JP3863620B2 - Photocatalyst and method for producing the same - Google Patents

Photocatalyst and method for producing the same Download PDF

Info

Publication number
JP3863620B2
JP3863620B2 JP03889797A JP3889797A JP3863620B2 JP 3863620 B2 JP3863620 B2 JP 3863620B2 JP 03889797 A JP03889797 A JP 03889797A JP 3889797 A JP3889797 A JP 3889797A JP 3863620 B2 JP3863620 B2 JP 3863620B2
Authority
JP
Japan
Prior art keywords
photocatalyst
substrate
titanium oxide
organic polymer
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03889797A
Other languages
Japanese (ja)
Other versions
JPH10235201A (en
Inventor
四郎 緒方
義光 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12538003&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3863620(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP03889797A priority Critical patent/JP3863620B2/en
Publication of JPH10235201A publication Critical patent/JPH10235201A/en
Application granted granted Critical
Publication of JP3863620B2 publication Critical patent/JP3863620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光触媒を担持する基体、特に有機高分子樹脂基板や有機高分子樹脂繊維・不織布や有機高分子塗膜等の有機高分子材からなる基体を有する光触媒体において、基体を光触媒からブロック(遮蔽)し、光触媒作用による基体からの異臭の発生や基体自体の変色を防止する技術に関する。
【0002】
【従来の技術】
光触媒体は、その光触媒機能により、有害物質等を分解・無害化することから建築基材をはじめとする環境保全製品や、その殺菌機能を活かした医療機器・器具等、その応用範囲は広い。しかし、有機高分子樹脂基板(プラスチック板)等有機高分子材の表面に光触媒を担持させてなる光触媒体においては、有機高分子材が酸化還元反応等の光触媒作用により劣化されることから、有機高分子材の保護が必要であり、例えば、有機高分子樹脂基板の表面に耐食性金属と酸化金属とをスパッタリングにより溶着させ、酸化還元反応からブロッキングすることが知られている(特開平8−215295号公報)。
【0003】
また、その表面に光触媒を担持させてなるタイルやガラス等の無機化合物からなる基体は、有機高分子樹脂基体における場合のように、光触媒作用によりそれ自体劣化を受けることはないが、ガラスやフリットに由来するNaイオン、Kイオン等とアナターゼ型酸化チタンTiO2 等の光触媒とが反応することで光触媒機能が充分発揮し得なくなり、無機基板からのこれらイオンをどのようにブロックするかが問題であった。本発明者らは、先に光触媒と基体との間に、光触媒作用を有しないアモルファス型過酸化チタンTiO3 やアモルファス型酸化チタンTiO2 からなる層を吹付、ディピング等により不活性膜として設けることを提案している(特願平8−75543号)。
【0004】
【発明が解決しようとする課題】
上記のように、光触媒を担持させる基体として期待され、また多用されている有機高分子樹脂基板等の有機高分子材に対して光触媒機能を付与する場合、有機高分子材と光触媒との間に保護層を設けることが必要である。特定の添加剤不含の有機高分子樹脂基板には、上記特開平8−215295号公報に記載された方法が適用しうるが、一般に有機高分子樹脂基板や有機高分子樹脂繊維等有機高分子材には、種々の添加物、例えば有機溶剤の他、基板や樹脂の内外に着色用有機顔料・染料が用いられており、このため、ガス化した有機溶剤や酸化に弱い顔料・染料等は、光触媒作用により異臭を放出したり、変色したりして、これら有機高分子材からなる基体を有する光触媒体を具体的に商品化する上で問題となっていた。
【0005】
【課題を解決するための手段】
本発明者らは、上記問題を解決するため、鋭意研究したところ、アモルファス型チタン酸化物とケイ素酸化物との混合物が、上記有機高分子樹脂基板や有機高分子樹脂繊維を基体として用いた場合における光触媒による悪影響や、タイルやガラス等の無機材を基体として用いた場合における光触媒への悪影響を完全にブロックし得ることを見い出し、本発明を完成させるに至った。
【0006】
すなわち、本発明は、アモルファス型過酸化チタン又はアモルファス型酸化チタン等のアモルファス型チタン酸化物とコロイダルシリカ等のケイ素酸化物とを含むブロック層を介して、光触媒を有機高分子材等からなる基体の上に担持させてなることを特徴とする光触媒体、及び該ブロック層と有機高分子材等からなる基体の間に、さらに添加剤不含の有機高分子樹脂シートを介在させてなることを特徴とする光触媒体に関する。
【0007】
また、添加剤不含の有機高分子樹脂に、アモルファス型過酸化チタン(ゾル)又はアモルファス型酸化チタン(粉末)等のアモルファス型チタン酸化物及びコロイダルシリカ等のケイ素酸化物とを混和したものからなるブロック層を介して、光触媒を有機高分子材等からなる基体の上に担持させてなることを特徴とする光触媒体に関する。
【0008】
【発明の実施の形態】
本発明において、アモルファス型チタン酸化物としては、アモルファス型の過酸化チタンTiO3 やアモルファス型酸化チタンTiO2 を例示することができる。アモルファス型の過酸化チタンやアモルファス型酸化チタンには、アナターゼ型酸化チタンTiO2 やルチル型酸化チタンTiO2 と異なり、光触媒機能は実質上殆どない。
【0009】
本発明において用いられるアモルファス型過酸化チタンとして、特に好ましいアモルファス型過酸化チタンゾルは、例えば次のようにして製造することができる。四塩化チタンTiCl4 のようなチタン塩水溶液に、アンモニア水ないし水酸化ナトリウムのような水酸化アルカリを加える。生じる淡青味白色、無定形の水酸化チタンTi(OH)4はオルトチタン酸H4TiO4とも呼ばれ、この水酸化チタンを洗浄・分離後、過酸化水素水で処理すると、本発明のアモルファス形態の過酸化チタン液が得られる。このアモルファス型過酸化チタンゾルは、pH6.0〜7.0、粒子径8〜20nmであり、その外観は黄色透明の液体であり、常温で長期間保存しても安定である。また、ゾル濃度は通常1.40〜1.60%に調整されているが、必要に応じてその濃度を調整することができ、低濃度で使用する場合は、蒸留水等で希釈して使用する。
【0010】
また、このアモルファス型過酸化チタンゾルは、常温ではアモルファスの状態で未だアナターゼ型酸化チタンには結晶化しておらず、分子間接合と考えられる強い接着力があることから密着性に優れ、成膜性が高く、均一でフラットな薄膜を基体上に作成することができ、かつ、乾燥被膜は水に溶けないという性質を有している。
なお、アモルファス型過酸化チタンのゾルを100℃以上で加熱すると、光触媒機能を有するアナターゼ型酸化チタンゾルに変化し始め、アモルファス型過酸化チタンゾルを基体にコーティング後乾燥固定したものは、250℃以上の加熱によりアナターゼ型酸化チタンになる。
【0011】
本発明において用いられるアモルファス型酸化チタンとしては微粉末状のものやこの微粉末状のものを硝酸等の溶媒に分散・懸濁させたゾル状のものが知られている。この光触媒機能をもたないアモルファス型酸化チタンの内、微粉末状のものは、アモルファス型過酸化チタンゾルと異なり、それ自体付着性を有しないことから、これをブロック層に用いる場合には、熱硬化水溶性樹脂などのバインダーと混合して用いることになる。
【0012】
本発明において用いられるケイ素酸化物としては、コロイダルシリカ等の二酸化珪素の他、オルガノポリシロキサン等のシロキサン類化合物、シリコーン、水ガラス等を挙げることができるが、コロイダルシリカが望ましい。
【0013】
本発明におけるブロック層としては、上記のアモルファス型チタン酸化物とケイ素酸化物との混合物、例えばアモルファス型過酸化チタンゾルとコロイダルシリカとの混合物を用いることができる。このアモルファス型過酸化チタンゾルとコロイダルシリカとの混合物は、常温から基体に固定・付着できるという特徴を有している。アモルファス型チタン酸化物とケイ素酸化物との混合割合は重量比で1:0.5〜1:10の範囲のものがふつう使用される。なお、このアモルファス型チタン酸化物とケイ素酸化物との混合物からなる層(被膜)は、親水性、静電気放帯電防止作用、紫外線・有害電磁波遮断機能を有する。
【0014】
本発明において使用しうる光触媒としては、Ti02、ZnO、SrTiO3、CdS、Cd0、CaP、InP、In23、CaAs、BaTiO3、K2NbO3、Fe23、Ta25、WO3、SaO2、Bi23、NiO、Cu2O、SiC、SiO2、MoS2、MoS3、InPb、RuO2、CeO2などを挙げることができるが、これらの中でも粉末状又はゾル状のアナターゼ型酸化チタンTi02 が好ましい。
【0015】
ゾル状のアナターゼ型酸化チタン、すなわちアナターゼ型酸化チタンゾルは、上記のように、アモルファス型過酸化チタンゾルを100℃以上の温度で加熱することにより製造できるが、アナターゼ型酸化チタンゾルの性状は加熱温度と加熱時間とにより多少変化し、例えば100℃で6時間処理により生成するアナターゼ型の酸化チタンゾルは、pH7.5〜9.5、粒子径8〜20nmであり、その外観は黄色懸濁の液体である。
このアナターゼ型酸化チタンゾルは、常温で長期間保存しても安定であるが、酸や金属水溶液等と混合すると沈殿が生じることがあり、また、Naイオンが存在すると光触媒活性や耐酸性が損なわれる場合がある。また、ゾル濃度は通常2.70〜2.90重量%に調整されているが、必要に応じてその濃度を調整して使用することもできる。
【0016】
光触媒としては、上記のアナターゼ型酸化チタンゾルの他、粉末状の二酸化チタンとして、例えば市販の「ST−01」(石原産業株式会社製)や「ST−31」(石原産業株式会社製)をも使用しうる。この場合、バインダーとしては、光触媒作用により劣化を受けないもので、かつ、光触媒機能を低下させないものであればどのようなものでも使用できるが、常温での優れた接着性を有する上記アモルファス型過酸化チタンゾルを用いることが望ましい。
【0017】
光触媒体には、光触媒反応を促進補完するものとして、その製造過程で、光触媒機能補助添加金属(Pt,Ag,Rh,RuO,Nb,Cu,Sn,NiOなど)を添加しておくこともできる。また、成形前に、光触媒と共に、自発型紫外線放射剤又は蓄光型紫外線放射剤の粒子あるいはこれらの放射剤を混入した粒子を混合しておくこともできる。
【0018】
光触媒が担持される基体としては、有機高分子樹脂からなる基板、不織布・繊維、塗膜等の有機高分子材をまず例示することができる。
光触媒機能製品に用いられる有機高分子樹脂基板としては、フェノール、ユリア、ポリエステル等の熱硬化性樹脂や、ポリスチレン、ABS、メタクリル、ポリアシド、ポリカーボネート等の熱可塑性樹脂でのシート材や成形物を挙げることができ、不織布・繊維等の原料樹脂としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、塩化ビリニデン等を挙げることができ、また、塗膜としては、不飽和ポリエステル、熱硬化性エポキシウレタン樹脂、その他耐候性に優れたフッ素樹脂、シリコーン樹脂等を挙げることができる。
【0019】
光触媒体の基体として使用される上記有機高分子材の樹脂材料には、それぞれの用途に応じて通常種々の添加剤が加えられている。例えば、ポリ塩化ビニールからなる壁装材には、柔軟性を与える可塑剤として、フタル酸ジェステル、ジオクチルフタレート、ブタノールのジエステル等を添加したり、また、スズ、亜鉛、バリウムなどの重金属の亜リン酸塩、ステアリン酸塩などの高級脂肪酸塩を添加することが知られている。その他、一般に、赤色着色剤として、難溶性アゾ染料をカルシウムやマグネシウムと反応させたものが利用されており、発砲剤として、分解により窒素ガスを発生させ発泡を生起させるベンゼンスホヒドラジン系及びアゾニドル系化合物が利用され、建材や電気製品に用いられる難燃剤として、トリクレジルホスフェート(TCP)や、ハロゲン含有モノマー又はポリマーが利用されている。また他に、紫外線防止剤として、トリアゾール系、アクリロニトリル誘導体系などの化合物が添加されている。
【0020】
そして、これら種々の添加物が、光触媒反応により、化合したり、ガス化、イオン化したものと結合して、変色したり異臭を放ち製品化を妨げるものである。また、壁装材では、接着面にベース紙を用いるが、これに、前述の防災剤を浸漬、塗布、混合したものが使用されている。基材には、紙、布、水酸化アルミニウム紙などがあり、ここからガス化したものが、光触媒機能により、変色や異臭の原因となることがある。
【0021】
上記の有機高分子材の他、本発明における基体として、ゴム、木、紙などの有機材質、セラミックス、ガラスなどの無機材質、並びにアルミニウム、鋼などの金属材質を用いることができる。
また、その大きさや形には制限されず、板状、ハニカム状、ファイバー状、濾過シート状、ビーズ状、発砲状やそれらが集積したものでもよい。さらに、紫外線を通過する基体であればその内面に前記ブロック層を介して光触媒層を設けることもできるし、また塗装した物品にも適用しうる。
【0022】
本発明における、ブロック層を介して光触媒を有機高分子材等の基体に担持させてなる光触媒体としては、次の形態・構造のものを例示することができる。
▲1▼有機高分子材等の基体(第1層)の上に、ブロック層(第2層)を設け、さらにその上に光触媒層(第3層)を設けた光触媒体。
▲2▼上記第1層と第2層の間に、添加剤が含まれていないポリプロピレン、ポリエチレンテレフタレート、フッ素樹脂等からなる10μm以上の厚さのシートを設けてなる光触媒体。この場合、ブロック効果が上記▲1▼の光触媒体よりも確実になる。
▲3▼ブロック層のその他の例として、熱硬化性の不飽和ポリエステル樹脂、エポキシ樹脂、アルキド樹脂、シリコン樹脂などを溶剤や水で溶解後粘度を調整したものに、アモルファス型チタン酸化物とケイ素酸化物との混合物からなるものを例示することができ、このものを基体の上に1μm〜50μm程度の厚さに塗布し第2層とした光触媒体。このブロック層は基体に積層・固着させる過程で、アモルファス型チタン酸化物の粒子が表面に露出し、結局シート層とブロック層とが設けられた上記▲2▼の光触媒体におけると同様なブロック効果を有する光触媒体が形成されることになる。
【0023】
本発明のブロック層の積層・固着方法としては、ゾル・ゲル法、スパッタリング、溶射、スプレーコート、ディッピング、スピンコートなどの工法で薄膜をつくる方法が挙げられ、ブロック層の厚みとしては、ブロック効果が達成できる厚みやブロック層を構成するアモルファス型チタン酸化物とケイ素酸化物との混合物の造膜性能により決定されるが、例えば、アモルファス型過酸化チタンゾルとコロイダルシリカからなるブロック層の場合、0.05〜5μmの厚みでブロック効果が発揮しうる。また、光触媒層の積層固着方法及び光触媒層の厚みについては、従来知られている方法や厚みが適宜用いられる。
【0024】
【実施例】
以下に、実施例を掲げてこの発明をさらに具体的に説明するが、この発明の技術的範囲はこれらの例示に限定されるものではない。
参考例1(アモルファス型過酸化チタンゾルの製造)
四塩化チタンTiCl4 の50%溶液(住友シティクス株式会社)を蒸留水で70倍に希釈したものと、水酸化アンモニウムNH4OH の25%溶液(高杉製薬株式会社)を蒸留水で10倍に希釈したものとを、容量比7:1に混合し、中和反応を行う。中和反応後pHを6.5〜6.8に調整し、しばらく放置後上澄液を捨てる。残ったTi(OH)4 のゲル量の約4倍の蒸留水を加え十分に撹拌し放置する。塩化銀でチェックし上澄液中の塩素イオンが検出されなくなるまで水洗を繰り返し、最後に上澄液を捨ててゲルのみを残す。場合によっては遠心分離により脱水処理を行うことができる。この淡青味白色のTi(OH)4 3600mlに、35%過酸化水素水210mlを30分毎2回に分けて添加し、約5℃で一晩撹拌すると黄色透明のアモルファス型過酸化チタンゾル約2500mlが得られる。
なお、上記の工程において、発熱を抑えないとメタチタン酸等の水に不溶な物質が析出する可能性があるので、すべての工程は発熱を抑えて行うのが望ましい。
【0025】
参考例2(アモルファス型過酸化チタンゾルからの酸化チタンゾルの製造)
上記アモルファス型過酸化チタンゾルを100℃で加熱すると、3時間程度経過後にアナターゼ型酸化チタンが生じ、6時間程度加熱するとアナターゼ型酸化チタンゾルが得られる。また、100℃で8時間加熱すると、淡黄色やや懸濁蛍光を帯び、濃縮すると、黄色不透明のものが得られ、100℃で16時間加熱すると極淡黄色のものが得られるが、これらは上記100℃、6時間加熱のものに比べて乾燥密着度が多少低下する。
この酸化チタンゾルは、アモルファス型過酸化チタンに比べ粘性が低下しているのでディッピングしやすいように2.5重量%まで濃縮して使用する。
【0026】
実施例1(ブロック効果)
基体としては、有機溶剤が含まれている壁装用ビニールシート(アキレス社製、100×100mm、薄いアイボリー色)を用いた。また、ブロック層としては、アモルファス型過酸化チタンゾル(TiO3 として1.7%含有)を、脱イオン水を用いて2倍、6倍、10倍及び14倍にそれぞれ希釈したものに、コロイダルシリカ(日産化学社製、商品名スノーテックス、SiO2 として20.7%含有)をTiO3 に対するSiO2 の重量比が、それぞれ0%、0.5%、1%、2%、8%になるように混合した20種類の混合比のものを用いて、上記基体にコーティングした。コーティングには、明治機械社製の直径0.5mmの丸型吹き出しノズルを有するスプレーガンFS−G05−1を用い、吹き付け量は0.2g/枚とし、吹き付け後、80℃で乾燥させた。
【0027】
光触媒としては、石原産業社製アナターゼ型酸化チタン「ST−01」1.7gと、バインダーとして上記アモルファス型過酸化チタンゾル(TiO3 として1.7%含有)を2倍希釈したもの200gとを混合したものを用い、明治機械社製の直径0.5mmの丸型吹き出しノズルを有するスプレーガンFS−G05−1を用い、上記ブロック層が積層されたものに吹き付け量は0.2g/枚とし、吹き付け後、80℃で乾燥させた。
【0028】
ブロック試験は、380nmの単波長を放出するブラックライトを10mmの距離から39時間照射し、ミノルタカメラ社製の色差計を用いて、照射前後における明度の差(ΔL)、赤色−緑色系の色調の差(Δa)及び茶色−青色系の色調の差(Δb)、並びにこれらを総合した色差(ΔE)について、それぞれ変色度合いを調べた。結果を表1に示す。
【0029】
【表1】

Figure 0003863620
【0030】
表1中、明度の差(ΔL)はその値が小さいほど照射前後における壁装用ビニールシートの明度の変化が少ないことを示し、赤色−緑色系の色調の差(Δa)は正の値が大きければ赤色の、負の値が大きければ緑色の、照射前後における壁装用ビニールシートの変色が進んだことを示し、茶色−青色系の色調の差(Δb)は正の値が大きければ茶色の、負の値が大きければ青色の、照射前後における壁装用ビニールシートの変色が進んだことを示している。また、色差(ΔE)はこれらΔL、Δa、Δbのそれぞれの平方の和の平方根として求められ、その値が小さいほど照射前後における壁装用ビニールシートの変色度合いが小さいことを示している。表1からすると、アモルファス型過酸化チタンゾル2倍希釈液とそれに対するSiO2 の重量比が1%のコロイダルシリカとの混液(0.85重量%のTiO3 と3.3重量%のSiO2 を含有)からなるブロック層を用いた場合に、照射前後における壁装用ビニールシートの変色度合いが少なく、もっとも優れたブロック効果が達成しうることがわかった。
【0031】
【発明の効果】
本発明によると、アモルファス型チタン酸化物とケイ素酸化物とを含むブロック層を介して基体に光触媒を担持させているので、有機高分子樹脂基板や有機高分子樹脂繊維を基体として用いた場合における光触媒による変色や異臭の発生等の悪影響や、無機材を基体として用いた場合における光触媒への悪影響を完全にブロックし得る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst having a substrate carrying a photocatalyst, in particular, a substrate made of an organic polymer material such as an organic polymer resin substrate, an organic polymer resin fiber / nonwoven fabric, or an organic polymer coating film, and the substrate is blocked from the photocatalyst. The present invention relates to a technique for (shielding) and preventing the generation of a strange odor from the substrate due to photocatalytic action and the discoloration of the substrate itself.
[0002]
[Prior art]
The photocatalyst body has a wide range of applications such as environmental protection products such as building base materials and medical devices and instruments utilizing its sterilizing function because it decomposes and detoxifies harmful substances and the like by its photocatalytic function. However, in a photocatalyst body in which a photocatalyst is supported on the surface of an organic polymer material such as an organic polymer resin substrate (plastic plate), the organic polymer material is deteriorated by a photocatalytic action such as an oxidation-reduction reaction. It is known that a polymer material needs to be protected. For example, it is known that a corrosion-resistant metal and a metal oxide are deposited on the surface of an organic polymer resin substrate by sputtering and blocked from a redox reaction (Japanese Patent Laid-Open No. 8-215295). Issue gazette).
[0003]
In addition, a substrate made of an inorganic compound such as a tile or glass having a photocatalyst supported on its surface does not itself deteriorate due to photocatalysis as in the case of an organic polymer resin substrate. The reaction of Na ions, K ions, etc. derived from selenium and photocatalysts such as anatase-type titanium oxide TiO 2 prevents the photocatalytic function from fully functioning, and the problem is how to block these ions from the inorganic substrate. there were. The inventors previously provided a layer made of amorphous titanium peroxide TiO 3 or amorphous titanium oxide TiO 2 having no photocatalytic action as an inactive film by spraying, dipping or the like between the photocatalyst and the substrate. (Japanese Patent Application No. 8-75543).
[0004]
[Problems to be solved by the invention]
As described above, when a photocatalytic function is imparted to an organic polymer material such as an organic polymer resin substrate that is expected and used frequently as a substrate for supporting a photocatalyst, it is between the organic polymer material and the photocatalyst. It is necessary to provide a protective layer. Although the method described in the above-mentioned JP-A-8-215295 can be applied to an organic polymer resin substrate that does not contain a specific additive, generally an organic polymer such as an organic polymer resin substrate or an organic polymer resin fiber is used. In addition to various additives, for example, organic solvents, organic pigments and dyes for coloring are used on the inside and outside of the substrate and the resin. For this reason, gasified organic solvents and pigments and dyes that are vulnerable to oxidation are not used. However, it has been a problem in concretely commercializing a photocatalyst having a substrate made of these organic polymer materials by releasing a strange odor or changing color due to photocatalytic action.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have conducted intensive research. When the mixture of amorphous titanium oxide and silicon oxide uses the above organic polymer resin substrate or organic polymer resin fiber as a substrate, The present inventors have found that the adverse effects due to the photocatalyst and the negative effects on the photocatalyst when an inorganic material such as tile or glass is used as the substrate can be completely blocked.
[0006]
That is, the present invention provides a substrate comprising a photocatalyst made of an organic polymer material or the like via a block layer containing amorphous titanium oxide such as amorphous titanium peroxide or amorphous titanium oxide and silicon oxide such as colloidal silica. An organic polymer resin sheet containing no additive is further interposed between the block layer and the substrate made of an organic polymer material. The present invention relates to a characteristic photocatalyst.
[0007]
In addition, the organic polymer resin containing no additive is mixed with amorphous titanium oxide such as amorphous titanium peroxide (sol) or amorphous titanium oxide (powder) and silicon oxide such as colloidal silica. The present invention relates to a photocatalyst having a photocatalyst supported on a substrate made of an organic polymer material or the like through a block layer.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, examples of the amorphous titanium oxide include amorphous titanium peroxide TiO 3 and amorphous titanium oxide TiO 2 . The titanium peroxide and amorphous type titanium oxide in an amorphous form, unlike the anatase type titanium oxide TiO 2 and rutile-type titanium oxide TiO 2, the photocatalytic function is substantially little.
[0009]
As the amorphous titanium peroxide used in the present invention, a particularly preferable amorphous titanium peroxide sol can be produced, for example, as follows. Aqueous hydroxide or alkali hydroxide such as sodium hydroxide is added to a titanium salt aqueous solution such as titanium tetrachloride TiCl 4 . The resulting pale bluish white, amorphous titanium hydroxide Ti (OH) 4 is also called orthotitanate H 4 TiO 4. When this titanium hydroxide is washed and separated and then treated with hydrogen peroxide, the amorphous of the present invention A titanium peroxide solution in the form is obtained. This amorphous titanium peroxide sol has a pH of 6.0 to 7.0 and a particle diameter of 8 to 20 nm, and its appearance is a yellow transparent liquid and is stable even when stored at room temperature for a long period of time. The sol concentration is usually adjusted to 1.40 to 1.60%, but the concentration can be adjusted as necessary. When using at a low concentration, dilute with distilled water or the like. To do.
[0010]
In addition, this amorphous type titanium peroxide sol is amorphous at room temperature and has not yet been crystallized in anatase type titanium oxide. And a uniform and flat thin film can be formed on a substrate, and the dry film has a property that it does not dissolve in water.
In addition, when the amorphous titanium peroxide sol is heated at 100 ° C. or higher, it begins to change to an anatase type titanium oxide sol having a photocatalytic function. It becomes anatase type titanium oxide by heating.
[0011]
As the amorphous titanium oxide used in the present invention, a fine powder form or a sol form in which this fine powder form is dispersed and suspended in a solvent such as nitric acid is known. Unlike the amorphous titanium peroxide sol, the amorphous titanium oxide having no photocatalytic function has no adhesion itself. Therefore, when it is used for the block layer, It is used by mixing with a binder such as a cured water-soluble resin.
[0012]
Examples of the silicon oxide used in the present invention include silicon dioxide such as colloidal silica, siloxane compounds such as organopolysiloxane, silicone, and water glass. Colloidal silica is preferable.
[0013]
As the block layer in the present invention, a mixture of the above amorphous titanium oxide and silicon oxide, for example, a mixture of amorphous titanium peroxide sol and colloidal silica can be used. This mixture of amorphous titanium peroxide sol and colloidal silica has a feature that it can be fixed and adhered to a substrate from room temperature. The mixing ratio of amorphous titanium oxide and silicon oxide is usually in the range of 1: 0.5 to 1:10 by weight. The layer (coating) made of a mixture of amorphous titanium oxide and silicon oxide has hydrophilicity, antistatic action, and ultraviolet / harmful electromagnetic wave blocking function.
[0014]
The photocatalyst usable in the present invention, Ti0 2, ZnO, SrTiO 3 , CdS, Cd0, CaP, InP, In 2 O 3, CaAs, BaTiO 3, K 2 NbO 3, Fe 2 O 3, Ta 2 O 5 , WO 3 , SaO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiC, SiO 2 , MoS 2 , MoS 3 , InPb, RuO 2 , CeO 2, etc. sol anatase titanium oxide Ti0 2 is preferred.
[0015]
As described above, a sol-like anatase-type titanium oxide sol, that is, an anatase-type titanium oxide sol, can be produced by heating an amorphous-type titanium peroxide sol at a temperature of 100 ° C. or higher. The anatase-type titanium oxide sol, which varies slightly depending on the heating time, for example, is produced by treatment at 100 ° C. for 6 hours, has a pH of 7.5 to 9.5 and a particle size of 8 to 20 nm, and its appearance is a yellow suspension liquid. is there.
This anatase-type titanium oxide sol is stable even when stored at room temperature for a long time, but may precipitate when mixed with an acid or an aqueous metal solution, and the presence of Na ions impairs photocatalytic activity and acid resistance. There is a case. The sol concentration is usually adjusted to 2.70 to 2.90% by weight, but the concentration can be adjusted as necessary.
[0016]
As the photocatalyst, in addition to the above anatase-type titanium oxide sol, as powdered titanium dioxide, for example, commercially available “ST-01” (made by Ishihara Sangyo Co., Ltd.) and “ST-31” (made by Ishihara Sangyo Co., Ltd.) Can be used. In this case, any binder can be used as long as it does not deteriorate due to the photocatalytic action and does not lower the photocatalytic function. It is desirable to use a titanium oxide sol.
[0017]
A photocatalyst function auxiliary additive metal (Pt, Ag, Rh, RuO, Nb, Cu, Sn, NiO, etc.) can be added to the photocatalyst body in order to promote and supplement the photocatalytic reaction. . Further, before molding, together with the photocatalyst, particles of spontaneous ultraviolet radiation agent or phosphorescent ultraviolet radiation agent or particles mixed with these radiation agents may be mixed.
[0018]
Examples of the substrate on which the photocatalyst is supported include organic polymer materials such as substrates made of organic polymer resins, nonwoven fabrics / fibers, and coating films.
Examples of organic polymer resin substrates used in photocatalytic functional products include sheet materials and molded products of thermosetting resins such as phenol, urea, and polyester, and thermoplastic resins such as polystyrene, ABS, methacryl, polyacid, and polycarbonate. Examples of the raw material resin such as nonwoven fabric and fiber include polyethylene, polypropylene, polyethylene terephthalate, and vinylidene chloride. Also, examples of the coating film include unsaturated polyester, thermosetting epoxy urethane resin, and other weather resistance. Examples thereof include a fluororesin and a silicone resin excellent in properties.
[0019]
Various additives are usually added to the resin material of the organic polymer material used as the base of the photocatalyst body according to the respective use. For example, wall coverings made of polyvinyl chloride include plasticizers that give flexibility, such as ester ester phthalate, dioctyl phthalate, and butanol diesters, and phosphorus, heavy metals such as tin, zinc, and barium. It is known to add higher fatty acid salts such as acid salts and stearates. In addition, in general, red colorants are made by reacting sparingly soluble azo dyes with calcium or magnesium, and as foaming agents, benzenesulfhydrazines and azonidols that generate nitrogen gas by decomposition and cause foaming Compounds are used, and tricresyl phosphate (TCP), halogen-containing monomers or polymers are used as flame retardants for building materials and electrical products. In addition, compounds such as triazoles and acrylonitrile derivatives are added as UV inhibitors.
[0020]
These various additives are combined with those combined, gasified, or ionized by a photocatalytic reaction, and change color or give off a strange odor, thereby hindering commercialization. Moreover, in the wall covering, a base paper is used for the bonding surface, and the above-mentioned disaster prevention agent is immersed, applied, and mixed. Examples of the base material include paper, cloth, aluminum hydroxide paper and the like, and gasified gas from this may cause discoloration and off-flavor due to the photocatalytic function.
[0021]
In addition to the above organic polymer materials, organic materials such as rubber, wood and paper, inorganic materials such as ceramics and glass, and metal materials such as aluminum and steel can be used as the substrate in the present invention.
Further, the size and shape are not limited, and a plate shape, a honeycomb shape, a fiber shape, a filter sheet shape, a bead shape, a foam shape, or a stack of them may be used. In addition, a photocatalyst layer can be provided on the inner surface of the substrate that passes ultraviolet rays through the block layer, and can also be applied to coated articles.
[0022]
Examples of the photocatalyst formed by supporting a photocatalyst on a substrate such as an organic polymer material through a block layer in the present invention include the following forms and structures.
(1) A photocatalyst having a block layer (second layer) provided on a substrate (first layer) such as an organic polymer material, and further provided with a photocatalyst layer (third layer).
(2) A photocatalyst comprising a sheet having a thickness of 10 μm or more made of polypropylene, polyethylene terephthalate, fluororesin or the like not containing an additive between the first layer and the second layer. In this case, the blocking effect is more reliable than that of the photocatalyst of the above (1).
(3) Other examples of the block layer include those in which a thermosetting unsaturated polyester resin, epoxy resin, alkyd resin, silicon resin, etc. are dissolved in a solvent or water and the viscosity is adjusted. The thing which consists of a mixture with an oxide can be illustrated, The photocatalyst body which apply | coated this to the thickness of about 1 micrometer-50 micrometers on the base | substrate, and was used as the 2nd layer. In the process of laminating and fixing this block layer to the substrate, amorphous titanium oxide particles are exposed on the surface, and as a result, the same blocking effect as in the photocatalyst of (2) above in which the sheet layer and the block layer are provided. Thus, a photocatalyst body having the following is formed.
[0023]
Examples of the method for laminating and fixing the block layer of the present invention include a method of forming a thin film by a method such as a sol-gel method, sputtering, thermal spraying, spray coating, dipping, spin coating, etc. Can be achieved, and the film-forming performance of a mixture of amorphous titanium oxide and silicon oxide constituting the block layer. For example, in the case of a block layer made of amorphous titanium peroxide sol and colloidal silica, 0 The blocking effect can be exhibited at a thickness of 0.05 to 5 μm. Moreover, conventionally known methods and thicknesses are appropriately used for the method of laminating and fixing the photocatalyst layer and the thickness of the photocatalyst layer.
[0024]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
Reference Example 1 (Production of amorphous type titanium peroxide sol)
Titanium tetrachloride TiCl 4 50% solution (Sumitomo Citizens Co., Ltd.) diluted 70 times with distilled water and ammonium hydroxide NH 4 OH 25% solution (Takasugi Pharmaceutical Co., Ltd.) 10 times with distilled water The diluted product is mixed at a volume ratio of 7: 1 to carry out a neutralization reaction. After the neutralization reaction, the pH is adjusted to 6.5 to 6.8, and after standing for a while, the supernatant is discarded. Add distilled water about 4 times the gel amount of the remaining Ti (OH) 4 and stir well. Check with silver chloride and repeat washing with water until chlorine ions in the supernatant are no longer detected. Finally, discard the supernatant and leave only the gel. In some cases, dehydration can be performed by centrifugation. When 210 ml of 35% hydrogen peroxide solution was added to 3600 ml of pale blue white Ti (OH) 4 in 30 minute portions and stirred at about 5 ° C. overnight, about 2500 ml of yellow transparent amorphous titanium peroxide sol Is obtained.
In addition, in the above steps, if heat generation is not suppressed, a substance insoluble in water such as metatitanic acid may be deposited. Therefore, it is desirable to perform all steps while suppressing heat generation.
[0025]
Reference Example 2 (Production of titanium oxide sol from amorphous titanium peroxide sol)
When the amorphous titanium peroxide sol is heated at 100 ° C., anatase type titanium oxide is produced after about 3 hours, and when heated for about 6 hours, an anatase type titanium oxide sol is obtained. Moreover, when heated at 100 ° C. for 8 hours, it is slightly yellowish and has a yellow fluorescence, and when concentrated, a yellow opaque product is obtained, and when heated at 100 ° C. for 16 hours, an extremely light yellow product is obtained. The dry adhesion is somewhat lower than that heated at 100 ° C. for 6 hours.
Since this titanium oxide sol has a lower viscosity than amorphous titanium peroxide, it is concentrated to 2.5% by weight so that it can be easily dipped.
[0026]
Example 1 (block effect)
As the substrate, a vinyl sheet for wall covering containing an organic solvent (Achilles, 100 × 100 mm, thin ivory color) was used. As the block layer, an amorphous titanium peroxide sol (containing 1.7% as TiO 3 ) was diluted with deionized water 2 times, 6 times, 10 times and 14 times, and colloidal silica. The weight ratio of SiO 2 to TiO 3 (Nissan Chemical Co., Ltd., trade name Snowtex, containing 20.7% as SiO 2 ) is 0%, 0.5%, 1%, 2%, and 8%, respectively. The substrate was coated using 20 kinds of mixing ratios mixed as described above. For the coating, a spray gun FS-G05-1 having a round blow nozzle with a diameter of 0.5 mm manufactured by Meiji Kikai Co., Ltd. was used, the spraying amount was 0.2 g / sheet, and after spraying, it was dried at 80 ° C.
[0027]
As the photocatalyst, 1.7 g of anatase type titanium oxide “ST-01” manufactured by Ishihara Sangyo Co., Ltd. and 200 g of the above-mentioned amorphous type titanium peroxide sol (containing 1.7% as TiO 3 ) diluted twice are mixed. Using a spray gun FS-G05-1 having a round blow nozzle with a diameter of 0.5 mm manufactured by Meiji Kikai Co., Ltd., the spray amount is 0.2 g / sheet on the one where the block layer is laminated, After spraying, it was dried at 80 ° C.
[0028]
In the block test, a black light emitting a single wavelength of 380 nm was irradiated for 39 hours from a distance of 10 mm, and using a color difference meter manufactured by Minolta Camera Co., Ltd., the difference in lightness (ΔL) before and after irradiation and the red-green color tone Color difference (Δa), brown-blue color tone difference (Δb), and color difference (ΔE) obtained by combining them were examined for the degree of discoloration. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0003863620
[0030]
In Table 1, the lightness difference (ΔL) indicates that the smaller the value, the smaller the change in lightness of the wall-mounted vinyl sheet before and after the irradiation, and the red-green color tone difference (Δa) has a larger positive value. If the negative value is large, it indicates that the color change of the wall-mounted vinyl sheet before and after irradiation has progressed, and the brown-blue color tone difference (Δb) is brown if the positive value is large. If the negative value is large, it indicates that the discoloration of the wall-mounted vinyl sheet before and after irradiation has progressed in blue. The color difference (ΔE) is obtained as the square root of the sum of the squares of ΔL, Δa, and Δb, and the smaller the value, the smaller the color change degree of the wall mounted vinyl sheet before and after irradiation. According to Table 1, a mixture of an amorphous titanium peroxide sol two-fold diluted solution and colloidal silica having a SiO 2 weight ratio of 1% (0.85 wt% TiO 3 and 3.3 wt% SiO 2 is mixed). It was found that when the block layer made of (containing) was used, the degree of discoloration of the wall-mounted vinyl sheet before and after irradiation was small, and the most excellent blocking effect could be achieved.
[0031]
【The invention's effect】
According to the present invention, since the photocatalyst is supported on the substrate through the block layer containing amorphous titanium oxide and silicon oxide, the organic polymer resin substrate or the organic polymer resin fiber is used as the substrate. It is possible to completely block adverse effects such as discoloration and off-flavor generation caused by the photocatalyst, and adverse effects on the photocatalyst when an inorganic material is used as the substrate.

Claims (7)

アモルファス型チタン酸化物とケイ素酸化物とを含むブロック層を介して、光触媒を基体の上に担持させてなることを特徴とする光触媒体。A photocatalyst comprising a photocatalyst supported on a substrate through a block layer containing amorphous titanium oxide and silicon oxide. ブロック層と基体との間に、さらに添加剤不含の有機高分子樹脂シートを介在させることを特徴とする請求項1記載の光触媒体。The photocatalyst body according to claim 1, wherein an organic polymer resin sheet containing no additive is further interposed between the block layer and the substrate. 添加剤不含の有機高分子樹脂にアモルファス型チタン酸化物とケイ素酸化物とを混和したものからなるブロック層を介して、光触媒を基体の上に担持させてなることを特徴とする光触媒体。A photocatalyst comprising a photocatalyst supported on a substrate through a block layer formed by mixing an amorphous titanium oxide and a silicon oxide with an organic polymer resin containing no additive. 基体が、有機高分子材からなる請求項1〜3のいずれか記載の光触媒体。The photocatalyst according to any one of claims 1 to 3, wherein the substrate is made of an organic polymer material. アモルファス型チタン酸化物が、アモルファス型過酸化チタンゾルである請求項1〜4のいずれか記載の光触媒体。The photocatalyst body according to any one of claims 1 to 4, wherein the amorphous titanium oxide is an amorphous titanium peroxide sol. ケイ素酸化物が、コロイダルシリカである請求項1〜5のいずれか記載の光触媒体。The photocatalyst according to any one of claims 1 to 5, wherein the silicon oxide is colloidal silica. 光触媒として、アナターゼ型の酸化チタン粒子又は酸化チタン粉末と、アモルファス型過酸化チタンゾルとの混合物を用いることを特徴とする請求項1〜6のいずれか記載の光触媒体。The photocatalyst according to any one of claims 1 to 6, wherein a mixture of anatase type titanium oxide particles or titanium oxide powder and an amorphous type titanium peroxide sol is used as the photocatalyst.
JP03889797A 1997-02-24 1997-02-24 Photocatalyst and method for producing the same Expired - Fee Related JP3863620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03889797A JP3863620B2 (en) 1997-02-24 1997-02-24 Photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03889797A JP3863620B2 (en) 1997-02-24 1997-02-24 Photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10235201A JPH10235201A (en) 1998-09-08
JP3863620B2 true JP3863620B2 (en) 2006-12-27

Family

ID=12538003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03889797A Expired - Fee Related JP3863620B2 (en) 1997-02-24 1997-02-24 Photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3863620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237353A (en) * 1997-02-24 1998-09-08 Tao:Kk Hydrophilic coating agent and surface hydrophilic substrate

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785217B2 (en) * 1998-08-28 2011-10-05 四郎 緒方 Water repellent substrate
JP2000290534A (en) * 1999-04-12 2000-10-17 Tao:Kk Film-forming process of coating agent used for photocatalysis-related coated film
JP2000334308A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Cafrrier for photocatalyst and photocatalyst using the same
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
TWI232229B (en) * 2001-03-21 2005-05-11 Bridgestone Corp Method of forming an antifouling coating film, and antifouling product with the antifouling coating film
JP4287695B2 (en) * 2003-05-15 2009-07-01 株式会社ティオテクノ Photocatalyst
JP3851935B2 (en) * 2003-07-31 2006-11-29 福井県 Photocatalyst production method
JP2007185616A (en) * 2006-01-13 2007-07-26 Sundecor:Kk Photocatalyst layer and photocatalyst layer forming method
JP4999388B2 (en) * 2006-07-24 2012-08-15 日揮触媒化成株式会社 Modified titanium oxide particles, method for producing the same, and exhaust gas treatment catalyst using the modified titanium oxide particles
US11045798B2 (en) * 2011-07-05 2021-06-29 Valinge Photocatalytic Ab Coated wood products and method of producing coated wood products
US9375750B2 (en) 2012-12-21 2016-06-28 Valinge Photocatalytic Ab Method for coating a building panel and a building panel
US9945075B2 (en) 2013-09-25 2018-04-17 Valinge Photocatalytic Ab Method of applying a photocatalytic dispersion
WO2016148108A2 (en) * 2015-03-13 2016-09-22 株式会社バイオミミック Paint composite film comprising anatase-type titanium oxide, and method for manufacturing same
JP5936735B1 (en) * 2015-03-13 2016-06-22 株式会社バイオミミック Method for producing interior composite film containing anatase type titanium oxide
JP6067825B1 (en) * 2015-11-20 2017-01-25 株式会社バイオミミック Photocatalyst composite film and method for producing the same
JP6067899B2 (en) * 2016-02-24 2017-01-25 株式会社バイオミミック Interior composite film formed on the inner surface of a kitchen, bathroom, and toilet containing anatase-type titanium oxide
JP6750348B2 (en) 2015-09-15 2020-09-02 Toto株式会社 Sanitary ware with photocatalyst layer
CN106518169B (en) 2015-09-15 2019-07-05 Toto株式会社 Sanitary earthenware with photocatalyst layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2549691B2 (en) * 1988-03-02 1996-10-30 触媒化成工業株式会社 Method for producing titanium oxide coated body
JP3592727B2 (en) * 1992-05-11 2004-11-24 日本電池株式会社 Photocatalyst
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JPH08103488A (en) * 1994-09-30 1996-04-23 Toto Ltd Multifunctional material having photocatalyst function
JP2630575B2 (en) * 1995-02-17 1997-07-16 株式会社鈴寅 Sheet-shaped deodorizing photocatalyst
BR9607868A (en) * 1995-03-20 1998-06-30 Toto Ltd Mirror lens and transparent leaf member with anti-clogging composite with a hydrophilic surface anti-fog process to prevent a mirror, lens or transparent leaf member from becoming cloudy or cloudy with moisture condensate and / or water droplets adhering processes to make the surface of the water hydrophilic a substrate to clean a substrate to keep the surface of a substrate positioned outdoors clean to prevent the growth of adherent water droplets on a substrate and to prepare a mirror a lens and a transparent leaf member with fogging and a self-cleaning compound with a hydrophilic surface and anti-fog glass
JPH0924281A (en) * 1995-07-11 1997-01-28 Nhk Spring Co Ltd Photocatalyst and its manufacture
JP3690864B2 (en) * 1996-03-29 2005-08-31 株式会社ティオテクノ Production method of photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237353A (en) * 1997-02-24 1998-09-08 Tao:Kk Hydrophilic coating agent and surface hydrophilic substrate

Also Published As

Publication number Publication date
JPH10235201A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
JP3863620B2 (en) Photocatalyst and method for producing the same
JP4398869B2 (en) Titania-metal composite, method for producing the same, and film forming method using the composite dispersion
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
JP3690864B2 (en) Production method of photocatalyst
US20020042343A1 (en) Coating composition for forming titanium oxide film, process for forming titanium oxide film and photocatalyst
JP3559892B2 (en) Photocatalytic film and method for forming the same
JP4672822B2 (en) Hydrophilic coating agent and surface hydrophilic substrate
EP1743763A1 (en) Base protection method
JP2006512463A (en) Photocatalytically active water-based paint having self-cleaning action and method for producing the same
CN102498067A (en) Stable nano titania sols and a process for their production
EP1354628B1 (en) Powder exhibiting optical function and use thereof
JP6198921B1 (en) Photocatalyst composite coating film that transmits visible light and shields ultraviolet rays and infrared rays, and method for producing the same
JP5343604B2 (en) Method for producing titanium oxide photocatalyst thin film
JP4112691B2 (en) Surface hydrophilic substrate
US7547357B2 (en) Transparent film-forming composition
JP2004244608A (en) Hydrolytic polycondensation product solution, method for producing the same and transparent film forming composition given by using the same
CN110872470A (en) Photocatalyst coating material, method for producing same, and method for producing photocatalyst body
JPH10314598A (en) Antifouling method using photocatalyst, antifouling film and antifouling product
JP4509718B2 (en) Photocatalyst layer transfer body
JP2000317388A (en) Corrosion resisting method and method for forming magnesium substrate and mold release material layer
JP2002053772A (en) Structural body carrying photocatalyst
JP2003073585A (en) Liquid for forming titania film, method for forming titania film, titania film and photocatalytic material
KR20080020283A (en) Preparation method of multi structural film using slot die and anti pollutant-heat cutting film prepared from them
JP2004154779A (en) Substrate coated with photocatalytic film and method for forming photocatalytic film thereon
JP2000290779A (en) Titania film-formed member and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees