JP2945450B2 - Tilt sensor and tilt angle measuring device - Google Patents

Tilt sensor and tilt angle measuring device

Info

Publication number
JP2945450B2
JP2945450B2 JP19580390A JP19580390A JP2945450B2 JP 2945450 B2 JP2945450 B2 JP 2945450B2 JP 19580390 A JP19580390 A JP 19580390A JP 19580390 A JP19580390 A JP 19580390A JP 2945450 B2 JP2945450 B2 JP 2945450B2
Authority
JP
Japan
Prior art keywords
container
coil
magnetic fluid
tilt
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19580390A
Other languages
Japanese (ja)
Other versions
JPH0481608A (en
Inventor
喜代美 箕原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP19580390A priority Critical patent/JP2945450B2/en
Publication of JPH0481608A publication Critical patent/JPH0481608A/en
Application granted granted Critical
Publication of JP2945450B2 publication Critical patent/JP2945450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、ある物体の水平面に対する傾斜を検出す
る傾斜センサおよびそれを用いた傾斜角測定装置に関す
る。
The present invention relates to a tilt sensor for detecting a tilt of a certain object with respect to a horizontal plane, and a tilt angle measuring device using the same.

(b)従来の技術 従来より、例えばジャイロコンパスにおいてその垂直
環の傾斜を測定するために、第5図に示すような電解液
水準器からなる傾斜センサが用いられている。
(B) Prior Art Conventionally, for example, in a gyrocompass, an inclination sensor including an electrolyte level as shown in FIG. 5 has been used to measure the inclination of the vertical ring.

第5図において10は湾曲させたガラス管であり、その
内部に3つの電極11,12,13がそれぞれ設けられ、ガラス
管外部にそれぞれリード線14,15,16が引き出されてい
る。ガラス管10の内部には電解液17が所定量封入されて
いる。
In FIG. 5, reference numeral 10 denotes a curved glass tube, in which three electrodes 11, 12, and 13 are provided, respectively, and lead wires 14, 15, and 16 are drawn out of the glass tube. A predetermined amount of an electrolytic solution 17 is sealed in the glass tube 10.

このように構成された傾斜センサが傾斜すれば、ガラ
ス管内の電解液17の水平面が相対的に傾斜し、電極11−
12間の電気抵抗と電極11−13間の電気抵抗とに差が生じ
る。この電気抵抗の差を電圧信号として検出して傾斜角
度を測定するようにしている。
If the tilt sensor configured as described above tilts, the horizontal plane of the electrolytic solution 17 in the glass tube tilts relatively, and the electrode 11-
There is a difference between the electrical resistance between 12 and the electrical resistance between electrodes 11-13. The difference between the electric resistances is detected as a voltage signal to measure the inclination angle.

(c)発明が解決しようとする課題 前述の電解液水準器による傾斜センサはジャイロコン
パスの垂直環の傾斜を測定する場合のように小型軽量が
要求される箇所に適用し得るものであるが、次のような
欠点を備えていた。
(C) Problems to be Solved by the Invention The above-described tilt sensor using an electrolyte level can be applied to a place where small size and light weight are required, such as when measuring the tilt of a vertical ring of a gyro compass. It had the following disadvantages.

ガラス管の製法上正確に左右対称形にすることは困難
であり、正確な左右対称特性が得難い。
It is difficult to make the shape bilaterally accurate due to the manufacturing method of the glass tube, and it is difficult to obtain accurate bilateral symmetry.

内部に封入する電解液は電気化学的に安定で一定の導
電率が保たれるように、その組成が定められていて、電
解液の粘度を自由に変更することはできない。そのため
使用目的に応じた応答性を有する傾斜センサを適宜構成
することは困難である。
The composition of the electrolyte to be sealed therein is determined so that the electrolyte is electrochemically stable and a constant conductivity is maintained, and the viscosity of the electrolyte cannot be freely changed. Therefore, it is difficult to appropriately configure an inclination sensor having responsiveness according to the purpose of use.

