JP2001194467A - Groundwater flow measuring instrument - Google Patents

Groundwater flow measuring instrument

Info

Publication number
JP2001194467A
JP2001194467A JP2000004475A JP2000004475A JP2001194467A JP 2001194467 A JP2001194467 A JP 2001194467A JP 2000004475 A JP2000004475 A JP 2000004475A JP 2000004475 A JP2000004475 A JP 2000004475A JP 2001194467 A JP2001194467 A JP 2001194467A
Authority
JP
Japan
Prior art keywords
float
current
flow
groundwater
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004475A
Other languages
Japanese (ja)
Other versions
JP4163358B2 (en
Inventor
Chika Sakamoto
千花 坂本
Yoshiyuki Hori
良行 堀
Hisamasa Takemura
壽真 竹村
Takeshi Fujimoto
健 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHO CHISUI KK
Original Assignee
TOHO CHISUI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHO CHISUI KK filed Critical TOHO CHISUI KK
Priority to JP2000004475A priority Critical patent/JP4163358B2/en
Publication of JP2001194467A publication Critical patent/JP2001194467A/en
Application granted granted Critical
Publication of JP4163358B2 publication Critical patent/JP4163358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PROBLEM TO BE SOLVED: To provide a groundwater flow measuring instrument which can stably and accurately measure groundwater flow flowing at relatively high flow velocity. SOLUTION: A float 2 of the groundwater flow measuring instrument is centered, by causing the conductor 4 of the float 2 positioned inside an electromagnetic induction coil 5 to generate an electromagnetic force toward the center by supplying an alternating current to the coil 5, while the float 2 is made to float in a measurement case 1. When the float 2 is centered, a current control means causes the float 2 to generate an electromagnetic force in a direction opposite to the direction of the groundwater flow, but thereafter, the alternating current supplied to the coil 5 is gradually reduced. A flow velocity calculating means fetches the value of the alternating current at the moment the float 2 starts the movement due to a drop in the electromagnetic force and calculates the flow velocity of the groundwater flow, based on the value of the alternating current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地下水の流速や流
向をフロートの移動速度や方向により測定するフロート
式の地下水流測定装置に関し、特に比較的流速の速い地
下水流の測定に適した地下水流測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a float type groundwater flow measuring device for measuring the velocity and direction of groundwater flow based on the moving speed and direction of a float, and particularly to a groundwater flow suitable for measuring a groundwater flow having a relatively high flow velocity. It relates to a measuring device.

【0002】[0002]

【従来の技術】単孔式の地下水流測定方法として、従
来、薬液や染料などのトレーサを測定ケース内に流入
し、そのトレーサの流下方向や位置を測定して水流の流
速や流向を測定するトレーサ方式、或は測定ケース内に
ビデオカメラを挿入し浮遊物を測定ケースに流入させて
その動きを測定するカメラ法などが知られている。
2. Description of the Related Art Conventionally, as a single-hole type groundwater flow measuring method, a tracer such as a chemical solution or a dye is introduced into a measuring case, and the flowing direction and position of the tracer are measured to measure the flow velocity and direction of the water flow. There are known a tracer method, a camera method in which a video camera is inserted into a measurement case, a floating substance flows into the measurement case, and the movement thereof is measured.

【0003】[0003]

【発明が解決しようとする課題】しかし、ビデオカメラ
を使用するカメラ法は、装置が大形化すると共に、カメ
ラの前方をライトにより明るく照明するため、ライトに
よって水温が部分的に上昇し、対流が発生して地下水流
の正確な動きを測定しにくくする問題があった。
However, in the camera method using a video camera, since the size of the apparatus is increased and the front of the camera is brightly illuminated by the light, the water temperature partially rises due to the light and the convection current is increased. There is a problem that it is difficult to measure the accurate movement of the groundwater flow due to the occurrence of the water.

【0004】トレーサ方式は、現在、多く実施され、地
下水流の動向をかなりの精度で測定することができる
が、水流の動きが非常に遅く、水が自由に動き得る状態
の場合、トレーサを水中に注入することによって、水が
不安定に移動したり、注入液の拡散現象のため、高精度
の地下水流の測定ができにくい問題があった。
[0004] The tracer method is widely practiced at present, and can measure the trend of the groundwater flow with considerable accuracy. However, when the movement of the water flow is very slow and the water can move freely, the tracer is moved underwater. There is a problem that it is difficult to measure the groundwater flow with high accuracy due to the unstable movement of water or the diffusion phenomenon of the injected liquid.

【0005】また、トレーサを注入する方式は、一度ト
レーサを注入して測定を行った後、再度測定を行いたい
場合には、測定ケースをボーリング孔から引き上げてト
レーサを充填しなおす必要があり、連続した測定ができ
ない課題があった。
In the method of injecting a tracer, once the tracer is injected and the measurement is performed, if it is desired to perform the measurement again, it is necessary to lift the measurement case from the boring hole and refill the tracer. There was a problem that continuous measurement was not possible.

【0006】そこで、従来、測定ケースを水中に入れ、
その上部に空気層を形成した状態で、絶縁体のフロート
を測定ケースの中央位置に浮遊させ、測定ケースの内周
壁に90度の間隔で4個の電極を配設し、測定ケース内
におけるフロートの位置に応じて変化する隣接電極間の
電気抵抗の変化に基づき、フロートの位置を計時的に測
定し、地下水流によって動くフロートの方向と速度を、
地下水流の流向と流速として測定する装置が開発されて
いる。
Therefore, conventionally, a measurement case is immersed in water,
With the air layer formed on the upper part, the float of the insulator is floated at the center position of the measurement case, and four electrodes are arranged on the inner peripheral wall of the measurement case at intervals of 90 degrees. Based on the change in electrical resistance between adjacent electrodes that changes according to the position of the float, the position of the float is measured in a timely manner, and the direction and speed of the float moved by the groundwater flow are
Devices have been developed to measure the direction and velocity of groundwater flow.

【0007】このフロート式の地下水流測定装置は、通
常、測定ケース内でのフロートの移動範囲が約5mmに形
成され、フロートの位置に応じて変化する隣接電極間の
電気抵抗の変化に基づき、フロートの位置を計時的に測
定し、地下水流によって動くフロートの方向と速度を、
地下水流の流向と流速として測定する。このような地下
水流測定装置では、流速が1日当り約9m〜0.9m/
日の比較的遅い流速の地下水流を測定する場合に、問題
なく流速を正確に測定することができるものの、河川の
近くでの測定、或は地下水汲み上げ付近での測定で、流
速が例えば数十m〜数百m/日と非常に速い場合、流速
測定値の誤差が非常に大きくなる問題があった。
[0007] This float type groundwater flow measuring device usually has a float moving range of about 5 mm in a measuring case, and based on a change in electric resistance between adjacent electrodes that changes according to the position of the float, The position of the float is measured in time, and the direction and speed of the float moved by the groundwater flow are
Measured as the direction and velocity of groundwater flow. In such a groundwater flow measuring device, the flow velocity is about 9 m to 0.9 m / day.
When measuring groundwater flow with a relatively slow flow rate during the day, the flow rate can be measured accurately without any problem.However, when measuring near a river or near groundwater pumping, the flow rate can be several tens of When the speed is very fast, i.e., m to several hundred m / day, there is a problem that the error of the flow velocity measurement value becomes very large.

【0008】即ち、地下水流測定用の井戸のボーリング
径は、通常66mm〜116mmであるが、そのボーリング
孔壁を保護するためにパイプを挿入して観測井とし、そ
の観測井に挿入する筒状の測定装置の内部つまりフロー
トが移動可能な範囲は、中心から10mm程度であり、ま
た、中心付近または周辺付近の不安定領域を除くと、流
速測定に使用可能なフロートの移動範囲は、約5mm程度
に制限されてしまう。このため、流速が例えば数十m〜
数百m/日と非常に速い場合、流速測定値の誤差が非常
に大きくなる問題があった。
That is, the bore diameter of the well for measuring the groundwater flow is usually 66 mm to 116 mm. However, a pipe is inserted into the observation well to protect the wall of the bore hole, and the bore is inserted into the observation well. The movable range of the float, that is, the float movable range is about 10 mm from the center. Excluding the unstable area near the center or the periphery, the float movable range usable for the flow velocity measurement is about 5 mm. It is limited to the extent. For this reason, the flow velocity is, for example, several tens m
When the speed is as high as several hundred m / day, there is a problem that the error of the measured flow velocity becomes very large.

【0009】ところで、測定装置を大型化すれば、当
然、フロートの移動範囲を大きく採ることができるが、
その場合には、ボーリング孔を大きくする必要があるこ
と、及び流速によって異なる測定装置が必要となること
等から、施工性や経済性を悪化させる恐れが予想され
る。
By the way, if the measuring device is enlarged, the float can naturally have a large moving range.
In such a case, it is expected that the workability and economic efficiency may be deteriorated because the borehole needs to be enlarged and different measuring devices are required depending on the flow velocity.

【0010】本発明は、上記の点に鑑みてなされたもの
で、流速の比較的速い地下水流を安定して正確に測定す
ることができる地下水流測定装置を提供することを目的
とする。
The present invention has been made in view of the above points, and has as its object to provide a groundwater flow measuring apparatus capable of stably and accurately measuring a groundwater flow having a relatively high flow velocity.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の地下水流測定装置は、地下水を流通可能な
流通口を有する測定ケースと、測定ケース内に配置され
た絶縁体のフロートと、測定ケース内に空気を供給する
空気供給手段と、測定ケースの内周壁に、測定ケースの
横断面を平面とするX・Y平面上のX軸とY軸上に位置
して配設された2対の電極と、X軸上に位置する一対の
電極X1、X2とY軸上に位置する一対の電極Y1、Y
2との間に、一定の電流を供給する定電流回路と、定電
流回路からの電流供給時に各電極に流れる電流を検出す
ると共に、X軸上に位置する一対の電極X1、X2の電
流値の差とY軸上に位置する一対の電極Y1、Y2の電
流値の差とを演算して、フロートの位置を示すX座標信
号とY座標信号を発生するX・Y座標信号発生手段と、
X・Y座標信号発生手段からのX座標信号とY座標信号
に基づき、フロートの移動方向と移動速度を演算する演
算処理手段と、フロートに取付けられた導体と、導体の
周囲位置の該測定ケースの内側に配設され、導体に誘導
電流を生じさせる電磁誘導コイルと、電磁誘導コイルに
交流電流を供給し制御する電流制御手段と、電流制御手
段によりフロートに水流の向きと相反する電磁力を生じ
させ、交流電流の値に基づき地下水流の流速を算出する
流速算出手段と、を備えたことを特徴とする。
To achieve the above object, a groundwater flow measuring device according to the present invention comprises a measuring case having a flow port through which groundwater can flow, and a float of an insulator arranged in the measuring case. An air supply means for supplying air into the measurement case; and an air supply means disposed on the inner peripheral wall of the measurement case so as to be positioned on the X-axis and the Y-axis on an XY plane whose plane is a cross section of the measurement case. Two pairs of electrodes, a pair of electrodes X1 and X2 located on the X axis and a pair of electrodes Y1 and Y located on the Y axis.
2, a constant current circuit that supplies a constant current, a current flowing through each electrode when current is supplied from the constant current circuit, and current values of a pair of electrodes X1 and X2 located on the X axis. XY coordinate signal generating means for calculating the difference between the current values of the pair of electrodes Y1 and Y2 located on the Y axis to generate an X coordinate signal and a Y coordinate signal indicating the position of the float;
Arithmetic processing means for calculating the direction and speed of movement of the float based on the X and Y coordinate signals from the X and Y coordinate signal generating means; a conductor attached to the float; And an electromagnetic induction coil that generates an induction current in the conductor, current control means that supplies and controls an alternating current to the electromagnetic induction coil, and an electromagnetic force that opposes the direction of the water flow to the float by the current control means. And a flow velocity calculating means for calculating the flow velocity of the groundwater flow based on the value of the alternating current.

【0012】ここで、電流制御手段は、電磁誘導コイル
に電流を供給してフロートをセンタリングさせた状態
で、電流を徐々に低下させ、流速算出手段は、フロート
の移動開始時の電流値に基づき、地下水流の流速を算出
するように構成することができる。また、他の実施形態
として、流速算出手段は、電流制御手段が電磁誘導コイ
ルに電流を供給してフロートに水流の向きに相反する電
磁力を生じさせてフロートをセンタリングさせる際の電
流値とフロートの移動速度に基づき、地下水流の流速を
算出するように構成することができる。
The current control means gradually reduces the current in a state where the float is centered by supplying the current to the electromagnetic induction coil, and the flow rate calculating means determines the current based on the current value at the start of the movement of the float. , The flow rate of the groundwater flow can be calculated. In another embodiment, the flow velocity calculating means includes a current control means for supplying a current to the electromagnetic induction coil to cause the float to generate an electromagnetic force opposite to the direction of the water flow, thereby causing the float to be centered on the float. It can be configured to calculate the velocity of the groundwater flow based on the moving speed of the groundwater.

【0013】[0013]

【作用】上記構成の地下水流測定装置は、測定時、先
ず、測定ケース内にフロートを浮遊させた状態で、電磁
誘導コイルに交流電流を供給し、電磁誘導コイルの内側
に位置するフロートの導体に、中央に向う電磁力を生じ
させ、フロートのセンタリングを行なう。センタリング
した状態で、電流制御手段はフロートに水流の向きと相
反する方向の電磁力を生じさせているが、この後、電磁
誘導コイルの電流を徐々に低下させていく。そして、流
速算出手段は、フロートが電磁力の低下により移動を開
始する時点の電流値を取り込み、この電流値に基づき地
下水流の流速を算出する。
In the groundwater flow measuring device having the above-mentioned configuration, at the time of measurement, first, an AC current is supplied to the electromagnetic induction coil in a state where the float is floated in the measurement case, and the float conductor located inside the electromagnetic induction coil is supplied. Then, an electromagnetic force toward the center is generated to perform centering of the float. In the centered state, the current control means causes the float to generate an electromagnetic force in a direction opposite to the direction of the water flow. Thereafter, the current of the electromagnetic induction coil is gradually reduced. Then, the flow velocity calculating means captures the current value at the time when the float starts moving due to the decrease in the electromagnetic force, and calculates the flow velocity of the groundwater flow based on the current value.

【0014】このように、フロートが水流により移動す
る際の速度を測定する代わりに、フロートが受ける水流
の力に対応したセンタリングの電磁力つまり電磁誘導コ
イルに流す電流値に基づき流速を算出するので、流速が
比較的速く、狭いフロートの移動範囲で正確な流速が測
定できない場合であっても、このセンタリングの電磁力
つまり電磁誘導コイルに流す電流値により、水流の流速
を正確に算出することができる。
As described above, instead of measuring the speed at which the float moves due to the water flow, the flow velocity is calculated based on the centering electromagnetic force corresponding to the force of the water flow received by the float, that is, the current value flowing through the electromagnetic induction coil. Even if the flow velocity is relatively high and the accurate flow velocity cannot be measured in a narrow float movement range, the flow velocity of the water flow can be accurately calculated by the electromagnetic force of the centering, that is, the current value flowing through the electromagnetic induction coil. it can.

【0015】一方、水流の流向は、流速を測定した後、
電磁誘導コイルの電流を遮断して電磁力を消失させ、そ
の状態で水流により移動するフロートの位置(方向)
を、X・Y座標信号発生手段と演算処理手段を用いて算
出する。X・Y座標信号発生手段は、定電流回路からの
電流供給時に各電極に流れる電流を検出すると共に、X
軸上に位置する一対の電極X1、X2の電流値の差とY
軸上に位置する一対の電極Y1、Y2の電流値の差とを
演算して、フロートの位置を示すX座標信号とY座標信
号を発生する。演算処理手段は、X・Y座標信号発生手
段からのX座標信号とY座標信号に基づき、フロートの
移動方向を演算する。
On the other hand, after measuring the flow velocity,
The position (direction) of the float that is moved by the water flow in that state by interrupting the current of the electromagnetic induction coil to eliminate the electromagnetic force
Is calculated using the X / Y coordinate signal generating means and the arithmetic processing means. The XY coordinate signal generation means detects the current flowing through each electrode when the current is supplied from the constant current circuit, and
The difference between the current value of the pair of electrodes X1 and X2 located on the axis and Y
By calculating the difference between the current values of the pair of electrodes Y1 and Y2 located on the axis, an X coordinate signal and a Y coordinate signal indicating the position of the float are generated. The arithmetic processing means calculates the moving direction of the float based on the X coordinate signal and the Y coordinate signal from the X / Y coordinate signal generating means.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は地下水流測定装置の測定部の斜
視図を示し、図6はその断面図を、図5は測定装置のブ
ロック構成図を示している。1は測定ケースであり、図
6に示すように、ボーリング孔等に挿入するための挿入
用管8の下端に取付けられ、ボーリング孔等に挿入され
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a measuring unit of the groundwater flow measuring device, FIG. 6 is a sectional view thereof, and FIG. 5 is a block diagram of the measuring device. Reference numeral 1 denotes a measurement case, which is attached to a lower end of an insertion tube 8 to be inserted into a boring hole or the like, as shown in FIG. 6, and inserted into the boring hole or the like.

【0017】測定ケース1は、カップ状の容器を上部と
下部に配設し、その上下カップ状容器の間を、多数の格
子枠3で連結して構成され、格子枠3の部分が地下水の
流通可能な流通部となる。測定ケース1の上部には、ケ
ース内部に空気を入れるための空気管7が接続される。
The measuring case 1 comprises cup-shaped containers arranged at the upper and lower portions, and the upper and lower cup-shaped containers are connected by a large number of lattice frames 3, and the lattice frame 3 is formed of groundwater. It becomes a distribution department that can be distributed. An air pipe 7 for introducing air into the case is connected to the upper part of the measurement case 1.

【0018】2は測定ケース1内に配設された絶縁体の
フロートであり、例えばポリアセタール樹脂等により円
柱状に形成され、内部に図示しない密閉された空気室を
設けることにより、図6のように、測定ケース1内の水
中で、立てた状態で浮遊する。また、その下部には、フ
ロートセンタリング用及び高流速測定用の導体4が固定
される。導体4としては、短いパイプ状或は円板状の銅
やアルミニウム等、非磁性体の良導電体が良好である。
Reference numeral 2 denotes an insulator float provided in the measurement case 1, which is formed of, for example, a polyacetal resin or the like in a columnar shape and has a closed air chamber (not shown) provided therein as shown in FIG. Then, it floats in the water in the measurement case 1 in an upright state. A conductor 4 for float centering and high flow velocity measurement is fixed to the lower part. As the conductor 4, a non-magnetic good conductor such as copper or aluminum in the form of a short pipe or a disc is preferable.

【0019】さらに、導体4の周囲位置の測定ケース1
の内側には、導体4に誘導電流を生じさせるための電磁
誘導コイル5が巻装される。このコイル5の巻き径は例
えば約30〜40mmとされ、センタリング用に約1〜1
0アンペアターンの電流、及び高流速測定用の微弱電流
が得られるように巻装される。電磁誘導コイル5には、
図5に示すように、電流制御回路18が接続され、電流
制御回路18は後述のマイクロコンピュータ15により
制御される。
Further, the measurement case 1 around the conductor 4
Inside, an electromagnetic induction coil 5 for generating an induced current in the conductor 4 is wound. The winding diameter of the coil 5 is, for example, about 30 to 40 mm and about 1 to 1 for centering.
It is wound so as to obtain a current of 0 ampere turns and a weak current for measuring a high flow velocity. The electromagnetic induction coil 5 includes
As shown in FIG. 5, a current control circuit 18 is connected, and the current control circuit 18 is controlled by a microcomputer 15 described later.

【0020】また、測定ケース1の中間部分に設けられ
た格子枠3の一部には、90度の間隔で4個の電極X
1、X2、Y1、Y2が取付けられ、これら4個の電極
は測定ケース1の横断面を平面とするX・Y平面上のX
軸とY軸上に位置する。
A part of the grid frame 3 provided in the middle part of the measurement case 1 has four electrodes X at 90-degree intervals.
1, X2, Y1, and Y2 are attached, and these four electrodes are arranged on an XY plane having a horizontal section of the measuring case 1 as a plane.
Axis and the Y axis.

【0021】図5に示すように、各電極X1、X2、Y
1、Y2はX・Y切換回路10に接続され、定電流回路
11が、このX・Y切換回路10を介してX軸上に位置
する一対の電極X1、X2とY軸上に位置する一対の電
極Y1、Y2との間に、交互に一定の電流を供給するよ
うに接続される。
As shown in FIG. 5, each of the electrodes X1, X2, Y
Reference numeral 1 and Y2 are connected to an XY switching circuit 10, and a constant current circuit 11 is connected to a pair of electrodes X1 and X2 located on the X axis via the XY switching circuit 10 and a pair of electrodes X1 and X2 located on the Y axis. Are connected so as to alternately supply a constant current between the electrodes Y1 and Y2.

【0022】X・Y切換回路10は、リレー回路、或は
トランジスタのスイッチング回路等からなり、例えば1
0〜50Hz程度の周期で、電極X1、X2、Y1、Y
2の電流供給側と電流検出側を各々切換え動作する。定
電流回路11では、水の導電率の変化を補正するため、
及び電極の電気分解による誤差をなくすために、例えば
2kHzの矩形波を出力する交流電源が使用される。
The XY switching circuit 10 comprises a relay circuit or a transistor switching circuit.
The electrodes X1, X2, Y1, Y at a cycle of about 0 to 50 Hz.
2, the current supply side and the current detection side are switched. In the constant current circuit 11, in order to correct a change in water conductivity,
In order to eliminate errors due to electrolysis of the electrodes, an AC power supply that outputs a rectangular wave of, for example, 2 kHz is used.

【0023】このX・Y切換回路10の出力側には、電
極Y1からの電流を出力する回路に、電流電圧変換回路
12aが接続され、電極Y2からの電流を出力する回路
に、電流電圧変換回路12bが接続され、電極X1から
の電流を出力する回路に、電流電圧変換回路12cが接
続され、電極X2からの電流を出力する回路に、電流電
圧変換回路12dが接続される。
On the output side of the XY switching circuit 10, a current-voltage conversion circuit 12a is connected to a circuit for outputting a current from the electrode Y1, and a current-voltage conversion circuit is connected to a circuit for outputting a current from the electrode Y2. The circuit 12b is connected, the current-voltage conversion circuit 12c is connected to the circuit that outputs the current from the electrode X1, and the current-voltage conversion circuit 12d is connected to the circuit that outputs the current from the electrode X2.

【0024】電流電圧変換回路12a,12b,12
c,12dの出力側には、各々整流回路13a,13
b,13c,13dが接続され、整流回路13aの出力
側は、平滑回路を介して比較器14aの反転入力側に接
続され、整流回路13bの出力側は、平滑回路を介して
比較器14aの非反転入力側に接続される。
The current-voltage conversion circuits 12a, 12b, 12
The rectifier circuits 13a and 13d are provided on the output sides of c and 12d, respectively.
b, 13c, 13d are connected, the output side of the rectifier circuit 13a is connected to the inverting input side of the comparator 14a via a smoothing circuit, and the output side of the rectifier circuit 13b is connected to the comparator 14a via a smoothing circuit. Connected to non-inverting input side.

【0025】また、整流回路13cの出力側は、平滑回
路を介して比較器14bの反転入力側に接続され、整流
回路13dの出力側は、平滑回路を介して比較器14b
の非反転入力側に接続される。比較器14aは、電極Y
1の電流と電極Y2の電流の差に対応した電圧を出力
し、比較器14bは、電極X1の電流と電極X2の電流
の差に対応した電圧を出力する。
The output side of the rectifier circuit 13c is connected to the inverting input side of the comparator 14b via a smoothing circuit, and the output side of the rectifier circuit 13d is connected to the comparator 14b via a smoothing circuit.
Is connected to the non-inverting input side. The comparator 14a has an electrode Y
1 outputs a voltage corresponding to the difference between the current of the electrode Y2 and the current of the electrode Y2, and the comparator 14b outputs a voltage corresponding to the difference between the current of the electrode X1 and the current of the electrode X2.

【0026】比較器14aと14bの出力側には、測定
装置の主制御回路としてマイクロコンピュータ15が接
続される。マイクロコンピュータ15は、CPU、固定
メモリのROM、随時書込み読出し可能なRAM、及び
入出力回路を備え、後述のフロートセンタリングの制
御、電磁誘導コイル5の電流制御、フロートの移動開始
時の電流値に基づく高流速の測定演算、及び各電極X
1、X2、Y1、Y2間の電流値に基づく水流の流速と
流向測定を行なう。水流の流速と流向の演算は、比較器
14a,14bからの差電流Iy1、Iy2、Ix1,
Ix2の各データを取り込み、所定の補正処理を行なっ
た後、フロート2のX座標とY座標を算出する。X座標
とY座標のデータはX・Yレコーダ16に出力されて、
地下水流の方向として記録され、時間に対するフロート
の移動距離を算出することにより流速が演算され、その
演算結果は表示器17に数値表示される。
A microcomputer 15 is connected to the outputs of the comparators 14a and 14b as a main control circuit of the measuring device. The microcomputer 15 includes a CPU, a ROM of a fixed memory, a RAM that can be written and read at any time, and an input / output circuit, and controls a float centering, a current control of the electromagnetic induction coil 5 described later, and a current value at the start of movement of the float. Calculation of high flow rate based on each electrode X
The flow velocity and flow direction of the water flow are measured based on the current values between 1, X2, Y1, and Y2. The calculation of the flow velocity and the flow direction of the water flow is based on the difference currents Iy1, Iy2, Ix1,
After fetching each data of Ix2 and performing a predetermined correction process, the X coordinate and the Y coordinate of the float 2 are calculated. The data of the X coordinate and the Y coordinate are output to the XY recorder 16,
The flow velocity is recorded as the direction of the groundwater flow, and the flow velocity is calculated by calculating the moving distance of the float with respect to time, and the calculation result is numerically displayed on the display 17.

【0027】フロートのセンタリング装置を用いて高流
速の水流の流速を求めるために、予め実験から、水流の
流速に対するフロートの移動開始電流が測定される。つ
まり、各種の流速の水流中でフロートを、センタリング
用の誘導コイルに電流を流して測定ケース内の中央に位
置させ、誘導コイルに流す電流値を徐々に低下させ、フ
ロートが移動を開始した時点の電流値を測定する。そし
て、このような多数の流速に対応した電流値のデータ
が、予めテーブルデータ等としてROMに記憶される。
In order to determine the flow velocity of the high-flow water flow using the float centering device, the float movement start current with respect to the flow velocity of the water flow is measured from an experiment in advance. In other words, the float is positioned in the center of the measurement case by flowing a current through the centering induction coil in a water stream of various flow velocities, and the value of the current flowing through the induction coil is gradually reduced, and the float starts moving. Measure the current value of Then, data of current values corresponding to such a large number of flow velocities are stored in the ROM in advance as table data or the like.

【0028】次に、上記構成の地下水流測定装置を用い
て、高流速(例えば数十m〜数百m/日)の地下水流を
測定する場合を説明する。先ず、測定ケース1を予め穿
設したボーリング孔に挿入し、測定ケース1を方位に対
し正確に位置させて地下水中に入れる。
Next, a case where a groundwater flow at a high flow velocity (for example, several tens m to several hundred m / day) is measured using the groundwater flow measuring device having the above-described configuration will be described. First, the measurement case 1 is inserted into a pre-drilled boring hole, and the measurement case 1 is accurately positioned with respect to the azimuth and put into groundwater.

【0029】地下水中における測定ケース1内には格子
枠3の周囲から地下水が流入し、ケース内に充満する。
そして、空気管7からケース1内に空気を供給すること
により、ケース内上部に所定の量の空気層を形成し、ケ
ース内の水位を図6のように所定位置とする。このとき
のケース内の水位はケース内周面に設けた水位センサ9
により検出される。
Underground water flows into the measurement case 1 from around the lattice frame 3 and fills the case.
Then, by supplying air into the case 1 from the air pipe 7, a predetermined amount of an air layer is formed in the upper portion of the case, and the water level in the case is set to a predetermined position as shown in FIG. At this time, the water level in the case is determined by a water level sensor 9 provided on the inner peripheral surface of the case.
Is detected by

【0030】次に、測定開始と共に、マイクロコンピュ
ータ15は、図7のステップ100を実行し、電流制御
回路18を制御して、フロートセンタリング用の電流
(例えば約1mA程度)を電磁誘導コイル5に供給す
る。すると、電磁誘導コイル5の周囲に磁界が発生し、
このとき、電磁誘導コイル5の内側に位置するフロート
2の導体4には、その磁界によって生じる磁束の変化を
打ち消す方向に誘導電流(うず電流)が発生する。ま
た、この誘導電流と磁界の関係から、この導体には、フ
レミング左手の法則により、電磁誘導コイル5の中央に
向う力(電磁力)が発生する。
Next, at the start of the measurement, the microcomputer 15 executes the step 100 of FIG. 7 and controls the current control circuit 18 to supply a current for float centering (for example, about 1 mA) to the electromagnetic induction coil 5. Supply. Then, a magnetic field is generated around the electromagnetic induction coil 5,
At this time, an induced current (eddy current) is generated in the conductor 4 of the float 2 located inside the electromagnetic induction coil 5 in a direction to cancel a change in magnetic flux generated by the magnetic field. Further, from the relation between the induced current and the magnetic field, a force (electromagnetic force) toward the center of the electromagnetic induction coil 5 is generated in the conductor according to the Fleming's left hand rule.

【0031】このため、フロート2つまり導体4が測定
ケース1つまり電磁誘導コイル5の中央に位置する場
合、全ての方向から中央に向う均等な力を受け、フロー
ト2は測定ケース1の中央位置に保持される。一方、フ
ロート2が測定ケース1内の何れかの側に偏位して位置
する場合、導体4が電磁誘導コイル5の一部に近づくこ
とになる。この場合、導体4がその部分から受ける磁束
密度は大きくなり、導体4に生じる誘導電流が増加し、
導体4に生じる力(中央方向の力)もその部分で増大す
る。このため、その増大した力により、導体4つまりフ
ロート2は、偏位位置から中央に向う力を受け、水流に
抗して測定ケース1の中央に戻され、センタリングされ
る。
Therefore, when the float 2, that is, the conductor 4 is located at the center of the measurement case 1, that is, the center of the electromagnetic induction coil 5, the float 2 receives a uniform force from all directions toward the center, and the float 2 is located at the center position of the measurement case 1. Will be retained. On the other hand, when the float 2 is deviated to any side in the measurement case 1, the conductor 4 approaches a part of the electromagnetic induction coil 5. In this case, the magnetic flux density that the conductor 4 receives from that portion increases, and the induced current generated in the conductor 4 increases,
The force (force in the central direction) generated in the conductor 4 also increases at that portion. Due to this increased force, the conductor 4, that is, the float 2, receives a force toward the center from the offset position, is returned to the center of the measurement case 1 against the water flow, and is centered.

【0032】次に、マイクロコンピュータ15は、ステ
ップ110で、電磁誘導コイル5に供給しているセンタ
リング用の電流値を、電流制御回路18を制御すること
により、徐々に減少制御し、次のステップ120で、フ
ロート2が中央位置から水流により移動を開始したか否
かを判定する。そして、ステップ110と120を繰り
返し実行し、水流による力がセンタリングの電磁力(中
央位置に保持する力)に勝った時、フロート2が中央位
置より移動を開始するから、その時点で、次のステップ
130に進み、その電流値を記憶する。
Next, in step 110, the microcomputer 15 controls the current control circuit 18 to gradually decrease the value of the centering current supplied to the electromagnetic induction coil 5; At 120, it is determined whether the float 2 has started to move from the center position due to the water flow. Then, steps 110 and 120 are repeatedly executed, and when the force of the water flow exceeds the electromagnetic force of the centering (the force holding the center position), the float 2 starts moving from the center position. Proceeding to step 130, the current value is stored.

【0033】フロート2がそのセンタリング位置から離
れる際の位置の検出は、以下のように各電極X1、X
2、Y1、Y2間の電圧値を測定して行なわれる。
The detection of the position when the float 2 moves away from the centering position is performed by detecting the electrodes X1, X
The measurement is performed by measuring a voltage value between 2, Y1, and Y2.

【0034】即ち、先ず、定電流回路11から各電極X
1、X2、Y1、Y2に交流の矩形電流が供給される。
定電流回路11からの電流は、図3、図4に示すよう
に、電極X1、X2と電極Y1、Y2に交互に供給さ
れ、そのときの電極Y1、Y2と電極X1、X2から得
られる電流が各々の回路に接続された電流電圧変換回路
12a,12b,12c,12dに送られる。
That is, first, from the constant current circuit 11 to each electrode X
1, X2, Y1, and Y2 are supplied with an AC rectangular current.
As shown in FIGS. 3 and 4, the current from the constant current circuit 11 is alternately supplied to the electrodes X1, X2 and the electrodes Y1, Y2, and the current obtained from the electrodes Y1, Y2 and the electrodes X1, X2 at that time. Is sent to the current-voltage conversion circuits 12a, 12b, 12c, 12d connected to the respective circuits.

【0035】電流電圧変換回路12a,12b,12
c,12dにより電流信号は電圧信号に変換され、それ
らの電圧信号が整流回路13a,13b,13c,13
dで直流電圧に変換される。そして、電極Y1の電流I
y1に対応した電圧信号は比較器14aの反転入力に、
電極Y2の電流Iy2に対応した電圧信号は比較器14
aの非反転入力に入力される。また、電極X1の電流I
x1に対応した電圧信号は比較器14bの反転入力に、
電極X2の電流Ix2に対応した電圧信号は比較器14
bの非反転入力に入力される。そして、比較器14aか
らは電流Iy1,Iy2の差に対応した差電圧が出力さ
れ、比較器14bからは電流Ix1,Ix2の差に対応
した差電圧が出力される。
The current-voltage conversion circuits 12a, 12b, 12
c, 12d convert the current signal into a voltage signal, and these voltage signals are converted into rectifier circuits 13a, 13b, 13c, 13c.
It is converted to a DC voltage at d. Then, the current I of the electrode Y1
The voltage signal corresponding to y1 is input to the inverting input of the comparator 14a.
The voltage signal corresponding to the current Iy2 of the electrode Y2 is
a is input to the non-inverting input. The current I of the electrode X1 is
The voltage signal corresponding to x1 is supplied to the inverting input of the comparator 14b.
The voltage signal corresponding to the current Ix2 of the electrode X2 is
b is input to the non-inverting input. The comparator 14a outputs a difference voltage corresponding to the difference between the currents Iy1 and Iy2, and the comparator 14b outputs a difference voltage corresponding to the difference between the currents Ix1 and Ix2.

【0036】例えば、図2に示すように、フロート2が
電極Y1方向に移動した場合、電極X1、X2よりみた
電極Y1の電気抵抗R1は、フロート2により電流が遮
られるため、増大し、逆に、電極X1、X2よりみた電
極Y2の電気抵抗R2は、フロート2の影響が減少する
ため、減少する。同様に、フロート2が電極X1方向に
移動した場合、電極Y1、Y2よりみた電極X1の電気
抵抗R3は、フロート2により電流が遮られるため、増
大し、逆に、電極Y1、Y2よりみた電極X2の電気抵
抗R4は、フロート2の影響が減少するため、減少す
る。
For example, as shown in FIG. 2, when the float 2 moves in the direction of the electrode Y1, the electric resistance R1 of the electrode Y1 as viewed from the electrodes X1 and X2 increases because the current is interrupted by the float 2, and conversely. Meanwhile, the electric resistance R2 of the electrode Y2 as viewed from the electrodes X1 and X2 decreases because the influence of the float 2 decreases. Similarly, when the float 2 moves in the direction of the electrode X1, the electric resistance R3 of the electrode X1 as viewed from the electrodes Y1 and Y2 increases because the current is interrupted by the float 2, and conversely, the electrode as viewed from the electrodes Y1 and Y2. The electric resistance R4 of X2 decreases because the influence of the float 2 decreases.

【0037】ここで、抵抗R1等は、合成抵抗であるか
ら、1/R1=1/{R(X1、Y1)}+1/{R
(X2、Y1)}となり、抵抗R2は、1/R2=1/
{R(X2、Y2)}+1/{R(X1、Y2)}とな
る。また、抵抗R3は、1/R3=1/{R(X1、Y
1)}+1/{R(X1、Y2)}となり、抵抗R4
は、1/R4=1/{R(X2、Y2)}+1/{R
(X2、Y1)}となる。
Here, since the resistors R1 and the like are combined resistors, 1 / R1 = 1 / {R (X1, Y1)} + 1 / {R
(X2, Y1)}, and the resistance R2 is 1 / R2 = 1 /
{R (X2, Y2)} + 1 / {R (X1, Y2)}. Further, the resistance R3 is 1 / R3 = 1 / {R (X1, Y
1) {+ 1 / {R (X1, Y2)} and the resistance R4
Is 1 / R4 = 1 / {R (X2, Y2)} + 1 / {R
(X2, Y1)}.

【0038】したがって、図3に示すように、電源を電
極X1、X2と電極Y1、Y2との間に接続して電流を
供給し、電極Y1に流れる電流Iy1と電極Y2に流れ
る電流Iy2を測定し、電流Iy1とIy2の差を求
め、フロートのY軸方向の移動を測定する。同様に、図
4に示す如く、電源を電極X1、X2と電極Y1、Y2
との間に接続して電流を供給し、電極X1に流れる電流
Ix1と電極X2に流れる電流Ix2を測定し、電流I
x1とIx2の差を求め、フロートのX軸方向の移動を
測定する。
Therefore, as shown in FIG. 3, a power source is connected between the electrodes X1 and X2 and the electrodes Y1 and Y2 to supply a current, and the current Iy1 flowing through the electrode Y1 and the current Iy2 flowing through the electrode Y2 are measured. Then, the difference between the currents Iy1 and Iy2 is determined, and the movement of the float in the Y-axis direction is measured. Similarly, as shown in FIG. 4, power is supplied to electrodes X1 and X2 and electrodes Y1 and Y2.
And a current Ix1 flowing through the electrode X1 and a current Ix2 flowing through the electrode X2 are measured.
The difference between x1 and Ix2 is determined, and the movement of the float in the X-axis direction is measured.

【0039】次に、マイクロコンピュータ15は、ステ
ップ140において、上記ステップ130でフロート2
が移動開始した時点の電流値に基づき、つまり、ROM
に予め記憶された電流値に対する流速のデータテーブル
を検索することにより、その電流値に対応した流速を算
出する。算出された流速データは、メモリ等に書き込ま
れ、表示器17に表示される。
Next, in step 140, the microcomputer 15 sets the float 2 in step 130.
Is based on the current value at the start of movement,
The flow velocity corresponding to the current value is calculated by searching a data table of the flow velocity for the current value stored in advance in the data table. The calculated flow velocity data is written into a memory or the like and displayed on the display 17.

【0040】このように、フロート2をセンタリングし
た状態で、電磁誘導コイル5の電流を徐々に低下させ、
電磁力を徐々に下げていき、フロート2が移動を開始す
る時の電流値を求め、この電流値に基づき、水流の流速
を測定するから、例えば流速が数十m〜数百m/日と非
常に速い場合であっても、フロート2の移動範囲が約5
mmと狭い範囲の測定装置で、正確に流速を測定すること
ができる。
As described above, while the float 2 is centered, the current of the electromagnetic induction coil 5 is gradually reduced.
The electromagnetic force is gradually lowered, the current value when the float 2 starts moving is determined, and based on this current value, the flow velocity of the water flow is measured. For example, the flow velocity is several tens m to several hundred m / day. Even if the speed is very fast, the moving range of the float 2 is about 5
The flow rate can be measured accurately with a measuring device with a narrow range of mm.

【0041】次に、ステップ150で、マイクロコンピ
ュータ15は電流制御回路18を制御して、電磁誘導コ
イル5への供給電流を遮断する。これにより、電磁誘導
コイル5による導体4(フロート2)への電磁力は消失
し、フロート2は自由に移動可能な状態となるから、以
後、水流によって流されることになる。
Next, at step 150, the microcomputer 15 controls the current control circuit 18 to cut off the current supplied to the electromagnetic induction coil 5. As a result, the electromagnetic force applied to the conductor 4 (the float 2) by the electromagnetic induction coil 5 disappears, and the float 2 is in a state where it can move freely.

【0042】そして、次のステップ160にて、フロー
ト2の移動方向から水流の流向を測定する。即ち、マイ
クロコンピュータ15は、上記同様に、電極X1、X2
と電極Y1、Y2との間に定電流回路11を接続して電
流を供給し、電極Y1に流れる電流Iy1と電極Y2に
流れる電流Iy2を測定し、電流Iy1とIy2の差を
求めて、フロートのY軸方向の移動を測定する。同様
に、電極X1、X2と電極Y1、Y2との間に定電流回
路11を接続して電流を供給し、電極X1に流れる電流
Ix1と電極X2に流れる電流Ix2を測定し、電流I
x1とIx2の差を求めて、フロートのX軸方向の移動
を測定する。このようにして求めたX座標とY座標のデ
ータは、所定時間毎にX・Yレコーダ16に出力され、
地下水流の方向がX・Y座標上に記録され、水流の流向
が求められる。
Then, in the next step 160, the flow direction of the water flow is measured from the moving direction of the float 2. That is, the microcomputer 15 determines whether the electrodes X1, X2
A constant current circuit 11 is connected between the electrodes Y1 and Y2 to supply a current, a current Iy1 flowing to the electrode Y1 and a current Iy2 flowing to the electrode Y2 are measured, and a difference between the currents Iy1 and Iy2 is obtained. Is measured in the Y-axis direction. Similarly, a constant current circuit 11 is connected between the electrodes X1 and X2 and the electrodes Y1 and Y2 to supply a current, and a current Ix1 flowing to the electrode X1 and a current Ix2 flowing to the electrode X2 are measured.
The difference between x1 and Ix2 is determined, and the movement of the float in the X-axis direction is measured. The X-coordinate and Y-coordinate data thus obtained are output to the XY recorder 16 at predetermined time intervals.
The direction of the groundwater flow is recorded on XY coordinates, and the flow direction of the water flow is determined.

【0043】一方、流速が1日当り約9m〜0.9m/
日の比較的遅い流速の地下水流を測定する場合には、電
磁誘導コイル5に交流電流を供給してフロート2をセン
タリングした後、電磁誘導コイル5への電流供給を遮断
し、その後、上記ステップ160の処理と同様に、電極
Y1に流れる電流Iy1と電極Y2に流れる電流Iy2
を測定し、電流Iy1とIy2の差を求めて、フロート
のY軸方向の移動を測定し、同様に、電極X1に流れる
電流Ix1と電極X2に流れる電流Ix2を測定し、電
流Ix1とIx2の差を求めて、フロートのX軸方向の
移動を測定して、移動する時間と距離から、流速が算出
される。
On the other hand, the flow rate is about 9 to 0.9 m / day.
When measuring the groundwater flow at a relatively slow speed of the day, after supplying an alternating current to the electromagnetic induction coil 5 and centering the float 2, the current supply to the electromagnetic induction coil 5 is cut off, and then the above step is performed. Similarly to the process 160, the current Iy1 flowing to the electrode Y1 and the current Iy2 flowing to the electrode Y2
Is measured, the difference between the currents Iy1 and Iy2 is determined, and the movement of the float in the Y-axis direction is measured. Similarly, the current Ix1 flowing through the electrode X1 and the current Ix2 flowing through the electrode X2 are measured, and the current Ix1 and Ix2 are measured. The difference is obtained, the movement of the float in the X-axis direction is measured, and the flow velocity is calculated from the moving time and distance.

【0044】なお、上記実施例では、フロート2をセン
タリングした状態で、電磁誘導コイルの電流を徐々に低
下させ、フロート2が移動を開始する時の電流値を求
め、この電流値に基づき、水流の流速を測定したが、フ
ロート2をセンタリングした状態で、電磁誘導コイル5
に供給する電流を、一定の微弱電流まで減少させ、フロ
ート2にセンター方向の電磁力を生じさせたまま、この
電磁力により負荷を与えられたフロート2が、水流によ
り移動する際の移動距離と電流値から、高流速水流の流
速を求めることもできる。
In the above embodiment, the current of the electromagnetic induction coil is gradually reduced while the float 2 is centered, and the current value when the float 2 starts moving is determined. The flow rate of the electromagnetic induction coil 5 was measured while the float 2 was centered.
The current supplied to the float 2 is reduced to a constant weak current, and while the float 2 is generating an electromagnetic force in the direction of the center, the float 2 loaded by the electromagnetic force moves with the water flow and the moving distance. From the current value, the flow velocity of the high-velocity water flow can also be obtained.

【0045】[0045]

【発明の効果】以上説明したように、本発明の地下水流
測定装置によれば、フロートをセンタリングするための
電磁誘導コイルに電流を供給・制御する電流制御手段に
より、フロートに水流の向きと相反する電磁力を生じさ
せ、その電流値に基づき地下水流の流速を算出するか
ら、フロートが移動する際の速度を測定する代わりに、
フロートが受ける水流の力に対応したセンタリングの電
磁力つまり電磁誘導コイルに流す電流値に基づき流速を
算出するので、流速が比較的速く、狭いフロートの移動
範囲で正確な流速が測定できない場合であっても、水流
の流速を正確に算出することができる。
As described above, according to the underground water flow measuring device of the present invention, the current control means for supplying and controlling the current to the electromagnetic induction coil for centering the float allows the float to be opposed to the direction of the water flow. To calculate the velocity of the groundwater flow based on the current value, instead of measuring the speed at which the float moves,
Since the flow velocity is calculated based on the electromagnetic force of the centering corresponding to the force of the water flow received by the float, that is, the current value flowing through the electromagnetic induction coil, the flow velocity is relatively high, so that accurate flow velocity cannot be measured in a narrow float movement range. Even so, the flow velocity of the water flow can be accurately calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す地下水流測定装置の
斜視図である。
FIG. 1 is a perspective view of a groundwater flow measuring device according to an embodiment of the present invention.

【図2】測定ケース内の電極と電気抵抗の基本的関係を
示す説明図である。
FIG. 2 is an explanatory diagram showing a basic relationship between an electrode and an electric resistance in a measurement case.

【図3】電極Y1とY2からの電流検出の説明図であ
る。
FIG. 3 is an explanatory diagram of current detection from electrodes Y1 and Y2.

【図4】電極X1とX2からの電流検出の説明図であ
る。
FIG. 4 is an explanatory diagram of current detection from electrodes X1 and X2.

【図5】地下水流測定装置のブロック構成図である。FIG. 5 is a block diagram of a groundwater flow measuring device.

【図6】測定ケース1の縦断面図である。FIG. 6 is a longitudinal sectional view of the measurement case 1.

【図7】流速・流向測定の動作を示すフローチャートで
ある。
FIG. 7 is a flowchart showing an operation of measuring flow velocity and flow direction.

【符号の説明】[Explanation of symbols]

1−測定ケース、 2−フロート、 3−格子枠、 4−導体、 5−電磁誘導コイル、 7−空気管、 15−マイクロコンピュータ 18−電流制御回路 X1、X2、Y1、Y2−電極。 1-measurement case, 2-float, 3-grid frame, 4-conductor, 5-electromagnetic induction coil, 7-air tube, 15-microcomputer 18-current control circuit X1, X2, Y1, Y2-electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 壽真 三重県四日市市東新町2番23号 東邦地水 株式会社内 (72)発明者 藤元 健 三重県四日市市東新町2番23号 東邦地水 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Toshimasa Takemura 2-23 Higashishinmachi, Yokkaichi-shi, Mie Tohoku Chisui Co., Ltd. In company

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地下水を流通可能な流通口を有する測定
ケースと、 該測定ケース内に配置された絶縁体のフロートと、 該測定ケース内に空気を供給する空気供給手段と、 該測定ケースの内周壁に、該測定ケースの横断面を平面
とするX・Y平面上のX軸とY軸上に位置して配設され
た2対の電極と、 X軸上に位置する一対の電極X1、X2とY軸上に位置
する一対の電極Y1、Y2との間に、一定の電流を供給
する定電流回路と、 該定電流回路からの電流供給時に各電極に流れる電流を
検出すると共に、X軸上に位置する一対の電極X1、X
2の電流値の差とY軸上に位置する一対の電極Y1、Y
2の電流値の差とを演算して、該フロートの位置を示す
X座標信号とY座標信号を発生するX・Y座標信号発生
手段と、 X・Y座標信号発生手段からのX座標信号とY座標信号
に基づき、フロートの移動方向と移動速度を演算する演
算処理手段と、 該フロートに取付けられた導体と、 該導体の周囲位置の該測定ケースの内側に配設され、該
導体に誘導電流を生じさせる電磁誘導コイルと、 該電磁誘導コイルに交流電流を供給し制御する電流制御
手段と、 該電流制御手段により該フロートに水流の向きと相反す
る電磁力を生じさせ、該交流電流の値に基づき地下水流
の流速を算出する流速算出手段と、 を備えたことを特徴とする地下水流測定装置。
1. A measurement case having a flow port through which groundwater can flow, an insulator float disposed in the measurement case, air supply means for supplying air into the measurement case, On the inner peripheral wall, two pairs of electrodes disposed on the X-axis and the Y-axis on an XY plane having a horizontal cross section of the measurement case as a plane, and a pair of electrodes X1 positioned on the X-axis , X2 and a pair of electrodes Y1 and Y2 located on the Y axis, a constant current circuit for supplying a constant current, and detecting a current flowing to each electrode when the current is supplied from the constant current circuit, A pair of electrodes X1 and X located on the X axis
2 and a pair of electrodes Y1 and Y located on the Y-axis.
X and Y coordinate signal generating means for calculating an X coordinate signal and a Y coordinate signal indicating the position of the float by calculating the difference between the two current values, and an X coordinate signal from the XY coordinate signal generating means. Arithmetic processing means for calculating the direction and speed of movement of the float based on the Y coordinate signal; a conductor attached to the float; and a conductor disposed around the conductor inside the measurement case and guided by the conductor An electromagnetic induction coil for generating an electric current, current control means for supplying and controlling an alternating current to the electromagnetic induction coil, and an electromagnetic force opposite to the direction of the water flow is generated in the float by the current control means, and And a flow rate calculating means for calculating a flow rate of the groundwater flow based on the value.
【請求項2】 前記電流制御手段は、前記電磁誘導コイ
ルに電流を供給して前記フロートをセンタリングさせた
状態で、該電流を徐々に低下させ、前記流速算出手段
は、該フロートの移動開始時の該電流値に基づき、該地
下水流の流速を算出することを特徴とする請求項1記載
の地下水流測定装置。
2. The method according to claim 1, wherein the current control means supplies the current to the electromagnetic induction coil and gradually lowers the current in a state where the float is centered. 2. The groundwater flow measuring device according to claim 1, wherein the flow velocity of the groundwater flow is calculated based on the current value.
【請求項3】 前記流速算出手段は、前記電流制御手段
が前記電磁誘導コイルに電流を供給して前記フロートに
水流の向きに相反する電磁力を生じさせて該フロートを
センタリングさせる際の電流値と該フロートの移動速度
に基づき、地下水流の流速を算出することを特徴とする
請求項1記載の地下水流測定装置。
3. The current value when the current control means supplies a current to the electromagnetic induction coil to generate an electromagnetic force in the float opposite to the direction of the water flow to center the float. The groundwater flow measuring device according to claim 1, wherein the flow velocity of the groundwater flow is calculated based on the moving speed of the float.
JP2000004475A 2000-01-13 2000-01-13 Groundwater flow measurement device Expired - Lifetime JP4163358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004475A JP4163358B2 (en) 2000-01-13 2000-01-13 Groundwater flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004475A JP4163358B2 (en) 2000-01-13 2000-01-13 Groundwater flow measurement device

Publications (2)

Publication Number Publication Date
JP2001194467A true JP2001194467A (en) 2001-07-19
JP4163358B2 JP4163358B2 (en) 2008-10-08

Family

ID=18533263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004475A Expired - Lifetime JP4163358B2 (en) 2000-01-13 2000-01-13 Groundwater flow measurement device

Country Status (1)

Country Link
JP (1) JP4163358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502972A (en) * 2006-09-12 2010-01-28 ポシバ オイ Measuring head and measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502972A (en) * 2006-09-12 2010-01-28 ポシバ オイ Measuring head and measuring method

Also Published As

Publication number Publication date
JP4163358B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
CN100451563C (en) Method for testing a magnetic inductive flow meter
Tihon et al. Near-wall investigation of backward-facing step flows
JP2945450B2 (en) Tilt sensor and tilt angle measuring device
JP2009505085A (en) Magnetic induction flow measuring device
CN105793675A (en) Method for operating a magnetic inductive measuring devic
CN106574858B (en) Magnetic-inductive flow measuring device with a plurality of measuring electrode pairs and different measuring tube cross sections
CN108896893A (en) The positioning system and localization method of a kind of Partial Discharge Sources in electrical equipment
JP2001194467A (en) Groundwater flow measuring instrument
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
CN105841760B (en) A kind of inserted electromagnet flow meter
JP3002807B2 (en) Float centering device for groundwater flow measurement device
JP3880729B2 (en) Groundwater flow measurement device
JPH05231892A (en) Flow-rate measuring apparatus
JP3013218B2 (en) Groundwater flow measurement method and device
JPH09257950A (en) Measurement method and device for underground water flow
RU2716601C2 (en) Electromagnetic method of measuring flow rate of liquid metal
JP2000028408A (en) Electromagnetic flow meter
JP2018080966A (en) Electromagnetic flowmeter
KR100467314B1 (en) Electromagnetic Flowmeter
JPH0835867A (en) Electromagnetic flowmeter
JPH05107169A (en) Specific gravity measuring device
CN117642608A (en) Magnetic induction flow measuring device
JPH11325999A (en) Thermal flow sensor and fluid measuring method
US20200217698A1 (en) Magnetic flowmeter with media conductivity measurement
JP3691577B2 (en) Flow velocity detection method and flow velocity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term