JP2001192871A - Magnesium member and producing method therefor - Google Patents

Magnesium member and producing method therefor

Info

Publication number
JP2001192871A
JP2001192871A JP2000006546A JP2000006546A JP2001192871A JP 2001192871 A JP2001192871 A JP 2001192871A JP 2000006546 A JP2000006546 A JP 2000006546A JP 2000006546 A JP2000006546 A JP 2000006546A JP 2001192871 A JP2001192871 A JP 2001192871A
Authority
JP
Japan
Prior art keywords
substrate
alloy
film
titanium oxide
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006546A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
四郎 緒方
Kazuhiko Sonomoto
和彦 園元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tao Corp
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Tao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Tao Corp filed Critical Hitachi Metals Ltd
Priority to JP2000006546A priority Critical patent/JP2001192871A/en
Publication of JP2001192871A publication Critical patent/JP2001192871A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, though, for depositing a titania film on the surface of a substrate composed of an Mg alloy, ordinarily, a solution containing a photocatalytic semiconductor is applied on the surface of the substrate, and, next, sintering is executed at 300 to 500 deg.C in the air, by this method, the film has not been firmly deposited on the substrate. SOLUTION: The surface of a substrate composed of Mg or the alloy thereof is coated with an aqueous solution containing amorphous type titanium peroxide or the same and anatase type titanium oxide, drying is executed at <200 deg.C, and next, a corrosion protective film is deposited thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Mg又はその合金
からなる基体の表面に透明チタニア膜を形成したマグネ
シウム部材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium member having a transparent titania film formed on the surface of a substrate made of Mg or an alloy thereof, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、Mg(比重=約1.75)又はそ
れを含む合金(これらを総称して、以下「Mg合金」と
いう)は、軽量で、しかも加工性、強度、化粧性に優れ
ているので、その用途は、装身具、医療器具、建材、航
空機、自動車用部品、情報家電機器等多岐にわたってい
る。このMg合金は化学的に活性で、耐食性に難点があ
るため、化成処理、陽極酸化、塗装、めっき等の表面処
理が施されている。しかし最も簡単な化成処理でも、溶
剤脱脂、機械的脱脂、アルカリ脱脂、酸洗いといった前
処理を含み、また塗装の場合には、例えば脱脂、洗浄、
化学処理(例えば化成処理)、プライマー処理、仕上げ
塗装といった基本工程を含み、Mg合金の表面処理には
多くの工数を要し、製品コストの2〜3割を占める場合
がある。また、化成処理の場合、コストや作業性を考慮
して、通常は重クロム酸法が採用されているが、環境汚
染の点で問題がある。一方、石油化学製品が増加して居
住環境内外で有害有機化合物の複合汚染が問題となって
いる。これを解決する手段として光触媒半導体による酸
化分解を利用することが注目されている。例えば、機器
や施設を構成している基体の表面に光触媒半導体を担持
させ、そこに付着した有害有機化合物を光触媒半導体に
より酸化分解することが提案され、実用化されつつあ
る。そこで、Mg合金製基体の表面を保護するためにチ
タニア膜に代表される光触媒層を造膜し、合わせてその
チタニア膜の紫外線励起により有機化合物や無機ガス類
を分解する機能を付加することが考えられる。
2. Description of the Related Art Conventionally, Mg (specific gravity = approximately 1.75) or an alloy containing the same (hereinafter collectively referred to as "Mg alloy") is lightweight and has excellent workability, strength and cosmetic properties. Its applications are wide-ranging, including accessories, medical equipment, building materials, aircraft, automotive parts, and information home appliances. Since this Mg alloy is chemically active and has a problem in corrosion resistance, it has been subjected to surface treatment such as chemical conversion treatment, anodic oxidation, painting, plating and the like. However, even the simplest chemical conversion treatment includes pretreatments such as solvent degreasing, mechanical degreasing, alkali degreasing, and pickling, and in the case of painting, for example, degreasing, washing,
Including basic steps such as chemical treatment (for example, chemical treatment), primer treatment, and finish coating, the surface treatment of the Mg alloy requires many man-hours and may account for 20 to 30% of the product cost. In the case of chemical conversion treatment, the dichromic acid method is usually adopted in consideration of cost and workability, but there is a problem in terms of environmental pollution. On the other hand, the increase in petrochemical products has caused a problem of complex contamination of harmful organic compounds inside and outside the living environment. Attention has been paid to utilizing oxidative decomposition by a photocatalytic semiconductor as a means for solving this. For example, it has been proposed that a photocatalytic semiconductor is supported on the surface of a base constituting an apparatus or a facility, and a harmful organic compound attached thereto is oxidatively decomposed by the photocatalytic semiconductor, and is being put to practical use. Therefore, in order to protect the surface of the Mg alloy substrate, a photocatalytic layer typified by a titania film is formed, and additionally, a function of decomposing organic compounds and inorganic gases by ultraviolet excitation of the titania film is added. Conceivable.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Mg合
金からなる基体の表面に単純にチタニア膜を造膜した場
合、基体中に少量のFeやNi、Cuが含有されている
ので、耐食性が低下し、十分な防食効果が得られず又チ
タニア膜と基体との密着性が低下するいう問題点があ
る。すなわち、Mg合金からなる基体の表面にチタニア
膜を形成するために、通常は、光触媒半導体(例えばア
ナターゼ型酸化チタン)を含む溶液を基体の表面に塗布
し、次いで基体との密着性を高めかつ光触媒活性を高め
るために大気中で300℃超乃至500℃以下の温度で
燒結することが行われるが、従来の方法では、基体の表
面に強固に造膜できないという問題が発生する。
However, when a titania film is simply formed on the surface of a substrate made of an Mg alloy, a small amount of Fe, Ni or Cu is contained in the substrate, so that the corrosion resistance is reduced. However, there is a problem that a sufficient anticorrosion effect cannot be obtained and that the adhesion between the titania film and the substrate is reduced. That is, in order to form a titania film on the surface of a substrate made of an Mg alloy, usually, a solution containing a photocatalytic semiconductor (for example, anatase type titanium oxide) is applied to the surface of the substrate, and then the adhesion with the substrate is increased and Although sintering is performed at a temperature of more than 300 ° C. to 500 ° C. or less in the air to enhance photocatalytic activity, the conventional method has a problem that a film cannot be formed firmly on the surface of the substrate.

【0004】したがって本発明の目的は、耐食性が向上
しかつ密着性が優れたマグネシウム部材を提供すること
である。本発明の他の目的は、耐食性が向上しかつ密着
性が優れたマグネシウム部材を低コストで得ることの出
来る製造方法を提供することである。
Accordingly, an object of the present invention is to provide a magnesium member having improved corrosion resistance and excellent adhesion. Another object of the present invention is to provide a manufacturing method capable of obtaining a magnesium member having improved corrosion resistance and excellent adhesion at low cost.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明においては、Mg又はその合金からなる
基体とその表面に形成されたアモルファス型チタニア膜
とチタニア膜の表面に形成された防食被膜とを有する、
という技術的手段を採用した。第1の発明において、前
記防食被膜は、難分解性有機重合体であることが好まし
い。上記目的を達成するために、第2の発明において
は、Mg又はその合金からなる基体と、その表面に形成
されたアモルファス型チタニア及び難分解性有機重合体
を主体とする防食被膜とを有する、という技術的手段を
採用した。上記目的を達成するために、第3の発明にお
いては、Mg又はその合金からなる基体の表面に、アモ
ルファス型過酸化チタン又はそれとアナターゼ型酸化チ
タンを含む水溶液を塗布し、200℃未満の温度で乾燥
し、次いで防食被膜を形成する、という技術的手段を採
用した。上記目的を達成するために、第4の発明におい
ては、Mg又はその合金からなる基体の表面に、アモル
ファス型過酸化チタン又はそれとアナターゼ型酸化チタ
ンを含む水溶液を塗布し、200℃以上の温度で加熱
し、次いで防食被膜を形成する、という技術的手段を採
用した。本発明によれば、Mg基体の表面にアモルファ
ス型チタニア膜と防食被膜又はアモルファス型チタニア
及び難分解性有機重合体を主体とする防食被膜が形成さ
れているので、耐食性及び密着性の向上したマグネシウ
ム部材が得られる。さらにチタニア膜に光触媒機能をも
たせた場合には、光触媒の酸化分解作用により汚れが分
解されて、マグネシウム部材の表面を清浄に保つことが
できる。またこれらのマグネシウム部材の表面に化粧被
膜を形成した場合の表面と化粧被膜との密着性を向上す
ることができる。
In order to achieve the above object, according to a first aspect of the present invention, there is provided a substrate made of Mg or an alloy thereof, an amorphous titania film formed on the surface thereof, and a substrate formed on the surface of the titania film. Having an anticorrosion coating,
The technical means that was adopted. In the first invention, the anticorrosion coating is preferably a hardly decomposable organic polymer. In order to achieve the above object, in the second invention, a substrate made of Mg or an alloy thereof, and an anticorrosion coating mainly composed of amorphous titania and a hardly decomposable organic polymer formed on the surface thereof, The technical means that was adopted. In order to achieve the above object, in the third aspect, an aqueous solution containing amorphous titanium peroxide or an anatase type titanium oxide is applied to a surface of a substrate made of Mg or an alloy thereof at a temperature of less than 200 ° C. The technical means of drying and then forming an anticorrosion coating was employed. In order to achieve the above object, in the fourth aspect, an aqueous solution containing amorphous titanium peroxide or an anatase type titanium oxide is applied to the surface of a substrate made of Mg or an alloy thereof at a temperature of 200 ° C. or more. The technical means of heating and then forming an anticorrosion film was employed. According to the present invention, since an amorphous titania film and an anticorrosion coating or an anticorrosion coating mainly composed of amorphous titania and a hardly decomposable organic polymer are formed on the surface of the Mg base, magnesium having improved corrosion resistance and adhesion is provided. A member is obtained. Further, when the titania film has a photocatalytic function, dirt is decomposed by the oxidative decomposition action of the photocatalyst, and the surface of the magnesium member can be kept clean. In addition, when a decorative film is formed on the surface of these magnesium members, the adhesion between the surface and the decorative film can be improved.

【0006】[0006]

【発明の実施の形態】以下本発明の詳細を図面により説
明する。図1は本発明の一実施例に係る基体の断面図で
ある。図1に示す基体は、Mg基板1とその表面に形成
されたアモルファス型のチタニア膜2とを有する。Mg
基板1は、例えばダイカスト鋳造法によりMg又はMg
と種々の添加元素を含む合金で形成される。添加元素と
しては、Al(機械的性質の改善)、Mn(耐食性の改
善)、Ag(耐熱強度の改善)、Zn(耐食性、強度の
改善)、Zr(結晶粒の微細化)、ミッシュメタル(機
械的性質の改善)、RE(希土類元素、機械的性質の改
善)等が挙げられる。実用合金としては、Mg−Al−
Zn−Mn系(MC1〜MC5)、Mg−Zn−Zr系
(MC6、MC7)、Mg−Zn−Zr−RE系(MC
8)、Mg−Zr−RE−Ag系(MC9)等が挙げら
れる。チタニア膜2は、アモルファス型過酸化チタンを
含む(この他にアナターゼ型酸化チタンを含んでいても
良い)水溶液または粘稠体水溶液を、スプレー法、デイ
ップ法、スピンコート法等により塗布し、常温で乾燥さ
せた後、200℃未満の温度で加熱して形成される。チ
タニア膜の厚さは、0.1〜2μmの範囲が望ましい。
チタニア膜の厚さが0.1μmより薄いと十分な防食効
果が得られず、2μmより厚いと剥離しやすくなる。チ
タニア膜の厚さの好ましい範囲は、0.1〜1μmで、
より好ましい範囲は、0.1〜0.2μmである。アモ
ルファス型過酸化チタンは200℃未満の温度では、結
晶化しないので、ペルオキソ基の強固な固定効果によ
り、基板との密着性に優れ、均一で平坦な透明チタニア
膜を形成することができる。但し、加熱温度が低すぎる
と、造膜時間が長くなるので、70℃以上の温度で加熱
することが望ましい。アモルファス型過酸化チタンは、
組成的にセラミック系統のものを含まず、金属との相性
が良いので基板が撓んだり振動しても密着性に優れ剥離
することが少ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a base according to one embodiment of the present invention. The base shown in FIG. 1 has an Mg substrate 1 and an amorphous titania film 2 formed on the surface thereof. Mg
The substrate 1 is made of, for example, Mg or Mg by die casting.
And an alloy containing various additive elements. As additional elements, Al (improvement of mechanical properties), Mn (improvement of corrosion resistance), Ag (improvement of heat resistance), Zn (improvement of corrosion resistance and strength), Zr (miniaturization of crystal grains), misch metal ( Improvement of mechanical properties), RE (rare earth element, improvement of mechanical properties) and the like. As a practical alloy, Mg-Al-
Zn-Mn (MC1 to MC5), Mg-Zn-Zr (MC6, MC7), Mg-Zn-Zr-RE (MC
8), Mg-Zr-RE-Ag (MC9) and the like. The titania film 2 is coated with an aqueous solution containing amorphous titanium peroxide (or may additionally contain anatase type titanium oxide) or a viscous aqueous solution by a spray method, a dipping method, a spin coating method, or the like. And dried at a temperature of less than 200 ° C. The thickness of the titania film is desirably in the range of 0.1 to 2 μm.
If the thickness of the titania film is less than 0.1 μm, a sufficient anticorrosion effect cannot be obtained, and if it is more than 2 μm, the film is easily peeled. A preferable range of the thickness of the titania film is 0.1 to 1 μm,
A more preferred range is from 0.1 to 0.2 μm. Amorphous titanium peroxide does not crystallize at a temperature of less than 200 ° C., and therefore, a uniform and flat transparent titania film having excellent adhesion to a substrate can be formed due to a strong fixing effect of a peroxo group. However, if the heating temperature is too low, the film formation time will be long, so it is desirable to heat at a temperature of 70 ° C. or higher. Amorphous titanium peroxide is
Since the composition does not include a ceramic-based composition and has good compatibility with metals, it has excellent adhesion and is unlikely to peel off even if the substrate bends or vibrates.

【0007】次ぎに図2に示すように、上記の基板1上
に形成されたチタニア膜2の表面に、(イ)アクリル
系、ポリエステル系、塩化ビニール系又はフッ素系等の
高分子有機重合体、(ロ)シリカまたはその化合物ある
いはシロキサン架橋物を含む無機系塗料、(ハ)メッキ
(Cu−Ni−Crメッキ、無電界Niメッキ)等の防
食被膜3を形成する。これにより、さらに高度な防食機
能を有するMg部材が得られる。上記(イ)の高分子有
機重合体の内では、耐食性の点から重量平均分子量が数
十万以上の難分解性有機重合体が望ましい。上記被膜
は、スプレー法、デイップ法、刷毛塗りあるいは静電塗
装等の公知の手法で形成できる。これらの内最も経済的
な手法を用いればよい。またMg基体の表面に、アモル
ファス型過酸化チタン又はそれとアナターゼ型酸化チタ
ンを含む水溶液(または粘稠体水溶液)をスプレー法、
デイップ法、スピンコート法等により塗布し、次いで常
温で乾燥させた後、200℃以上の温度で加熱すること
により、アモルファス型過酸化チタンはアナターゼ型酸
化チタンに移転するので、チタニア膜に光触媒機能を付
与することができる。ただし、加熱温度が高すぎると、
酸化チタンの結晶構造がルチル型に変化するので、50
0℃以下の温度で加熱することが望ましい。これらのM
g部材は、例えば、建築金物、建具、内外装材、カーテ
ンウォール、眼鏡、時計、装身具等に使用できる。ま
た、本発明では、図1のチタニア膜をアモルファス型過
酸化チタンと難分解性有機重合体の混合物で形成しても
よい。このチタニア膜は耐食性が大で、しかも造膜と樹
脂被覆を同時に行うので、製造コストの低減に有効であ
る。
Next, as shown in FIG. 2, the surface of the titania film 2 formed on the substrate 1 is coated with (a) a high molecular organic polymer such as an acrylic, polyester, vinyl chloride or fluorine-based polymer. (B) an inorganic coating containing silica or a compound thereof or a siloxane cross-linked material; and (c) an anticorrosion coating 3 such as plating (Cu-Ni-Cr plating, electroless Ni plating). Thereby, a Mg member having a more advanced anticorrosion function can be obtained. Among the high molecular weight organic polymers of the above (A), a hardly decomposable organic polymer having a weight average molecular weight of several hundred thousand or more is desirable from the viewpoint of corrosion resistance. The coating can be formed by a known method such as a spray method, a dipping method, brush coating or electrostatic coating. The most economical of these methods may be used. Also, an aqueous solution (or viscous aqueous solution) containing amorphous titanium peroxide or anatase titanium oxide is sprayed on the surface of the Mg base,
Coating by dip coating, spin coating, etc., then drying at room temperature, and then heating at a temperature of 200 ° C or higher, the amorphous titanium peroxide is transferred to the anatase titanium oxide. Can be provided. However, if the heating temperature is too high,
Since the crystal structure of titanium oxide changes to a rutile type, 50
It is desirable to heat at a temperature of 0 ° C. or less. These M
The g member can be used, for example, for building hardware, fittings, interior and exterior materials, curtain walls, glasses, watches, accessories, and the like. In the present invention, the titania film of FIG. 1 may be formed of a mixture of amorphous titanium peroxide and a hardly decomposable organic polymer. This titania film has a high corrosion resistance, and is effective in reducing the production cost because the film formation and the resin coating are performed simultaneously.

【0008】本発明では、図3に示すように、Mg基体
1の表面に、アモルファス型過酸化チタン水溶液(ある
いはアモルファス型過酸化チタン水溶液とアナターゼ型
酸化チタンとの混合ゾル又は水溶液)をスプレー法、デ
イップ法、スピンコート等の手法で塗布した後、200
℃以上の温度で加熱・乾燥することにより、光触媒機能
を有するチタニア膜2´を形成することができる。この
場合もチタン水溶液はアモルファス型過酸化チタンを含
むので、酸化チタンゾル液の付着・展延性が改善され
て、濡れ易く、基体の表面に光触機能層を均一に、か
つ、広く形成することができる。ただし、加熱温度が高
すぎると、酸化チタンの結晶構造がルチル型に変化する
ので、500℃以下の温度で加熱することが望ましい。
なお、図1〜3において、白丸はアモルファス型過酸化
チタンで、黒丸はアナターゼ型酸化チタンである。この
Mg基板は、上述した以外にも例えば、医科・歯科器
具、車両、航空機、自動車、電気器具、工具、工作機械
などに使用できる。また、図1〜3の基体の表面に有機
高分子樹脂による化粧塗膜又は静電塗装による化粧塗膜
を形成して、化粧基材や装飾品に使用してもよい。
In the present invention, as shown in FIG. 3, an amorphous titanium peroxide aqueous solution (or a mixed sol or aqueous solution of an amorphous titanium peroxide aqueous solution and an anatase titanium oxide) is sprayed on the surface of the Mg substrate 1. , Dip coating, spin coating, etc.
By heating and drying at a temperature of not less than ° C., a titania film 2 ′ having a photocatalytic function can be formed. Also in this case, since the titanium aqueous solution contains amorphous titanium peroxide, the adhesion and spreadability of the titanium oxide sol solution is improved, so that it is easy to get wet, and it is possible to uniformly and widely form the optical touch functional layer on the surface of the substrate. it can. However, if the heating temperature is too high, the crystal structure of the titanium oxide changes to a rutile type. Therefore, it is desirable to heat at a temperature of 500 ° C. or lower.
In FIGS. 1 to 3, white circles are amorphous titanium oxide, and black circles are anatase titanium oxide. This Mg substrate can be used for, for example, medical and dental instruments, vehicles, aircraft, automobiles, electric appliances, tools, machine tools, and the like in addition to the above. Further, a decorative coating film made of an organic polymer resin or a decorative coating film formed by electrostatic coating may be formed on the surface of the substrate shown in FIGS.

【0009】光触媒機能とは、アナターゼ型酸化チタン
をはじめとした光触媒半導体金属を基板表面に造膜し、
その造膜表面に励起波長(TiOの場合360〜38
0nm以下の電磁波)が当たることで活性ラジカル種が
発生し、有機化合物や無機ガスを酸化還元分解して浄化
機能を持つものである。これによって防汚機能を有する
Mg部材が可能となる。光触媒半導体としてはTiO
の他にZnO、SrTiO、CdS、CdO、Ca
P、InP、In、CaAs、BaTiO、K
NbO、Fe 、Ta、WO、SnO
、Bi、NiO、CuO、SiC、Si
、MoS、MoS、InPb、RuO、Ce
などがある。この中で酸化チタンTiO(アナタ
ーゼ型)が安価で特性が安定しており、かつ、人体に無
害であり、光触媒として最も優れている。特に、一次粒
子径が8〜20nmのTiO粒子を含むことが望まし
い。
The photocatalytic function is an anatase type titanium oxide
And other photocatalytic semiconductor metals on the substrate surface.
The excitation wavelength (TiO 2)2In the case of 360-38
0nm or less), active radical species
Generate and purify by redox decomposition of organic compounds and inorganic gases
It has a function. This has an antifouling function
Mg members become possible. TiO as a photocatalytic semiconductor2
Besides ZnO, SrTiO3, CdS, CdO, Ca
P, InP, In2O3, CaAs, BaTiO3, K
2NbO3, Fe 2O3, Ta2O5, WO3, SnO
2, Bi2O3, NiO, Cu2O, SiC, Si
O2, MoS2, MoS3, InPb, RuO2, Ce
O2and so on. Among them, titanium oxide TiO2(you
Type) is inexpensive, has stable characteristics, and has no effect on the human body.
It is harmful and is the best photocatalyst. In particular, primary grains
TiO with a diameter of 8 to 20 nm2Preferably contain particles
No.

【0010】本発明において使用されるアモルファス型
過酸化チタンゾルは、基体が金属の場合でも展延性に優
れゾル液を広く均一に塗布するのに有効であり、例えば
次のようにして調整することができる。四塩化チタンT
iClの50%溶液(住友シチックス株式会社)を蒸
留水で70倍に希釈したものと、水酸化アンモニウムN
OHの25%溶液(高杉製薬株式会社)蒸留水で1
0倍に希釈したものとを、容量比7:1に混合し、中和
反応を行う。中和反応後pHを6.5〜6.8に調整
し、しばらく放置後上澄液を捨てる。残ったTi(O
H)のゲル量の約4倍の蒸留水を加え十分に攪拌し放
置する。硝酸銀でチェックし上澄液中の塩素イオンが検
出され無くなるまで水洗を繰り返し、最後に上澄液を捨
ててゲルのみを残す。場合によっては遠心分離により脱
水処理を行うことができる。この淡青味白色のTi(O
H)3,600mlに、35%過酸化水素水210m
lを30分毎2回に分けて添加し、約5℃で一晩攪拌す
ることでPH6.0〜7.0のアモルファス型過酸化チ
タンゾル約2,500mlが得られる。このチタンゾル
は、ペルオキソ基を有する過酸化チタンを含むので、黄
色透明の外観を呈する。なお、上記の工程において、発
熱を抑えないとメタチタン酸等の水に不溶な物質物質が
析出する可能性があるので、全ての工程は発熱を抑えて
行うのが望ましい。
The amorphous titanium peroxide sol used in the present invention has excellent spreadability even when the substrate is a metal, and is effective for applying the sol liquid widely and uniformly. For example, it can be adjusted as follows. it can. Titanium tetrachloride T
A 50% solution of iCl 4 (Sumitomo Sitix Co., Ltd.) diluted 70 times with distilled water, and ammonium hydroxide N
25% solution of H 4 OH (Takasugi Pharmaceutical Co., Ltd.) with distilled water
The mixture diluted 0-fold is mixed at a volume ratio of 7: 1 to perform a neutralization reaction. After the neutralization reaction, the pH is adjusted to 6.5 to 6.8, and after standing for a while, the supernatant is discarded. The remaining Ti (O
H) Add about 4 times the amount of distilled water to the amount of 4 gel, stir well, and allow to stand. Check with silver nitrate, repeat washing with water until chloride ions in the supernatant are no longer detected, and finally discard the supernatant and leave only the gel. In some cases, dehydration treatment can be performed by centrifugation. This pale blue white Ti (O
H) 4 In 3,600 ml, 210 m of 35% hydrogen peroxide solution
l is added twice every 30 minutes and stirred at about 5 ° C. overnight to obtain about 2500 ml of amorphous titanium peroxide sol having a pH of 6.0 to 7.0. Since this titanium sol contains titanium peroxide having a peroxo group, it has a yellow transparent appearance. In addition, in the above steps, if the heat generation is not suppressed, a substance insoluble in water such as metatitanic acid may be precipitated. Therefore, it is preferable that all the steps be performed with the heat generation suppressed.

【0011】[0011]

【実験例】(例1)Mg基板(MC2B、100mm×
150mm×1mm)の表面をサンドペーパで研磨した
後、アモルファス型過酸化チタンとアナターゼ型酸化チ
タンを含む水溶液(TAO社製TK100、濃度1.7
0wt%)をデイップ法により塗布し(wet状態の塗
布量0.7g/100cm)、常温で乾燥した。上記
Mg基板の表面に、アルキド樹脂3%と飽和エステル2
6%を含むポリエステル樹脂(重量平均分子量:約50
万)の水性エマルジョン(商品名:アクアFエマルジョ
ン)をデイップ法により塗布し(wet状態の塗布量2
g/150cm)、自然乾燥した。
[Experimental example] (Example 1) Mg substrate (MC2B, 100 mm ×
After polishing the surface of 150 mm × 1 mm) with sandpaper, an aqueous solution containing amorphous titanium peroxide and anatase titanium oxide (TK100 manufactured by TAO, concentration 1.7)
(0 wt%) was applied by a dip method (wet application amount 0.7 g / 100 cm 2 ) and dried at room temperature. On the surface of the Mg substrate, alkyd resin 3% and saturated ester 2
Polyester resin containing 6% (weight average molecular weight: about 50
10,000) of an aqueous emulsion (trade name: Aqua F emulsion) by a dip method (coating amount 2 in a wet state).
g / 150 cm 2 ) and air dried.

【0012】(例2)Mg基板(MC2B、100mm
×150mm×1mm)の表面をサンドペーパで研磨し
た後、例1と同様のアモルファス型過酸化チタンとアナ
ターゼ型酸化チタンを含む水溶液(濃度0.85wt
%)をデイップ法により塗布した(wet状態の塗布量
0.7g/100cm)後、常温乾燥した。上記Mg
基板の表面に、、例1と同様のポリエステル樹脂の水性
エマルジョンをデイップ法により塗布し(wet状態の
塗布量8.6g/150cm)、自然乾燥した。
(Example 2) Mg substrate (MC2B, 100 mm
After polishing the surface of × 150 mm × 1 mm) with sandpaper, the same aqueous solution containing amorphous titanium peroxide and anatase type titanium oxide as in Example 1 (concentration 0.85 wt.
%) Was applied by a dip method (a coating amount in a wet state: 0.7 g / 100 cm 2 ), and then dried at normal temperature. The above Mg
An aqueous emulsion of the same polyester resin as in Example 1 was applied to the surface of the substrate by a dipping method (wet coating amount: 8.6 g / 150 cm 2 ) and air-dried.

【0013】(例3)Mg基板(MC2B、100mm
×150mm×1mm)の表面をサンドペーパで研磨し
た後、例1と同様のアモルファス型過酸化チタンとアナ
ターゼ型酸化チタン水溶液(濃度1.70wt%)をデ
イップ法により塗布した(wet状態の塗布量0.7g
/100cm)後、常温で紫外線(0.3mW/cm
)を3日間照射した。上記Mg基板の表面に、例1と
同様のポリエステル樹脂の水性エマルジョンをデイップ
法により塗布し(wet状態の塗布量7.5g/150
cm)、自然乾燥した。
(Example 3) Mg substrate (MC2B, 100 mm
After polishing the surface of (× 150 mm × 1 mm) with sandpaper, the same amorphous titanium peroxide and anatase type titanium oxide aqueous solution (concentration 1.70 wt%) as in Example 1 was applied by a dip method (wet coating amount 0). 0.7g
/ 100 cm 2 ) and then at room temperature with ultraviolet light (0.3 mW / cm
2 ) was irradiated for 3 days. An aqueous emulsion of the same polyester resin as in Example 1 was applied to the surface of the Mg substrate by a dip method (application amount in a wet state: 7.5 g / 150).
cm 2 ) and air dried.

【0014】(例4)Mg基板(MC2B、100mm
×150mm×1mm)の表面をサンドペーパで研磨し
た後に、例1と同様のアモルファス型過酸化チタンとア
ナターゼ型酸化チタンを含む水溶液(濃度0.85wt
%)をデイップ法により塗布した(wet状態の塗布量
0.7g/100cm)後常温で、紫外線(0.3m
W/cm)を3日間照射した。上記Mg基板の表面
に、例1と同様のポリエステル樹脂の水性エマルジョン
をデイップ法により塗布し(wet状態の塗布量6.8
g/150cm)、自然乾燥した。
(Example 4) Mg substrate (MC2B, 100 mm
After polishing the surface of (× 150 mm × 1 mm) with sandpaper, the same aqueous solution (concentration: 0.85 wt) containing amorphous titanium oxide and anatase type titanium oxide as in Example 1 was used.
%) By a dip method (a coating amount in a wet state: 0.7 g / 100 cm 2 ), and then, at room temperature, an ultraviolet ray (0.3 m
W / cm 2 ) for 3 days. An aqueous emulsion of the same polyester resin as in Example 1 was applied to the surface of the Mg substrate by a dipping method (application amount in wet state: 6.8).
g / 150 cm 2 ) and air dried.

【0015】(評価)上記4種類のMg基板の塩水噴霧
試験を行い、耐食性を評価した。試験条件:5%食塩水
を8時間噴霧し、引き上げ後16時間大気中に放置し、
再度5%食塩水を8時間噴霧した。例1〜4のものはい
ずれも腐食は無く、良好な耐食性を示すと共に、チタニ
ア膜の剥離も認められなかった。
(Evaluation) The above four types of Mg substrates were subjected to a salt spray test to evaluate corrosion resistance. Test conditions: Sprayed with 5% saline for 8 hours, left in air for 16 hours after lifting,
Again, 5% saline was sprayed for 8 hours. All of Examples 1 to 4 did not corrode and showed good corrosion resistance, and no peeling of the titania film was observed.

【0016】[0016]

【発明の効果】本発明によれば、Mg合金からなる基体
の表面に特定のチタニア膜がもうけられているので、化
粧性が優れかつ耐食性が高いMg部材を得ることが出来
る。
According to the present invention, a specific titania film is provided on the surface of a substrate made of an Mg alloy, so that a Mg member having excellent cosmetic properties and high corrosion resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る基体の断面図である。FIG. 1 is a sectional view of a base according to an embodiment of the present invention.

【図2】本発明の他の実施例に係る基体の断面図であ
る。
FIG. 2 is a sectional view of a base according to another embodiment of the present invention.

【図3】本発明の他の実施例に係る基体の断面図であ
る。
FIG. 3 is a sectional view of a base according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Mg基板、2 チタニア膜、3 防食被膜 1 Mg substrate, 2 titania film, 3 anticorrosion coating

フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA04A BA04B BA48A CA07 CA10 CD10 DA06 EA07 EB15Y EB18Y EC22X EC22Y ED04 FB23 FC07 4K022 AA02 BA15 BA22 BA33 DA06 DA09 EA01 EA02 EA04 4K062 AA01 BA14 BC08 BC09 BC13 BC16 CA08 EA02 FA16 GA01Continued on the front page F-term (reference) 4G069 AA03 AA08 BA04A BA04B BA48A CA07 CA10 CD10 DA06 EA07 EB15Y EB18Y EC22X EC22Y ED04 FB23 FC07 4K022 AA02 BA15 BA22 BA33 DA06 DA09 EA01 EA02 EA04 4K062 AA01 BC02 BC08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mg又はその合金からなる基体と、その
表面に形成されたアモルファス型チタニア膜と、チタニ
ア膜の表面に形成された防食被膜とを有することを特徴
とするマグネシウム部材。
1. A magnesium member comprising a substrate made of Mg or an alloy thereof, an amorphous titania film formed on the surface thereof, and an anticorrosion film formed on the surface of the titania film.
【請求項2】 前記防食被膜は、難分解性有機重合体で
ある請求項1記載のマグネシウム部材。
2. The magnesium member according to claim 1, wherein the anticorrosion coating is a hardly decomposable organic polymer.
【請求項3】 Mg又はその合金からなる基体と、その
表面に形成されたアモルファス型チタニア及び難分解性
有機重合体を主体とする防食被膜とを有することを特徴
とするマグネシウム部材。
3. A magnesium member comprising: a substrate made of Mg or an alloy thereof; and an anticorrosion coating mainly formed of amorphous titania and a hardly decomposable organic polymer formed on the surface thereof.
【請求項4】 Mg又はその合金からなる基体の表面
に、アモルファス型過酸化チタン又はそれとアナターゼ
型酸化チタンを含む水溶液を塗布し、200℃未満の温
度で乾燥し、次いで防食被膜を形成することを特徴とす
るマグネシウム部材の製造方法。
4. An amorphous titanium peroxide or an aqueous solution containing the same and anatase titanium oxide is applied to the surface of a substrate made of Mg or an alloy thereof, dried at a temperature lower than 200 ° C., and then an anticorrosion film is formed. A method for producing a magnesium member, comprising:
【請求項5】 Mg又はその合金からなる基体の表面
に、アモルファス型過酸化チタン又はそれとアナターゼ
型酸化チタンを含む水溶液を塗布し、200℃以上の温
度で加熱し、次いで防食被膜を形成することを特徴とす
るマグネシウム部材の製造方法。
5. A method for applying an aqueous solution containing amorphous titanium peroxide or an anatase type titanium oxide to a surface of a substrate made of Mg or an alloy thereof, heating the same at a temperature of 200 ° C. or more, and then forming an anticorrosion film A method for producing a magnesium member, comprising:
JP2000006546A 2000-01-14 2000-01-14 Magnesium member and producing method therefor Pending JP2001192871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006546A JP2001192871A (en) 2000-01-14 2000-01-14 Magnesium member and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006546A JP2001192871A (en) 2000-01-14 2000-01-14 Magnesium member and producing method therefor

Publications (1)

Publication Number Publication Date
JP2001192871A true JP2001192871A (en) 2001-07-17

Family

ID=18535058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006546A Pending JP2001192871A (en) 2000-01-14 2000-01-14 Magnesium member and producing method therefor

Country Status (1)

Country Link
JP (1) JP2001192871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112569686A (en) * 2019-09-30 2021-03-30 成都易态科技有限公司 Preparation method of composite porous film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112569686A (en) * 2019-09-30 2021-03-30 成都易态科技有限公司 Preparation method of composite porous film
CN112569686B (en) * 2019-09-30 2022-08-09 成都易态科技有限公司 Preparation method of composite porous film

Similar Documents

Publication Publication Date Title
JP3559892B2 (en) Photocatalytic film and method for forming the same
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
JP3863620B2 (en) Photocatalyst and method for producing the same
JP4672822B2 (en) Hydrophilic coating agent and surface hydrophilic substrate
WO2015133316A1 (en) Photocatalyst coating liquid and photocatalyst film using same
JP3122082B2 (en) Manufacturing method of titanium oxide coated material
JPH09328336A (en) Coating film having photocatalyst activity and composition forming the same coating film
JP2001192871A (en) Magnesium member and producing method therefor
JP2002256454A (en) Method for manufacturing plated product
JP2000317388A (en) Corrosion resisting method and method for forming magnesium substrate and mold release material layer
JP2001105525A (en) Decorative member, and production and use thereof
JP3210546B2 (en) Antibacterial and antifungal building materials
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP6067899B2 (en) Interior composite film formed on the inner surface of a kitchen, bathroom, and toilet containing anatase-type titanium oxide
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JPH11158694A (en) Article with hydrophilic coating, and coating method
JP5936735B1 (en) Method for producing interior composite film containing anatase type titanium oxide
JPH11157966A (en) Pottery with photocataytic function and its production
JP3108611U (en) Screen door with photocatalytic function
JP4034885B2 (en) Photocatalytic coating composition
JP2000313853A (en) Article with hydrophilic coating and coating method
JP2000290779A (en) Titania film-formed member and its production
JP2001170495A (en) Method of producing titanium or titanium-based alloy having photocatalytic activity
JP2000064093A (en) Antifungal treatment of anodically oxidized aluminum material
JP2003089525A (en) Method for forming titanium oxide layer on surface of base material