容器には電解液に対し化学的に安定なガラス管が必要
とされるが、製造過程でガラス管に気泡が生じやすく、
そのため強度が低い。例えば傾斜を測定すべき部材にガ
ラス管を接着した際、その接着部にクラックが生じやす
い。
The container requires a glass tube that is chemically stable against the electrolyte, but bubbles are likely to be generated in the glass tube during the manufacturing process.
Therefore, the strength is low. For example, when a glass tube is bonded to a member whose inclination is to be measured, cracks tend to occur at the bonded portion.

この発明の目的は、小型軽量で且つ前述した欠点のな
い全く新規な原理に基づく傾斜センサおよびそれを用い
た傾斜角測定装置を提供することにある。
An object of the present invention is to provide a tilt sensor based on a completely novel principle which is small and lightweight and does not have the above-mentioned disadvantages, and a tilt angle measuring device using the same.

(d)課題を解決するための手段 この発明の傾斜センサは、容器内に磁性流体とこの磁
性流体とは比重の異なる他の液体または気体を封入し、
容器の傾斜に基づき上記磁性流体が移動してそれぞれの
ループ面内の磁性流体断面積が相対的に変化する2つの
コイルを差動接続した差動コイルを設け、上記容器の外
部に上記2つのコイルのそれぞれのループ面を略含む面
をループ面として上記差動コイル全体と磁界結合する外
部コイルを設けてなり、 上記差動コイルと上記外部コイル間の相互インダクタ
ンスおよびその極性から容器の傾斜を検出できるように
したことを特徴とする。
(D) Means for Solving the Problems The tilt sensor of the present invention has a container in which a magnetic fluid and another liquid or gas having a specific gravity different from that of the magnetic fluid are sealed in a container,
The magnetic fluid moves based on the inclination of the container, and a differential coil in which two coils whose magnetic fluid cross-sectional areas in respective loop planes relatively change are differentially connected is provided. The two coils are provided outside the container. An external coil that magnetically couples with the entire differential coil is provided with a surface substantially including each loop surface of the coil as a loop surface, and the inclination of the container is determined from the mutual inductance between the differential coil and the external coil and its polarity. It is characterized in that it can be detected.

また、この発明の傾斜角測定装置は、容器内に磁性流
体とこの磁性流体とは比重の異なる他の液体または気体
を封入し、容器の傾斜に基づき上記磁性流体が移動して
それぞれのループ面内の磁性流体断面積が相対的に変化
する2つのコイルを差動接続した差動コイルを設け、上
記容器の外部に上記2つのコイルのそれぞれのループ面
を略含む面をループ面として上記差動コイル全体と磁界
結合する外部コイルを設けてなる傾斜センサと、 上記差動コイルまたは外部コイルの何れか一方に交流
信号を印加する手段と、 他方のコイルに発生する交流信号の大きさおよび位相
を検出する手段とからなる。
Further, the tilt angle measuring device of the present invention fills a container with a magnetic fluid and another liquid or gas having a specific gravity different from that of the magnetic fluid, and the magnetic fluid moves based on the inclination of the container to move each loop surface. A differential coil in which two coils whose magnetic fluid cross-sectional areas are relatively changed are differentially connected to each other, and a surface substantially including a loop surface of each of the two coils is defined as a loop surface outside the container. An inclination sensor having an external coil magnetically coupled to the entire moving coil; a means for applying an AC signal to one of the differential coil and the external coil; and a magnitude and a phase of the AC signal generated in the other coil Detecting means.

