JP2001192277A - Ceramic joined body and its manufacturing process - Google Patents

Ceramic joined body and its manufacturing process

Info

Publication number
JP2001192277A
JP2001192277A JP2000005828A JP2000005828A JP2001192277A JP 2001192277 A JP2001192277 A JP 2001192277A JP 2000005828 A JP2000005828 A JP 2000005828A JP 2000005828 A JP2000005828 A JP 2000005828A JP 2001192277 A JP2001192277 A JP 2001192277A
Authority
JP
Japan
Prior art keywords
powder
ceramics
ceramic
joining
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000005828A
Other languages
Japanese (ja)
Other versions
JP3520320B2 (en
Inventor
Takayasu Ikegami
隆康 池上
Hideyuki Tokuda
秀之 得田
Yusuke Moriyoshi
佑介 守吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP2000005828A priority Critical patent/JP3520320B2/en
Publication of JP2001192277A publication Critical patent/JP2001192277A/en
Application granted granted Critical
Publication of JP3520320B2 publication Critical patent/JP3520320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a joining technique for strongly joining two ceramic sintered bodies, or a ceramic sintered body and a nonmetallic inorganic compound single crystal, to each other so as to attain expected high functionality of the resulting joined body. SOLUTION: The manufacturing process for this ceramic joined body comprises: interposing, between the surfaced to be joined of two ceramic sintered bodies or those of a ceramic sintered body and a nonmetallic inorganic compound single crystal, a layer of a nonmetallic inorganic compound powder having a <=5 μm average particle size, so as to form such dihedral angles between the powder and these ceramic bodies or the like at contact points of the powder with the surfaces to be joined, that >=50% by number of the angles are >=90 deg.; subjecting the interposed layer to pressure bonding to the ceramic bodies or the like; and sintering the layer to join the ceramic bodies or the like to each other with the layer. The layer is sintered as a temperature the numerical value of which is 0.5-1 time as much as that of the melting point of the powder. The powder is preferably formed from a powder-liquid mixture prepared beforehand by mixing the powder, together with at least one agent selected from binders, dispersants and plasticizers, with a liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックスとセ
ラミックスとを接合したり、セラミックスと単結晶とを
接合して機能を高めた接合体およびその製造法に関する
ものである。さらに詳しくは、内部に微細な孔を有した
り、鋭い切れ込みのある、通常の方法では成形が困難な
精密セラミック接合体とその製造法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body having improved functions by joining ceramics and ceramics or joining ceramics and a single crystal, and a method for producing the same. More specifically, the present invention relates to a precision ceramic joined body having a fine hole therein or a sharp cut, which is difficult to form by a usual method, and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】精密に組み合わせることので
きるセラミックスや内部に折れ曲がった孔のあるセラミ
ックスの開発が産業技術の発展により求められようにな
った。セラミックスは、硬くて脆いために、金属のよう
な圧延加工や切削加工が難しい。このため、セラミック
スでは、使用する形状にその焼結原料となる非金属無機
化合物の粉体を予め成形し、この成形体を焼結すること
で、製品として必要な機械的、電気的、磁気的性質を付
与している。セラミックスの製造では、粉体の成形体が
焼結により収縮するために、寸法精度が要求される製品
や内部に折れ曲がった孔を有する製品を製造すること
は、本質的に困難である。
2. Description of the Related Art The development of ceramics which can be precisely combined and ceramics having bent holes inside has been required by the development of industrial technology. Since ceramics are hard and brittle, they are difficult to roll or cut like metals. Therefore, in ceramics, the powder of the nonmetallic inorganic compound to be used as a sintering raw material is preliminarily formed into a shape to be used, and the formed body is sintered to obtain the mechanical, electrical, and magnetic properties required for the product. The property is given. In the production of ceramics, it is essentially difficult to produce a product that requires dimensional accuracy or a product that has a bent hole inside because a powder compact shrinks due to sintering.

【0003】従来の接合法として、溶射、鑞付け、熱間
静水圧プレス(HIP)やホットプレスなどによる高温
での圧着等がある。これらの技術の中で、溶射は、金属
等の表面に溶けたセラミックスを吹き付けて接合する技
術であり、主に、高温または常温での耐腐食材料を製造
するために行われる。この技術では、溶けたセラミック
スを吹き付けるために寸法精度が要求される材料を製造
できないという欠点がある。
[0003] Conventional joining methods include thermal spraying, brazing, and hot pressing by hot isostatic pressing (HIP) or hot pressing. Among these techniques, the thermal spraying is a technique of joining by spraying a melted ceramic on a surface of a metal or the like, and is mainly performed for producing a corrosion resistant material at a high temperature or a normal temperature. This technique has a drawback in that it is not possible to manufacture a material that requires dimensional accuracy in order to spray molten ceramic.

【0004】鑞付け法は、適当な物質を接合体の間に介
在させて接合する方法であるが、この方法では、介在物
質として低融点物質を用いるために、優れた高温特性を
有する材料の製造が難しいという欠点があった。HIP
やホットプレスなどによる高温での圧着法は、寸法精度
が良く高純度・高機能性接合体を製造できるという長所
はあるが、接合に圧力装置を用いるために、作業性が悪
くコストが高いという欠点があった。
[0004] The brazing method is a method in which an appropriate substance is interposed between joints to join the joints. In this method, a low melting point substance is used as an intervening substance, so that a material having excellent high temperature properties is used. There was a drawback that manufacturing was difficult. HIP
Compression at high temperature by hot pressing or hot pressing has the advantage of producing a high-purity, high-performance bonded body with good dimensional accuracy, but the workability is poor and the cost is high because a pressure device is used for bonding. There were drawbacks.

【0005】さらに、高温強度の低下が無視できたり、
光の散乱が無視できるなどの高機能性を損なわない接合
を常圧で行う技術が開発されている。しかしながら、現
在のところ、この技術による接合は、表面の凹凸を原子
オーダーまで平らにできる材料に限られている。例え
ば、超精密に研磨したガラス同士は接合可能で、その接
合を利用した材料は既に市販されている。また、非金属
無機化合物の単結晶も原子オーダーの凹凸まで平らに研
磨ができる場合、無加圧の接合は既に成功している。一
方、多数の単結晶の集合体であるセラミックスの場合、
研磨すると粒子毎に研磨される速度が異なるので、原子
オーダーまで凹凸を抑えた研磨は困難である。このた
め、高機能性を期待したセラミックスとセラミックス同
士の接合、またはセラミックスと非金属無機化合物の単
結晶との接合において、圧力を加えない接合は未解決の
技術課題が多く残されている。
Further, the decrease in high-temperature strength can be ignored,
Techniques have been developed for bonding at normal pressure that does not impair high functionality such as negligible light scattering. However, at present, bonding by this technique is limited to materials capable of flattening surface irregularities to the atomic order. For example, ultra-precisely polished glasses can be joined together, and materials utilizing the joining are already commercially available. In addition, when a single crystal of a nonmetallic inorganic compound can be polished flat even to irregularities on the order of atoms, bonding without pressure has already been successful. On the other hand, in the case of ceramics that are an aggregate of many single crystals,
When polishing, the polishing speed is different for each particle, so it is difficult to polish with irregularities suppressed to the atomic order. For this reason, there are many unsolved technical issues in joining without applying pressure in joining ceramics and ceramics, which is expected to have high functionality, or joining ceramics and a single crystal of a nonmetallic inorganic compound.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するものとして、セラミックスとセラミックスとの
接合面の間、またはセラミックスと非金属無機化合物の
単結晶体との接合面の間が、これらのセラミックスまた
は単結晶との2面角が90o 以上で、かつ平均粒径が5
μm以下の非金属無機化合物の粉体を圧着し焼結した層
で接合されていることを特徴とするセラミックス接合体
を提供する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by providing a structure between a bonding surface between ceramics and ceramics or a bonding surface between ceramics and a single crystal of a nonmetallic inorganic compound. The dihedral angle with these ceramics or single crystals is 90 ° or more and the average particle size is 5
Provided is a ceramic joined body characterized by being joined by a layer obtained by pressing and sintering powder of a nonmetallic inorganic compound having a particle size of μm or less.

【0007】また、接合層の組織とセラミックスの組織
が一体化して、見掛け上接合相が認められないことを特
徴とする上記のセラミックス接合体を提供する。
Further, the present invention provides the above-mentioned ceramic bonded body, wherein the structure of the bonding layer and the structure of the ceramics are integrated and an apparent bonding phase is not recognized.

【0008】また、セラミックスとセラミックスとを接
合する面、またはセラミックスと非金属無機化合物の単
結晶体とを接合する面に、これらのセラミックスまたは
単結晶との2面角が90o 以上で、かつ平均粒径が5μ
m以下の非金属無機化合物の粉体を挟み、圧着し、該粉
体の融点の0.5倍から融点の間の温度で該粉体を焼結
して接合することを特徴とする上記のセラミックス接合
体の製造法を提供する。
A dihedral angle between the ceramic and the single crystal is 90 ° or more on a surface for bonding the ceramic and the ceramic or a surface for bonding the ceramic and the single crystal of the nonmetallic inorganic compound, and Average particle size is 5μ
m or less, wherein the non-metallic inorganic compound powder is sandwiched and pressed, and the powder is sintered and joined at a temperature between 0.5 times the melting point and the melting point of the powder. Provided is a method for manufacturing a ceramic joined body.

【0009】さらに、結合剤、分散剤、または可塑剤の
中の一種あるいは複数と共に予め液体で混練した粉体を
用いることを特徴とする上記のセラミックス接合体の製
造法を提供する。
Further, the present invention provides the above-mentioned method for producing a ceramic joined body, characterized by using a powder kneaded with a liquid together with one or more of a binder, a dispersant, and a plasticizer.

【0010】なお、現在、「セラミックス」という用語
は、焼結体ばかりでなく、単結晶や薄膜、セメント等の
非金属無機化合物材料に対して使用されるが、本来は、
該化合物の焼結体を意味していた。本明細書において
は、本来の意味で、セラミックスという用語を用いる。
At present, the term "ceramics" is used not only for sintered bodies but also for non-metallic inorganic compound materials such as single crystals, thin films and cements.
It meant a sintered body of the compound. In this specification, the term ceramic is used in its original meaning.

【0011】本発明において、セラミックスとセラミッ
クスとの接合面の間、またはセラミックスと非金属無機
化合物の単結晶体との接合面の間に挟む粉体は、粒径が
5μm以下の粉体である。
In the present invention, the powder sandwiched between the joining surfaces of the ceramics and the ceramics or between the joining surfaces of the ceramics and the single crystal of the nonmetallic inorganic compound is a powder having a particle size of 5 μm or less. .

【0012】本発明は、微細な粉体が化学的に活性であ
る性質を利用している。このために、原理的には、粉体
の基本粒子の平均粒径は小さいほど好ましい。しかしな
がら、基本粒子が小さくなると、該粒子間で強い凝集力
が働き、硬い凝集粒子を形成する。粉体の焼結性は、硬
い凝集粒子の大きさに支配される。このため、本発明に
おいては、硬い凝集粒子の平均粒径が10μm以下の粉
体を使用する必要がある。ここで、基本粒子とは、一次
粒子または一次粒子が緻密に集合していて、該集合体内
に気孔が実質的に認められない粒子をいう。また、凝集
粒子とは、基本粒子が気孔を含みながら集合した粒子で
ある。
The present invention utilizes the property that fine powder is chemically active. For this reason, in principle, it is preferable that the average particle size of the basic particles of the powder be smaller. However, when the basic particles become smaller, strong cohesive force acts between the particles to form hard aggregated particles. The sinterability of the powder is governed by the size of the hard agglomerated particles. For this reason, in the present invention, it is necessary to use a powder having an average particle diameter of hard aggregated particles of 10 μm or less. Here, the basic particles refer to primary particles or particles in which the primary particles are densely aggregated, and substantially no pores are recognized in the aggregate. Aggregated particles are particles in which basic particles are aggregated while including pores.

【0013】一方、基本粒子が大きくなると、焼結性は
急激に低下する。このため、基本粒子の平均粒径は5μ
m以下に制限する必要がある。この平均粒径よりも大き
い粉体を用いると、非常に高温で接合する必要があるの
で、実用的でない。本発明において使用する粉体は、上
記の条件を満足する大きさであれば、特に制限は無く、
市販品として入手したものでもよい。
On the other hand, as the size of the basic particles increases, the sinterability rapidly decreases. Therefore, the average particle size of the basic particles is 5 μm.
m. If a powder larger than the average particle diameter is used, it is not practical because bonding at a very high temperature is required. The powder used in the present invention is not particularly limited as long as the size satisfies the above conditions,
It may be obtained as a commercial product.

【0014】本発明においては、接合に使用できる粉体
は、該粉体と接合しようとする物質間との2面角できま
る。本発明において、2面角とは、接合に使用する粉体
粒子と接合する物質が接した界面とそれらの表面との交
点におけるそれらの表面間の角度をいう。表面自由エネ
ルギーに比べて、界面自由エネルギーが相対的に大きく
なると2面角は小さくなる。
In the present invention, the powder that can be used for bonding has a dihedral angle between the powder and the substance to be bonded. In the present invention, the dihedral angle refers to the angle between the surfaces at the intersection of the interface between the powder particles used for bonding and the material to be bonded and the surfaces in contact with each other. The dihedral angle decreases when the interface free energy becomes relatively large as compared with the surface free energy.

【0015】2面角の測定方法として以下のもの(G.Ac
hutaramayyaとW.D.Scott.J.Am.Ceram.Soc.,56[4]230-31
(1973) )が例示できる。接合試料を鏡面研磨した後
に、接合した試料の融点の1/2から融点の間の温度で
熱腐食する。該試料をSEMの試料台に水平にセットす
る。接合に使用した粉体粒子と接合した物体間に形成さ
れる粒界の熱腐食溝に対して直角にSEMの電子線をラ
インスキャンする。該電子線に衝突した有機物蒸気が分
解して生成したカーボン等がこのスキャンした線に沿っ
て堆積する。この線状に堆積した物をマーカーとして利
用する。
As a method for measuring the dihedral angle, the following method (G. Ac
hutaramayya and WDScott.J.Am.Ceram.Soc., 56 [4] 230-31
(1973)). After mirror-polishing the bonded sample, hot corrosion is performed at a temperature between 1/2 of the melting point of the bonded sample and the melting point. The sample is set horizontally on the sample stage of the SEM. The electron beam of the SEM is line-scanned at right angles to the hot corrosion groove at the grain boundary formed between the powder particles used for bonding and the bonded object. Carbon and the like generated by decomposition of the organic vapor colliding with the electron beam are deposited along the scanned line. This linearly deposited material is used as a marker.

【0016】試料が水平であると、このマーカーから得
られるSEM像は直線になる。試料を傾けると、マーカ
ーは粒界の所で角を有する窪みを示す。この角の角度β
を測定する。試斜を傾けた角度と2面角をそれぞれαと
θで表すと、tan(θ/2)はsin(α/2)とt
an(β/2)の積に等しい。αとβは既知であるか
ら、この等式から2θが計算できる。また、近年発達し
た原子力間顕微鏡を用いると、粒界溝の2面角を直接的
に測定できる。
If the sample is horizontal, the SEM image obtained from this marker will be a straight line. When the sample is tilted, the marker shows a dimple with a corner at the grain boundary. The angle β of this angle
Is measured. When the angle of inclination of the test slope and the dihedral angle are represented by α and θ, respectively, tan (θ / 2) becomes sin (α / 2) and t
equal to the product of an (β / 2). Since α and β are known, 2θ can be calculated from this equation. Further, by using a recently developed atomic force microscope, the dihedral angle of a grain boundary groove can be directly measured.

【0017】本発明において、接合現象は、接合に使用
する粉体粒子と接合する物質間に形成される界面の原子
が、該粒子表面や該物質の表面に拡散して界面の面積を
増大させると同時に、それらの表面の面積を減少させる
現象である。界面自由エネルギーは、表面自由エネルギ
ーと同様に過剰エネルギーである。このため、界面自由
エネルギーが大きいことは、界面の面積を増大させるの
に多くのエネルギーを必要とし、逆に、接合を起こす駆
動力がそれだけ小さくなることを意味する。理論的計算
によると2面角が60o 以下になると接合は進まない。
In the present invention, the bonding phenomenon is that atoms at an interface formed between a powder particle used for bonding and a substance to be bonded are diffused on the particle surface or the surface of the substance to increase the area of the interface. At the same time, it is a phenomenon that reduces the area of those surfaces. Interfacial free energy is excess energy, similar to surface free energy. For this reason, a large interface free energy means that a large amount of energy is required to increase the area of the interface, and conversely, the driving force causing the bonding is reduced accordingly. According to theoretical calculations, bonding does not proceed when the dihedral angle is 60 ° or less.

【0018】実際的には、接合に使用する粉体粒子と接
合する物体の接触した所の2面角の50%以上が90°
未満になると接合のための駆動力は非常に小さくなり、
接合は殆ど進まない。したがって、2面角の50%以上
が90o 以上であることが必要である。固体の表面や界
面の性質は、微量の不純物で非常に変化することは既に
知られている。接合に使用する粉体と物質間の2面角が
小さく接合が進まない場合、接合体の実用的な特性を損
なわない物質を添加して、90°以上の2面角を50%
以上にすると本発明の技術で接合が可能になる。
In practice, at least 50% of the dihedral angle at the place where the powder particles used for bonding come into contact with the object to be bonded is 90 °.
When it becomes less, the driving force for joining becomes very small,
Joining hardly proceeds. Therefore, it is necessary that 50% or more of the dihedral angle is 90 ° or more. It is already known that the properties of the surface and interface of a solid vary greatly with trace impurities. If the dihedral angle between the powder and the substance used for bonding is small and bonding does not proceed, add a substance that does not impair the practical characteristics of the bonded body and reduce the dihedral angle of 90 ° or more by 50%.
With the above, joining can be performed by the technique of the present invention.

【0019】例えば、SiCの結合は共有結合性が強
く、SiCの粉体粒子とSiCの焼結体の粒子との間の
2面か区には90°より小さい2面角が無視できない頻
度で出現する。この場合、ボロン(B)を添加したSi
C粉体を用いると殆どの2面角が90°以上になり接合
が可能になる。
For example, the bond of SiC has a strong covalent bond, and a dihedral angle of less than 90 ° is not negligible in two planes or sections between the powder particles of SiC and the particles of the sintered body of SiC. Appear. In this case, boron (B) added Si
When C powder is used, most dihedral angles become 90 ° or more, and bonding becomes possible.

【0020】本発明においては、接合しようとする物質
の間に粉体のままで挟んでも好ましい結果が得られる
が、良好な接合面を得るには技術的熟練が必要であると
いう欠点がある。そこで、粉体と液体の混練物を接合す
る物質間に挟むと、該液体の作用で接合強度が強くな
り、接合作業が容易になり好ましい。また、この混練に
際して、解膠剤や潤滑剤を含む液体を用いると、接合す
る物質間に挟んだ粉体を緻密に充填できるので、さらに
好ましい。また、該液体に結合剤を添加しておくと、焼
成前の接合強度が向上し、接合作業が容易になるので好
ましい。
In the present invention, a preferable result can be obtained even if the powder is sandwiched between the substances to be bonded, but there is a disadvantage that technical skill is required to obtain a good bonding surface. Therefore, it is preferable that the kneaded material of the powder and the liquid is sandwiched between the substances to be joined, because the action of the liquid increases the joining strength and facilitates the joining operation. In addition, it is more preferable to use a liquid containing a deflocculant or a lubricant at the time of kneading, since the powder sandwiched between the substances to be bonded can be densely filled. In addition, it is preferable to add a binder to the liquid because the bonding strength before firing is improved and the bonding operation is facilitated.

【0021】本発明においては、接合に使用する粉体を
接合しようとする物体の間に挟んだ後、該粉体と該物体
の密着を良くしたり、該粉体の嵩密度を高くしたり、さ
らには、接着に直接寄与しない過剰な粉体を除去するた
めに室温で該物体に圧力をかけて粉体を圧着する。該圧
着圧は、10MPa以上が好ましく、30MPaが特に
好ましい。
In the present invention, after the powder used for bonding is sandwiched between the objects to be bonded, the adhesion between the powder and the object is improved, or the bulk density of the powder is increased. Further, in order to remove excess powder that does not directly contribute to adhesion, pressure is applied to the object at room temperature to compress the powder. The compression pressure is preferably at least 10 MPa, particularly preferably 30 MPa.

【0022】本発明において、接合する温度は、接合の
ために使用する粉体の融点の0.5倍以下であると、物
質移動速度が小さく実質的に接合できず、0.5倍以上
が必要であり、0.7倍以上が好ましい。該粉末の融点
以上または該粉末と接合するセラミックスとの反応で生
成した化合物の融点以上になると、該セラミックスの粒
成長を異常に促進する。この異常粒成長は、該セラミッ
クスの機械的強度などの実用的に重要な特性を低下させ
るので好ましくない。一方、接合初期に溶融体が生成し
ても、該溶融体が異常粒成長が起こる前に接合しようと
する物質に固溶したり、反応して接合後に残らない場合
は、接合体の機能を低下させないので問題はない。
In the present invention, if the joining temperature is 0.5 times or less of the melting point of the powder used for joining, the mass transfer rate is so small that the joining cannot be performed substantially. Necessary, and preferably 0.7 times or more. Above the melting point of the powder or above the melting point of the compound formed by the reaction of the powder with the ceramic to be joined, the grain growth of the ceramic is abnormally promoted. This abnormal grain growth is not preferable because it reduces practically important properties such as mechanical strength of the ceramic. On the other hand, even if a melt is generated in the early stage of bonding, if the melt dissolves in the material to be bonded before the abnormal grain growth occurs or reacts and does not remain after bonding, the function of the bonded body is reduced. There is no problem because it does not lower.

【0023】[0023]

【発明の実施の形態】本発明において、非金属無機化合
物とは、固体の無機物質の中で、鉄(Fe)、銅(C
u)、アルミニウム(Al)等の金属や炭素(C)や珪
素(Si)等の半金属の単体や金属間化合物を除いた物
質をいう。該化合物としてアルミナ(Al2 3 )や窒
化アルミニウム(AlN)で例示される金属類と酸素や
窒素等の非金属との化合物や炭化珪素(SiC)で例示
される半金属同士の化合物等がある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, non-metallic inorganic compounds include iron (Fe) and copper (C) among solid inorganic substances.
u), a substance excluding a simple substance such as a metal such as aluminum (Al), a semimetal such as carbon (C) or silicon (Si), or an intermetallic compound. Examples of the compound include compounds of metals such as alumina (Al 2 O 3 ) and aluminum nitride (AlN) and nonmetals such as oxygen and nitrogen, and compounds of semimetals such as silicon carbide (SiC). is there.

【0024】本発明において、接合体の対象となるセラ
ミックスは、非金属無機化合物の焼結体であり、非金属
無機化合物としては、アルミナ(Al2 3 )、安定化
及び高靭性ジルコニア(種々の添加物を含むZr
2 )、ペロブスカイト系セラミックス、イットリウム
・アルミニウム・ガーネット(YAG)、チタニア(T
iO 2 )、酸化亜鉛(ZnO)、イットリア(Y
2 3 )、窒化珪素(Si3 4 )、サイアロン(SI
ALON)、炭化珪素(SiC)、窒化アルミニウム
(AlN)等、本発明の目的に適する物質であれば、そ
の種類は特に限定されない。これらの単体の焼結体で
も、複数が混合した複合焼結体でもよい。
In the present invention, the sera to be joined
The mix is a sintered body of a non-metallic inorganic compound,
As the inorganic compound, alumina (AlTwoOThree),Stabilization
And high toughness zirconia (Zr containing various additives)
OTwo), Perovskite ceramics, yttrium
・ Aluminum Garnet (YAG), Titania (T
iO Two), Zinc oxide (ZnO), yttria (Y
TwoOThree), Silicon nitride (SiThreeNFour), Sialon (SI
ALON), silicon carbide (SiC), aluminum nitride
Any substance suitable for the purpose of the present invention, such as (AlN),
Is not particularly limited. With these simple sintered bodies
Alternatively, a composite sintered body obtained by mixing a plurality of sintered bodies may be used.

【0025】また、本発明の接合体の対象になる非金属
無機化合物の単結晶とは、アルミナ(Al2 3 )、イ
ットリウム・アルミニウム・ガーネット(YAG)、イ
ットリア(Y2 3 )、マグネシア(MgO)、カルシ
ア(CaO)等の酸化物系の無機化合物単結晶が例示さ
れるが、本発明の目的に適する物質であれば、その種類
は特に限定されない。炭化珪素(SiC)や窒化アルミ
ニウム(AlN)等の非酸化物系無機化合物でも、大き
な単結晶が合成できるようになれば、高機能性接合体に
対する需要もでてくると考えられるが、その時は、本発
明の技術が応用できる。
The single crystal of the nonmetallic inorganic compound which is the object of the joined body of the present invention includes alumina (Al 2 O 3 ), yttrium aluminum garnet (YAG), yttria (Y 2 O 3 ), and magnesia. An oxide-based inorganic compound single crystal such as (MgO) or calcia (CaO) is exemplified, but the type is not particularly limited as long as it is a substance suitable for the purpose of the present invention. Even if non-oxide-based inorganic compounds such as silicon carbide (SiC) and aluminum nitride (AlN) can be used to synthesize large single crystals, demand for high-performance bonded bodies will increase. The technology of the present invention can be applied.

【0026】接合のために使用する粉体と接合する物質
とが異なると、焼結時に化学反応が起こる。本発明にお
いては、好ましい化学反応もあるし、好ましくない化学
反応もある。例えば、Si3 4 やSIALONとCa
Oを組み合わせると、焼結時に生成した低融点物質は接
合後も残るので、技術的には従来の鑞付けに近い。この
ために、そのような場合は、本発明において用いる粉体
として適さない。しかしながら、Si3 4 とY2 3
のように、接合初期に低融点物質が生成しても、接合の
進行につれて高融点物質に変化する系では、低融点物質
が接合を促進し、接合が終わった後は該低融点物質は存
在しないので、本発明において、好ましい組み合わせで
ある。
If the powder used for bonding and the material to be bonded are different, a chemical reaction occurs during sintering. In the present invention, there are some favorable chemical reactions and some unfavorable chemical reactions. For example, Si 3 N 4 or SIALON and Ca
When O is combined, the low-melting substance generated during sintering remains after joining, so that it is technically similar to conventional brazing. For this reason, such a case is not suitable as the powder used in the present invention. However, Si 3 N 4 and Y 2 O 3
In a system where a low-melting substance is generated in the early stage of bonding, but changes to a high-melting substance as the bonding proceeds, the low-melting substance promotes the bonding, and the low-melting substance is present after the bonding is completed. This is a preferred combination in the present invention.

【0027】なお、粉体の焼結後に生成する接合相と接
合に使用されたセラミックスや単結晶との熱膨張率の差
が2×10-6/℃以上あると、接合後の冷却時に熱膨張
差による熱応力が発生し破壊する。また、接合する物質
が異なる場合や同じ物質でもセラミックスと単結晶を接
合する場合も、熱膨張率の差が2×10-6/℃以上ある
と、接合後の冷却時に破壊する。このため、接合相と接
合する物質間の熱膨張率の差ばかりでなく、該物質間の
熱膨張率の差も2×10-6/℃以下に抑える必要があ
る。
If the difference in the coefficient of thermal expansion between the bonding phase formed after the sintering of the powder and the ceramic or single crystal used for bonding is 2 × 10 −6 / ° C. or more, the thermal expansion during cooling after the bonding will occur. Thermal stress due to the difference in expansion occurs and breaks. Also, when the materials to be joined are different or when the same material is used to join the ceramic and the single crystal, if the difference in the coefficient of thermal expansion is 2 × 10 −6 / ° C. or more, the materials are broken during cooling after joining. For this reason, it is necessary to suppress not only the difference in the coefficient of thermal expansion between the joining phase and the material to be joined but also the difference in the coefficient of thermal expansion between the materials to 2 × 10 −6 / ° C. or less.

【0028】本発明において、粉体を混練するのに使用
する液体は、水やアルコール類等が例示されるが、上記
の使用目的に適し、かつ接合部の純度を低下させない液
体であれば、その種類は特に限定されない。
In the present invention, the liquid used for kneading the powder is exemplified by water, alcohols, and the like. If the liquid is suitable for the above-mentioned purpose of use and does not lower the purity of the joint portion, The type is not particularly limited.

【0029】本発明において、粉体の混練に使用する解
膠剤は、ジエチルアミン、ピリジン、メチルセルロース
等が例示されるが、接合後に接合部の純度を低下させ
ず、かつ混練した粉体粒子の凝集をほぐすという本発明
の使用目的に適する物質であれば、その種類は特に限定
されない。
In the present invention, examples of the deflocculant used for kneading the powder include diethylamine, pyridine, and methylcellulose. The type of the substance is not particularly limited as long as it is a substance suitable for the purpose of use of the present invention, ie, for relaxing.

【0030】本発明において、粉体の混練に使用する結
合剤は、接合しようとする物質に粉体を挟んだ状態を強
固にして接合作業を容易にすると同時に、接合のための
焼成時に粒子が不均一に焼結することを防止する目的で
使用する。結合剤として、ポリエチレングリコール、ポ
リビニールアルコール、ポリアクリル酸アミド等が例示
されるが、接合後に接合部の純度を低下させず、かつ結
合剤として本発明の使用目的に適する物質であれば、そ
の種類は特に限定されない。
In the present invention, the binder used for kneading the powder is to make the state in which the powder is sandwiched between the substances to be joined firm, thereby facilitating the joining operation, and at the same time, the particles are produced during firing for joining. Used to prevent uneven sintering. As the binder, polyethylene glycol, polyvinyl alcohol, polyacrylamide, etc. are exemplified.If the substance does not reduce the purity of the joint after joining, and is a substance suitable for the purpose of use of the present invention as the binder, the binder may be used. The type is not particularly limited.

【0031】本発明において、粉体の混練に使用する潤
滑剤は、接合しようとする物質に挟まれた粉体の粒子間
の滑りを良好にして、該粉体の充填密度むらを無くすと
同時に充填密度を大きくする目的で使用する。ステアリ
ン酸ジグリコールやカーボワックス等が例示されるが、
接合後に接合部の純度を低下させず、かつ潤滑剤として
本発明の使用目的に適する物質であれば、その種類は特
に限定されない。
In the present invention, the lubricant used for kneading the powder improves the slip between the particles of the powder sandwiched by the substances to be joined, and eliminates the uneven packing density of the powder. Used to increase the packing density. Examples include diglycol stearate and carbowax,
The type of the lubricant is not particularly limited as long as it does not reduce the purity of the bonded portion after the bonding and is suitable for the purpose of use of the present invention as a lubricant.

【0032】本発明において、使用目的を最も発揮する
解膠剤や結合剤、潤滑剤の種類や添加量は、粉体の種類
や大きさ等で異なる。これらの種類や添加量を決める科
学は十分に発達していないので、経験的に求める必要が
ある。これらの添加剤はセラミックス粉体の成形にも効
果を発揮するので、セラミックス製造の助剤として従来
より詳しく研究されている。そこで実際的には、それら
の研究成果(例えば「成形用有機添加剤」、(株)TI
C平成5年、「セラミックス製造プロセス」、素木洋一
著、技報堂出版(株)、(1982)等)を参考に、添加剤の
種類や添加量を検討する必要がある。
In the present invention, the type and amount of the deflocculant, the binder, and the lubricant that exhibit the purpose of use differ depending on the type and size of the powder. The science of determining these types and amounts is not well developed and must be determined empirically. Since these additives also exert an effect on the molding of ceramic powder, they have been studied in detail in the past as assistants for the production of ceramics. Therefore, in practice, these research results (for example, “organic additives for molding”, TI Co., Ltd.)
C 1993, "Ceramics Manufacturing Process", Yoichi Sogi, Gihodo Shuppan Co., Ltd. (1982), etc.), it is necessary to examine the types and amounts of additives.

【0033】接合しようとする物質に挟んだ粉体層には
空隙が存在する。本発明においては、高温で該粉体層の
粒子を焼結させて、空隙を取り除く。接合する表面に不
規則で大きい凹凸があると、焼結による緻密化は不均一
になり、粉体粒子の充填状態を厳密に制御しないと焼成
で空隙が大きく成長する。接合する表面を平滑にすると
緻密化は一次元的となり、大きな空隙の発生が少なくな
る。以上の理由で、15ミクロン以下の研磨材で研磨す
ることが好ましく、3ミクロン以下の研磨材で研磨する
ことが特に好ましい。
There are voids in the powder layer between the substances to be joined. In the present invention, the voids are removed by sintering the particles of the powder layer at a high temperature. If there are irregular and large irregularities on the surface to be joined, densification by sintering becomes uneven, and if the filling state of the powder particles is not strictly controlled, large voids grow by firing. If the surfaces to be joined are smoothed, the densification becomes one-dimensional and the generation of large voids is reduced. For the above reasons, it is preferable to polish with a polishing material of 15 microns or less, and particularly preferable to polish with a polishing material of 3 microns or less.

【0034】また、本発明においては、表面うねりの抑
制も効果的であり、該うねりを±100ミクロン以内に
抑制することが好ましく、±50ミクロン以内が特に好
ましい。本発明において、接合層と接合する物質の組織
を一体化させる接合では、表面うねりを±100ミクロ
ン以内に抑制する必要がある。
In the present invention, the suppression of the surface undulation is also effective, and the undulation is preferably suppressed to within ± 100 μm, particularly preferably within ± 50 μm. In the present invention, it is necessary to suppress the surface waviness to within ± 100 μm in the joining for integrating the structure of the substance to be joined with the joining layer.

【0035】本発明において、接合させるセラミックス
とセラミックスとの間またはセラミックスと単結晶との
間の接合に用いる粉体の層の厚さは、該セラミックスや
単結晶の接合面の表面粗さや表面うねりのそれぞれの振
幅の高さと該粉体粒子の粒径の3つを比較して、最も大
きいものの1倍から100倍が好ましく、3倍から50
倍が特に好ましい。該粉体層の厚さが、上述した1倍よ
りも小さいと、接合させるセラミックス同士またはセラ
ミックスと単結晶が直接的に接触して、良好な接合体が
得られない。一方、該厚さが上述した100倍以上にな
っても、接合に使用する粉体量が多くなるだけで、接合
特性は同じである。このため、100倍以上に厚くする
と、使用する粉体量が多くなるだけで経済的には不利で
あるので好ましくない。
In the present invention, the thickness of the powder layer used for bonding between the ceramics to be bonded and the ceramics or between the ceramics and the single crystal depends on the surface roughness or the surface undulation of the bonding surface between the ceramics and the single crystal. Comparing the height of each amplitude with the three of the particle diameters of the powder particles, it is preferably 1 to 100 times, preferably 3 to 50 times the largest one.
Double is particularly preferred. If the thickness of the powder layer is smaller than the above-mentioned value, the ceramics to be bonded or the ceramics and the single crystal are in direct contact with each other, and a good bonded body cannot be obtained. On the other hand, even when the thickness is 100 times or more as described above, the joining characteristics are the same, only the amount of powder used for joining increases. Therefore, it is not preferable to increase the thickness to 100 times or more because it is economically disadvantageous only by increasing the amount of powder used.

【0036】[0036]

【実施例】実施例1 直径が0.4μmの市販のアルミナ粉末を用いて、乾式
プレス法で直径が10mm、厚さ3mmのアルミナ成形
体を複数作製し、それらを1700℃で1時間真空焼結
する。焼結体の片面を鏡面研磨する。直径が0.9μm
の市販のアルミナ粉末に蒸留水を少し加えて良く練った
後、研磨面に塗布し、研磨面同士を張り合わせ約30M
Paの圧力で圧着した。塗布層の厚さは約10μmであ
った。
EXAMPLE 1 Using a commercially available alumina powder having a diameter of 0.4 .mu.m, a plurality of alumina compacts having a diameter of 10 mm and a thickness of 3 mm were prepared by a dry press method, and were vacuum-baked at 1700.degree. C. for 1 hour. Tie. One side of the sintered body is mirror-polished. 0.9 μm in diameter
After adding a little distilled water to the commercially available alumina powder and kneading it well, apply it to the polished surface and paste the polished surfaces together to about 30M.
Pressure bonding was performed at a pressure of Pa. The thickness of the coating layer was about 10 μm.

【0037】この張り合わせた試料を乾燥させ、170
0℃で1時間、真空焼成すると、良好な接合体が得られ
た。該接合体を鏡面研磨した後に、1600℃で熱腐食
する。接合に使用した粉体粒子と接合した物体間に形成
される粒界の熱腐食溝に対して直角にSEMの電子線を
ラインスキャンする。このスキャンした線に沿って該電
子線と衝突した有機物蒸気から分解したカーボン等が線
状に堆積する。この試料を角度αだけ傾けた後に粒界に
交わった表面間の角度βを測定する。2面角θは、ta
n(θ/2)=sin(α/2)×tan(β/2)の
等式を用いて計算した。測定した結果によると、90°
より小さい2面角は認められず、その平均値は135°
であった。使用したアルミナ粉体とアルミナ焼結体の2
面角で90°以下のものは認められず、その平均値は1
35°であった。
The bonded sample was dried, and 170
When fired in vacuum at 0 ° C. for 1 hour, a good bonded body was obtained. After mirror-polishing the joined body, it is thermally corroded at 1600 ° C. The electron beam of the SEM is line-scanned at right angles to the hot corrosion groove at the grain boundary formed between the powder particles used for bonding and the bonded object. Along the scanned line, carbon and the like decomposed from the organic vapor colliding with the electron beam are deposited in a linear manner. After tilting the sample by the angle α, the angle β between the surfaces intersecting the grain boundaries is measured. The dihedral angle θ is ta
It was calculated using the equation: n (θ / 2) = sin (α / 2) × tan (β / 2). According to the measurement result, 90 °
No smaller dihedral angle was observed and the average was 135 °
Met. 2 of used alumina powder and alumina sintered body
No surface angle of less than 90 ° was observed, and the average value was 1
35 °.

【0038】実施例2 直径が0.4μmの市販のアルミナ粉末と結合剤や分散
剤を含む蒸留水を良く練り、実施例1で製造した試験片
の鏡面研磨面に塗り、研磨面同士を張り合わせる。約3
0MPaの圧力で圧着してから結合剤や分散剤を除くた
めに空気中で1400℃、2時間予備焼成する。塗布層
の厚さは約10μmであった。その後、1700℃で1
時間、真空焼成し、2つの試験片が一体化した接合体が
得られた。図1は、得られたセラミックス接合体の接合
部分を示すSEM写真である。
Example 2 A commercially available alumina powder having a diameter of 0.4 μm and distilled water containing a binder and a dispersing agent were kneaded well, applied to the mirror-polished surface of the test piece prepared in Example 1, and bonded to each other. You. About 3
After pressure bonding at a pressure of 0 MPa, preliminary firing is performed at 1400 ° C. for 2 hours in air to remove a binder and a dispersant. The thickness of the coating layer was about 10 μm. Then, at 1700 ° C, 1
Vacuum firing was performed for a time to obtain a joined body in which the two test pieces were integrated. FIG. 1 is an SEM photograph showing a joining portion of the obtained ceramic joined body.

【0039】図1に示す矢印は、接合層に生じた気孔で
ある。矢印で示さない限り接合層の組織とセラミックス
の組織が一体化して、どこに接合層があるのか分からな
い。接合体の3点曲げ試験を行ったところ、曲げ強度は
52kg/mm2 であり、接合部が無い試験片の曲げ強
度と実験誤差内で一致した。なお、2面角は実施例1に
記載の方法で測定した。その結果2面角は実施例1と同
じ分布を示し、その平均値は135°であった。
Arrows shown in FIG. 1 indicate pores formed in the bonding layer. Unless indicated by an arrow, the structure of the bonding layer and the structure of the ceramics are integrated, and it is not known where the bonding layer is. When a three-point bending test was performed on the joined body, the bending strength was 52 kg / mm 2 , which was consistent with the bending strength of the test piece having no joint within an experimental error. The dihedral angle was measured by the method described in Example 1. As a result, the dihedral angle showed the same distribution as in Example 1, and the average value was 135 °.

【0040】実施例3 鏡面研磨面の代わりにダイヤモンドカッターで切断した
面に実施例2で使用した混練物を塗る。塗布層の厚さは
約100μmであった。約30MPaの圧力で圧着して
から乾燥し、実施例2の条件で焼結し接合を行う。空隙
を十分に取り除くことはできなかったが、この3点曲げ
強度は15kg/mm2 あり、かなりの強度を有する接
合体が得られた。なお、2面角は実施例1に記載の方法
で測定した。その結果、2面角は実施例1で得られたも
のと同じ分布を示した。
Example 3 Instead of the mirror-polished surface, the surface cut with a diamond cutter is coated with the kneaded material used in Example 2. The thickness of the coating layer was about 100 μm. Crimping is performed under a pressure of about 30 MPa, followed by drying, sintering and bonding under the conditions of Example 2. Although the void could not be sufficiently removed, the three-point bending strength was 15 kg / mm 2, and a joined body having considerable strength was obtained. The dihedral angle was measured by the method described in Example 1. As a result, the dihedral angles showed the same distribution as that obtained in Example 1.

【0041】実施例4 実施例1の方法で、直径が0.9μmの市販のアルミナ
粉末の代わりに平均粒径が0.06μmのイットリア粉
末を用いて接合する。塗布層の厚さは約10μmであっ
た。接合する材料はアルミナであるので、接合のための
焼結中にアルミナとイットリアが反応して低融点物質が
発生し、接合が非常に速く進んだ。なお、2面角は実施
例1に記載の方法で測定した。その結果、該低融点物質
とアルミナ焼結体との2面角は120〜150°の間に
あった。
Example 4 In the same manner as in Example 1, bonding was performed using yttria powder having an average particle size of 0.06 μm instead of commercially available alumina powder having a diameter of 0.9 μm. The thickness of the coating layer was about 10 μm. Since the material to be joined was alumina, the alumina and yttria reacted during sintering for joining to generate a low-melting substance, and the joining proceeded very quickly. The dihedral angle was measured by the method described in Example 1. As a result, the dihedral angle between the low melting point material and the alumina sintered body was between 120 and 150 °.

【0042】実施例5 直径が0.06μmの易焼結性イットリア粉末を用い
て、乾式プレス法で直径が10mm、厚さ3mmのイッ
トリア成形体を複数作製し、それらを1700℃で1時
間、真空焼結する。焼結体の片面を鏡面研磨する。上記
のイットリア粉末と結合剤や分散剤を含む水とを良く練
ったのち、研磨面に塗布し、研磨面同士を張り合わせ
て、約30MPaの圧力で圧着してから乾燥させる。塗
布層の厚さは約10μmであった。張り合わせた試料を
1700℃で1時間真空焼結すると良好な接合体が得ら
れた。接合に使用した粉体と接合した焼結体の2面角は
実施例1に記載の方法で測定した。その結果、該2面角
は120〜147°の間にあった。
Example 5 A plurality of yttria compacts having a diameter of 10 mm and a thickness of 3 mm were produced by dry pressing using an easily sinterable yttria powder having a diameter of 0.06 μm, and these were molded at 1700 ° C. for 1 hour. Vacuum sintering. One side of the sintered body is mirror-polished. After the above-mentioned yttria powder and water containing a binder and a dispersing agent are well kneaded, the mixture is applied to a polished surface, the polished surfaces are adhered to each other, and pressed and pressed at a pressure of about 30 MPa, followed by drying. The thickness of the coating layer was about 10 μm. When the bonded sample was vacuum-sintered at 1700 ° C. for 1 hour, a good joined body was obtained. The dihedral angle of the sintered body joined to the powder used for the joining was measured by the method described in Example 1. As a result, the dihedral angle was between 120 and 147 °.

【0043】比較例1 実施例と1と同じく、平均粒径が0.4μmのアルミナ
粉体を使用し、液体を加えることなく粉の状態で実施例
1で製造した試験片に挟んだ。挟んだ粉を圧着すること
なく電気炉にセットして1700℃で1時間、真空焼結
した。図2は、得られたセラミックス接合体の接合部分
を示すSEM写真である。接合が十分に進まない部分が
あり、殆ど接合していないところもあった。なお、2面
角は実施例1に記載の方法で測定した。その結果、2面
角は実施例1と同じ値を示した。
Comparative Example 1 As in Examples 1 and 2, alumina powder having an average particle diameter of 0.4 μm was used and sandwiched between the test pieces manufactured in Example 1 in a powder state without adding a liquid. The sandwiched powder was set in an electric furnace without pressure bonding and vacuum-sintered at 1700 ° C. for 1 hour. FIG. 2 is an SEM photograph showing a joining portion of the obtained ceramic joined body. There were portions where the bonding did not proceed sufficiently, and there were also portions where the bonding was hardly performed. The dihedral angle was measured by the method described in Example 1. As a result, the dihedral angle showed the same value as in Example 1.

【0044】比較例2 実施例1で作製した試験片を粉体を挟まずに直接接触さ
せて、実施例1の条件で焼成したが、試験片同士の接合
は無視できる程度で、試験片はすぐに離れた。
Comparative Example 2 The test piece prepared in Example 1 was directly contacted without sandwiching the powder and fired under the conditions of Example 1. However, the bonding between the test pieces was negligible, and the test pieces were I left immediately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例2によって得られたセラミック
ス接合体の接合部分を示す図面代用のSEM写真であ
る。
FIG. 1 is an SEM photograph as a substitute for a drawing, showing a joined portion of a ceramic joined body obtained in Example 2.

【図2】図2は、比較例1によって得られたセラミック
ス接合体の接合部分を示す図面代用のSEM写真であ
る。
FIG. 2 is an SEM photograph as a substitute for a drawing, showing a bonded portion of the ceramic bonded body obtained in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G026 BA02 BA03 BA05 BA14 BA16 BA17 BA19 BB02 BB03 BB05 BB14 BB16 BB17 BB19 BC01 BD12 BF04 BF43 BF44 BG03 BG05 BG23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G026 BA02 BA03 BA05 BA14 BA16 BA17 BA19 BB02 BB03 BB05 BB14 BB16 BB17 BB19 BC01 BD12 BF04 BF43 BF44 BG03 BG05 BG23

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セラミックスとセラミックスとの接合面の
間、またはセラミックスと非金属無機化合物の単結晶体
との接合面の間が、これらのセラミックスまたは単結晶
と接触した所の2面角の50%以上が90o 以上で、か
つ平均粒径が5μm以下の非金属無機化合物の粉体を圧
着し焼結した層で接合されていることを特徴とするセラ
ミックス接合体。
1. A dihedral angle of 50 degrees between the joining surfaces of ceramics and ceramics or between the joining surfaces of ceramics and a single crystal of a non-metallic inorganic compound at the point of contact with these ceramics or single crystals. ceramic joined body% or more and wherein the 90 o or more and an average particle size are joined with a layer obtained by sintering and bonding a powder of the following non-metallic inorganic compound 5 [mu] m.
【請求項2】接合層の組織とセラミックスの組織が一体
化して、見掛け上接合相が認められないことを特徴とす
る請求項1記載のセラミックス接合体。
2. The ceramic joined body according to claim 1, wherein the structure of the joining layer and the structure of the ceramics are integrated and no apparent joining phase is observed.
【請求項3】セラミックスとセラミックスとを接合する
面、またはセラミックスと非金属無機化合物の単結晶体
とを接合する面に、これらのセラミックスまたは単結晶
と接触した所の2面角の50%以上が90o 以上で、か
つ平均粒径が5μm以下の非金属無機化合物の粉体を挟
み、圧着し、該粉体の融点の0.5倍から融点の間の温
度で該粉体を焼結して接合することを特徴とする請求項
1または2記載のセラミックス接合体の製造法。
3. A surface joining ceramics and ceramics or a surface joining ceramics and a single crystal of a non-metallic inorganic compound, at least 50% of the dihedral angle at the point of contact with these ceramics or single crystals. Is 90 ° or more and a powder of a non-metallic inorganic compound having an average particle diameter of 5 μm or less is sandwiched and pressed, and the powder is sintered at a temperature between 0.5 times and a melting point of the melting point of the powder. The method for producing a ceramic joined body according to claim 1, wherein the ceramic joined body is joined.
【請求項4】結合剤、分散剤、または可塑剤の中の一種
あるいは複数と共に予め液体で混練した粉体を用いるこ
とを特徴とする請求項3記載のセラミックス接合体の製
造法。
4. The method for producing a ceramic joined body according to claim 3, wherein a powder kneaded with a liquid together with one or more of a binder, a dispersant, and a plasticizer is used.
JP2000005828A 2000-01-07 2000-01-07 Manufacturing method of ceramic joined body Expired - Lifetime JP3520320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005828A JP3520320B2 (en) 2000-01-07 2000-01-07 Manufacturing method of ceramic joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005828A JP3520320B2 (en) 2000-01-07 2000-01-07 Manufacturing method of ceramic joined body

Publications (2)

Publication Number Publication Date
JP2001192277A true JP2001192277A (en) 2001-07-17
JP3520320B2 JP3520320B2 (en) 2004-04-19

Family

ID=18534453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005828A Expired - Lifetime JP3520320B2 (en) 2000-01-07 2000-01-07 Manufacturing method of ceramic joined body

Country Status (1)

Country Link
JP (1) JP3520320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328075B (en) * 2008-07-15 2012-12-05 天津市粤唯鲜文化产业投资集团有限公司 Ancient ceramic chip and modern ceramic utensil combined technological process and product

Also Published As

Publication number Publication date
JP3520320B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
US20130052438A1 (en) Max-phase oriented ceramic and method for producing the same
JPH07277814A (en) Alumina-based ceramic sintered compact
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP2002128569A (en) High thermal conductive silicon nitride ceramic and its manufacturing method
JPH07237962A (en) Ceramic molding containing aluminum oxide and with high adhesiveness of metalized layer
KR102557206B1 (en) Oriented AlN sintered body and its manufacturing method
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JP3520320B2 (en) Manufacturing method of ceramic joined body
JP2003137671A (en) Mullite-based porous body and method of producing the same
JP5067751B2 (en) Ceramic joined body and manufacturing method thereof
JP2003048783A (en) Alumina ceramics joined body and method for manufacturing the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
Sciti et al. Improvements Offered by Coprecipitation of Sintering Additives on Ultra‐Fine SiC Materials
JP2645894B2 (en) Method for producing zirconia ceramics
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
JPH01153575A (en) Sialon-based sintered ceramic
JPH01502426A (en) Method for preparing aluminum oxide ceramics with increased wear resistance
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
JPS6344713B2 (en)
JPS63256572A (en) Sic base ceramics and manufacture
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP2581128B2 (en) Alumina-sialon composite sintered body
Hirata et al. Densification, phases, microstructures and mechanical properties of liquid phase-sintered SiC

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3520320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term