JP2001194227A - Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor - Google Patents

Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor

Info

Publication number
JP2001194227A
JP2001194227A JP37724399A JP37724399A JP2001194227A JP 2001194227 A JP2001194227 A JP 2001194227A JP 37724399 A JP37724399 A JP 37724399A JP 37724399 A JP37724399 A JP 37724399A JP 2001194227 A JP2001194227 A JP 2001194227A
Authority
JP
Japan
Prior art keywords
infrared sensor
type infrared
thermopile type
thermopile
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37724399A
Other languages
Japanese (ja)
Inventor
Kensuke Murakami
健介 村上
Shinichi Murashige
伸一 村重
Tsukasa Kawakami
司 川上
Tsutomu Yamaguchi
勉 山口
Yoshiharu Taniguchi
義晴 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP37724399A priority Critical patent/JP2001194227A/en
Publication of JP2001194227A publication Critical patent/JP2001194227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermopile type infrared sensor capable of giving the maximum efficiency when a body to be detected is rectangular, since a conventional thermopile type infrared sensor has temperature contacts of a thermocouple formed on the four sides or diagonals of a square, so when a body to be detected is square or circular in conformity with the temperature contact arrangement shape, infrared rays can be detected with maximum efficiency but when the body is rectangular having a radio (R=H/W) of 1.1 to 20.0 of width(W) to height(H) like a human body, the sensitivity decreases greatly, which is a practical problem. SOLUTION: A structure which has temperature contacts of a thermocouple arranged on an elliptic circumference or on the four sides of a rectangle is provided in the thermopile type infrared sensor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は、非接触温度計測、静止人
体検知等の用途で用いられるサーモパイル型赤外線セン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermopile type infrared sensor used for applications such as non-contact temperature measurement and stationary human body detection.

【0002】[0002]

【従来技術】赤外線センサを用いた非接触温度計測、静
止人体検知等の用途で、従来より赤外線センサとして熱
型の検出原理を用いたセンサが用いられている。熱型赤
外線センサの内、サーモパイル方式は焦電式のようなチ
ョッパが不要で、且つサーミスタボロメータ方式のよう
な高精度の直流電源、恒温調系が不用であり、センサと
ドライブのための周辺電子回路との組み合わせにより、
簡単に一定赤外線の検知が可能であることにより、非接
触温度計測、静止人体検出等の分野で普及している。
2. Description of the Related Art A sensor using a thermal detection principle has been used as an infrared sensor for applications such as non-contact temperature measurement using an infrared sensor and detection of a stationary human body. Of the thermal infrared sensors, the thermopile method does not require a chopper such as a pyroelectric method, and does not require a high-precision DC power supply or a constant temperature control system such as a thermistor bolometer method. By combination with the circuit,
Since it is possible to easily detect a constant infrared ray, it is widely used in fields such as non-contact temperature measurement and stationary human body detection.

【0003】従来のサーモパイル方式は赤外線センサの
センシング素子部の構造を図3,図4に示した。Si基
板(1)の中央部がエッチングでくりぬかれ、SiN等
よりなる1μm厚程度のダイヤフラム壁(2)が形成さ
れ、このダイヤフラム上にホトリソグラフィにより約1
00対の薄膜熱電対が直列接続で形成され、冷接点は周
辺のSi基板上部に形成されている。図3のように正四
角形の4辺上の温接点を形成している。またその他の一
般的もしくは良く知られている構造では、図4のように
温接点を正四角形の対角線上に形成している。これらの
熱電対の温接点の配置は、センサ感度の視向性に対し、
大きな影響を及ぼす。サーモパイル方式の赤外線センサ
は、一般的に温接点の位置で最大感度を有するので、前
者サーモパイルの場合、正四角形状の感度分布を持ち、
後者センサの場合は、正四角形の対角線状の感度分布を
有する。したがって、従来のサーモパイル型赤外線セン
サの温接点配置では被検出物体かが温接点配置の形状に
類似の正四角形や円形状の場合、最大効率で赤外線を検
出可能である。一方、被検出物体が人体の時、概ね長方
形状を有し、長方形の幅(W)、高さ(H)の比(R=
H/W)は、前面より見たときに1程度、側面より見た
場合20.0程度となる。このような長方形状を有する
場合、赤外線が入射しない温接点領域が発生し、検出感
度の低下に到っていた。以上のように、従来のサーモパ
イル型赤外線センサでは、熱電対の温接点配置構造に起
因し、被検出物が長方形形状や楕円形状を有する場合、
著しく感度が低下し、実用上問題が残されている。
FIGS. 3 and 4 show the structure of a sensing element of an infrared sensor in a conventional thermopile system. A central portion of the Si substrate (1) is etched away to form a diaphragm wall (2) made of SiN or the like having a thickness of about 1 μm, and about 1 μm is formed on the diaphragm by photolithography.
00 thin film thermocouples are formed in series, and the cold junction is formed on the peripheral Si substrate. As shown in FIG. 3, hot junctions on four sides of a regular square are formed. In another general or well-known structure, the hot junction is formed on a diagonal of a square as shown in FIG. The arrangement of the hot junction of these thermocouples,
Have a big impact. Since the thermopile type infrared sensor generally has the maximum sensitivity at the position of the hot junction, in the case of the former thermopile, it has a square quadrangular sensitivity distribution,
The latter sensor has a square diagonal sensitivity distribution. Therefore, in the conventional hot junction arrangement of the thermopile type infrared sensor, when the object to be detected is a regular square or a circle similar to the shape of the hot junction arrangement, infrared rays can be detected with maximum efficiency. On the other hand, when the detected object is a human body, it has a substantially rectangular shape, and the ratio of the width (W) to the height (H) of the rectangle (R =
H / W) is about 1 when viewed from the front and about 20.0 when viewed from the side. In the case of having such a rectangular shape, a hot-junction region where infrared rays do not enter is generated, leading to a decrease in detection sensitivity. As described above, in the conventional thermopile type infrared sensor, due to the hot junction arrangement structure of the thermocouple, when the detection target has a rectangular shape or an elliptical shape,
The sensitivity is remarkably reduced, and there is a practical problem.

【0004】[0004]

【発明が解決しようとする課題】従来のサーモパイル型
赤外線センサでは、熱電対の温接点が正四角形の四辺上
に又は対角線上に形成されているので、被検出物体が温
接点配置形状に類似の正四角形や円形状の場合、最大効
率で赤外線を検出可能である。しかし、被検出物体の形
状がこれに一致しない、例えば人体等の幅(W)と高さ
(H)の比(R=H/W)が1.1〜20.0の長方形
形状を有する場合、著しく感度が低下し、実用上問題が
残されていた。したがって、本発明では、被検出物体が
長方形状の場合に最大効率を与えるサーモパイル型赤外
線センサを提供することを目的とする。
In the conventional thermopile type infrared sensor, the hot junction of the thermocouple is formed on four sides of a regular square or on a diagonal line. In the case of a square or a circle, infrared rays can be detected with maximum efficiency. However, when the shape of the detected object does not match this, for example, when the ratio of the width (W) to the height (H) of the human body or the like (R = H / W) is 1.1 to 20.0, the rectangular shape is used. In this case, the sensitivity was remarkably lowered, and a problem remained in practical use. Therefore, an object of the present invention is to provide a thermopile-type infrared sensor that provides maximum efficiency when the detection target is rectangular.

【0005】[0005]

【課題を解消するための手段】サーモパイル方式赤外線
センサにおいて、熱電対の温接点を楕円周上または長方
形状の四辺に配置した構造を提供する。
SUMMARY OF THE INVENTION In a thermopile type infrared sensor, there is provided a structure in which hot junctions of a thermocouple are arranged on an elliptical circumference or on four sides of a rectangular shape.

【0006】[0006]

【発明の実施の形態】本発明のサーモパイル型赤外線セ
ンサの温接点配置構造では、熱電対の温接点を楕円周上
又は長方形の四辺上に配置することにより、楕円形上や
長方形状の被検出物体に対する感度改善を図ることがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the thermopile type infrared sensor hot junction arrangement structure of the present invention, the elliptical or rectangular object to be detected is arranged by arranging the hot junction of the thermocouple on the circumference of the ellipse or on the four sides of the rectangle. The sensitivity to an object can be improved.

【0007】[0007]

【実施例】本発明のサーモパイル方式赤外線センサの実
施例の平面図を図1、断面を図2に示す。まず、面方位
(100)のSi基板上(1)にSiN,SiO2等に
より構成されるダイヤフラム層(2)を両面にLPCV
D等で形成した。次に熱電対の一方の電極、本実施例の
場合プラスのゼーベック係数を有するSb等の薄膜を真
空蒸着にて形成後、ホトリソグラフィ法(以下ホトリソ
と略記)により微細形状へ加工した。同様に熱電対のも
う一方の電極、本実施例の場合、マイナスのゼーベック
係数を有するBb等の薄膜を形成後ホトリソグラフィに
より微細形状へ加工した。この時点で熱電対の冷接点
は、ダイヤフラム領域の外周部(Si基板上)に形成さ
れ、温接点(3)は、赤外線吸収膜が形成された円板上
の赤外線感受部内に楕円周上に形成された。次に、熱電
対電極を保護するためのパッシベーション層(4)の形
成及びボンディングパッド部の穴開けをホトリソにより
実施した。
1 is a plan view and FIG. 2 is a sectional view of an embodiment of a thermopile infrared sensor according to the present invention. First, a diaphragm layer (2) made of SiN, SiO2 or the like is provided on a Si substrate (1) having a plane orientation (100) with LPCV on both surfaces.
D and the like. Next, one electrode of a thermocouple, a thin film of Sb or the like having a positive Seebeck coefficient in this embodiment was formed by vacuum evaporation, and then processed into a fine shape by photolithography (hereinafter abbreviated as photolitho). Similarly, the other electrode of the thermocouple, in the case of this example, a thin film of Bb or the like having a negative Seebeck coefficient was formed and then processed into a fine shape by photolithography. At this time, the cold junction of the thermocouple is formed on the outer peripheral portion (on the Si substrate) of the diaphragm region, and the hot junction (3) is formed on the elliptical periphery in the infrared sensing portion on the disk on which the infrared absorbing film is formed. Been formed. Next, formation of a passivation layer (4) for protecting the thermocouple electrode and perforation of a bonding pad portion were performed by photolithography.

【0008】更に、Alボンディングパッド(5)と赤
外線吸収膜(6)を真空蒸着及びホトリソにより形成し
た。以上のプロセスで表面パターンの形成を完了した。
次に、裏面のSiN層をホトリソにより所望の寸法に穴
開けした。このSiウェハをKOH 33%溶液,液温
80℃程度中に入れ、SiN層をマスクとしてSi基
板の異方性エッチングを行った。Si基板はKOH溶液
に対して、エッチング量の結晶面異方性((100)/
(111)=数百)を有するので、サイドエッチングを
抑えつつ、厚い基板のエッチングが実現できる。試作し
たサーモパイルでは0.5mm×2mmの長方形の四辺
上に温接点が配置された手法となっている。また、比較
のため、1mm×1mmの正四角形上に温接点が配置さ
れたサンプルも試作した。
Further, an Al bonding pad (5) and an infrared absorbing film (6) were formed by vacuum evaporation and photolithography. With the above process, the formation of the surface pattern was completed.
Next, the SiN layer on the back surface was perforated to a desired size by photolithography. The Si wafer was placed in a KOH 33% solution at a liquid temperature of about 80 ° C., and the Si substrate was subjected to anisotropic etching using the SiN layer as a mask. The Si substrate has a crystal plane anisotropy ((100) /
Since (111) = several hundreds), etching of a thick substrate can be realized while suppressing side etching. The prototype thermopile employs a method in which hot junctions are arranged on four sides of a rectangle of 0.5 mm × 2 mm. For comparison, a sample in which a hot junction was arranged on a 1 mm × 1 mm square was also prototyped.

【0009】評価は被検出物体を人体とし、焦点距離1
0mmGe凸レンズにより集光し、センサの赤外線感受
部上へ結像させ、従来型と本発明型センサ出力を比較す
ることにより行った。人体は、凸レンズの前方6mの位
置にあり、結像寸法は約0.5mm×2.6mmと計算
される。このとき、5000倍増幅後のセンサ出力は従
来型の場合60mV程度に対し、本発明の場合130m
V程度と約2倍の改善が確認された。
In the evaluation, the detected object is a human body, and the focal length is 1
The light was condensed by a 0 mm Ge convex lens, formed an image on the infrared sensor of the sensor, and the output of the conventional sensor was compared with that of the sensor of the present invention. The human body is located 6 m in front of the convex lens, and the image size is calculated to be about 0.5 mm × 2.6 mm. At this time, the sensor output after 5000-fold amplification is about 60 mV in the case of the conventional type, whereas it is 130 mV in the case of the present invention.
About twice as much improvement as V was confirmed.

【0010】[0010]

【発明の効果】本発明のサーモパイル型赤外線センサの
温接点配置構造では、長方形の四辺上または楕円周上に
温接点を配置しているので、長方形状や楕円形状の被検
出物体に対し、従来の正四角形状の温接点配置型に比較
し、2倍程度の改善ができた。本発明のサーモパイル型
赤外線センサでは長方形状や楕円形状に高感度を有する
ので特に人体検出の用途で感度の改善が期待でき、工学
的に価値がある。
According to the hot junction arrangement structure of the thermopile type infrared sensor of the present invention, the hot junction is arranged on four sides of a rectangle or on an ellipse circumference. In comparison with the square-shaped hot-junction arrangement type, an improvement of about twice was achieved. The thermopile-type infrared sensor of the present invention has high sensitivity in a rectangular or elliptical shape, so that the sensitivity can be expected to be improved particularly in applications for detecting a human body, and is valuable in engineering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のサーモパイル型赤外線センサの温接点
配置構造の実施例の平面図。
FIG. 1 is a plan view of an embodiment of a thermojunction type infrared sensor hot junction arrangement structure of the present invention.

【図2】本発明のサーモパイル型赤外線センサの実施例
の断面図。
FIG. 2 is a sectional view of an embodiment of a thermopile infrared sensor according to the present invention.

【図3】正四角形の四辺上に温接点を配置した従来のサ
ーモパイル型赤外線センサの平面図。
FIG. 3 is a plan view of a conventional thermopile type infrared sensor in which hot junctions are arranged on four sides of a regular square.

【図4】正四角型の対角線上に温接点を位置した従来の
サーモパイル型赤外線センサの平面図。
FIG. 4 is a plan view of a conventional thermopile type infrared sensor in which hot junctions are positioned on a regular square diagonal line.

【符号の説明】[Explanation of symbols]

1.Si基板 2.ダイアフラム層 3.熱電対温接点 4.パッシベーション層 5.ボンディングパット層 6.赤外線吸収膜層 1. 1. Si substrate 2. diaphragm layer 3. Thermocouple hot junction 4. Passivation layer 5. Bonding pad layer Infrared absorbing film layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 勉 鳥取県鳥取市雲山372番地4 日本セラミ ック株式会社 (72)発明者 谷口 義晴 鳥取県鳥取市雲山372番地4 日本セラミ ック株式会社 Fターム(参考) 2G065 AA20 AB02 BA11 BA34 CA27 DA20 2G066 AC13 BA08 CA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsutomu Yamaguchi 372-4 Kumoyama, Tottori-shi, Tottori Japan Nippon Ceramics Co., Ltd. (72) Inventor Yoshiharu Taniguchi 372-4 Kumoyama, Tottori-shi, Tottori Nippon Ceramics F Term (reference) 2G065 AA20 AB02 BA11 BA34 CA27 DA20 2G066 AC13 BA08 CA08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サーモパイル型赤外線センサにおいて、複
数個の熱電対の温接点を楕円周上または長方形の四辺上
に配置したことを特徴とする熱電対温接点の配置構造。
1. A thermocouple type infrared sensor, in which hot junctions of a plurality of thermocouples are arranged on an elliptical circumference or on four sides of a rectangle.
JP37724399A 1999-12-29 1999-12-29 Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor Pending JP2001194227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37724399A JP2001194227A (en) 1999-12-29 1999-12-29 Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37724399A JP2001194227A (en) 1999-12-29 1999-12-29 Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor

Publications (1)

Publication Number Publication Date
JP2001194227A true JP2001194227A (en) 2001-07-19

Family

ID=18508499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37724399A Pending JP2001194227A (en) 1999-12-29 1999-12-29 Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor

Country Status (1)

Country Link
JP (1) JP2001194227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039228A1 (en) 2007-08-20 2009-02-26 Perkinelmer Optoelectronics Gmbh & Co.Kg Sensor cap assembly sensor circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236288A (en) * 1990-02-14 1991-10-22 Nissan Motor Co Ltd Thermopile type infrared ray sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236288A (en) * 1990-02-14 1991-10-22 Nissan Motor Co Ltd Thermopile type infrared ray sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039228A1 (en) 2007-08-20 2009-02-26 Perkinelmer Optoelectronics Gmbh & Co.Kg Sensor cap assembly sensor circuit
WO2009024277A2 (en) 2007-08-20 2009-02-26 Perkinelmer Optoelectronics Gmbh & Co. Kg Sensor cap assembly with a lens
DE102007039228B4 (en) * 2007-08-20 2009-06-18 Perkinelmer Optoelectronics Gmbh & Co.Kg Sensor cap assembly sensor circuit
DE102007039228B8 (en) * 2007-08-20 2009-12-17 Perkinelmer Optoelectronics Gmbh & Co.Kg Sensor cap assembly sensor circuit

Similar Documents

Publication Publication Date Title
US8304850B2 (en) Integrated infrared sensors with optical elements, and methods
US10551246B2 (en) IR detector array device
EP3408630A1 (en) An ir detector array device
JP2006300623A (en) Infrared sensor
JPH02205729A (en) Infrared-ray sensor
JPH11258038A (en) Infrared ray sensor
JP5102436B2 (en) Thermopile array manufacturing method
JP2001194227A (en) Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor
JP3217533B2 (en) Infrared sensor
JP2006105651A (en) Thermopile element and infrared sensor using it
JPH06137943A (en) Thermal infrared sensor
JP2001194228A (en) Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor
JPH02165025A (en) Thermopile
JP2002156283A (en) Thermopile-type infrared sensor
JPH0989655A (en) Infrared detection apparatus
JPH0394127A (en) Infrared ray sensor
JPH046424A (en) Infrared sensor
JP3388207B2 (en) Thermoelectric sensor device and method of manufacturing the same
JP2003254824A (en) Infrared sensor device, non-contacting temperature measuring instrument, and non-contacting clinical thermometer
JPH11258040A (en) Thermopile type infrared ray sensor
JPH09113353A (en) Infrared detection element
JP2856753B2 (en) Infrared sensor
JP2004226216A (en) Thermopile array
JPH04360588A (en) Composite infrared ray detector
JPH0634448A (en) Radiation thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817