(e)作用 この発明の傾斜センサの原理図を第1図(A),
(B)に示す。第1図(A)は正面断面図、(B)は側
面断面図である。第1図において1は偏平な円盤状の容
器であり、その内部に所定量の磁性流体2が封入されて
いる。この例では容器内の磁性流体以外の空間には空気
が存在する。また容器1内部のほぼ中央部にはループの
巻回方向が互いに異なる2つのループを接続してなる差
動コイル3が設けられている。そして容器1の外部には
差動コイル3と磁界結合する外部コイル4が設けられて
いる。図に示すように差動コイル3のループ内の一部に
磁性流体2が存在し、容器1全体が傾斜(回動)すれ
ば、差動コイル3の2つのループ内の磁性流体断面積が
一方では増大し、他方では減少する。差動コイル3と外
部コイル4との磁界結合はループ内の透磁率で定まり、
透磁率の高い磁性流体2のループ内断面積にほぼ比例す
る。差動コイル3の2つのループ内の磁性流体断面積が
等しい時、差動コイル3と外部コイル4間の磁界結合が
キャンセルされて相互インダクタンスは0であるが、容
器1が傾斜して差動コイル3の2つのループ内の磁性流
体断面積に差が生じれば、その差に応じた相互インダク
タンスが発生する。そしてその極性は容器1の傾斜方向
によって定まる。
(E) Operation FIG. 1 (A) shows the principle of the tilt sensor of the present invention.
It is shown in (B). FIG. 1A is a front sectional view, and FIG. 1B is a side sectional view. In FIG. 1, reference numeral 1 denotes a flat disk-shaped container in which a predetermined amount of a magnetic fluid 2 is sealed. In this example, air exists in a space other than the magnetic fluid in the container. A differential coil 3 formed by connecting two loops having different winding directions from each other is provided at a substantially central portion inside the container 1. An external coil 4 that is magnetically coupled to the differential coil 3 is provided outside the container 1. As shown in the figure, when the magnetic fluid 2 exists in a part of the loop of the differential coil 3 and the entire container 1 is inclined (rotated), the magnetic fluid cross-sectional area in the two loops of the differential coil 3 becomes larger. It increases on the one hand and decreases on the other. The magnetic field coupling between the differential coil 3 and the external coil 4 is determined by the magnetic permeability in the loop,
It is substantially proportional to the cross-sectional area in the loop of the magnetic fluid 2 having high magnetic permeability. When the magnetic fluid cross-sectional areas in the two loops of the differential coil 3 are equal, the magnetic field coupling between the differential coil 3 and the external coil 4 is cancelled, and the mutual inductance is zero. If a difference occurs in the cross-sectional area of the magnetic fluid in the two loops of the coil 3, a mutual inductance corresponding to the difference occurs. The polarity is determined by the direction of inclination of the container 1.

この発明の請求項(2)に係る傾斜角測定装置では、
原理図として示した第1図のような傾斜センサの差動コ
イルの端子T1または外部コイルの端子T2の何れか一方に
交流信号を印加し、他方のコイルに発生する交流信号の
大きさおよび位相を検出することによって傾斜角を測定
する。前述したように容器1の傾斜方向および傾斜角度
に応じて差動コイル3と外部コイル4間の相互インダク
タンスの極性およびその値が定まるため、容器1が水平
状態であれば他方のコイルには交流信号が発生せず、容
器の傾斜方向および傾斜角度に応じて他方のコイルに発
生する交流信号の位相とその大きさが定まる。このこと
によって傾斜センサの取り付けられた物体の傾斜角を測
定することができる。
In the tilt angle measuring device according to claim (2) of the present invention,
An AC signal is applied to either the terminal T1 of the differential coil or the terminal T2 of the external coil of the tilt sensor as shown in FIG. 1 as a principle diagram, and the magnitude and phase of the AC signal generated in the other coil The inclination angle is measured by detecting. As described above, since the polarity and the value of the mutual inductance between the differential coil 3 and the external coil 4 are determined according to the tilt direction and the tilt angle of the container 1, if the container 1 is in the horizontal state, the other coil will have no AC. No signal is generated, and the phase and magnitude of the AC signal generated in the other coil are determined according to the tilt direction and the tilt angle of the container. Thus, the inclination angle of the object to which the inclination sensor is attached can be measured.

(f)実施例 この発明の実施例である傾斜センサの構造を第2図
(A),(B)および第3図(A),(B)に示す。第
2図(A)は第2図(B)におけるA−Aの矢視断面
図、第2図(B)は第2図(A)におけるB−Bの矢視
断面図である。また第3図(A)は容器および外部コイ
ル固定枠の片側のみ表す正面図、第3図(B)は第3図
(A)におけるB−Bの矢視断面図である。
(F) Embodiment FIGS. 2 (A) and 2 (B) and FIGS. 3 (A) and 3 (B) show the structure of a tilt sensor according to an embodiment of the present invention. 2 (A) is a sectional view taken along the line AA in FIG. 2 (B), and FIG. 2 (B) is a sectional view taken along the line BB in FIG. 2 (A). FIG. 3 (A) is a front view showing only one side of the container and the external coil fixing frame, and FIG. 3 (B) is a sectional view taken along the line BB in FIG. 3 (A).

第3図(A),(B)に示すように、容器21には26a
〜26dで示す4つの部屋が設けられていて、27a〜27dで
示す通路で互いに連絡されている。第3図に示した形状
を有する片側容器を互いに2つ重ね合わせることによっ
て1つの容器および1つの外部コイル固定枠を形成す
る。その際、第2図(A),(B)に示すように容器21
内の2つの部屋(第3図(A)に示した26a,26b)にそ
れぞれコイル23a,23bを収納し、差動接続する。一方外
部コイル固定枠25には外部コイル24を取り付ける。また
容器21内には図に示すように差動コイル23a,23bのルー
プ内の半分の高さに磁性流体22が溜るように磁性流体を
注入する。この磁性流体としては、カルボニル鉄やマグ
ネタイト等の極微粒子の表面を界面活性剤で処理し、シ
リコン油や水等にけん濁させたものを用いる。また、容
器の材料としては非磁性、非導電性、熱安定性および加
工性に優れたもの、例えば切削加工可能なセラミクス材
料が適している。
As shown in FIGS. 3 (A) and (B), the container 21 has 26a
There are provided four rooms designated by .about.26d, which are connected to each other by passages designated by 27a.about.27d. One container and one external coil fixing frame are formed by stacking two one-sided containers having the shape shown in FIG. 3 on each other. At this time, as shown in FIGS.
The coils 23a and 23b are accommodated in two rooms (26a and 26b shown in FIG. 3A), respectively, and are differentially connected. On the other hand, the external coil 24 is attached to the external coil fixing frame 25. Also, as shown in the figure, a magnetic fluid is injected into the container 21 so that the magnetic fluid 22 accumulates at half the height in the loop of the differential coils 23a and 23b. As this magnetic fluid, a fluid obtained by treating the surface of ultrafine particles such as carbonyl iron or magnetite with a surfactant and suspending the surface in silicon oil, water or the like is used. Further, as the material of the container, a material excellent in non-magnetic, non-conductive, thermal stability and workability, for example, a ceramic material which can be cut, is suitable.

以上のように構成したことにより、容器21が傾斜すれ
ば差動コイル23a,23bに対する磁性流体22の相対的水平
面が移動し、コイル23aのループ内の磁性流体断面積と
コイル23b内の磁性流体断面積に差が生じる。これによ
り外部コイル24との相互インダクタンスが生じ、このこ
とから傾斜角を測定することができる。なお、第3図に
示した通路27a〜27d内には磁性流体および他の液体また
は気体が存在し、容器全体が傾斜することにより上記各
種流体が通路27a〜27d内を流れる。その際、通路27a〜2
7dはチョークとして作用する。したがって通路27a〜27d
の断面積を適宜定めることによって、容器の傾斜角変化
に応じて容器内を移動する各種流体の流量制御が行わ
れ、例えば磁性流体の自由振動が抑制される。これによ
り僅かな振動に対しては応答しない安定した傾斜角を測
定することのできる傾斜センサが得られる。
With the above configuration, if the container 21 is inclined, the relative horizontal plane of the magnetic fluid 22 with respect to the differential coils 23a and 23b moves, and the magnetic fluid cross-sectional area in the loop of the coil 23a and the magnetic fluid in the coil 23b Differences occur in cross-sectional areas. This causes mutual inductance with the external coil 24, from which the tilt angle can be measured. A magnetic fluid and other liquids or gases are present in the passages 27a to 27d shown in FIG. 3, and the various fluids flow through the passages 27a to 27d when the entire container is inclined. At that time, passages 27a-2
7d acts as a chalk. Therefore passages 27a-27d
By appropriately determining the cross-sectional area, the flow rate of various fluids moving in the container in accordance with the change in the inclination angle of the container is controlled, and for example, free vibration of the magnetic fluid is suppressed. As a result, an inclination sensor that can measure a stable inclination angle that does not respond to a slight vibration can be obtained.

次に第2図に示した傾斜センサを用いた傾斜角測定装
置のブロック図を第4図に示す。第4図において交流電
源は傾斜センサの差動コイルまたは外部コイルの何れか
一方に交流信号を与えるとともに、乗算回路に対し基準
となる交流信号を与える。増幅回路は傾斜センサの他方
のコイルに発生する交流信号を一定倍率で増幅し、増幅
信号を乗算回路の他方の入力へ与える。乗算回路は交流
電源の出力信号と増幅回路の出力信号との乗算を行う。
平滑回路は乗算回路の出力信号を平滑して傾斜センサの
傾斜に応じた電圧信号を出力する。従って傾斜センサの
出力信号が入力信号と同位相の信号であるとき平滑回路
の出力は正電位となり、傾斜センサの出力信号レベルに
比例した出力電圧が得られる。逆に傾斜センサの出力信
号が入力信号とは逆位相の信号であれば平滑回路の出力
信号は負電位となり、傾斜センサの出力信号のレベルに
比例した負の電圧信号が得られる。傾斜センサの出力信
号が0であれば平滑回路の出力も0となる。
Next, FIG. 4 shows a block diagram of a tilt angle measuring device using the tilt sensor shown in FIG. In FIG. 4, the AC power supply supplies an AC signal to one of the differential coil and the external coil of the tilt sensor, and also supplies a reference AC signal to the multiplying circuit. The amplifying circuit amplifies the AC signal generated in the other coil of the tilt sensor at a constant magnification, and supplies the amplified signal to the other input of the multiplying circuit. The multiplier circuit multiplies the output signal of the AC power supply by the output signal of the amplifier circuit.
The smoothing circuit smoothes the output signal of the multiplication circuit and outputs a voltage signal corresponding to the inclination of the inclination sensor. Therefore, when the output signal of the tilt sensor is a signal having the same phase as the input signal, the output of the smoothing circuit has a positive potential, and an output voltage proportional to the output signal level of the tilt sensor is obtained. Conversely, if the output signal of the tilt sensor has a phase opposite to that of the input signal, the output signal of the smoothing circuit has a negative potential, and a negative voltage signal proportional to the level of the output signal of the tilt sensor is obtained. If the output signal of the tilt sensor is 0, the output of the smoothing circuit is also 0.

なお、上述した実施例では差動コイルを容器内に収納
するとともに磁性流体に浸漬するように構成したが、容
器の傾斜に応じて磁性流体が移動することによってルー
プ内の磁性流体断面積が変化する位置であれば、差動コ
イルを容器外部に設けて磁性流体から隔離してもよい。
In the above-described embodiment, the differential coil is housed in the container and is immersed in the magnetic fluid. However, the magnetic fluid moves according to the inclination of the container, and the magnetic fluid cross-sectional area in the loop changes. In such a position, a differential coil may be provided outside the container to isolate it from the magnetic fluid.

また、実施例は平面内での傾斜角を検出するようにし
たものであったが、作動コイルと外部コイルを複数組み
設ければ、三次元方向の傾斜角を検出することも可能で
ある。
In the embodiment, the inclination angle in the plane is detected. However, if a plurality of sets of the working coil and the external coil are provided, the inclination angle in the three-dimensional direction can be detected.

(g)発明の効果 この発明によれば、電解液を用いず、容器としてガラ
ス管を用いる必要性がなく、左右対称特性に優れた精密
な傾斜センサが得られる。また、磁性流体は電解液とは
異なり化学的に安定で容器等との反応もないため、その
粘度を適宜設定して使用目的に応じた応答性を持たせる
ことができる。しかも、容器外部の外部コイルのループ
面は、差動コイルの2つのコイルのそれぞれのループ面
を略含む面であり、且つ差動コイル全体と磁界結合する
ため、差動コイルと外部コイルの双方を通過する磁束密
度が、差動コイルの2つのコイルのそれぞれのループ面
内の磁性流体の占める断面積に応じて大きく変化する。
そのため、容器の傾斜に基づく上記磁性流体の移動によ
る、差動コイルの2つのコイルのループ面内の磁性流体
断面積に生じる面積差に応じて差動コイルと外部コイル
との相互インダクタンスが大きく変化する。その結果、
傾斜角の検出分解能および傾斜角測定精度を容易に高め
ることができる。
(G) Effects of the Invention According to the present invention, there is no need to use a glass tube as a container without using an electrolytic solution, and a precise tilt sensor excellent in left-right symmetry characteristics can be obtained. Also, unlike an electrolytic solution, a magnetic fluid is chemically stable and does not react with a container or the like, so that its viscosity can be appropriately set to provide responsiveness according to the purpose of use. Moreover, the loop surface of the external coil outside the container is a surface substantially including the respective loop surfaces of the two coils of the differential coil, and is magnetically coupled with the entire differential coil. The magnetic flux density passing through the coil varies greatly according to the cross-sectional area occupied by the magnetic fluid in the respective loop planes of the two coils of the differential coil.
Therefore, the mutual inductance between the differential coil and the external coil greatly changes according to the area difference in the cross-sectional area of the magnetic fluid in the loop plane of the two coils of the differential coil due to the movement of the magnetic fluid based on the inclination of the container. I do. as a result,
The tilt angle detection resolution and the tilt angle measurement accuracy can be easily increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の傾斜センサの作用説明に供する原理
図である。第2図(A),(B)はこの発明の実施例で
ある傾斜センサの構造を表す断面図、第3図(A),
(B)は同傾斜センサを構成する容器および外部コイル
固定枠の断面図である。第4図はこの発明の実施例であ
る傾斜角測定装置のブロック図である。第5図は従来の
傾斜センサの構造を表す図である。 1,21……容器、 2,22……磁性流体、 3,23a,23b……差動コイル、 4,24……外部コイル、 25……外部コイル固定枠、 26a〜26d……部屋、 27a〜27d……通路。
FIG. 1 is a principle diagram for explaining the operation of the tilt sensor of the present invention. 2A and 2B are cross-sectional views showing the structure of an inclination sensor according to an embodiment of the present invention, and FIGS.
(B) is sectional drawing of the container and external coil fixing frame which comprise the same inclination sensor. FIG. 4 is a block diagram of a tilt angle measuring device according to an embodiment of the present invention. FIG. 5 is a diagram showing the structure of a conventional tilt sensor. 1,21 …… container, 2,22… magnetic fluid, 3,23a, 23b …… differential coil, 4,24 …… external coil, 25 …… external coil fixing frame, 26a ~ 26d …… room, 27a ~ 27d ... passage.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容器内に磁性流体とこの磁性流体とは比重
の異なる他の液体または気体を封入し、容器の傾斜に基
づき上記磁性流体が移動してそれぞれのループ面内の磁
性流体断面積が相対的に変化する2つのコイルを差動接
続した差動コイルを設け、上記容器の外部に上記2つの
コイルのそれぞれのループ面を略含む面をループ面とし
て上記差動コイル全体と磁界結合する外部コイルを設け
てなり、 上記差動コイルと上記外部コイル間の相互インダクタン
スおよびその極性から容器の傾斜を検出できるようにし
た傾斜センサ。
1. A magnetic fluid and another liquid or gas having a specific gravity different from that of the magnetic fluid are sealed in a container, and the magnetic fluid moves on the basis of the inclination of the container so that the cross-sectional area of the magnetic fluid in each loop surface is increased. Is provided with a differential coil in which two coils whose relative change is relatively different are provided, and a magnetic field coupling with the whole of the differential coil is provided outside the container with a surface substantially including a loop surface of each of the two coils as a loop surface. A tilt sensor which is provided with an external coil to detect the tilt of the container from the mutual inductance between the differential coil and the external coil and the polarity thereof.
【請求項2】容器内に磁性流体とこの磁性流体とは比重
の異なる他の液体または気体を封入し、容器の傾斜に基
づき上記磁性流体が移動してそれぞれのループ面内の磁
性流体断面積が相対的に変化する2つのコイルを差動接
続した差動コイルを設け、上記容器の外部に上記2つの
コイルのそれぞれのループ面を略含む面をループ面とし
て上記差動コイル全体と磁界結合する外部コイルを設け
てなる傾斜センサと、 上記差動コイルまたは外部コイルの何れか一方に交流信
号を印加する手段と、 他方のコイルに発生する交流信号の大きさおよび位相を
検出する手段とからなる傾斜角測定装置。
2. A magnetic fluid and another liquid or gas having a specific gravity different from that of the magnetic fluid are sealed in the container, and the magnetic fluid moves on the basis of the inclination of the container so that the cross-sectional area of the magnetic fluid in each loop surface is increased. Is provided with a differential coil in which two coils whose relative change is relatively different are provided, and a magnetic field coupling with the whole of the differential coil is provided outside the container with a surface substantially including a loop surface of each of the two coils as a loop surface. A tilt sensor provided with an external coil, a means for applying an AC signal to one of the differential coil and the external coil, and a means for detecting the magnitude and phase of the AC signal generated in the other coil. Angle measuring device.
JP19580390A 1990-07-24 1990-07-24 Tilt sensor and tilt angle measuring device Expired - Fee Related JP2945450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19580390A JP2945450B2 (en) 1990-07-24 1990-07-24 Tilt sensor and tilt angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19580390A JP2945450B2 (en) 1990-07-24 1990-07-24 Tilt sensor and tilt angle measuring device

Publications (2)

Publication Number Publication Date
JPH0481608A JPH0481608A (en) 1992-03-16
JP2945450B2 true JP2945450B2 (en) 1999-09-06

Family

ID=16347242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19580390A Expired - Fee Related JP2945450B2 (en) 1990-07-24 1990-07-24 Tilt sensor and tilt angle measuring device

Country Status (1)

Country Link
JP (1) JP2945450B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128826A (en) * 1994-11-01 1996-05-21 Asahi Optical Co Ltd Laser surveying instrument
CN100402895C (en) 2003-11-21 2008-07-16 大金工业株式会社 Surface-coated sealing material
JP4821314B2 (en) * 2005-12-26 2011-11-24 ダイキン工業株式会社 Valve body for semiconductor manufacturing apparatus and method for manufacturing the same
WO2019156175A1 (en) 2018-02-08 2019-08-15 ダイキン工業株式会社 Method for manufacturing fluoropolymer, surfactant for polymerization, use for surfactant, and composition
EP4317214A3 (en) 2018-03-01 2024-05-01 Daikin Industries, Ltd. Method for manufacturing fluoropolymer
EP3763747A4 (en) 2018-03-07 2021-12-01 Daikin Industries, Ltd. Method for producing fluoropolymer
JP7113441B2 (en) 2018-05-28 2022-08-05 国立大学法人東京工業大学 nitrile oxide compound
JP6985633B2 (en) 2018-07-30 2021-12-22 ダイキン工業株式会社 Compositions and molded products containing fluoropolymers
WO2020027046A1 (en) 2018-08-03 2020-02-06 ダイキン工業株式会社 Composition and molded article containing fluorine-containing polymer
CN113195625B (en) 2018-12-28 2023-05-02 国立大学法人秋田大学 Composition and molded article
JP7236004B2 (en) 2019-04-26 2023-03-09 ダイキン工業株式会社 Method for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
US20220259337A1 (en) 2019-04-26 2022-08-18 Daikin Industries, Ltd. Method for producing aqueous fluoropolymer dispersion, drainage treatment method, and aqueous fluoropolymer dispersion
US20220213277A1 (en) 2019-04-26 2022-07-07 Daikin Industries, Ltd. Process for producing aqueous fluoropolymer dispersion
KR102591386B1 (en) 2019-05-20 2023-10-19 다이킨 고교 가부시키가이샤 Fluorine-containing elastomer compositions and articles
CN114364710B (en) 2019-09-05 2024-02-09 大金工业株式会社 Method and composition for producing perfluoroelastomer
JP6881541B2 (en) 2019-10-09 2021-06-02 ダイキン工業株式会社 Compositions and crosslinked products containing fluoropolymers
JP7360058B2 (en) 2019-11-19 2023-10-12 ダイキン工業株式会社 Method of manufacturing fluoropolymer
JP7352110B2 (en) 2019-11-19 2023-09-28 ダイキン工業株式会社 Method for producing fluoropolymer, method for producing polytetrafluoroethylene, method for producing perfluoroelastomer, and composition
EP4249525A1 (en) 2020-11-19 2023-09-27 Daikin Industries, Ltd. Method for manufacturing perfluoroelastomer aqueous dispersion, composition, crosslinkable composition, and crosslinked product
EP4253432A1 (en) 2020-11-25 2023-10-04 Daikin Industries, Ltd. Fluoropolymer, aqueous liquid dispersion, composition, and crosslinked product
WO2022244784A1 (en) 2021-05-19 2022-11-24 ダイキン工業株式会社 Method for producing fluoropolymer, method for producing polytetrafluoroethylene, and composition

Also Published As

Publication number Publication date
JPH0481608A (en) 1992-03-16

Similar Documents

Publication Publication Date Title
JP2945450B2 (en) Tilt sensor and tilt angle measuring device
TWI364244B (en) Vertical die chip-on-board
JPS6326520A (en) Inclination sensor
JP2929158B2 (en) Area type flow meter
CN109238230B (en) Inclination angle measuring device and method based on magnetic suspension
CN103968806B (en) Liquid metal droplet electronic level gauge
CN107631719A (en) A kind of obliquity sensor based on liquid metal
US3682003A (en) Fluid rotor angular rate sensor and three-axis angular rate sensor utilizing the smae
US3492738A (en) Apparatus for measuring small deviations from a true horizontal plane
US2981111A (en) Instrument for indicating fluid density
US3552028A (en) Apparatus for measuring small deviations from a true horizontal plane
JPS624641B2 (en)
JP2626055B2 (en) Acceleration sensor
JP3880729B2 (en) Groundwater flow measurement device
JPS58127116A (en) Detecting device for angle of inclination
JP3130729B2 (en) Electromagnetic flow meter
RU2788591C1 (en) Magnetic fluid device for measuring linear accelerations and tilt angle
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
KR20140108848A (en) The digital absolute inclinometer or method by the the position of electronic circuit sensing pad in the ionic liquid which holds horizontal plane
JPH0121903B2 (en)
Berge et al. Single particle flow dynamics in small pores by the resistive pulse and the pressure reversal technique
RU2073208C1 (en) Gyrotheodolite with vertical orientation of gyrowheel rotary axis
Berge Radial migration of a single particle in a pore by the resistive pulse and the pressure reversal technique
RU2133038C1 (en) Electromagnetic meter of velocity of water flow
JP3002807B2 (en) Float centering device for groundwater flow measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees