参考例9のものを用いたほかは実施
例1に準じて液晶表示装置を得た。
Example 2 A liquid crystal display device was obtained in the same manner as in Example 1 except that the light reflecting sheet of Reference Example 9 was used.

【0121】実施例3 参考例3の透明シートに代えて参考例4の透明シートを
用いたほかは実施例1に準じて液晶表示装置を得た。
Example 3 A liquid crystal display device was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 4 was used in place of the transparent sheet of Reference Example 3.

【0122】実施例4 背面側の透明シートとして参考例3のものに代えて参考
例7のものを用い、参考例8の光反射シートを用いない
ほかは実施例1に準じて液晶表示装置を得た。
Example 4 A liquid crystal display device was prepared in the same manner as in Example 1 except that the transparent sheet on the back side was replaced with that of Reference Example 7 and the light reflecting sheet of Reference Example 8 was not used. Obtained.

【0123】実施例5 背面側の透明シートとして参考例3のものに代えて参考
例4のものを用いたほかは実施例1に準じて液晶表示装
置を得た。
Example 5 A liquid crystal display device was obtained in the same manner as in Example 1 except that the transparent sheet on the back side was replaced with that of Reference Example 3 instead of that of Reference Example 4.

【0124】比較例1 参考例1の液晶パネルに代えて参考例2の液晶パネルを
用いたほかは実施例1に準じて液晶表示装置を得た。
Comparative Example 1 A liquid crystal display device was obtained in the same manner as in Example 1 except that the liquid crystal panel of Reference Example 2 was used instead of the liquid crystal panel of Reference Example 1.

【0125】比較例2 参考例1の液晶パネルに代えて参考例2の液晶パネルを
用いたほかは実施例2に準じて液晶表示装置を得た。
Comparative Example 2 A liquid crystal display device was obtained in the same manner as in Example 2 except that the liquid crystal panel of Reference Example 2 was used instead of the liquid crystal panel of Reference Example 1.

【0126】比較例3 参考例3の透明シートに代えて参考例5の透明シートを
用いたほかは実施例1に準じて液晶表示装置を得た。
Comparative Example 3 A liquid crystal display device was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 5 was used instead of the transparent sheet of Reference Example 3.

【0127】比較例4 参考例3の透明シートに代えて参考例6の透明シートを
用いたほかは実施例1に準じて液晶表示装置を得た。
Comparative Example 4 A liquid crystal display device was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 6 was used instead of the transparent sheet of Reference Example 3.

【0128】比較例5 視認側に参考例3の透明シートを配置しないほかは実施
例1に準じて液晶表示装置を得た。
Comparative Example 5 A liquid crystal display device was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 3 was not placed on the viewing side.

【0129】比較例6 背面側に参考例3の透明シートを配置しないほかは実施
例1に準じて液晶表示装置を得た。
Comparative Example 6 A liquid crystal display device was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 3 was not arranged on the back side.

【0130】評価試験 実施例、比較例で得た液晶表示装置について、暗室にて
液晶セルに電圧を印加しない状態で冷陰極管を点灯さ
せ、中央位置での正面輝度を輝度計(トプコン社製、B
M7)にて調べた。また入射側面端、中央部及び対向端
で照明モードによる表示を観察した場合の表示品位を評
価した。評価は、明るくてその均一性に優れ良好に光が
出射している場合を○、明るさやその均一性にやや劣る
場合△、暗くて不均一な場合を×とした。
Evaluation Test Regarding the liquid crystal display devices obtained in Examples and Comparative Examples, the cold cathode tube was turned on in a dark room with no voltage applied to the liquid crystal cell, and the front luminance at the center position was measured by a luminance meter (manufactured by Topcon Corporation). , B
M7). Further, the display quality was evaluated when the display in the illumination mode was observed at the incident side surface end, the central part, and the opposite end. The evaluation was evaluated as ◯ when the light was bright and excellent in uniformity and satisfactorily emitted, and Δ when the brightness and the uniformity were slightly inferior, and x when dark and non-uniform.

【0131】前記の結果を次表に示した。 正面輝度 表 示 品 位 (cd/m 入射側面端 中央部 対向端 実施例1 89 ○ ○ ○ 実施例2 80 ○ ○ ○ 実施例3 84 ○ ○ ○ 実施例4 78 ○ ○ △ 実施例5 82 ○ ○ △ 比較例1 33 ○ × × 比較例2 29 ○ × × 比較例3 28 △ △ × 比較例4 33 ○ △ × 比較例5 52 ○ △ △ 比較例6 48 ○ △ △The above results are shown in the following table. Front luminance display Quality (cd / m 2 ) Incident side edge Central part Opposite edge Example 1 89 ○ ○ ○ Example 2 80 ○ ○ ○ Example 3 84 ○ ○ ○ Example 4 78 ○ ○ △ Example 5 82 ○ ○ △ Comparative Example 1 33 ○ × × Comparative Example 2 29 ○ × × Comparative Example 3 28 △ △ × Comparative Example 4 33 ○ △ × Comparative Example 5 52 ○ △ △ Comparative Example 6 48 ○ △ △

【0132】表より、実施例では照明モードにおいて明
るくて均一な表示が達成されているが、比較例では非常
に暗いか不均一な表示であることがわかる。また低屈折
率透明層を有する実施例1、2では明るさとその均一性
が高いが、低屈折率透明層を有しない比較例1、2では
入射側面より遠離るほど急激に暗くなり、半透過反射層
の影響と思われる明るさの不均一性の大きいことがわか
り、非常に見ずらい表示であった。
From the table, it can be seen that bright and uniform display is achieved in the illumination mode in the example, but very dark or non-uniform display is achieved in the comparative example. Further, in Examples 1 and 2 having the low refractive index transparent layer, the brightness and the uniformity thereof are high, but in Comparative Examples 1 and 2 not having the low refractive index transparent layer, the distance becomes farther from the incident side surface, and the light becomes sharper and the semi-transmission occurs. It was found that there was a large degree of non-uniformity in brightness, which was probably due to the effect of the reflective layer, and the display was extremely difficult to see.

【0133】さらに実施例4の光反射層が光路制御層に
隙間なく密着するタイプや、実施例5の視認側と背面側
で光路制御層の種類が相違するタイプであっても明るい
良好な照明を実現できていることがわかる。またさらに
比較例5、6では光路制御層の片側のみの配置で実施例
に対し輝度が大きく低減していることがわかる。加え
て、光路制御層を粗面とした比較例3や光路制御層の斜
面角度が小さい比較例4では光の出射が効果的になされ
ず暗かった。
Furthermore, even if the light reflecting layer of Example 4 is in close contact with the optical path control layer without a gap, or the type of the optical path control layer on the viewing side and the back side of Example 5 is different, bright and good illumination is obtained. It can be seen that Further, in Comparative Examples 5 and 6, it can be seen that the brightness is greatly reduced as compared with the Examples by disposing only one side of the optical path control layer. In addition, in Comparative Example 3 in which the optical path control layer was a rough surface and Comparative Example 4 in which the slope angle of the optical path control layer was small, light was not effectively emitted and it was dark.

【0134】一方、実施例において冷陰極管の一方ずつ
を点灯して観察したところ、光出射の角度特性が視認側
と背面側とでは全く異なっていた。すなわちいずれの場
合も照明装置とは反対の方向に強く出射しており非対称
であった。このことは、比較例5、6のように、いずれ
か一方の側に光路制御層を形成したケースでも同様であ
って、視角に対し光源側とは反対側により多くの光が出
射していた。これに対し、実施例では二灯とも点灯させ
た場合、それぞれがお互いを補う角度で出射しており、
より広い角度に効果的に照明できていることがわかっ
た。
On the other hand, when one of the cold cathode tubes was turned on and observed in the example, the angle characteristics of light emission were completely different between the viewing side and the back side. That is, in each case, the light was strongly emitted in the direction opposite to the illuminating device and was asymmetric. This also applies to the case where the optical path control layer is formed on either side as in Comparative Examples 5 and 6, and more light is emitted to the side opposite to the light source side with respect to the viewing angle. . On the other hand, in the embodiment, when both lights are turned on, each emits at an angle that complements each other,
It turns out that it can effectively illuminate a wider angle.

【0135】実施例、比較例のいずれの場合も外光モー
ドでは良好な見え方をしており、低屈折率透明層の影響
は全く認められなかった。以上より、本発明により導光
板を用いることなく、液晶パネル端面に光源装置を設け
るだけで発光可能な、薄くて軽量な外光・照明両用型の
液晶表示装置を実現されていることがわかる。
In both the examples and the comparative examples, the appearance was good in the external light mode, and no influence of the low refractive index transparent layer was observed. From the above, it is understood that the present invention realizes a thin and lightweight external light / illumination type liquid crystal display device capable of emitting light only by providing a light source device on an end face of a liquid crystal panel without using a light guide plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の説明断面図FIG. 1 is an explanatory sectional view of an embodiment.

【図2】光路制御層における光出射手段の側面説明図FIG. 2 is a side view of a light emitting means in the optical path control layer.

【図3】さらに他の実施例の斜視説明図FIG. 3 is a perspective explanatory view of still another embodiment.

【図4】さらに他の実施例の斜視説明図FIG. 4 is an explanatory perspective view of still another embodiment.

【図5】光路制御層例の側面説明図FIG. 5 is an explanatory side view of an example of an optical path control layer.

【図6】他の光路制御層例の側面説明図FIG. 6 is a side view for explaining another example of the optical path control layer.

【符号の説明】[Explanation of symbols]

1:液晶表示パネル 10、20:透明基板 11:半透過反射層 21:透明電極 12、22:配向膜 14、24:低屈折率の透明層 15、25:偏光板 16、26:位相差板 23:カラーフィルタ 30:液晶 4、41:光路制御層 A、B:光出射手段 A1、B1:光路変換斜面 5、52:照明装置 6:光反射層 1: Liquid crystal display panel 10, 20: Transparent substrate 11: Semi-transmissive reflective layer 21: Transparent electrode 12, 22: Alignment film 14, 24: transparent layer with low refractive index 15, 25: Polarizing plate 16, 26: Retardation plate 23: Color filter 30: Liquid crystal 4, 41: Optical path control layer A, B: Light emitting means A1, B1: Optical path conversion slope 5, 52: Lighting device 6: Light reflection layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 9/00 313 G09F 9/00 313 324 324 336 336B 336J 348 348C 9/30 310 9/30 310 330 330Z 349 349Z 9/35 9/35 // F21Y 103:00 F21Y 103:00 (72)発明者 木下 亮児 大阪府茨木市下穂積1丁目1番2号日東電 工株式会社内 (72)発明者 網野 一郎 大阪府茨木市下穂積1丁目1番2号日東電 工株式会社内 (72)発明者 有吉 俊彦 大阪府茨木市下穂積1丁目1番2号日東電 工株式会社内 Fターム(参考) 2H042 DA02 DA12 DA15 DA17 DA21 DB01 DB08 DC02 DE04 2H091 FA02Y FA08X FA08Z FA11X FA11Z FA15X FA15Y FA16Y FA41Y FD06 GA01 GA06 LA11 5C094 AA02 AA06 AA10 BA43 DA11 EA05 EA06 EB02 ED01 ED14 ED20 5G435 AA02 AA03 BB12 BB15 BB16 DD09 DD11 DD13 EE22 EE27 EE33 EE37 FF01 FF02 FF03 FF05 FF08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G09F 9/00 313 G09F 9/00 313 324 324 336 336B 336J 348 348C 9/30 310 9/30 310 330 330 330Z 349 349Z 9/35 9/35 // F21Y 103: 00 F21Y 103: 00 (72) Inventor Ryoji Kinoshita 1-2-1, Shimohozumi Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation (72) Inventor Ichiro Amino Nitto Denko Co., Ltd. 1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture (72) Inventor Toshihiko Ariyoshi 1-2 1-2 Shimohozumi Shimohozumi, Ibaraki City, Osaka Prefecture F-Term (reference) 2H042 DA02 DA12 DA15 DA17 DA21 DB01 DB08 DC02 DE04 2H091 FA02Y FA08X FA08Z FA11X FA11Z FA15X FA15Y FA16Y FA41Y FD06 GA01 GA06 LA11 5C094 AA02 AA0 6 AA10 BA43 DA11 EA05 EA06 EB02 ED01 ED14 ED20 5G435 AA02 AA03 BB12 BB15 BB16 DD09 DD11 DD13 EE22 EE27 EE33 EE37 FF01 FF02 FF03 FF05 FF08

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 透明基板にその基板よりも低屈折率の透
明層及び光を透過しかつ反射する半透過反射層を少なく
とも有する背面側基板と、透明基板にその基板よりも低
屈折率の透明層及び透明電極を少なくとも有する視認側
基板とを、それらの電極側を対向させて配置した間に液
晶を挟持してなる液晶セルを少なくとも具備する液晶表
示パネルにおける2以上の側面に照明装置を有し、かつ
前記背面側基板と視認側基板の外側にその基板の基準平
面に対する傾斜角が35〜48度の光路変換斜面の複数
を有すると共に、前記最寄りの低屈折率の透明層よりも
屈折率が高い光路制御層を設けてなり、前記の照明装置
が背面側と視認側の各基板の側面であって、かつ液晶表
示パネルの異なる側面に少なくとも配置されてなること
を特徴とする液晶表示装置。
1. A back side substrate having at least a transparent layer having a refractive index lower than that of the transparent substrate and a semi-transmissive reflective layer transmitting and reflecting light, and a transparent substrate having a refractive index lower than that of the transparent substrate. An illuminating device is provided on two or more side surfaces of a liquid crystal display panel including at least a liquid crystal cell in which a liquid crystal cell is sandwiched between a viewing side substrate having at least a layer and a transparent electrode, the electrode sides facing each other. And a plurality of optical path changing slopes having an inclination angle of 35 to 48 degrees with respect to the reference plane of the rear side substrate and the viewing side substrate, and having a refractive index higher than that of the nearest transparent layer having a low refractive index. A liquid crystal display panel characterized by being provided with a high optical path control layer, and wherein the lighting device is arranged at least on the side surfaces of the back side and the viewing side of the respective substrates, and on different side surfaces of the liquid crystal display panel. Indicating device.
【請求項2】 請求項1において、低屈折率の透明層が
透明基板と半透過反射層又は透明電極の間に位置し、そ
の半透過反射層が電極を兼ねる液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein the transparent layer having a low refractive index is located between the transparent substrate and the semi-transmissive reflective layer or the transparent electrode, and the semi-transmissive reflective layer also serves as an electrode.
【請求項3】 請求項1において、背面側基板を形成す
る透明基板の上に低屈折率の透明層を介して凹凸式光散
乱面を有する半透過反射層を有し、かつその半透過反射
層の上に表面平滑な透明絶縁層を介して透明電極を有す
る液晶表示装置。
3. The semi-transmissive reflection layer having a concave-convex light-scattering surface via a transparent layer having a low refractive index on a transparent substrate forming the back-side substrate, and the semi-transmissive reflection thereof. A liquid crystal display device having a transparent electrode on a layer through a transparent insulating layer having a smooth surface.
【請求項4】 請求項1〜3において、背面側基板の側
に配置した光路制御層の外側に光反射層を有する液晶表
示装置。
4. The liquid crystal display device according to claim 1, further comprising a light reflection layer outside the optical path control layer arranged on the rear substrate side.
【請求項5】 請求項4において、光反射層が少なくと
も金属薄膜を有するものである液晶表示装置。
5. The liquid crystal display device according to claim 4, wherein the light reflection layer has at least a metal thin film.
【請求項6】 請求項4又は5において、光反射層が光
路制御層に隙間なく密着する液晶表示装置。
6. The liquid crystal display device according to claim 4, wherein the light reflection layer is in close contact with the optical path control layer without a gap.
【請求項7】 請求項4又は5において、光反射層と光
路制御層との間に空気層が介在する液晶表示装置。
7. The liquid crystal display device according to claim 4, wherein an air layer is interposed between the light reflection layer and the optical path control layer.
【請求項8】 請求項4〜7において、光反射層がフィ
ルム状のものからなり、その光反射層が光路制御層より
も小さい屈折率の接着手段で光路制御層に接着されてな
る液晶表示装置。
8. The liquid crystal display according to claim 4, wherein the light reflection layer is made of a film, and the light reflection layer is adhered to the light path control layer by an adhesive means having a refractive index smaller than that of the light path control layer. apparatus.
【請求項9】 請求項8において、光反射層が少なくと
も基材フィルムに金属薄膜を設けたものからなる液晶表
示装置。
9. The liquid crystal display device according to claim 8, wherein the light reflection layer comprises at least a base film provided with a metal thin film.
【請求項10】 請求項1〜9において、背面側又は視
認側の基板を形成する透明基板と最寄りの低屈折率の透
明層との屈折率差が0.05以上である液晶表示装置。
10. The liquid crystal display device according to claim 1, wherein a difference in refractive index between the transparent substrate forming the rear side or the viewing side substrate and the nearest transparent layer having a low refractive index is 0.05 or more.
【請求項11】 請求項1〜10において、液晶セルの
背面側又は視認側の基板を形成する透明基板が光学的に
等方性の材料からなる液晶表示装置。
11. The liquid crystal display device according to claim 1, wherein the transparent substrate forming the substrate on the back side or the viewing side of the liquid crystal cell is made of an optically isotropic material.
【請求項12】 請求項1〜11において、液晶表示パ
ネルが液晶セルの片側又は両側に偏光板を有する液晶表
示装置。
12. The liquid crystal display device according to claim 1, wherein the liquid crystal display panel has polarizing plates on one side or both sides of the liquid crystal cell.
【請求項13】 請求項12において、液晶表示パネル
が液晶セルと偏光板の間に1層又は2層以上の位相差板
を有する液晶表示装置。
13. The liquid crystal display device according to claim 12, wherein the liquid crystal display panel has one or more layers of retardation film between the liquid crystal cell and the polarizing plate.
【請求項14】 請求項1〜13において、光路制御層
が照明装置と対面する状態の光路変換斜面を具備するプ
リズム状凹凸の複数を有してなる液晶表示装置。
14. The liquid crystal display device according to claim 1, wherein the optical path control layer has a plurality of prism-shaped concavities and convexities provided with an optical path conversion inclined surface facing the lighting device.
【請求項15】 請求項14において、光路制御層のプ
リズム状凹凸が横断面三角形の凹部からなる液晶表示装
置。
15. The liquid crystal display device according to claim 14, wherein the prismatic irregularities of the optical path control layer are concave portions having a triangular cross section.
【請求項16】 請求項15において、プリズム状凹部
が照明装置を配置した液晶表示パネルの側面に平行な又
は傾斜した稜線方向で光路制御層の一端から他端にわた
る連続溝からなる液晶表示装置。
16. The liquid crystal display device according to claim 15, wherein the prismatic concave portion is a continuous groove extending from one end to the other end of the optical path control layer in a ridge direction parallel or inclined to a side surface of the liquid crystal display panel on which the illumination device is arranged.
【請求項17】 請求項14において、プリズム状凹部
が不連続溝からなり、その溝の長さが深さの5倍以上で
ある液晶表示装置。
17. The liquid crystal display device according to claim 14, wherein the prismatic concave portion is a discontinuous groove, and the length of the groove is 5 times or more the depth.
【請求項18】 請求項17において、プリズム状凹部
の不連続溝の長さ方向が照明装置を配置した液晶表示パ
ネルの側面と平行又は傾斜した状態にある液晶表示装
置。
18. The liquid crystal display device according to claim 17, wherein the lengthwise direction of the discontinuous groove of the prismatic concave portion is parallel or inclined to the side surface of the liquid crystal display panel on which the illumination device is arranged.
【請求項19】 請求項14において、背面側又は視認
側の少なくとも一方の基板の対向する2側面に照明装置
が配置されており、その2側面に照明装置が配置された
基板に設けた光路制御層のプリズム状凹凸がその照明装
置と対面する光路変換斜面を2面有する横断面三角形又
は横断面四角形の凹部又は凸部からなる液晶表示装置。
19. The lighting device according to claim 14, wherein the illuminating device is arranged on two opposite side faces of at least one of the rear side and the viewing side substrate, and the optical path control is provided on the substrate on which the illuminating device is arranged on the two side faces. A liquid crystal display device, wherein the prismatic irregularities of the layer are concave or convex portions having a triangular cross section or a quadrangular cross section having two optical path conversion slopes facing the illuminating device.
【請求項20】 請求項1〜19において、光路制御層
における光路変換斜面の当該傾斜角が38〜45度であ
る液晶表示装置。
20. The liquid crystal display device according to claim 1, wherein the inclination angle of the optical path conversion slope in the optical path control layer is 38 to 45 degrees.
【請求項21】 請求項1〜20において、光路制御層
が透明シートからなり、それが最寄りの低屈折率の透明
層よりも高い屈折率の接着層を介し液晶表示パネルの外
表面側に接着されてなる液晶表示装置。
21. The optical path control layer according to claim 1, comprising a transparent sheet, which is adhered to the outer surface side of the liquid crystal display panel via an adhesive layer having a higher refractive index than the nearest transparent layer having a low refractive index. Liquid crystal display device.
【請求項22】 請求項21において、接着層が粘着層
からなる液晶表示装置。
22. The liquid crystal display device according to claim 21, wherein the adhesive layer is an adhesive layer.
【請求項23】 請求項1〜22において、光路制御層
及び接着層の屈折率が最寄りの低屈折率の透明層よりも
0.05以上高いものである液晶表示装置。
23. The liquid crystal display device according to claim 1, wherein the optical path control layer and the adhesive layer have a refractive index higher than that of the nearest transparent layer having a low refractive index by 0.05 or more.
【請求項24】 請求項1〜23において、照明装置が
光反射型の光源ホルダにて包囲され、かつその光源ホル
ダの端部を介し視認側基板又は背面側基板の上下面の端
部に接着する方式で視認側基板又は背面側基板の側面に
配置保持されてなる液晶表示装置。
24. The lighting device according to any one of claims 1 to 23, wherein the lighting device is surrounded by a light-reflecting light source holder, and is bonded to an end portion of an upper surface and a lower surface of a viewing-side substrate or a rear-side substrate through an end portion of the light source holder. Liquid crystal display device which is arranged and held on the side surface of the viewing side substrate or the back side substrate by the above method.
【請求項25】 請求項1〜24において、照明装置が
背面側と視認側の各基板の側面であって、かつ液晶表示
パネルの対向する側面に少なくとも配置されてなる液晶
表示装置。
25. The liquid crystal display device according to any one of claims 1 to 24, wherein the lighting device is arranged at least on a side surface of each of the back side and the viewing side of the substrate and on an opposite side surface of the liquid crystal display panel.
【請求項26】 請求項1〜25において、背面側基板
における低屈折率の透明層と半透過反射層の間に液晶駆
動用の回路が形成されてなる液晶表示装置。
26. The liquid crystal display device according to claim 1, wherein a circuit for driving a liquid crystal is formed between the transparent layer having a low refractive index and the semi-transmissive reflective layer on the rear substrate.
JP2001251284A 2001-08-22 2001-08-22 Liquid crystal display Expired - Fee Related JP4814452B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001251284A JP4814452B2 (en) 2001-08-22 2001-08-22 Liquid crystal display
US10/225,532 US7030945B2 (en) 2001-08-22 2002-08-22 Liquid-crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251284A JP4814452B2 (en) 2001-08-22 2001-08-22 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2003066445A true JP2003066445A (en) 2003-03-05
JP4814452B2 JP4814452B2 (en) 2011-11-16

Family

ID=19079953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251284A Expired - Fee Related JP4814452B2 (en) 2001-08-22 2001-08-22 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4814452B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734501A1 (en) * 2004-03-12 2006-12-20 Fujitsu Limited Display and method for driving same
WO2007086456A1 (en) * 2006-01-27 2007-08-02 Enplas Corporation Surface light source and display
WO2008020685A1 (en) * 2006-08-17 2008-02-21 Lg Innotek Co., Ltd. Display device and mobile terminal having the same
KR100812043B1 (en) * 2006-08-17 2008-03-10 엘지이노텍 주식회사 Display apparatus and mobile device using display apparatus
JP4825926B1 (en) * 2010-10-29 2011-11-30 株式会社東芝 Display device
WO2013186808A1 (en) * 2012-06-12 2013-12-19 Empire Technology Development Llc Display structure having a transmittance-controllable layer
CN104282225A (en) * 2013-07-01 2015-01-14 元太科技工业股份有限公司 Display device
CN109308843A (en) * 2018-10-11 2019-02-05 中国建筑材料科学研究总院有限公司 Transparent display screen and preparation method and vehicle-mounted transparent head-up-display system
JP2019191230A (en) * 2018-04-19 2019-10-31 株式会社ジャパンディスプレイ Display device
CN113012559A (en) * 2019-12-20 2021-06-22 台湾爱司帝科技股份有限公司 Method for manufacturing backlight module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160229A (en) * 1994-12-08 1996-06-21 Create Kk Light guide plate and its manufacture, and surface light source device
JPH11202784A (en) * 1998-01-20 1999-07-30 Sony Corp Reflection type display device
JP2001174815A (en) * 1999-12-20 2001-06-29 Nitto Denko Corp Liquid crystal display device
JP2001183664A (en) * 1999-12-27 2001-07-06 Nitto Denko Corp Liquid crystal display device used for reflection as well as transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160229A (en) * 1994-12-08 1996-06-21 Create Kk Light guide plate and its manufacture, and surface light source device
JPH11202784A (en) * 1998-01-20 1999-07-30 Sony Corp Reflection type display device
JP2001174815A (en) * 1999-12-20 2001-06-29 Nitto Denko Corp Liquid crystal display device
JP2001183664A (en) * 1999-12-27 2001-07-06 Nitto Denko Corp Liquid crystal display device used for reflection as well as transmission

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734501A1 (en) * 2004-03-12 2006-12-20 Fujitsu Limited Display and method for driving same
EP1734501A4 (en) * 2004-03-12 2009-01-21 Fujifilm Corp Display and method for driving same
WO2007086456A1 (en) * 2006-01-27 2007-08-02 Enplas Corporation Surface light source and display
JPWO2007086456A1 (en) * 2006-01-27 2009-06-18 株式会社エンプラス Surface light source device and display device
WO2008020685A1 (en) * 2006-08-17 2008-02-21 Lg Innotek Co., Ltd. Display device and mobile terminal having the same
KR100812043B1 (en) * 2006-08-17 2008-03-10 엘지이노텍 주식회사 Display apparatus and mobile device using display apparatus
KR100836434B1 (en) 2006-08-17 2008-06-09 엘지이노텍 주식회사 Display apparatus and mobile device using display appauatus
US7733437B2 (en) 2006-08-17 2010-06-08 Lg Innotek Co., Ltd. Display device and mobile terminal having the same
JP4825926B1 (en) * 2010-10-29 2011-11-30 株式会社東芝 Display device
US8582055B2 (en) 2010-10-29 2013-11-12 Kabushiki Kaisha Toshiba Backlight device and display apparatus
WO2013186808A1 (en) * 2012-06-12 2013-12-19 Empire Technology Development Llc Display structure having a transmittance-controllable layer
US8675146B2 (en) 2012-06-12 2014-03-18 Empire Technology Development Llc Display structure having a transmittance-controllable layer
CN104282225A (en) * 2013-07-01 2015-01-14 元太科技工业股份有限公司 Display device
US9535205B2 (en) 2013-07-01 2017-01-03 E Ink Holdings Inc. Display device
JP2019191230A (en) * 2018-04-19 2019-10-31 株式会社ジャパンディスプレイ Display device
CN109308843A (en) * 2018-10-11 2019-02-05 中国建筑材料科学研究总院有限公司 Transparent display screen and preparation method and vehicle-mounted transparent head-up-display system
CN113012559A (en) * 2019-12-20 2021-06-22 台湾爱司帝科技股份有限公司 Method for manufacturing backlight module

Also Published As

Publication number Publication date
JP4814452B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
US7030945B2 (en) Liquid-crystal display device
JP4439084B2 (en) Liquid crystal display
US6693690B2 (en) Reflective liquid-crystal display device
JP4570228B2 (en) Glass substrate and liquid crystal display device
JP4197572B2 (en) Reflective liquid crystal display
JP2003322852A (en) Reflective liquid crystal display and optical film
KR100802743B1 (en) Optical film and liquid-crystal display device
JP2001215312A (en) Optical film
JP2001215314A (en) Optical film
KR100681103B1 (en) Optical path changing polarizer
JP2001174815A (en) Liquid crystal display device
JP2001228315A (en) Reflecting plate and liquid crystal display device
JP2001183664A (en) Liquid crystal display device used for reflection as well as transmission
JP2002001857A (en) Resin board and liquid crystal display device
JP4814452B2 (en) Liquid crystal display
JP2003131227A (en) Liquid crystal display device
JP4814451B2 (en) Liquid crystal display
JP4978918B2 (en) Liquid crystal display
JP2001194529A (en) Optical path conversion polarizing plate
JP4462517B2 (en) Optical film and liquid crystal display device
JP2001194517A (en) Optical film
JP4968762B2 (en) External light / illumination type liquid crystal display device
JP4916054B2 (en) Transmission type liquid crystal display device
JP4462514B2 (en) Optical film and liquid crystal display device
JP2003121841A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees