JP2001194134A - Method and device for measuring thickness of resin material - Google Patents
Method and device for measuring thickness of resin materialInfo
- Publication number
- JP2001194134A JP2001194134A JP2000002619A JP2000002619A JP2001194134A JP 2001194134 A JP2001194134 A JP 2001194134A JP 2000002619 A JP2000002619 A JP 2000002619A JP 2000002619 A JP2000002619 A JP 2000002619A JP 2001194134 A JP2001194134 A JP 2001194134A
- Authority
- JP
- Japan
- Prior art keywords
- resin material
- thickness
- sound velocity
- temperature
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、樹脂材の製造工程
において超音波を用いてこの樹脂材の厚みを測定する樹
脂材の厚み測定方法及び樹脂材の厚み測定装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the thickness of a resin material using ultrasonic waves in a process of manufacturing the resin material.
【0002】[0002]
【従来の技術】ポリエチレン管や被覆装鋼管の製造工程
においては、樹脂材を押出しダイスから引き抜いて冷却
することにより該当ポリエチレン管や被覆装鋼管を製造
する。この製造工程において、製造された製品である樹
脂材の厚み(管の肉厚)を目標値に制御することは重要
な管理項目である。オンラインで連続して製造されてい
る樹脂材(管)の厚み制御は、押出し機(押出しダイ
ス)の下流において測定した厚みを基に、押出し温度・
押出しダイスの間隔・押出し速度を適切な値に設定して
行なわれる。2. Description of the Related Art In a process for producing a polyethylene pipe or a coated steel pipe, a resin material is pulled out from an extrusion die and cooled to produce a corresponding polyethylene pipe or a coated steel pipe. In this manufacturing process, it is an important management item to control the thickness (wall thickness of the pipe) of the resin material as the manufactured product to a target value. The thickness control of the resin material (tube) continuously manufactured online is based on the extrusion temperature and temperature based on the thickness measured downstream of the extruder (extrusion die).
It is performed by setting the interval of the extrusion die and the extrusion speed to appropriate values.
【0003】一般的に管の厚み(肉厚)を外周面から測
定する測定装置として超音波厚み測定法が用いられる。
この超音波厚み測定法においては、測定対象の樹脂材の
外側に超音波探触子を配置し、樹脂材に超音波を印加し
て、樹脂材の表面エコーと底面エコー、またはその多重
反射エコーの往復の伝播時間Δtを測定する。樹脂材内
を伝搬する超音波の音速をCとすると、樹脂材の厚みd
は、(1)式で求まる。Generally, an ultrasonic thickness measuring method is used as a measuring device for measuring the thickness (wall thickness) of a pipe from the outer peripheral surface.
In this ultrasonic thickness measurement method, an ultrasonic probe is placed outside a resin material to be measured, and an ultrasonic wave is applied to the resin material, and a surface echo and a bottom echo of the resin material, or a multiple reflection echo thereof. Is measured. Assuming that the sound speed of the ultrasonic wave propagating in the resin material is C, the thickness d of the resin material
Is obtained by equation (1).
【0004】 d=C・Δt/2 …(1) ここで、樹脂材内を伝搬する超音波の音速Cは樹脂材の
種類や温度によって異なるので、一般に値を変更できる
ようになっており、樹脂材の種類やサイズに応じた値を
設定して測定を開始する。D = C · Δt / 2 (1) Here, since the sound speed C of the ultrasonic wave propagating in the resin material varies depending on the type and temperature of the resin material, the value can be generally changed. Set a value according to the type and size of the resin material and start measurement.
【0005】さて、製造製品である樹脂材の厚みを制御
し、製品の歩留りや材料原単位を低く抑えるためには、
できる限り押出しダイスの近くで厚みを測定する必要が
ある。しかし、押出しダイスの近くでは測定対象である
樹脂材の温度が高く、また引き抜き速度や冷却時間によ
り温度が一定でない。[0005] Now, in order to control the thickness of the resin material, which is a manufactured product, and to suppress the yield of the product and the basic unit of material,
It is necessary to measure the thickness as close to the extrusion die as possible. However, the temperature of the resin material to be measured is high near the extrusion die, and the temperature is not constant due to the drawing speed and the cooling time.
【0006】一般的に、樹脂材内における超音波の音速
Cは温度に大きく依存するため、温度が不安定であると
厚みの測定精度が低くなる問題がある。Generally, the sound speed C of an ultrasonic wave in a resin material greatly depends on the temperature. Therefore, if the temperature is unstable, there is a problem that the measurement accuracy of the thickness is reduced.
【0007】このような不都合を解消するために、測定
対象である樹脂材の表面温度を測定する手法が提唱され
ている(特開昭58−186010号公報)。In order to solve such inconveniences, a method for measuring the surface temperature of a resin material to be measured has been proposed (Japanese Patent Laid-Open No. 58-186010).
【0008】例えば、図7に示すように、ポリエチレン
管からなる測定対象の樹脂材1の外周面に垂直型の超音
波探触子2を取付け、この超音波探触子2に超音波送受
信器3からパルス信号を超音波探触子2へ送出して、超
音波送受信器3で超音波探触子2からのエコー信号aを
検出して、伝搬時間検出部4で、エコー信号aにおける
表面反射エコーb1と底面反射エコーb2との時間差で示
される往復の伝搬時間Δtが求まる。検出された伝搬時
間Δtは厚み算出部5へ入力される。For example, as shown in FIG. 7, a vertical ultrasonic probe 2 is attached to an outer peripheral surface of a resin material 1 to be measured, which is made of a polyethylene tube, and an ultrasonic transceiver is attached to the ultrasonic probe 2. 3 transmits a pulse signal to the ultrasonic probe 2, detects an echo signal a from the ultrasonic probe 2 with the ultrasonic transmitter / receiver 3, and detects a surface of the echo signal a with the propagation time detector 4. The round trip propagation time Δt indicated by the time difference between the reflected echo b 1 and the bottom surface reflected echo b 2 is obtained. The detected propagation time Δt is input to the thickness calculator 5.
【0009】一方、温度検出器6は、樹脂材1の表面温
度TSを測定して、音速補正部7へ送出する。音速補正
部7は、入力された表面温度TSで音速Cを補正して、
補正後の音速Cを厚み算出部5へ送出する。厚み算出部
5は補正後の音速Cを用いて、前述した(1)式を用い
て、樹脂材1の厚みdを算出する。On the other hand, the temperature detector 6 measures the surface temperature T S of the resin material 1 and sends it to the sound speed correction unit 7. The sound speed correction unit 7 corrects the sound speed C with the input surface temperature T S ,
The corrected sound velocity C is sent to the thickness calculator 5. The thickness calculation unit 5 calculates the thickness d of the resin material 1 using the corrected sound velocity C and the above-described equation (1).
【0010】しかしながら、図7に示す手法では、樹脂
材1の厚みが厚い場合には樹脂材のの厚み方向に大きな
温度分布があるため、表面温度TSで樹脂材全体の温度
を代表させることは困難である。したがって、算出され
た樹脂材1の厚みdの算出精度はあまり向上しない。[0010] However, in the method shown in FIG. 7, for the case the thickness of the resin material 1 is thick there is a large temperature distribution in the thickness direction of the resin material, thereby representing the temperature of the entire resin material at the surface temperature T S It is difficult. Therefore, the calculation accuracy of the calculated thickness d of the resin material 1 does not improve much.
【0011】さらに、このような不都合を解消するため
に、特開昭61−251707号公報に、操業パラメー
タを用いて測定対象である樹脂材内の厚み方向の温度分
布を求め、この温度分布から平均温度Tmを求めてその
時の音速Cを用いて前述した(1)式で樹脂材の厚みdを
算出するようにしている。Further, in order to solve such inconvenience, Japanese Patent Application Laid-Open No. 61-251707 discloses a method of obtaining a temperature distribution in a thickness direction in a resin material to be measured by using an operating parameter, and from this temperature distribution, The average temperature Tm is obtained, and the thickness d of the resin material is calculated by the aforementioned equation (1) using the sound speed C at that time.
【0012】なお、操業パラメータとは、樹脂材におけ
る測定位置の表面温度、または材料の押出し温度、公称
厚み、冷却時間、滞留時間等である。そして、これらを
基に樹脂材内の厚み方向の温度分布を推定する。The operating parameters are the surface temperature of the resin material at the measuring position, the extrusion temperature of the material, the nominal thickness, the cooling time, the residence time, and the like. Then, the temperature distribution in the thickness direction in the resin material is estimated based on these.
【0013】[0013]
【発明が解決しようとする課題】しかしながら、この操
業パラメータを用いて温度分布を求めて、さらに平均温
度Tmを求める手法においても未だ解消すべき次のよう
な課題があつた。However, the following problems still need to be solved in a method of obtaining a temperature distribution using the operating parameters and further obtaining an average temperature Tm.
【0014】すなわち、測定対象の樹脂材が樹脂管のよ
うに測定すべき部分の肉厚が厚く、しかも押出しダイス
直後の冷却間もない位置で厚みを測定する場合には、樹
脂管内部における冷却している外周面近傍は固相となっ
ていても内周面近傍はまだ液相である。In other words, when the thickness of the part to be measured is large, such as a resin tube, where the resin material to be measured is thick, and the thickness is measured immediately after cooling immediately after the extrusion dies, the cooling inside the resin tube is difficult. Although the vicinity of the outer peripheral surface is solid phase, the vicinity of the inner peripheral surface is still liquid phase.
【0015】樹脂材内を伝搬する超音波の音速は固相を
伝搬する場合と液相を伝搬する場合とで大きく異なるた
め、平均温度Tmに相当する音速Cで厚みdを測定した
としても、その測定精度をある程度上昇させることはで
きない。Since the sound speed of the ultrasonic wave propagating in the resin material is greatly different between the case where the ultrasonic wave propagates in the solid phase and the case where the ultrasonic wave propagates in the liquid phase, even if the thickness d is measured at the sound speed C corresponding to the average temperature Tm, The measurement accuracy cannot be increased to some extent.
【0016】図8は樹脂材内を伝搬する超音波の音速の
温度特性を示す図である。図示するように、温度Tが低
下して、液相から固相を変化する融点近傍で音速Cが急
激に変化していることが理解できる。温度Tが固相内の
みで変化するならばほぼ音速Cは温度に対して直線とな
っており、樹脂材が固相の場合は平均温度Tmの時の音
速Cを用いて厚みを求めても問題はない。FIG. 8 is a graph showing the temperature characteristics of the sound speed of an ultrasonic wave propagating in a resin material. As shown in the figure, it can be understood that the temperature T decreases and the sound velocity C sharply changes near the melting point where the solid phase changes from the liquid phase. If the temperature T changes only within the solid phase, the sound speed C is almost linear with respect to the temperature. If the resin material is a solid phase, the thickness can be obtained using the sound speed C at the average temperature Tm. No problem.
【0017】しかしながら、樹脂材に液相も含まれてい
る場合は、例えば平均温度が100℃位とすると、上述
した処方によると固相の音速を用いて厚みを求めること
となるが、液相の部分の音速が非常に遅いため、超音波
の伝播時間には大きな影響があり、実際の平均音速は平
均温度に相当する音速とはならない。この理由は、正確
には、超音波の伝播時間Δtは(2)式のように、音速C
(x)の逆数を積分した形で表されるためである。However, when the resin material also contains a liquid phase, for example, if the average temperature is about 100 ° C., the thickness is determined using the sound velocity of the solid phase according to the above-mentioned prescription. Is very slow, which has a great effect on the propagation time of the ultrasonic wave, and the actual average sound speed does not become the sound speed corresponding to the average temperature. The reason for this is that the propagation time Δt of the ultrasonic wave is exactly the sound speed C
This is because the reciprocal of (x) is expressed in an integrated form.
【0018】[0018]
【数1】 (Equation 1)
【0019】以上のように、上述した各測定手法におい
ては、樹脂材の厚み測定において、測定対象の樹脂材に
液相が含まれていると測定精度が大幅に低下する問題が
あった。As described above, in each of the above-described measuring methods, there is a problem that, in the measurement of the thickness of the resin material, if the resin material to be measured contains a liquid phase, the measurement accuracy is greatly reduced.
【0020】本発明は、このような事情に鑑みてなされ
たものであり、厚み方向の音速分布を求めることによ
り、たとえ測定対象の樹脂材に液相が含まれるとして
も、樹脂材の厚みを高い精度で測定できる樹脂材の厚み
測定方法及び樹脂材の厚み測定装置を提供することを目
的とする。The present invention has been made in view of such circumstances, and by determining the sound velocity distribution in the thickness direction, even if the resin material to be measured contains a liquid phase, the thickness of the resin material can be reduced. It is an object of the present invention to provide a resin material thickness measuring method and a resin material thickness measuring device capable of measuring with high accuracy.
【0021】[0021]
【発明が解決しようとする課題】本発明は、固相と液相
とを含む樹脂材の厚みを超音波を用いて測定する樹脂材
の厚み測定方法に適用される。そして、上記課題を解消
するために、本発明の樹脂材の厚み測定方法において
は、超音波が樹脂材の厚み方向を往復する伝搬時間を測
定し、操業パラメータから樹脂材の厚み方向の温度分布
を算出し、この厚み方向の温度分布と樹脂材内における
音速の温度特性とから樹脂材の厚み方向の音速分布を算
出し、この厚み方向の音速分布の平均音速を算出し、こ
の平均音速と測定した伝搬時間とで樹脂材の厚みを算出
するようにしている。The present invention is applied to a resin material thickness measuring method for measuring the thickness of a resin material containing a solid phase and a liquid phase using ultrasonic waves. In order to solve the above-mentioned problems, in the method for measuring the thickness of the resin material of the present invention, the propagation time of the ultrasonic wave reciprocating in the thickness direction of the resin material is measured, and the temperature distribution in the thickness direction of the resin material is determined from the operation parameters. Calculate the sound velocity distribution in the thickness direction of the resin material from the temperature distribution in the thickness direction and the temperature characteristics of the sound velocity in the resin material, calculate the average sound velocity of the sound velocity distribution in the thickness direction, and calculate the average sound velocity The thickness of the resin material is calculated from the measured propagation time.
【0022】また、別の発明は、固相と液相とを含む樹
脂材の厚みを超音波を用いて測定する樹脂材の厚み測定
装置に適用される。Further, another invention is applied to a resin material thickness measuring device for measuring the thickness of a resin material containing a solid phase and a liquid phase by using ultrasonic waves.
【0023】そして、上記課題を解消するために、本発
明の樹脂材の厚み測定装置においては、樹脂材に印加さ
れた超音波が樹脂材の厚み方向を往復する伝搬時間を測
定する伝搬時間測定手段と、操業パラメータから樹脂材
の厚み方向の温度分布を算出する温度分布算出手段と、
樹脂材を伝搬する超音波の音速の温度特性を記憶する音
速温度特性記憶部と、温度分布算出手段で算出された厚
み方向の温度分布と音速温度特性記憶部から読出した音
速の温度特性から樹脂材の厚み方向の音速分布を算出す
る音速分布算出手段と、この音速分布算出手段で算出さ
れた厚み方向の音速分布の平均音速を算出する平均音速
算出手段と、この平均音速算出手段で算出された平均音
速と伝搬時間測定手段で測定された伝搬時間とで樹脂材
の厚みを算出する厚み算出手段とを備えている。In order to solve the above-mentioned problems, the apparatus for measuring the thickness of a resin material according to the present invention measures the propagation time of the ultrasonic wave applied to the resin material in which the ultrasonic wave travels back and forth in the thickness direction of the resin material. Means, temperature distribution calculation means for calculating the temperature distribution in the thickness direction of the resin material from the operation parameters,
A sonic temperature characteristic storage unit that stores the temperature characteristics of the sound velocity of the ultrasonic wave propagating through the resin material; and a resin based on the temperature distribution in the thickness direction calculated by the temperature distribution calculation unit and the temperature characteristics of the sound velocity read from the sonic temperature characteristic storage unit. A sound velocity distribution calculating means for calculating a sound velocity distribution in the thickness direction of the material; an average sound velocity calculating means for calculating an average sound velocity of the sound velocity distribution in the thickness direction calculated by the sound velocity distribution calculating means; and an average sound velocity calculating means. Thickness calculating means for calculating the thickness of the resin material based on the average sound speed and the propagation time measured by the propagation time measuring means.
【0024】このように構成された樹脂材の厚み測定方
法及び樹脂材の厚み測定装置においては、操業パラメー
タから樹脂材の厚み方向の温度分布が算出される。な
お、操業パラメータとは、前述したように、樹脂材にお
ける測定位置の表面温度、または材料の押出し温度、公
称厚み、冷却時間、滞留時間等である。さらに、この温
度分布と音速の温度特性とから樹脂材の厚み方向の各位
置における音速が正確に得られる。In the resin material thickness measuring method and the resin material thickness measuring apparatus configured as described above, the temperature distribution in the thickness direction of the resin material is calculated from the operation parameters. The operation parameters are, as described above, the surface temperature of the resin material at the measurement position, the extrusion temperature of the material, the nominal thickness, the cooling time, the residence time, and the like. Further, the sound velocity at each position in the thickness direction of the resin material can be accurately obtained from the temperature distribution and the temperature characteristics of the sound velocity.
【0025】したがって、各厚み方向位置の各音速を累
積して、この累積値を公称厚みで除算することによっ
て、樹脂材の厚み方向全体の平均音速が求まる。この平
均音速と測定した伝搬時間とで樹脂材の厚みが算出され
る。Therefore, by accumulating the sound velocities at the respective positions in the thickness direction and dividing the accumulated value by the nominal thickness, the average sound speed in the entire thickness direction of the resin material can be obtained. The thickness of the resin material is calculated from the average sound speed and the measured propagation time.
【0026】このように、樹脂材の厚み方向全体の平均
音速が高い精度で求まるので、最終の樹脂材の厚みが高
い精度で算出される。As described above, since the average sound velocity in the entire thickness direction of the resin material is determined with high accuracy, the final thickness of the resin material is calculated with high accuracy.
【0027】[0027]
【発明の実施の形態】以下、本発明の一実施形態を図面
を用いて説明する。図1は実施形態に係る樹脂材の厚み
測定方法が適用された樹脂材の厚み測定装置の概略構成
を示すブロック図である。この実施形態の樹脂材の厚み
測定装置は、例えば、ポリエチレン管の製造ラインの押
出しダイスの近傍位置に設置されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a resin material thickness measuring apparatus to which a resin material thickness measuring method according to an embodiment is applied. The resin material thickness measuring apparatus of this embodiment is installed, for example, at a position near an extrusion die on a polyethylene pipe production line.
【0028】ポリエチレン管等の測定対象の樹脂材10
の外周面10aに微小間隔を開けて配設された垂直型の
超音波探触子12は超音波送受信器13からパルス信号
が印加されると、樹脂材10に対して超音波11を送出
すると共に、表面(外周面10a)及び底面(内周面1
0b)で反射された各反射波をエコー信号aとして、超
音波送受信器13へ送信する。Resin material 10 to be measured, such as a polyethylene tube
When a pulse signal is applied from an ultrasonic transmitter / receiver 13, a vertical ultrasonic probe 12 disposed at a small interval on the outer peripheral surface 10a of the device 10 transmits an ultrasonic wave 11 to the resin material 10. With the surface (outer peripheral surface 10a) and the bottom surface (inner peripheral surface 1a).
Each reflected wave reflected in 0b) is transmitted to the ultrasonic transceiver 13 as an echo signal a.
【0029】超音波送受信器13は、この超音波探触子
12へパルス信号を送出して、この超音波探触子12か
らエコー信号aを受信して、伝搬時間算出部14へ送出
する。伝搬時間算出部14は、入力されたエコー信号a
における表面(外周面10a)反射エコーb1と底面
(内周面10b)反射エコーb2との時間差で示される
往復の伝搬時間Δtを算出して次の厚み算出部15へ送
出する。The ultrasonic transceiver 13 transmits a pulse signal to the ultrasonic probe 12, receives an echo signal a from the ultrasonic probe 12, and transmits the echo signal a to the propagation time calculator 14. The propagation time calculator 14 calculates the input echo signal a
The round trip propagation time Δt indicated by the time difference between the surface (outer surface 10 a) reflected echo b 1 and the bottom surface (inner surface 10 b) reflected echo b 2 is calculated and sent to the next thickness calculator 15.
【0030】表面温度計16は測定対象の樹脂材10の
厚み測定位置での表面温度を測定して操業パラメータ入
力部18へ送出する。また、冷却時間カウンタ17aは
押出しダイスから樹脂材10が押し出されて厚み測定位
置に達するまでの時間で示される冷却時間を計測して操
業パラメータ入力部18へ送出する。具体的には、冷却
時間は樹脂材10の搬送速度で定まる。The surface thermometer 16 measures the surface temperature at the position where the thickness of the resin material 10 to be measured is measured and sends it to the operation parameter input unit 18. Further, the cooling time counter 17a measures a cooling time indicated by a time required for the resin material 10 to be extruded from the extrusion die to reach the thickness measurement position, and sends it to the operation parameter input unit 18. Specifically, the cooling time is determined by the transport speed of the resin material 10.
【0031】さらに、滞留時間カウンタ17bは樹脂材
10の押出しダイス内の滞留時間を測定して操業パラメ
ータ入力部18へ送出する。また操業パラメータ入力部
18には操作者が設定する公称厚み(目標厚み)dSが
入力される。操業パラメータ入力部18は、入力された
表面温度、冷却時間、滞留時間、公称厚みdSを操業パ
ラメータとして、例えば1秒周期で、温度分布算出部1
9へ送出する。Further, the residence time counter 17b measures the residence time of the resin material 10 in the extrusion die and sends it to the operation parameter input unit 18. A nominal thickness (target thickness) d S set by the operator is input to the operation parameter input unit 18. The operation parameter input unit 18 uses the input surface temperature, cooling time, residence time, and nominal thickness d S as operation parameters, for example, in a one-second cycle, and calculates the temperature distribution calculation unit 1.
Send to 9
【0032】温度分布算出部19は1秒周期で入力され
る操業パラメータを用いて、図2に示す測定対象の樹脂
材10の厚み方向の温度分布T(x)を算出する。但
し、変数xは樹脂材10の表面からの厚み方向の距離で
ある。具体的には、温度分布T(x)は熱伝導計算によ
り容易に計算できる。例えば、樹脂料10の熱伝導率、
比熱、密度、押出し温度、冷却時の熱伝達係数を初期値
として、冷却時間が経過していく時の温度分布は、熱伝
導方程式を差分法などで解けば良い。温度分布算出部1
9は1秒周期で算出した図2に示す樹脂材10の厚み方
向の温度分布T(x)を音速分布算出部20へ送出す
る。The temperature distribution calculating section 19 calculates a temperature distribution T (x) in the thickness direction of the resin material 10 to be measured shown in FIG. Here, the variable x is a distance in the thickness direction from the surface of the resin material 10. Specifically, the temperature distribution T (x) can be easily calculated by a heat conduction calculation. For example, the thermal conductivity of the resin material 10,
With the specific heat, density, extrusion temperature, and heat transfer coefficient during cooling as initial values, the temperature distribution when the cooling time elapses may be obtained by solving the heat conduction equation by a difference method or the like. Temperature distribution calculator 1
Reference numeral 9 sends the temperature distribution T (x) in the thickness direction of the resin material 10 shown in FIG.
【0033】音速温度特性記憶部21内には、前述した
図8に示す測定対象の樹脂材10内を伝搬される超音波
の音速の温度特性C(T)が記憶されている。具体的に
は、図8に示すように、融点近傍で特性が大きく変化す
るS字波形を示すので、この温度特性C(T)を、例え
ば(3)式で示すような、5次の多項式などで表す。The temperature characteristic C (T) of the sound velocity of the ultrasonic wave propagating in the resin material 10 to be measured shown in FIG. Specifically, as shown in FIG. 8, an S-shaped waveform whose characteristics change greatly near the melting point is shown. Therefore, this temperature characteristic C (T) is represented by, for example, a fifth-order polynomial as shown in Expression (3). And so on.
【0034】 C(T)=a1T+a2T2+a3T3+a4T4+a5T5 …(3) a1,a2,a3,a4,a5…係数 なお、融点の値に応じて各係数a1〜a5は大きく変化す
るので、測定対象の樹脂材10毎にこの音速の温度特性
C(T)が記憶保持されている。C (T) = a 1 T + a 2 T 2 + a 3 T 3 + a 4 T 4 + a 5 T 5 (3) a 1 , a 2 , a 3 , a 4 , a 5. Since each of the coefficients a 1 to a 5 greatly changes according to the value, the temperature characteristic C (T) of the sound speed is stored and held for each resin material 10 to be measured.
【0035】音速分布算出部20は、1秒周期で、温度
分布算出部19から出力された図2に示す樹脂材10の
厚み方向の温度分布T(x)と音速温度特性記憶部21
内に記憶された図8に示す温度特性C(T)とから、図
3に示すような、樹脂材10の厚み方向の各位置xにお
ける音速の分布を示す音速分布C(x)を算出する。音
速分布算出部20は、1秒周期で、算出した音速分布C
(x)を平均音速算出部22へ送出する。The sound velocity distribution calculating unit 20 stores the temperature distribution T (x) in the thickness direction of the resin material 10 shown in FIG.
From the temperature characteristic C (T) shown in FIG. 8 stored in the table, a sound velocity distribution C (x) showing the distribution of sound velocity at each position x in the thickness direction of the resin material 10 as shown in FIG. 3 is calculated. . The sound velocity distribution calculation unit 20 calculates the calculated sound velocity distribution C in one second cycles.
(X) is sent to the average sound speed calculation unit 22.
【0036】平均音速算出部22は、1秒周期で、(4)
式を用いて、公称厚みdSを有する樹脂材10の厚み方
向の平均音速Cmを算出する。The average sound speed calculation unit 22 calculates the average sound speed in a one-second cycle as shown in (4)
The average sound speed Cm in the thickness direction of the resin material 10 having the nominal thickness d S is calculated using the equation.
【0037】[0037]
【数2】 (Equation 2)
【0038】平均音速算出部22は、1秒周期で、算出
した厚み方向の平均音速Cmを厚み算出部15へ送出す
る。The average sound velocity calculating section 22 sends the calculated average sound velocity Cm in the thickness direction to the thickness calculating section 15 at one-second intervals.
【0039】厚み算出部15は、1秒周期で、伝搬時間
算出部14から入力された伝搬時間Δtと平均音速算出
部22から入力された平均音速Cmとから(5)式を用いて
測定対象の樹脂材10の厚みdを算出して出力部23へ
送出する。The thickness calculating section 15 calculates the object to be measured in a one-second cycle from the propagation time Δt inputted from the propagation time calculating section 14 and the average sound velocity Cm inputted from the average sound velocity calculating section 22 by using equation (5). The thickness d of the resin material 10 is calculated and sent to the output unit 23.
【0040】d=Cm・Δt/2
…(5)出力部23は、1秒周期
で、算出された厚みdを測定結果として、例えば製造ラ
インの制御コンピユータへ送出する。D = Cm ・ Δt / 2
(5) The output unit 23 sends out the calculated thickness d as a measurement result in a one-second cycle, for example, to a control computer of a manufacturing line.
【0041】このように構成された樹脂材の厚み測定装
置においては、操業パラメータから樹脂材の厚み方向の
温度分布T(x)が算出され、この温度分布T(x)と
音速の温度特性C(T)とから樹脂材10の厚み方向の
各位置xにおける音速C(x)が正確に得られる。した
がって、(4)式に示すように、各厚み方向位置xの各音
速C(x)を累積して、この累積値を公称厚みdSで除
算することによって、厚み方向全体の平均音速Cmが求
まり、この平均音速Cmと伝搬時間Δtとで樹脂材10
の厚みdが算出される。In the resin material thickness measuring apparatus thus configured, the temperature distribution T (x) in the thickness direction of the resin material is calculated from the operating parameters, and the temperature distribution T (x) and the temperature characteristic C of the sound velocity are calculated. From (T), the sound velocity C (x) at each position x in the thickness direction of the resin material 10 can be accurately obtained. Therefore, as shown in the equation (4), by accumulating each sound speed C (x) at each position x in the thickness direction and dividing the accumulated value by the nominal thickness d S , the average sound speed Cm in the entire thickness direction is obtained. The average sound velocity Cm and the propagation time Δt are used to determine the resin material 10
Is calculated.
【0042】このように、たとえ樹脂材10内に固相と
液相とが存在したとしても、樹脂材11の厚み方向全体
の平均音速Cmが高い精度で求まるので、最終の樹脂材
10の厚みdが高い精度で算出される。As described above, even if a solid phase and a liquid phase exist in the resin material 10, the average sound velocity Cm in the entire thickness direction of the resin material 11 can be determined with high accuracy. d is calculated with high accuracy.
【0043】なお、温度分布T(x)の算出に公称厚み
dSを用いているが、この公称厚みdSは製造ラインおけ
る制御目標厚みであるので、最終的には測定された樹脂
材10の厚みdがこの公称厚みdSにほぼ等しくなる筈
である。よって、この公称厚みdSを温度分布T(x)
の算出に用いることによって、測定誤差が増大すること
はない。Although the nominal thickness d S is used to calculate the temperature distribution T (x), since the nominal thickness d S is the control target thickness in the production line, the measured resin material 10 Should be approximately equal to this nominal thickness d S. Therefore, this nominal thickness d S is converted to the temperature distribution T (x).
Does not increase the measurement error.
【0044】次に、このように構成された樹脂材の厚み
測定装置の具体的特徴を実測図を用いて説明する。Next, specific characteristics of the resin material thickness measuring apparatus thus configured will be described with reference to actual measurement diagrams.
【0045】図4は確認に用いた種々の実験条件におけ
る樹脂料の厚み方向の温度分布T(x)である。ここで
は、公称厚みdS=10mm、初期温度が200℃のポ
リエチレン管を外側から冷却したときの温度分布であ
り、ここでは厚みの変化がないものとしている。FIG. 4 shows the temperature distribution T (x) in the thickness direction of the resin material under various experimental conditions used for confirmation. Here, it is a temperature distribution when a polyethylene pipe having a nominal thickness d s = 10 mm and an initial temperature of 200 ° C. is cooled from the outside. Here, it is assumed that the thickness does not change.
【0046】まず、冷却時間が400秒の樹脂材が全て
固相である場合について検証する。First, the case where the resin material having a cooling time of 400 seconds is all solid phase will be verified.
【0047】従来の厚み測定手順においては、図4の温
度分布T(x)により平均温度は65.8℃である。こ
の時の音速Cは図8の温度特性C(T)より2265.
3m/sとなる。伝播時間をΔt=8.849μsとす
ると、厚みはd=10.02mmと求められる。これに
対して、本発明の実施形態手法では、図5に示すように
樹脂料の厚み方向の音速分布C(x)を求める。この図
5の音速分布C(x)より、樹脂材が全ての固相である
冷却時間400秒のときの平均音速Cm は2265.3
m/sであり、上述した従来手法の結果と等しい。In the conventional thickness measurement procedure, the average temperature is 65.8 ° C. according to the temperature distribution T (x) in FIG. The sound speed C at this time is 2265.m from the temperature characteristic C (T) in FIG.
3 m / s. Assuming that the propagation time is Δt = 8.849 μs, the thickness is determined to be d = 10.02 mm. On the other hand, in the method of the embodiment of the present invention, a sound velocity distribution C (x) in the thickness direction of the resin material is obtained as shown in FIG. From the sound velocity distribution C (x) in FIG. 5, the average sound velocity Cm when the cooling time is 400 seconds in which the resin material is all solid phases is 2265.3.
m / s, which is equal to the result of the conventional method described above.
【0048】次に、樹脂材に液相が含まれる領域である
冷却時間が150秒の場合について検証する。Next, the case where the cooling time, which is the region where the liquid phase is contained in the resin material, is 150 seconds will be verified.
【0049】従来の厚み測定手順においては、図4の温
度分布T(x)により平均温度は116.3℃であり、
この時の音速は図8の温度特性C(T)により1856
m/sとなる。この場合の伝播時間をΔt=13.10
4μsとすると、厚みはd=12.16mmとなり、固
相の場合の厚みd=10.02mmに比較して非常に誤
差が多い。In the conventional thickness measurement procedure, the average temperature is 116.3 ° C. according to the temperature distribution T (x) in FIG.
The sound speed at this time is 1856 according to the temperature characteristic C (T) in FIG.
m / s. In this case, the propagation time is Δt = 13.10.
When 4 μs is set, the thickness becomes d = 12.16 mm, which is much larger than the thickness d = 10.02 mm in the case of the solid phase.
【0050】これに対して、本発明の実施形態手法で
は、図5の音速分布C(x)より冷却時間150秒であ
る樹脂材に液相が含まれるときの平均音速Cmは164
9m/sであり、厚みはd=10.80mmと求めら
れ、固相の場合の厚みd=10.02mmに比較して誤
差が少なく、高い精度が得られた。On the other hand, in the method of the embodiment of the present invention, the average sound speed Cm when the liquid phase is contained in the resin material having a cooling time of 150 seconds from the sound speed distribution C (x) in FIG.
It was 9 m / s, and the thickness was determined to be d = 10.80 mm. The error was smaller than that of the thickness d = 10.02 mm in the case of a solid phase, and high accuracy was obtained.
【0051】図6は、様々の冷却時間で厚みdを従来手
法と本発明の実施形態手法とで測定して、その各手法に
おける測定誤差を示す図である。この図6においては、
冷却時間が短くなり液相が含まれ始める領域において、
従来手法では大きな誤差が生ずるが、本発明の実施形態
手法によれば少ない誤差で測定可能である。FIG. 6 is a diagram showing the measurement error in each method when the thickness d is measured by the conventional method and the method according to the embodiment of the present invention at various cooling times. In FIG. 6,
In the area where the cooling time is short and the liquid phase begins to be included,
Although a large error occurs in the conventional method, measurement can be performed with a small error according to the embodiment of the present invention.
【0052】なお、本発明は上述した実施形態に限定さ
れるものではない。例えば、樹脂材10の厚みdを(1)
式の代りに(2)式を用いることも可能である。この場
合、(2)式を解くためには数値積分を行なえばよく、い
くつかの厚みに対して伝播時間を計算し、その値が伝播
時間の測定値と等しくなる厚みを探索するようにすれば
よい。The present invention is not limited to the above embodiment. For example, the thickness d of the resin material 10 is set to (1)
Equation (2) can be used instead of the equation. In this case, it is sufficient to perform numerical integration to solve equation (2), calculate the propagation time for several thicknesses, and search for the thickness whose value is equal to the measured value of the propagation time. I just need.
【0053】[0053]
【発明の効果】以上説明したように、本発明の樹脂材の
厚み測定方法及び樹脂材の厚み測定装置においては、厚
み方向の温度分布と音速の温度特性とから厚み方向の音
速分布を求め、この音速分布から樹脂材内を伝搬する超
音波の平均音速を算出している。As described above, in the method for measuring the thickness of a resin material and the apparatus for measuring the thickness of a resin material according to the present invention, the sound velocity distribution in the thickness direction is obtained from the temperature distribution in the thickness direction and the temperature characteristics of the sound velocity. The average sound speed of the ultrasonic wave propagating in the resin material is calculated from the sound speed distribution.
【0054】したがって、たとえ測定対象の樹脂材に液
相が含まれるとしても、樹脂材の厚みを高い精度で測定
できる。その結果、この厚み測定装置が組込まれた製造
ラインで均一な厚みを有した樹脂材を製造できる。ま
た、測定位置を押出しダイスの近くに設置できるため、
製造される樹脂材の歩留りを向上できる。Therefore, even if the liquid phase is contained in the resin material to be measured, the thickness of the resin material can be measured with high accuracy. As a result, a resin material having a uniform thickness can be manufactured on a manufacturing line in which the thickness measuring device is incorporated. Also, since the measurement position can be set near the extrusion die,
The yield of the produced resin material can be improved.
【図1】本発明の一実施形態に係わる樹脂材の厚み測定
装置の概略構成を示すブロック図FIG. 1 is a block diagram showing a schematic configuration of a resin material thickness measuring apparatus according to an embodiment of the present invention.
【図2】同実施形態の樹脂材の厚み測定装置における温
度分布算出部で算出される温度分布図FIG. 2 is a temperature distribution diagram calculated by a temperature distribution calculation unit in the resin material thickness measuring apparatus of the embodiment.
【図3】同実施形態の樹脂材の厚み測定装置における音
速分布算出部で算出される音速分布図FIG. 3 is a sound velocity distribution diagram calculated by a sound velocity distribution calculating unit in the resin material thickness measuring apparatus of the embodiment.
【図4】冷却時間をパラメータとする樹脂材の厚み方向
の温度分布図FIG. 4 is a temperature distribution diagram in a thickness direction of a resin material with cooling time as a parameter.
【図5】冷却時間をパラメータとする樹脂材の厚み方向
の音速分布図FIG. 5 is a sound velocity distribution diagram in a thickness direction of a resin material with cooling time as a parameter.
【図6】実施形態の樹脂材の厚み測定手法と従来の厚み
測手法との誤差の発生度合いの相違を示す模式図FIG. 6 is a schematic diagram showing a difference in the degree of occurrence of an error between the resin material thickness measurement method of the embodiment and a conventional thickness measurement method.
【図7】従来の樹脂材の厚み測定装置の概略構成を示す
ブロック図FIG. 7 is a block diagram showing a schematic configuration of a conventional resin material thickness measuring apparatus.
【図8】樹脂材内を伝搬される超音波の温度特性を示す
図FIG. 8 is a diagram showing temperature characteristics of ultrasonic waves propagated in a resin material.
10…樹脂材 12…超音波探触子 13…超音波送受信器 14…伝搬時間算出部 15…厚み算出部 16…表面温度計 17a…冷却時間カウンタ 17b…滞留時間カウンタ 18…操業パラメータ入力部 19…温度分布算出部 20…音速分布算出部 21…音速温度特性算出部 22…平均音速算出部 23…出力部 DESCRIPTION OF SYMBOLS 10 ... Resin material 12 ... Ultrasonic probe 13 ... Ultrasonic transceiver 14 ... Propagation time calculation part 15 ... Thickness calculation part 16 ... Surface thermometer 17a ... Cooling time counter 17b ... Residence time counter 18 ... Operation parameter input part 19 ... temperature distribution calculation unit 20 ... sound velocity distribution calculation unit 21 ... sound velocity temperature characteristic calculation unit 22 ... average sound velocity calculation unit 23 ... output unit
Claims (2)
波を用いて測定する樹脂材の厚み測定方法において、 前記超音波が前記樹脂材の厚み方向を往復する伝搬時間
を測定し、 操業パラメータから前記樹脂材の厚み方向の温度分布を
算出し、この厚み方向の温度分布と前記樹脂材内におけ
る音速の温度特性とから樹脂材の厚み方向の音速分布を
算出し、この厚み方向の音速分布の平均音速を算出し、
この平均音速と前記測定した伝搬時間とで前記樹脂材の
厚みを算出することを特徴とする樹脂材の厚み測定方
法。1. A method for measuring the thickness of a resin material including a solid phase and a liquid phase by using ultrasonic waves, wherein a propagation time of the ultrasonic waves reciprocating in a thickness direction of the resin material is measured. Calculating the temperature distribution in the thickness direction of the resin material from the operating parameters; calculating the sound velocity distribution in the thickness direction of the resin material from the temperature distribution in the thickness direction and the temperature characteristic of the sound velocity in the resin material; Calculate the average sound speed of the sound speed distribution in the direction,
A method for measuring the thickness of a resin material, wherein the thickness of the resin material is calculated from the average sound speed and the measured propagation time.
波を用いて測定する樹脂材の厚み測定装置において、 前記樹脂材に印加された超音波が前記樹脂材の厚み方向
を往復する伝搬時間を測定する伝搬時間測定手段と、 操業パラメータから前記樹脂材の厚み方向の温度分布を
算出する温度分布算出手段と、 前記樹脂材を伝搬する超音波の音速の温度特性を記憶す
る音速温度特性記憶部と、 前記温度分布算出手段で算出された厚み方向の温度分布
と前記音速温度特性記憶部から読出した音速の温度特性
から前記樹脂材の厚み方向の音速分布を算出する音速分
布算出手段と、 この音速分布算出手段で算出された厚み方向の音速分布
の平均音速を算出する平均音速算出手段と、 この平均音速算出手段で算出された平均音速と前記伝搬
時間測定手段で測定された伝搬時間とで前記樹脂材の厚
みを算出する厚み算出手段とを備えたことを特徴とする
樹脂材の厚み測定装置。2. A resin thickness measuring apparatus for measuring the thickness of a resin material containing a solid phase and a liquid phase using ultrasonic waves, wherein the ultrasonic waves applied to the resin material are oriented in the thickness direction of the resin material. Propagation time measurement means for measuring the propagation time of reciprocation, temperature distribution calculation means for calculating the temperature distribution in the thickness direction of the resin material from operation parameters, and temperature characteristics of sound speed of ultrasonic waves propagating through the resin material are stored. A sound speed temperature characteristic storage unit, and a sound speed distribution for calculating a thickness direction sound speed distribution of the resin material from the thickness direction temperature distribution calculated by the temperature distribution calculation unit and the sound speed temperature characteristic read from the sound speed temperature characteristic storage unit. Calculating means; average sound velocity calculating means for calculating an average sound velocity of the sound velocity distribution in the thickness direction calculated by the sound velocity distribution calculating means; average sound velocity calculated by the average sound velocity calculating means; and the propagation time measuring means. A thickness calculating means for calculating the thickness of the resin material with the propagation time measured in the step (c).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000002619A JP2001194134A (en) | 2000-01-11 | 2000-01-11 | Method and device for measuring thickness of resin material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000002619A JP2001194134A (en) | 2000-01-11 | 2000-01-11 | Method and device for measuring thickness of resin material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001194134A true JP2001194134A (en) | 2001-07-19 |
Family
ID=18531704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000002619A Pending JP2001194134A (en) | 2000-01-11 | 2000-01-11 | Method and device for measuring thickness of resin material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001194134A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021235718A1 (en) * | 2020-05-20 | 2021-11-25 | 주식회사 엘지에너지솔루션 | System and method for ultrasonic inspection |
-
2000
- 2000-01-11 JP JP2000002619A patent/JP2001194134A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021235718A1 (en) * | 2020-05-20 | 2021-11-25 | 주식회사 엘지에너지솔루션 | System and method for ultrasonic inspection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8801277B2 (en) | Ultrasonic temperature measurement device | |
JPH08261809A (en) | Temperature pressure compensation method for clamp-on type ultrasonic wave flowmeter | |
CA2739100C (en) | Viscous fluid flow measurement using a differential pressure measurement and a sonar measured velocity | |
JP2004157114A (en) | Method and instrument for measuring material thickness | |
JP2020501947A (en) | System for an additive manufacturing process and associated control method | |
JP5820304B2 (en) | Ultrasonic flow meter and ultrasonic calorimeter | |
JP2009516190A (en) | Dynamic air turbulence compensation for interferometric instruments | |
KR20150127235A (en) | Measuring thermal expansion and the thermal crown of rolls | |
Hashmi et al. | Sensor data fusion for responsive high resolution ultrasonic temperature measurement using piezoelectric transducers | |
US20110161065A1 (en) | Ultrasonic modelling | |
JPS61251707A (en) | Temperature compensation type ultrasonic wall thickness measurement method | |
JP5133108B2 (en) | Temperature measuring device and temperature measuring method | |
JP2001194134A (en) | Method and device for measuring thickness of resin material | |
JP2008070340A (en) | Temperature measuring method using ultrasonic wave | |
Periyannan et al. | Temperature dependent E and G measurement of materials using ultrasonic guided waves | |
JP2001194135A (en) | Method and apparatus for measuring thickness of resin material | |
US20220228930A1 (en) | Method for Calibrating a Temperature Measuring Unit Based on Ultrasonic Measurement, Method for Measuring the Temperature of a Medium, Temperature Measuring Unit and Ultrasonic Flowmeter | |
Ihara et al. | Non-invasive monitoring of temperature distribution inside materials with ultrasound inversion method | |
Periyannan et al. | Temperature gradients and material properties measurements using Ultrasonic guided waves | |
US4926395A (en) | Method and system for measuring sound velocity | |
JP2019060740A (en) | Temperature measurement method | |
JPH11351928A (en) | Flowmetr and flow rate measuring method | |
JPS635218A (en) | Ultrasonic flowmeter | |
JPS58186010A (en) | Apparatus for measuring thickness of coated film of synthetic resin | |
JP2002214203A (en) | Ultrasonic reflection type method for measuring concentration of gas and apparatus therefor |