JP2001191077A - Method for manufacturing desalting liquid - Google Patents

Method for manufacturing desalting liquid

Info

Publication number
JP2001191077A
JP2001191077A JP2000003415A JP2000003415A JP2001191077A JP 2001191077 A JP2001191077 A JP 2001191077A JP 2000003415 A JP2000003415 A JP 2000003415A JP 2000003415 A JP2000003415 A JP 2000003415A JP 2001191077 A JP2001191077 A JP 2001191077A
Authority
JP
Japan
Prior art keywords
liquid
treated
desalted
desalting
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000003415A
Other languages
Japanese (ja)
Inventor
Makio Tamura
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000003415A priority Critical patent/JP2001191077A/en
Publication of JP2001191077A publication Critical patent/JP2001191077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a desalting liquid which is capable of easily yielding the desalting liquid with extremely simple constitution and hardly requires maintenance for performance maintenance. SOLUTION: A liquid passage condenser 1 having a regenerating stage of obtaining the desalting liquid by impressing a DC voltage to a pair of electrodes 15 and 16 and removing the ion components of the liquid to be treated and a regenerating stage for recovering the ion components from a pair of the electrodes 15 and 16 together with the liquid to be treated under passage by electric dissociation is connected with a valve 4 to a piping 3 for supplying a liquid to be treated which is connected to the liquid passage condenser 1. The valve 4 is opened when the desalting liquid is needed. The desalting liquid is obtained in a desalting stage. The operation to close the valve 4 and then the regenerating stage are started when the desalting liquid is not needed. The ion components are removed and recovered with the remaining liquid in the liquid passage condenser 1 and the liquid to be treated which is passed in the time lag from the beginning of the closing of the valve before the end of the closing, by which the desalting liquid may be easily obtained with the extremely simple constitution and the need for the maintenance for performance maintenance is substantially eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一対の電極に直流
電圧を印加して通液中の被処理液のイオン成分を除去し
た脱塩液を得、その後、脱塩液を必要としない時に専ら
一対の電極を再生し、再び脱塩液を必要とする時に備え
て、簡易に脱塩液を得ることのできる脱塩液製造方法に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for applying a DC voltage to a pair of electrodes to obtain a desalinated solution from which ionic components of a liquid to be processed are removed, and thereafter, when no desalting solution is required. The present invention relates to a method for producing a desalinated solution in which a pair of electrodes is regenerated exclusively and a desalinated solution can be easily obtained in preparation for a case where a desalinated solution is required again.

【0002】[0002]

【従来の技術】従来、脱塩液製造方法としては、イオン
交換樹脂を充填したイオン交換法(IER)、蒸留法、
逆浸透膜法(RO)、電気透析法(ED)、電気式脱イ
オン液製造法(EDI)等がある。これらは単独あるい
は組み合わせて脱塩液製造方法とされ、いずれも脱塩液
を得ることが可能である。しかしながら、IERではイ
オン交換樹脂の酸アルカリによる再生操作が必要であ
り、更に劣化したイオン交換樹脂は交換する必要があ
り、また酸アルカリによる再生操作を行わない場合はイ
オン交換容量を消費したイオン交換樹脂を交換する必要
がある等、性能維持のためのメンテナンスが多く必要で
ある。蒸留法では加熱と冷却が必要となり、熱回収を図
ると装置構成が複雑になり、簡易な脱塩液製造方法とし
ては利用しにくい。ROは前段階で充分な処理を行う必
要があり、高圧ポンプが必要になって簡易な脱塩液製造
方法としては利用しにくい。EDは電気透析作用を利用
するが、所要電力が大きく、特に高純度の液では著しく
電力消費が大となる。EDIはイオン交換樹脂と電気透
析作用とを組み合わせ、イオン交換樹脂の薬剤による再
生操作が必要なく所要電力もEDと比べて小さくなる等
の利点があるものの、被処理液通液系、濃縮液通液系、
電極液通液系の3系統が必要で装置構成が複雑となる。
従って、上述の脱塩液製造方法は、いずれも高純度の脱
塩液を得ることができても、簡便かつ安価な脱塩液製造
方法としては利用しにくいものであった。
2. Description of the Related Art Conventionally, methods for producing a desalted solution include an ion exchange method (IER) filled with an ion exchange resin, a distillation method,
There are a reverse osmosis membrane method (RO), an electrodialysis method (ED), and an electric deionized liquid manufacturing method (EDI). These methods are used alone or in combination to produce a desalted solution, and any of them can obtain a desalted solution. However, in the IER, the ion-exchange resin must be regenerated with an acid-alkali, and the degraded ion-exchange resin needs to be replaced. A lot of maintenance is required to maintain performance, such as the need to replace the resin. In the distillation method, heating and cooling are required, and if heat is recovered, the configuration of the apparatus becomes complicated, and it is difficult to use it as a simple method for producing a desalinated liquid. RO requires a sufficient treatment in the previous stage, and requires a high-pressure pump, making it difficult to use as a simple desalting solution production method. The ED uses the electrodialysis function, but requires a large amount of electric power, and particularly consumes a large amount of electric power in a high-purity liquid. EDI combines an ion exchange resin and an electrodialysis function, and has the advantage of requiring no operation for regenerating the ion exchange resin with a chemical and requiring less power than the ED. Liquid system,
Since three systems of the electrode liquid passing system are required, the device configuration becomes complicated.
Therefore, even if the above-mentioned desalting solution production method can obtain a high-purity desalting solution, it is difficult to use it as a simple and inexpensive desalting solution production method.

【0003】一方、簡易な脱塩液製造方法としては通液
型コンデンサを使用した方法が知られている。この通液
コンデンサは、静電力を利用して被処理液中のイオン成
分等の除去と回収(再生)とを行うもので、その原理は
以下の通りである。すなわち、通液コンデンサは、その
保有する一対の電極に直流電圧を印加して、通液中の被
処理液のイオン成分等、すなわち、イオン、電荷のある
粒子、有機物を一対の電極に吸着することにより除去
し、イオン成分等を除去した脱塩液を得て、その後直流
電源をオフし、一対の電極を短絡あるいは直流電源を逆
接続したりする電気的な解離をして、一対の電極に吸着
しているイオン成分等を離脱させ、一対の電極を再生し
つつ除去イオン成分等を通液中の被処理液と共に除去・
回収することを繰り返し行うものである(特開平5−2
58992号公報)。
On the other hand, as a simple method for producing a desalted liquid, a method using a flow-through condenser is known. This liquid passing condenser removes and recovers (regenerates) ionic components and the like in the liquid to be treated using electrostatic force, and the principle is as follows. That is, the flow-through capacitor applies a DC voltage to the pair of electrodes held by the flow-through capacitor, and adsorbs ionic components and the like of the liquid to be processed during the flow, ie, ions, charged particles, and organic substances to the pair of electrodes. To obtain a desalinated solution from which ionic components and the like have been removed, and then turn off the DC power supply and short-circuit the pair of electrodes or reversely connect the DC power supply to perform electrical dissociation to form a pair of electrodes. The ion components and the like adsorbed on the surface are desorbed, and the removed ion components and the like are removed together with the liquid to be treated while the pair of electrodes are regenerated.
The collection is repeatedly performed (Japanese Patent Laid-Open No. 5-2 / 1993).
No. 58992).

【0004】上記のような通液コンデンサを使用した脱
塩液製造の装置構成及びその運転方法は、以下の通りで
ある。図12に示すように、50は通液コンデンサであ
り、まず、切替え弁51を開、切替え弁52を閉とし、
スイッチ53をオンして一対の電極54、55に直流電
圧を印加し、被処理液タンク56から被処理液を通液コ
ンデンサ50に供給すると、直流電圧が印加されている
一対の電極54、55にイオン成分等が吸着されるか
ら、イオン成分等が除去された脱塩液が得られ、切替え
弁51の下流側の脱塩液貯留タンク57に貯められる。
この状態が継続すると、一対の電極54、55にイオン
成分等が徐々に吸着され飽和状態となり、イオン成分等
除去性能が徐々に低下することが水質監視装置58によ
り測定されるから、ある時点でスイッチ53をオフして
直流電圧の印加を止める。そして、切替え弁51を閉、
切替え弁52を開にしておき、イオン成分等除去性能を
再生させるために、スイッチ59をオンして一対の電極
54、55間を短絡(あるいは直流電源60を逆接続)
すると、一対の電極54、55に吸着されていたイオン
成分等が離脱し、一対の電極54、55が再生されつつ
イオン成分等の濃縮液が得られ、切替え弁52の下流側
の濃縮液貯留タンク61に貯められ、被処理液中のイオ
ン成分等の除去と回収(再生)との1サイクルが終了す
る。そして、被処理液タンク56から被処理液が常時通
液コンデンサ50に供給され、上記サイクルが繰り返さ
れて脱塩液とイオン成分濃縮液とを交互に得ることがで
きる。
[0004] The construction of the apparatus for producing a desalinated liquid using the above-mentioned liquid passing condenser and its operating method are as follows. As shown in FIG. 12, reference numeral 50 denotes a liquid passing condenser. First, the switching valve 51 is opened and the switching valve 52 is closed,
When the switch 53 is turned on to apply a DC voltage to the pair of electrodes 54 and 55 and supply the liquid to be processed from the liquid tank 56 to the liquid condenser 50, the pair of electrodes 54 and 55 to which the DC voltage is applied is applied. The deionized solution from which the ionic components and the like have been removed is obtained, and is stored in the desalted solution storage tank 57 downstream of the switching valve 51.
When this state continues, the water quality monitoring device 58 measures that the ion components and the like are gradually adsorbed to the pair of electrodes 54 and 55 and become saturated, and the performance of removing the ion components and the like is gradually reduced. The switch 53 is turned off to stop applying the DC voltage. Then, the switching valve 51 is closed,
The switching valve 52 is opened, and the switch 59 is turned on to short-circuit the pair of electrodes 54 and 55 (or the DC power supply 60 is reversely connected) in order to regenerate the performance of removing ion components and the like.
Then, the ionic components and the like adsorbed on the pair of electrodes 54 and 55 are desorbed, and a concentrated solution of the ionic components and the like is obtained while the pair of electrodes 54 and 55 are regenerated. One cycle of removal and recovery (regeneration) of the ionic components and the like in the liquid to be processed is stored in the tank 61. Then, the liquid to be treated is constantly supplied from the liquid tank to be treated 56 to the liquid passing condenser 50, and the above-described cycle is repeated, whereby the desalted liquid and the ionic component concentrated liquid can be obtained alternately.

【0005】[0005]

【発明が解決しようとする課題】上記の通液コンデンサ
50を使用した脱塩液製造方法は、被処理液タンク56
から被処理液が常時通液コンデンサ50に供給され、切
替え弁51、52が切替えられて、脱塩液→イオン成分
濃縮液→脱塩液→イオン成分濃縮液と交互に得られ、イ
オン成分濃縮液を得ている時間内に必要とする容量の脱
塩液貯留タンク57を備えていれば、常時連続して脱塩
液を得ることができて都合がよい。しかしながら、この
通液コンデンサ50使用の脱塩液製造方法では、常時連
続して脱塩液を得る必要のない場合は、被処理液タンク
56の他に、脱塩液貯留タンク57、濃縮液貯留タンク
61も備えていて、実質的に過大な装置構成となってい
る。加えて、通液コンデンサ50自体も完全に液封した
容器内に収める必要がある等簡易な脱塩液製造方法とな
っていない。従って、従来の脱塩液製造方法は、少量か
つ間欠的に脱塩液を得たい場合のニーズに応えることが
できていない。
The above-described method for producing a desalted liquid using the liquid-passing condenser 50 employs a liquid tank 56 to be treated.
, The liquid to be treated is constantly supplied to the liquid passing condenser 50, and the switching valves 51 and 52 are switched to alternately obtain the desalted liquid → the ionic component concentrated liquid → the desalinated liquid → the ionic component concentrated liquid to obtain the ionic component concentrated liquid. If the desalting solution storage tank 57 having a necessary volume during the time during which the solution is obtained is provided, the desalting solution can always be continuously obtained, which is convenient. However, in the desalinated liquid manufacturing method using the liquid passing condenser 50, when it is not necessary to continuously obtain the desalinated liquid, the desalinated liquid storage tank 57, the concentrated liquid storage A tank 61 is also provided, which is a substantially excessive device configuration. In addition, there is no simple method for producing a desalted liquid, such as the necessity of putting the liquid passing condenser 50 itself in a completely liquid-sealed container. Therefore, the conventional method for producing a desalinated solution cannot meet the needs when a desalinated solution is to be obtained in a small amount and intermittently.

【0006】従って、本発明の目的は、装置構成が極め
て簡易で容易に脱塩液を得ることができ、且つ性能維持
のためのメンテンスがほとんど不要な脱塩液製造方法を
提供することにある。
Accordingly, it is an object of the present invention to provide a method for producing a desalinated solution in which the structure of the apparatus is extremely simple, a desalinated solution can be easily obtained, and almost no maintenance is required for maintaining the performance. .

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、脱塩工程と再生工程と
を有する通液コンデンサの被処理液供給配管にバルブを
接続する装置構成とし、脱塩液の必要時にバルブを開き
脱塩工程として脱塩液を得、脱塩液の不必要時に前記バ
ルブを閉める操作を開始すると共に、前記再生工程に入
り、前記通液コンデンサ内の残液及び前記バルブの閉め
始めから閉め終わりまでのタイムラグに通液した被処理
液でイオン成分を除去すれば、装置構成が極めて簡易で
容易に脱塩液を得ることができ、且つ性能維持のための
メンテンスがほとんど不要であることなどを見出し、本
発明を完成するに至った。
Under such circumstances, the present inventors have made intensive studies and as a result, have established an apparatus configuration in which a valve is connected to a liquid supply pipe to be processed of a flow-through condenser having a desalination step and a regeneration step. When the desalting solution is needed, the valve is opened to obtain a desalting solution as a desalting step, and when the desalting solution is not needed, the operation of closing the valve is started, and the regeneration step is started. If the ionic components are removed with the liquid and the liquid to be processed that has passed through the time lag from the start of closing the valve to the end of closing the valve, the desalting solution can be easily obtained with an extremely simple apparatus configuration, and the performance is maintained. The inventors have found that almost no maintenance is required, and have completed the present invention.

【0008】すなわち、請求項1の発明は、一対の電極
に直流電圧を印加して被処理液のイオン成分を除去して
脱塩液を得る脱塩工程と、前記一対の電極からイオン成
分を電気的解離により通液中の被処理液と共に回収する
再生工程とを有する通液コンデンサにおいて、前記通液
コンデンサに接続される被処理液供給配管又は処理液排
出配管にバルブを接続し、脱塩液の必要時に前記バルブ
を開くと共に、前記脱塩工程として脱塩液を得、次い
で、脱塩液の不必要時に前記バルブを閉める操作を開始
すると共に、前記再生工程に入り、前記通液コンデンサ
内の残液及び前記バルブの閉め始めから閉め終わりまで
のタイムラグに通液した被処理液で、イオン成分を除去
・回収することを特徴とする脱塩液製造方法を提供する
ものである。
That is, the invention of claim 1 provides a desalting step of applying a direct current voltage to a pair of electrodes to remove an ionic component of a liquid to be treated to obtain a desalted solution; A regenerating step of recovering together with the liquid to be processed which is being passed through by electric dissociation, a valve is connected to the liquid supply pipe or the processing liquid discharge pipe connected to the liquid flow condenser, and desalination is performed. When the liquid is needed, the valve is opened and a desalted liquid is obtained as the desalting step. Then, when the desalting liquid is not needed, the operation of closing the valve is started. It is an object of the present invention to provide a method for producing a desalted liquid, characterized by removing and recovering ionic components from the remaining liquid in the liquid and the liquid to be processed which has passed through a time lag from the start of closing the valve to the end of closing the valve.

【0009】また、請求項2の発明は、一対の電極に直
流電圧を印加して被処理液のイオン成分を除去して脱塩
液を得る脱塩工程と、前記一対の電極からイオン成分を
電気的解離により通液中の被処理液と共に回収する再生
工程とを有する通液コンデンサにおいて、前記通液コン
デンサに接続される被処理液供給配管又は処理液排出配
管にバルブを接続し、脱塩液の不必要時に前記バルブを
閉め、その後、前記一対の電極を短絡又は直流電源を逆
接続して、イオン成分回収液を前記通液コンデンサ内に
滞留させ、次いで、脱塩液の必要時に前記バルブを開い
て前記イオン成分回収液を排出し、その後、一対の電極
に直流電圧を印加して前記脱塩工程として脱塩液を得る
ことを特徴とする脱塩液製造方法を提供するものであ
る。
Further, the invention of claim 2 provides a desalting step of applying a DC voltage to a pair of electrodes to remove ionic components of the liquid to be treated to obtain a desalted solution, A regenerating step of recovering together with the liquid to be processed which is being passed through by electric dissociation, a valve is connected to the liquid supply pipe or the processing liquid discharge pipe connected to the liquid flow condenser, and desalination is performed. When the liquid is not needed, the valve is closed, and then the pair of electrodes are short-circuited or the DC power supply is reverse-connected, so that the ionic component recovery liquid is retained in the liquid passing condenser. A method for producing a desalted liquid, characterized in that a valve is opened to discharge the ionic component recovery liquid, and then a DC voltage is applied to a pair of electrodes to obtain a desalted liquid as the desalting step. is there.

【0010】また、請求項3の発明は、貯留タンク内
に、一対の電極に直流電圧を印加して被処理液のイオン
成分を除去して脱塩液を得る脱塩工程と、前記一対の電
極からイオン成分を電気的解離により通液中の被処理液
と共に回収する再生工程とを有する通液コンデンサを着
脱自在に設置し、前記通液コンデンサは被処理液の流路
を通じて被処理液供給系に接続してなり、脱塩液の必要
時に脱塩工程を行い前記貯留タンク内で脱塩液を得、脱
塩液の不必要時に専ら再生工程を行い、前記再生工程は
前記貯留タンクから前記通液コンデンサを取り外し、別
途に設置される液体流路に接続し、前記通液コンデンサ
に通液すると共に電気的な解離をして、イオン成分を除
去・回収することを特徴とする脱塩液製造方法を提供す
るものである。
[0010] Further, the invention according to claim 3 is a desalination step of applying a DC voltage to a pair of electrodes in a storage tank to remove an ionic component of a liquid to be treated to obtain a desalination solution; A regenerating step of recovering the ionic component from the electrode together with the liquid to be processed through electrical dissociation by electric dissociation. It is connected to the system, performs a desalting step when a desalting solution is required, obtains a desalting solution in the storage tank, and performs a regeneration step exclusively when the desalting solution is unnecessary, and the regeneration step is performed from the storage tank. Removing the liquid-passing condenser, connecting the liquid-passing condenser to a separately-installed liquid flow path, passing the liquid through the liquid-passing condenser, and electrically dissociating to remove and recover ionic components. A liquid production method is provided.

【0011】また、請求項4の発明は、被処理液の循環
流路内に、一対の電極に直流電圧を印加して被処理液の
イオン成分を除去して脱塩液を得る脱塩工程と、前記一
対の電極からイオン成分を電気的解離により通液中の被
処理液と共に回収する再生工程とを有する通液コンデン
サを配置してなり、前記一対の電極に直流電圧を印加し
て循環中の被処理液のイオン成分を該一対の電極に付着
させて循環中の被処理液を脱塩液とし、その後、必要時
に循環中の脱塩液を取り出し、不必要時に前記再生工程
に入り、脱塩液と共に付着したイオン成分を除去・回収
することを特徴とする脱塩液製造方法を提供するもので
ある。
The invention according to a fourth aspect is a desalting step of applying a DC voltage to a pair of electrodes in a circulation channel of the liquid to be treated to remove ionic components of the liquid to be treated to obtain a desalinated solution. And a regenerating step of recovering the ionic component from the pair of electrodes together with the liquid to be processed through the liquid by electrical dissociation, and circulating by applying a DC voltage to the pair of electrodes. The ionic components of the liquid to be treated are adhered to the pair of electrodes to convert the circulating liquid to be treated into a desalted liquid. Thereafter, the circulating desalted liquid is taken out when necessary, and the regeneration step is started when unnecessary. And a method for producing a desalted liquid characterized by removing and recovering ionic components attached together with the desalted liquid.

【0012】また、請求項5の発明は、被処理液の循環
流路内に貯留タンク、ポンプ、一対の電極に直流電圧を
印加して被処理液のイオン成分を除去して脱塩液を得る
脱塩工程と、前記一対の電極からイオン成分を電気的解
離により通液中の被処理液と共に回収する再生工程とを
有する通液コンデンサ及び取出弁を配置してなり、前記
一対の電極に直流電圧を印加して循環中の被処理液のイ
オン成分を該一対の電極に付着させて循環中の被処理液
を脱塩液とし、その後、必要時に前記取出弁を開いて脱
塩液を取り出し、不必要時に前記再生工程に入り、脱塩
液と共に付着したイオン成分を除去・回収することを特
徴とする脱塩液製造方法を提供するものである。
Further, according to a fifth aspect of the present invention, a desalted liquid is removed by applying a DC voltage to a storage tank, a pump, and a pair of electrodes in a circulation channel of the liquid to be treated to remove ionic components of the liquid to be treated. A desalination step to obtain, and a flow-through condenser and a take-out valve having a regeneration step of recovering the ionic component from the pair of electrodes together with the liquid to be processed through the flow by electric dissociation, are arranged. Applying a DC voltage, the ionic components of the circulating liquid to be treated are attached to the pair of electrodes, and the circulating liquid to be treated is desalted, and then, when necessary, the take-out valve is opened to remove the desalted liquid. It is another object of the present invention to provide a method for producing a desalted solution, wherein the method is characterized in that the desalted solution is taken out, enters the regeneration step when unnecessary, and removes and recovers the ionic components attached together with the desalted solution.

【0013】また、請求項6の発明は、貯留タンク内の
下方部に、一対の電極に直流電圧を印加して被処理液の
イオン成分を除去して脱塩液を得る脱塩工程と、前記一
対の電極からイオン成分を電気的解離により通液中の被
処理液と共に回収する再生工程とを有する通液コンデン
サを収納してなり、前記貯留タンク内に被処理液を投入
して、必要とする脱塩液量及び再生用の残液量を確保す
ると共に、前記通液コンデンサ内に被処理液を循環可能
とし、前記通液コンデンサに直流電圧を印加して前記貯
留タンク内の被処理液のイオン成分を一対の電極に付着
させて前記貯留タンク内の被処理液を脱塩液とし、その
後、必要時に前記貯留タンク内から必要量の脱塩液を取
り出し、不必要時に前記再生工程に入り、前記貯留タン
ク内の再生用に残存している脱塩液にイオン成分を回収
し、かつ前記貯留タンク内から排除すことで除去・回収
することを特徴とする脱塩液製造方法を提供するもので
ある。
[0013] The invention according to claim 6 is a desalination step of applying a DC voltage to a pair of electrodes to remove an ionic component of the liquid to be treated to obtain a desalinated solution, in a lower part in the storage tank. A regenerating step of recovering the ionic component from the pair of electrodes together with the liquid to be processed through the liquid by electrical dissociation. In addition to ensuring the desalted liquid amount and the residual liquid amount for regeneration, the liquid to be treated can be circulated in the liquid passing condenser, and a DC voltage is applied to the liquid passing condenser to be treated in the storage tank. The ionic component of the liquid is attached to the pair of electrodes to convert the liquid to be treated in the storage tank into a desalted liquid. Thereafter, a necessary amount of the desalted liquid is taken out from the storage tank when necessary, and the regenerating step is performed when unnecessary. Into the storage tank for regeneration in the storage tank. There is provided a desalted solution producing method characterized by the ion component in the desalted solution recovered is, and remove and collect by be excluded from the reservoir tank.

【0014】[0014]

【発明の実施の形態】次に、実施の形態を挙げて本発明
を図1〜図11に基づいて詳述する。図1は本発明の第
1の実施の形態である脱塩液製造方法を示すフロー図、
図2は図1の一点鎖線で囲まれた部分の拡大断面を示す
模式図である。図1及び図2において、通液コンデンサ
1の上流側は、入口2が被処理液供給配管3により被処
理液供給系に接続され、被処理液供給配管3に自動バル
ブ4が設けられ、通液コンデンサ1の下流側は、出口5
のままか、あるいは必要に応じて出口5に短管6が接続
されている。短管6には必要に応じて水質監視装置7が
接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to FIGS. FIG. 1 is a flow chart showing a method for producing a desalted liquid according to a first embodiment of the present invention,
FIG. 2 is a schematic diagram showing an enlarged cross section of a portion surrounded by a chain line in FIG. In FIGS. 1 and 2, an inlet 2 is connected to a liquid supply system to be processed by a liquid supply pipe 3 to be processed, and an automatic valve 4 is provided in the liquid supply pipe 3, on the upstream side of the liquid flow condenser 1. The downstream side of the liquid condenser 1 has an outlet 5
A short pipe 6 is connected to the outlet 5 as it is or as necessary. A water quality monitoring device 7 is connected to the short pipe 6 as needed.

【0015】前記通液コンデンサ1の構造は、特に限定
がないが、ここでは通液性を有する非導電性セパレータ
10と、この非導電性セパレータ10を両側から挟む一
対の高表面積導電性表面層11、12とこれら一対の高
表面積導電性表面層11、12の外側に配置される一対
の集電体13、14とからなる電極15、16とを有
し、これらを通液部分の液漏れ止め用のガスケット17
を介在させボルト18により一体的に固定してなる。非
導電性セパレータ10の両側は、上述のように入口2及
び出口5となり、更に一方の電極15の集電体13は延
出してリード線19となり、このリード線19はスイッ
チ20を介して直流電源21の陽極に接続している。他
方の電極16の集電体14は延出してリード線22とな
り、このリード線22は直流電源21の陰極に接続して
いる。更に、電極15及び16はリード線19及び22
を通りスイッチ23を介して接続(短絡配線)してい
る。
The structure of the liquid-passing capacitor 1 is not particularly limited. Here, a non-conductive separator 10 having liquid-permeability and a pair of high-surface-area conductive surface layers sandwiching the non-conductive separator 10 from both sides. And electrodes 15 and 16 comprising a pair of current collectors 13 and 14 disposed outside the pair of high surface area conductive surface layers 11 and 12, respectively. Gasket 17 for stopping
And are integrally fixed by bolts 18. As described above, both sides of the non-conductive separator 10 become the inlet 2 and the outlet 5, and the current collector 13 of one electrode 15 extends to become a lead wire 19. Connected to the anode of power supply 21. The current collector 14 of the other electrode 16 extends to become a lead 22, which is connected to the cathode of a DC power supply 21. Further, the electrodes 15 and 16 are connected to the leads 19 and 22.
Through the switch 23 (short-circuit wiring).

【0016】前記通液コンデンサ1は、少なくとも一対
の電極15、16に直流電源21を接続し、直流電圧、
例えば、1〜2Vを印加した状態で、入口2から被処理
液を非導電性セパレータ10内に通すと、一対の電極1
5、16が被処理液中のイオン、電荷のある粒子、有機
物等のイオン成分を吸着して、イオン成分が除去された
脱塩液を得ることができる(脱塩工程)。その後、一対
の電極15、16を短絡させると、電気的に吸着してい
たイオンが一対の電極15、16から離脱し、一対の電
極15、16を再生させると共に、濃厚なイオン成分を
回収した濃縮液を得ることができる(再生工程)。な
お、図1及び図2に表示の機器類の運転制御は、シーケ
ンサー、マイコン等の公知の制御機器で行われ、その詳
細な運転制御としては、例えば、後述の脱塩液製造方法
が挙げられる。また、一対の電極15、16間に印加す
る電圧は任意に設定することができる。
In the condenser 1, a DC power supply 21 is connected to at least a pair of electrodes 15 and 16, and a DC voltage and
For example, when a liquid to be treated is passed through the non-conductive separator 10 from the inlet 2 in a state where 1-2 V is applied, a pair of electrodes 1
5 and 16 can adsorb ionic components such as ions, charged particles, and organic substances in the liquid to be treated to obtain a desalted solution from which the ionic components have been removed (desalting step). Thereafter, when the pair of electrodes 15 and 16 were short-circuited, the electrically adsorbed ions were separated from the pair of electrodes 15 and 16, and the pair of electrodes 15 and 16 were regenerated and a rich ion component was recovered. A concentrated solution can be obtained (regeneration step). The operation control of the devices shown in FIGS. 1 and 2 is performed by a known control device such as a sequencer or a microcomputer, and the detailed operation control includes, for example, a desalting solution manufacturing method described later. . The voltage applied between the pair of electrodes 15 and 16 can be set arbitrarily.

【0017】本実施の形態例において使用される自動バ
ルブ4としては、特に制限されないが、電動弁のように
その開閉に若干のタイムラグのあるものがよい。その理
由は、タイムラグがあると、脱塩工程から再生工程に入
る際、一対の電極15、16を短絡させると共に自動バ
ルブ4を閉じ始めても、被処理液は自動バルブ4が完全
に閉となるまで流れ、離脱したイオン成分を脱塩液及び
被処理液で洗い流すこととなり、一対の電極15、16
を再生できるからである。タイムラグが無い自動バルブ
を使用した場合でも、再生工程い入る際、一対の電極1
5、16を短絡させ、離脱したイオン成分を脱塩液及び
被処理液で洗い流し、一対の電極15、16を再生させ
るまで、自動バルブ4を開にしておき、その後、閉にす
れば運転制御が複雑となるものの、上記の場合と同様の
効果を奏する。
The automatic valve 4 used in the present embodiment is not particularly limited, but is preferably an electric valve having a slight time lag in opening and closing like an electric valve. The reason is that if there is a time lag, the liquid to be treated is completely closed even if the pair of electrodes 15 and 16 are short-circuited and the automatic valve 4 starts to be closed when the regeneration process is started from the desalting step. And the separated ion components are washed away with the desalting solution and the liquid to be treated.
Can be reproduced. Even when using an automatic valve with no time lag, a pair of electrodes 1
Short-circuit 5 and 16 and wash away the separated ionic components with the desalting solution and the liquid to be treated. Open the automatic valve 4 until the pair of electrodes 15 and 16 is regenerated, and then close the automatic valve 4 to control the operation. However, the same effect as in the above case can be obtained.

【0018】前記通液コンデンサ1の出口5はそのまま
でもよく、また、短管6を接続し、更にその短管6に水
質監視装置7を接続してもよい。水質監視装置7は、脱
塩液の液質を測定することで、一対の電極15、16を
再生するタイミングを正確に把握することができる。通
常、この水質監視装置7は、液質を測定するものでイオ
ン除去の程度を正確に把握できる指標の測定機器であれ
ば、特に制限されず、導電率計、比抵抗計が挙げられ、
本実施の形態では導電率である。
The outlet 5 of the condenser 1 may be left as it is, or a short pipe 6 may be connected, and a water quality monitoring device 7 may be connected to the short pipe 6. The water quality monitoring device 7 can accurately grasp the timing for regenerating the pair of electrodes 15 and 16 by measuring the liquid quality of the desalted liquid. Usually, this water quality monitoring device 7 is not particularly limited as long as it is a measuring device of an index capable of measuring liquid quality and accurately grasping the degree of ion removal, and examples thereof include a conductivity meter and a resistivity meter.
In this embodiment, it is conductivity.

【0019】次に、本第1の実施の形態における脱塩液
製造方法を図1及び図2に基づいて説明する。図1及び
図2において、脱塩液の必要時に自動バルブ4を開くと
共に、脱塩工程として脱塩液を出口5あるいは短管6か
ら得、次いで、脱塩液の不必要時に自動バルブ4を閉め
る操作を開始すると共に、再生工程に入り、通液コンデ
ンサ1内の残液及び自動バルブ4の閉め始めから閉め終
わりまでのタイムラグに通液した被処理液で、イオン成
分を除去するものである。
Next, a method for producing a desalted liquid according to the first embodiment will be described with reference to FIGS. In FIG. 1 and FIG. 2, the automatic valve 4 is opened when the desalting solution is needed, and the desalting solution is obtained from the outlet 5 or the short pipe 6 as a desalting step. At the same time as the closing operation is started, the regeneration process is started, and the remaining liquid in the liquid passing condenser 1 and the liquid to be processed passed through the time lag from the start to the end of the closing of the automatic valve 4 are used to remove ionic components. .

【0020】すなわち、先ず、スイッチ23をオフ、ス
イッチ20をオンして直流電圧を一対の電極15、16
に印加し、水質監視装置7がある場合は監視可能状態に
して、自動バルブ4を開けば、被処理液は通液コンデン
サ1内に入り、直ちに脱塩工程に入るため、一対の電極
15、16にイオン成分が吸着された脱塩液は短管6か
ら採取される。例えば、導電率測定の水質監視装置7が
あれば、導電率を測定される。この場合、最初の運転段
階では導電率が高いため、イオン成分が十分に除去され
た脱塩液とはならず、このため、一定時間脱塩液を採取
せず、採取可能値になったところで脱塩液を採取する。
なお、脱塩液の一定量を採取した後、脱塩液を採取しな
い時間に十分な余裕があれば、脱塩液の水質に多少の変
動がでるものの、水質監視装置7は特に設置しなくとも
よい。
That is, first, the switch 23 is turned off and the switch 20 is turned on to apply a DC voltage to the pair of electrodes 15 and 16.
If the water quality monitoring device 7 is present, it is placed in a monitoring enabled state, and if the automatic valve 4 is opened, the liquid to be treated enters the flow-through condenser 1 and immediately enters the desalination step. The desalted liquid having the ionic components adsorbed on the sample 16 is collected from the short tube 6. For example, if there is a water quality monitoring device 7 for measuring conductivity, the conductivity is measured. In this case, since the conductivity is high in the first operation stage, the ionic component is not sufficiently removed to obtain a desalted solution. Collect the desalted liquid.
After a certain amount of the desalted solution is collected, if there is a sufficient time for not collecting the desalted solution, although the water quality of the desalted solution slightly varies, the water quality monitoring device 7 is not particularly installed. May be.

【0021】通液コンデンサ1から脱塩液を採取し続け
ると、一対の電極15、16が飽和状態となり得られる
脱塩液の水質が徐々に低下してくる。水質監視装置7が
あれば、脱塩液の導電率が上昇して採取不可値に近づい
た時点で再生工程に切り換える。また、通液コンデンサ
1の脱塩工程の所要時間から判断して、再生工程への切
り換え時点が早めであれば、水質監視装置7が無くても
支障はない。すなわち、自動バルブ4を閉め始めると共
に、スイッチ20をオフして直流電圧の印加を止め、更
にスイッチ23をオンして一対の電極15、16を短絡
させることにより再生工程に入る。次いで、自動バルブ
4の完全閉により再生工程は終了する。この場合、自動
バルブ4は閉め始めから完全閉までにタイムラグがある
から、吸着したイオン成分を一対の電極15、16から
離脱させ、脱塩液及び被処理液と共に洗い出し、一対の
電極15、16を再生することができる。
When the desalting solution is continuously collected from the liquid passing condenser 1, the pair of electrodes 15 and 16 become saturated, and the quality of the obtained desalting solution gradually decreases. If the water quality monitoring device 7 is provided, the process is switched to the regeneration process when the conductivity of the desalted liquid rises and approaches an uncollectable value. Also, judging from the required time of the desalting step of the liquid passing condenser 1, if the switching point to the regeneration step is earlier, there is no problem even without the water quality monitoring device 7. That is, the automatic valve 4 is started to be closed, the switch 20 is turned off to stop the application of the DC voltage, and the switch 23 is turned on to short-circuit the pair of electrodes 15 and 16 to start the regeneration step. Next, the regeneration step is completed by completely closing the automatic valve 4. In this case, since the automatic valve 4 has a time lag from the start of closing to the fully closed state, the adsorbed ion component is separated from the pair of electrodes 15 and 16, washed out together with the desalted solution and the liquid to be treated, and the pair of electrodes 15 and 16 is removed. Can be played.

【0022】また、本実施の形態例では、上記方法以外
に、脱塩液の不必要時に自動バルブ4を閉め、その後、
一対の電極15、16を短絡又は直流電源を逆接続し
て、イオン成分回収液を通液コンデンサ1内に滞留さ
せ、次いで、脱塩液の必要時に自動バルブ4を開いて前
記イオン成分回収液を排出し、その後、一対の電極1
5、16に直流電圧を印加して脱塩工程として脱塩液を
得ることもできる。また、本実施の形態例では、上記方
法以外に、自動バルブ4の設置場所を、被処理水供給配
管3途中に代えて、処理液排出配管6途中に設置する方
法としてもよい。
In the present embodiment, in addition to the above-described method, the automatic valve 4 is closed when the desalting solution is unnecessary, and thereafter,
The pair of electrodes 15 and 16 are short-circuited or a DC power supply is connected in reverse to allow the ionic component recovery liquid to pass through the condenser 1. Then, when the desalting solution is required, the automatic valve 4 is opened to open the ionic component recovery liquid. And then a pair of electrodes 1
It is also possible to obtain a desalted solution by applying a DC voltage to 5 and 16 as a desalting step. Further, in the present embodiment, in addition to the above-described method, a method of installing the automatic valve 4 in the middle of the treatment liquid discharge pipe 6 instead of the middle of the water supply pipe 3 may be adopted.

【0023】本第1の実施の形態例によれば、上記脱塩
工程及び再生工程を1サイクルとして、このサイクルを
繰り返して行うことにより、簡易で容易にイオン成分が
除去された脱塩液を得ることができる。また、性能維持
のためのメンテンスがほとんど不要で、少量かつ間欠的
に脱塩水を得たい要望に沿うことができる。
According to the first embodiment, the desalting solution from which the ionic components have been easily and easily removed can be easily and easily removed by repeating this cycle with the desalting step and the regeneration step as one cycle. Obtainable. Further, almost no maintenance is required for maintaining the performance, and it is possible to meet the demand for obtaining desalinated water in a small amount and intermittently.

【0024】次に、本発明の第2の実施の形態における
脱塩液製造方法を図3及び図4を参照して説明する。図
3及び図4は本実施の形態例の脱塩液製造方法の説明図
である。図3及び図4において、第1の実施の形態例と
同一構成要素には同一符号を付して、その説明を省略
し、異なる点について主に説明する。すなわち、本発明
の第2の実施の形態において、第1の実施の形態例との
相違点は、貯留タンク30内、例えば貯留タンク30の
上方部に通液コンデンサ1を着脱自在に設置し、この通
液コンデンサ1を被処理液供給系70に直接接続して、
脱塩液の必要時に脱塩工程を行い貯留タンク30内で脱
塩液を得、必要時に貯留タンク30から脱塩液を取り出
し、専ら脱塩液の不必要時に再生工程を行う点にある。
Next, a method for producing a desalted liquid according to a second embodiment of the present invention will be described with reference to FIGS. 3 and 4 are explanatory diagrams of the method for producing a desalted liquid according to the present embodiment. 3 and 4, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The different points will be mainly described. That is, in the second embodiment of the present invention, the difference from the first embodiment is that the flow-through condenser 1 is detachably installed in the storage tank 30, for example, above the storage tank 30, This liquid passing condenser 1 is directly connected to the liquid supply system 70 to be treated,
The point is that the desalting step is carried out when the desalting solution is required, the desalting solution is obtained in the storage tank 30, the desalting solution is taken out from the storage tank 30 when necessary, and the regeneration step is performed exclusively when the desalting solution is unnecessary.

【0025】図3中、通液コンデンサ1はタンク内を二
分する設置台32に載置されている。設置台32は通液
コンデンサ1を載置すると共に、得られた脱塩液を下方
に通す、例えば網目32aを備えるフィルタ状のもので
ある。次いで、行われる再生工程は貯留タンク30から
通液コンデンサ1を外して別途に設置された液体の流路
71、例えば、水道の蛇口31に接続し、通液コンデン
サ1内に水道水を通すと共に電気的な解離をして、通液
コンデンサ1内のイオン成分等を除去・回収するもので
ある。本実施の形態例において、設置台32の設置位置
としては、貯留タンク30内の中央部又は上方部であれ
ばよく、例えば、貯留タンク30の上方端とし、通液コ
ンデンサ1が設置位置で貯留タンク30の外側となる構
造のものも含まれる。また、通液コンデンサ1は非導電
性セパレータ、電極板、集電体及びリード線からなる本
体部と、直流電源、スイッチ及び配線からなる電源部と
は接続可能な別部材であってもよい。
In FIG. 3, the liquid-passing condenser 1 is mounted on an installation table 32 which divides the inside of the tank into two. The installation table 32 has a filter-like shape provided with, for example, a mesh 32a, on which the liquid passing condenser 1 is placed and the obtained desalted liquid is passed downward. Next, in the regeneration step to be performed, the liquid passing condenser 1 is removed from the storage tank 30 and connected to a separately installed liquid flow path 71, for example, a tap faucet 31, and tap water is passed through the liquid passing condenser 1 and This is to electrically dissociate and remove and recover ionic components and the like in the liquid passing condenser 1. In the present embodiment, the installation position of the installation table 32 may be a central portion or an upper portion in the storage tank 30. For example, the upper end of the storage tank 30 may be used. The structure outside the tank 30 is also included. Further, the liquid-passing capacitor 1 may be a separate member that can be connected to a main body portion including a non-conductive separator, an electrode plate, a current collector, and a lead wire, and a power supply portion including a DC power supply, a switch, and wiring.

【0026】本第2の実施の形態例においては、簡易な
構造で容易に脱塩液が得られ、再生工程は、水道水の蛇
口を利用できるから、本実施例の方法は家庭内、工場
内、屋外などあらゆる場所において使用できる。
In the second embodiment, the desalinated solution can be easily obtained with a simple structure, and the tapping water tap can be used for the regeneration step. It can be used anywhere, including inside and outside.

【0027】次に、本発明の第3の実施の形態における
脱塩液製造方法を図5を参照して説明する。図5は本実
施の形態例の脱塩液製造方法のフロー図である。図5に
おいて、第1の実施の形態例と同一構成要素には同一符
号を付して、その説明を省略し、異なる点について主に
説明する。すなわち、本発明の第3の実施の形態におい
て、第1の実施の形態例との相違点は、被処理液供給系
70から自動バルブ33により、循環流路34内に設置
される貯留タンク35にそのオンオフ制御にて被処理液
を投入し、この循環流路34に通液コンデンサ1を配置
接続してなり、通液コンデンサ1に直流電圧を印加して
循環中の被処理液のイオン成分を一対の電極15、16
に付着させて循環中の循環水を徐々に脱塩液としてか
ら、必要時に循環中の脱塩液を取り出し、不必要時に再
生工程に入り、脱塩液と共に付着したイオン成分等を除
去・回収する点にある。脱塩液の循環は一対の電極が飽
和に達しても継続して行えばよい。
Next, a method for producing a desalted liquid according to a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a flow chart of the method for producing a desalted liquid according to the present embodiment. In FIG. 5, the same components as those of the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and different points will be mainly described. That is, the third embodiment of the present invention is different from the first embodiment in that the storage tank 35 installed in the circulation flow path 34 from the liquid supply system 70 by the automatic valve 33. The liquid to be treated is supplied by the on / off control, and the liquid flow condenser 1 is arranged and connected to the circulation flow path 34. A DC voltage is applied to the liquid flow condenser 1 to apply the ionic component of the circulating liquid to be treated. To a pair of electrodes 15, 16
And gradually removes the circulating water from the circulating water and removes the circulating desalinated liquid when necessary, enters the regeneration process when not needed, and removes and recovers ionic components and the like adhering together with the desalinated liquid. Is to do. The circulation of the desalted solution may be continued even if the pair of electrodes reaches saturation.

【0028】図5において、循環流路34は貯留タンク
35にポンプ36を設けた被処理液供給配管3により通
液コンデンサ1を接続し、通液コンデンサ1の下流側に
三方取出弁37を設けた配管38を接続し、三方取出弁
37の循環ポート37aと貯留タンク35とを繋ぐ配管
39により構成される。すなわち、貯留タンク35に投
入された被処理液は、ポンプ36により循環流路34を
循環している間に循環水は脱塩液となり、貯留タンク3
5は脱塩液の貯留タンクに変身する。その後、脱塩液は
必要時に三方取出弁37の取出ポート37bから取り出
される。循環中の脱塩液の量が少なくなったり、電極が
飽和状態となり脱塩液が得られなくなったり等の理由
で、通液コンデンサ1の再生が必要となった場合、三方
取出弁37の循環ポート37aを閉じ、再生工程に入
り、取出ポート37bから脱塩液と共に付着したイオン
成分等を除去・回収する。
In FIG. 5, the circulation flow path 34 is connected to the liquid supply condenser 1 by a liquid supply pipe 3 to be treated provided with a pump 36 in a storage tank 35, and a three-way discharge valve 37 is provided downstream of the liquid supply condenser 1. And a pipe 39 connecting the circulation port 37 a of the three-way discharge valve 37 and the storage tank 35. That is, while the liquid to be treated put into the storage tank 35 is circulated through the circulation channel 34 by the pump 36, the circulating water becomes a desalinated liquid, and the storage tank 3
5 is transformed into a desalting liquid storage tank. Thereafter, the desalted liquid is taken out from the take-out port 37b of the three-way take-out valve 37 when necessary. When it is necessary to regenerate the liquid-passing condenser 1 because the amount of the desalinated liquid in circulation is small or the electrode is saturated and the desalinated liquid cannot be obtained, the circulation of the three-way discharge valve 37 is performed. The port 37a is closed, the regeneration step is started, and the ionic components and the like adhering together with the desalting solution are removed and collected from the extraction port 37b.

【0029】本第3の実施の形態例によれば、従来の通
液コンデンサを使用した脱塩液製造方法では、少なくと
も被処理液タンクと脱塩液貯留タンクの2台のタンクが
必要であったが、被処理液タンク1台の設置で脱塩液の
必要量を製造することができる。このため、設置場所を
とらず、設備費の低減が図れる。
According to the third embodiment, in the conventional method for producing a desalinated liquid using a liquid passing condenser, at least two tanks, ie, a liquid tank to be treated and a desalinated liquid storage tank, are required. However, the required amount of the desalting liquid can be manufactured by installing one liquid tank to be treated. For this reason, the installation cost can be reduced without taking up an installation place.

【0030】次に、本発明の第4の実施の形態における
脱塩液製造方法を図6〜図10を参照して説明する。図
6は脱塩工程開始前の状態を示し、図7は脱塩工程を示
し、図8は脱塩液を取り出す状態を示し、図9は再生工
程を示し、図10はイオン成分の濃縮液を排出する状態
を示す。これらの図はいずれも模式的に示した。図6〜
図10において、第1の実施の形態例と同一構成要素に
は同一符号を付して、その説明を省略し、異なる点につ
いて主に説明する。すなわち、本発明の第4の実施の形
態において、第1の実施の形態との相違点は、貯留タン
ク40内下方部に通液コンデンサ1を収納してなり、被
処理液供給系70から貯留タンク40内に被処理液を任
意量投入して、必要とする脱塩液量及び再生用の残液量
を確保すると共に、通液コンデンサ1内に被処理液を循
環可能とし、通液コンデンサ1に直流電圧を印加して貯
留タンク40内の被処理液のイオン成分を一対の電極1
5、16に付着させて循環水を脱塩液とし、その後、必
要時に貯留タンク40内から必要量の脱塩液を取り出
し、不必要時に再生工程に入り、この再生工程では貯留
タンク40内の再生用に残液している脱塩液にイオン成
分を回収し、該イオン成分濃縮液を貯留タンク40内か
ら排除する点にある。すなわち、図6に示すように、貯
留タンク40内に投入口41から被処理液を投入し、ス
イッチ20をオン、スイッチ23をオフし貯留タンク4
0内の被処理液を脱塩液とする(図7参照)。次に、貯
留タンク40の投入口41から脱塩液を再生用の残液量
を残して注ぎ出した後(図8参照)、スイッチ20をオ
フ、スイッチ23をオンし貯留タンク40内の脱塩液に
一対の電極15、16に付着していたイオン成分を回収
し(図9参照)、イオン成分の濃縮液を貯留タンク40
の投入口41から排出する(図10参照)。
Next, a method for producing a desalted liquid according to a fourth embodiment of the present invention will be described with reference to FIGS. 6 shows the state before the start of the desalting step, FIG. 7 shows the desalting step, FIG. 8 shows the state of taking out the desalted liquid, FIG. 9 shows the regeneration step, and FIG. 10 shows the concentrated liquid of the ionic component. Shows a state in which is discharged. Each of these figures is schematically shown. FIG.
In FIG. 10, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and different points will be mainly described. That is, the fourth embodiment of the present invention is different from the first embodiment in that the liquid passing condenser 1 is housed in the lower part of the storage tank 40 and the storage liquid supply system 70 An arbitrary amount of the liquid to be treated is introduced into the tank 40 to secure the required amount of the desalted liquid and the amount of the residual liquid for regeneration, and the liquid to be treated can be circulated in the liquid passing condenser 1. 1 is applied with a DC voltage to convert the ionic components of the liquid to be treated in the storage tank 40 into a pair of electrodes 1.
The circulating water is made to adhere to 5 and 16 to make the desalinated liquid. Thereafter, a necessary amount of the desalinated liquid is taken out from the storage tank 40 when necessary, and a regeneration step is started when unnecessary. The ionic component is recovered in the desalted solution remaining for regeneration, and the ionic component concentrated solution is removed from the storage tank 40. That is, as shown in FIG. 6, the liquid to be treated is charged into the storage tank 40 from the charging port 41, the switch 20 is turned on, the switch 23 is turned off, and the storage tank 4 is turned off.
The liquid to be treated in 0 is a desalted liquid (see FIG. 7). Next, after the desalinated solution is poured out from the inlet 41 of the storage tank 40 while leaving the remaining amount of liquid for regeneration (see FIG. 8), the switch 20 is turned off, the switch 23 is turned on, and the desalted liquid in the storage tank 40 is turned off. The ionic components attached to the pair of electrodes 15 and 16 are collected in the salt solution (see FIG. 9), and the concentrated liquid of the ionic components is stored in the storage tank 40.
(See FIG. 10).

【0031】第4の実施の形態において、貯留タンク4
0に投入口41以外の、取り出し口を設けてもよい。こ
の取り出し口の設置位置は貯留タンク40の底部、側壁
部のいずれであってもよい。貯留タンク40の底部に取
り出し口を設け、コック弁を有する短管を接続すれば、
図8及び図10のように容器を傾けることなく、脱塩液
を採取したり、濃縮液を排出することができる。また、
コック弁を上下2か所に設置し、上部は濃縮液が流出し
ない位置、下部は濃縮液が流出する位置とすると、さら
に好都合である。さらに、貯留タンク内の通液コンデン
サへの電力供給を外部からの電磁誘導で行う貯留タンク
−電源部切り離し方式とすれば、貯留タンクへの水封性
や電気的接続部の耐久性が向上する。この場合、電磁誘
導部は貯留タンクの設置場所に設置すればよい。
In the fourth embodiment, the storage tank 4
0 may be provided with an outlet other than the inlet 41. The installation position of this outlet may be any of the bottom part and the side wall part of the storage tank 40. If an outlet is provided at the bottom of the storage tank 40 and a short pipe having a cock valve is connected,
As shown in FIGS. 8 and 10, the desalted solution can be collected and the concentrated solution can be discharged without tilting the container. Also,
It is more convenient if the cock valves are installed in two places, upper and lower, where the upper part is a position where the concentrated liquid does not flow out and the lower part is a position where the concentrated liquid flows out. Furthermore, if the storage tank and the power supply unit are separated from each other by using electromagnetic induction from outside to supply power to the liquid-passing condenser in the storage tank, the water-sealing property to the storage tank and the durability of the electrical connection unit are improved. . In this case, the electromagnetic induction section may be installed at the installation location of the storage tank.

【0032】なお、図5、図6〜図10に示す第3及び
第4の実施の形態例は、いずれも脱塩液を通液コンデン
サ1に循環させている。この循環は脱塩工程において、
通液コンデンサの電極がイオン成分で飽和状態になった
としても、継続して行うことが、循環系内の水を殺菌す
る効果が得られる点で好ましい。すなわち、図11は通
液コンデンサに直流電圧を通電し、且つ脱塩液を通液コ
ンデンサに循環させた場合(図中、CP稼働循環脱塩
液)の生菌数と、通液コンデンサを停止させて循環液を
循環させた場合(図中、CP停止循環液)の生菌数とを
比較したものである。ここで、生菌数を表すのにcfu
(colony forming unit)を用いた。図11によれば、C
P稼働循環脱塩液の生菌数は少なく、且つ時間の経過に
関係無く一定であるが、CP停止循環液の生菌数は時間
の経過により増加している。この原因は明らかではない
が、液中の菌類が通液コンデンサの電極に吸着された
か、あるいは、通液コンデンサに電気化学的な殺菌作用
があるか、又はこれらの複合的効果によるものと推定さ
れる。
In the third and fourth embodiments shown in FIGS. 5, 6 to 10, the desalted liquid is circulated through the liquid condenser 1. This circulation is used in the desalination process.
Even if the electrode of the flow-through condenser is saturated with the ionic component, it is preferable to perform the operation continuously, since an effect of sterilizing water in the circulation system can be obtained. That is, FIG. 11 shows the number of viable cells when a DC voltage is applied to the liquid passing condenser and the desalinated liquid is circulated through the liquid condenser (in FIG. 11, the CP operating circulating desalinated liquid), and the liquid passing condenser is stopped. This is a comparison of the viable cell count in the case where the circulating fluid was circulated (CP stop circulating fluid in the figure). Here, cfu is used to express the viable cell count.
(Colony forming unit). According to FIG.
The viable cell count of the P-operating circulating desalted liquid is small and constant regardless of the passage of time, but the viable cell count of the CP stopped circulating liquid increases with the passage of time. Although the cause is not clear, it is presumed that fungi in the liquid were adsorbed to the electrodes of the flow-through condenser, or that the flow-through condenser had an electrochemical bactericidal action, or a combination of these effects. You.

【0033】本発明の脱塩液製造方法が適用される例と
しては、家庭用脱塩水利用電気機器類及び産業用脱塩水
利用機器類などが挙げられる。家庭用脱塩水利用電気機
器類で利用される脱塩水としては、加湿器の水、スチー
ムアイロンの水、燃料電池の補給水、空調設備の冷却水
などが挙げられる。また、産業用脱塩水利用機器類で利
用される脱塩水としては、航空機、自動車、電車などの
移動体で使用される空調設備の冷却水あるいは燃料電池
の補給水などが挙げられる。
Examples of application of the method for producing a desalted liquid of the present invention include household electric appliances utilizing desalinated water and industrial appliances utilizing desalinated water. Examples of the demineralized water used in household electric appliances using demineralized water include humidifier water, steam iron water, fuel cell make-up water, and air conditioner cooling water. Examples of the desalinated water used in the industrial desalinated water utilization equipment include cooling water for air conditioning equipment used in moving objects such as aircraft, automobiles, and trains, and makeup water for fuel cells.

【0034】[0034]

【発明の効果】請求項1及び請求項2の発明によれば、
通液コンデンサの被処理液供給配管にバルブを接続する
だけの簡易な構成で、通液コンデンサの脱塩工程及び再
生工程の切替えを直流電源のON−OFF操作とバルブ
のコンビネーション動作で極めて容易に行えるから、必
要時に脱塩液の必要量を確保することができる。また、
イニシャルコスト及びランニングコストを共に大幅に下
げることが可能であり、家庭用脱塩水利用電気機器類及
び産業用脱塩水利用機器類などで脱塩水が必要な場合に
極めて有効である。
According to the first and second aspects of the present invention,
With a simple configuration that simply connects a valve to the liquid supply pipe for the liquid to be treated, switching between the desalination process and regeneration process of the liquid flow capacitor is extremely easy with the ON / OFF operation of the DC power supply and the combination operation of the valve. Since it can be performed, a required amount of the desalting solution can be secured when necessary. Also,
Both the initial cost and the running cost can be significantly reduced, and this is extremely effective when desalinated water is required for household demineralized water-using electric equipment and industrial demineralized water-using equipment.

【0035】請求項3の発明によれば、貯留タンクに通
液コンデンサを着脱自在に設置するだけの簡易な構成
で、脱塩液を必要量確保後、再生工程を脱塩液を必要と
しない時のわずかな作業により容易に行え、上記発明と
同様の効果が得られる。
According to the third aspect of the present invention, a simple structure in which the liquid-passing condenser is detachably installed in the storage tank, and after the required amount of the desalting solution is secured, the regeneration step does not require the desalting solution. It can be easily performed with a small amount of work, and the same effect as the above invention can be obtained.

【0036】請求項4及び請求項5の発明によれば、被
処理液の循環流路に通液コンデンサを設置するだけの簡
易な構成で、被処理液の循環流路を脱塩液の循環流路に
変えることができ、脱塩液を必要量確保した後、再生工
程を脱塩液を必要としない時のわずかな作業により容易
に行え、上記発明と同様の効果が得られる。また、一対
の電極がイオン成分で飽和状態になった後も、脱塩液を
継続して循環させることで、循環中の脱塩液の細菌増殖
を抑えることができる。
According to the fourth and fifth aspects of the present invention, the deionized liquid is circulated through the circulating flow path of the liquid to be treated with a simple structure in which a condenser is provided in the circulating flow path of the liquid to be treated. After the required amount of the desalted solution is secured, the regeneration step can be easily performed with a small amount of work when the desalted solution is not required, and the same effect as the above invention can be obtained. In addition, even after the pair of electrodes are saturated with the ionic component, by continuously circulating the desalted solution, bacterial growth of the circulating desalted solution can be suppressed.

【0037】請求項6の発明によれば、貯留タンク内に
通液コンデンサを配置した簡易な構成でも、脱塩液を必
要量確保後、再生工程を脱塩液を必要としない時のわず
かな作業により容易に行え、上記発明と同様の効果が得
られる。
According to the sixth aspect of the present invention, even with a simple configuration in which a liquid-passing condenser is disposed in a storage tank, after a required amount of desalinated liquid is secured, the regenerating step can be performed slightly when desalinated liquid is not required. The operation can be easily performed, and the same effect as the above invention can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態である脱塩液製造方
法を示すフロー図である。
FIG. 1 is a flowchart showing a method for producing a desalted liquid according to a first embodiment of the present invention.

【図2】図1の二点鎖線で囲んだ部分の拡大断面を示す
模式図である。
FIG. 2 is a schematic diagram showing an enlarged cross section of a portion surrounded by a two-dot chain line in FIG.

【図3】本発明の第2の実施の形態である脱塩液製造方
法を説明する図である。
FIG. 3 is a diagram illustrating a method for producing a desalted liquid according to a second embodiment of the present invention.

【図4】図3の脱塩液製造方法における再生工程を示す
図である。
FIG. 4 is a view showing a regeneration step in the method for producing a desalted liquid shown in FIG. 3;

【図5】本発明の第3の実施の形態である脱塩液製造方
法を示すフロー図である。
FIG. 5 is a flowchart showing a method for producing a desalted liquid according to a third embodiment of the present invention.

【図6】本発明の第4の実施の形態である脱塩液製造方
法を説明する図である。
FIG. 6 is a diagram illustrating a method for producing a desalted liquid according to a fourth embodiment of the present invention.

【図7】図6の脱塩液製造方法における脱塩工程を示す
図である。
FIG. 7 is a view showing a desalting step in the desalting solution production method of FIG.

【図8】図6の脱塩液製造方法における脱塩液の取り出
しを示す図である。
FIG. 8 is a diagram showing removal of a desalinated liquid in the method for producing a desalinated liquid of FIG. 6;

【図9】図6の脱塩液製造方法における再生工程を示す
図である。
9 is a diagram showing a regeneration step in the method for producing a desalted liquid in FIG.

【図10】図6の脱塩液製造方法における濃縮液の取り
出しを示す図である。
FIG. 10 is a diagram showing removal of a concentrated solution in the method for producing a desalted solution of FIG. 6;

【図11】CP稼働循環脱塩液及びCP停止循環液中の
生菌数と経過時間との関係を示す特性図である。
FIG. 11 is a characteristic diagram showing the relationship between the number of viable bacteria in the CP operating circulating desalinated liquid and the CP stopped circulating liquid and elapsed time.

【図12】従来の脱塩液製造方法を示すフロー図であ
る。
FIG. 12 is a flowchart showing a conventional method for producing a desalted liquid.

【符号の説明】[Explanation of symbols]

1、50 通液コンデンサ 2 入口 3 被処理液供給配管 4、33 自動バルブ 5 出口 6 短管 7、58 水質監視装置 10 非導電性セパレータ 11、12 高表面積導電性表面層 13、14 集電板 15、16、54、55 電極 17 ガスケット 18 ボルト 19、22 リード線 20、23、53、59 スイッチ 21、60 直流電源 30、35、40 貯留タンク 31 水道の蛇口 32 設置台 34 循環流路 36 ポンプ 37 三方取出弁 37a 循環ポート 37b 取出ポート 38、39 配管 41 投入口 51、52 切替え弁 56 被処理液タンク 57 脱塩液貯留タンク 61 濃縮液貯留タンク 70 被処理液供給系 71 水道水供給系 1, 50 Flow-through condenser 2 Inlet 3 Liquid supply pipe to be treated 4, 33 Automatic valve 5 Outlet 6 Short pipe 7, 58 Water quality monitoring device 10 Non-conductive separator 11, 12 High surface area conductive surface layer 13, 14 Current collector plate 15, 16, 54, 55 Electrode 17 Gasket 18 Volt 19, 22 Lead wire 20, 23, 53, 59 Switch 21, 60 DC power supply 30, 35, 40 Storage tank 31 Water tap 32 Installation table 34 Circulation flow path 36 Pump 37 Three-way extraction valve 37a Circulation port 37b Extraction port 38, 39 Piping 41 Inlet 51, 52 Switching valve 56 Treated liquid tank 57 Demineralized liquid storage tank 61 Concentrated liquid storage tank 70 Treated liquid supply system 71 Tap water supply system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極に直流電圧を印加して被処理
液のイオン成分を除去して脱塩液を得る脱塩工程と、前
記一対の電極からイオン成分を電気的解離により通液中
の被処理液と共に回収する再生工程とを有する通液コン
デンサにおいて、前記通液コンデンサに接続される被処
理液供給配管又は処理液排出配管にバルブを接続し、脱
塩液の必要時に前記バルブを開くと共に、前記脱塩工程
として脱塩液を得、次いで、脱塩液の不必要時に前記バ
ルブを閉める操作を開始すると共に、前記再生工程に入
り、前記通液コンデンサ内の残液及び前記バルブの閉め
始めから閉め終わりまでのタイムラグに通液した被処理
液で、イオン成分を除去・回収することを特徴とする脱
塩液製造方法。
1. A desalting step of applying a DC voltage to a pair of electrodes to remove an ionic component of a liquid to be treated to obtain a desalted solution, and flowing the ionic component from the pair of electrodes by electric dissociation. And a regeneration step of recovering together with the liquid to be treated, wherein a valve is connected to a liquid to be treated supply pipe or a treatment liquid discharge pipe connected to the liquid to pass condenser, and the valve is connected when desalting liquid is required. Opening and obtaining a desalted liquid as the desalting step, and then starting the operation of closing the valve when the desalting liquid is unnecessary, entering the regeneration step, entering the regenerating step, the residual liquid in the liquid passing condenser and the valve A method for producing a desalted liquid, comprising removing and recovering ionic components from a liquid to be treated that has passed through a time lag from the start of closing to the end of closing.
【請求項2】 一対の電極に直流電圧を印加して被処理
液のイオン成分を除去して脱塩液を得る脱塩工程と、前
記一対の電極からイオン成分を電気的解離により通液中
の被処理液と共に回収する再生工程とを有する通液コン
デンサにおいて、前記通液コンデンサに接続される被処
理液供給配管又は処理液排出配管にバルブを接続し、脱
塩液の不必要時に前記バルブを閉め、その後、前記一対
の電極を短絡又は直流電源を逆接続して、イオン成分回
収液を前記通液コンデンサ内に滞留させ、次いで、脱塩
液の必要時に前記バルブを開いて前記イオン成分回収液
を排出し、その後、一対の電極に直流電圧を印加して前
記脱塩工程として脱塩液を得ることを特徴とする脱塩液
製造方法。
2. A desalting step of applying a DC voltage to a pair of electrodes to remove an ionic component of a liquid to be treated to obtain a desalted solution, and flowing the ionic component from the pair of electrodes by electric dissociation. A regenerating step of recovering together with the liquid to be treated, wherein a valve is connected to the liquid to be treated supply pipe or the treatment liquid discharge pipe connected to the liquid passage condenser, and the valve is connected when the desalting liquid is unnecessary. Then, the pair of electrodes is short-circuited or a DC power supply is connected in reverse to allow the ionic component recovery liquid to stay in the liquid passing condenser, and then, when a desalting solution is required, open the valve to open the ionic component. A method for producing a desalted liquid, comprising discharging the collected liquid, and thereafter applying a DC voltage to a pair of electrodes to obtain a desalted liquid in the desalting step.
【請求項3】 貯留タンク内に、一対の電極に直流電圧
を印加して被処理液のイオン成分を除去して脱塩液を得
る脱塩工程と、前記一対の電極からイオン成分を電気的
解離により通液中の被処理液と共に回収する再生工程と
を有する通液コンデンサを着脱自在に設置し、前記通液
コンデンサは被処理液の流路を通じて被処理液供給系に
接続してなり、脱塩液の必要時に脱塩工程を行い前記貯
留タンク内で脱塩液を得、脱塩液の不必要時に専ら再生
工程を行い、前記再生工程は前記貯留タンクから前記通
液コンデンサを取り外し、別途に設置される液体流路に
接続し、前記通液コンデンサに通液すると共に電気的な
解離をして、イオン成分を除去・回収することを特徴と
する脱塩液製造方法。
3. A desalting step of applying a DC voltage to a pair of electrodes in a storage tank to remove ionic components of a liquid to be treated to obtain a desalted solution, and electrically converting the ionic components from the pair of electrodes. A liquid-passing condenser having a regeneration step of recovering together with the liquid-to-be-processed in the liquid-passing by dissociation, is detachably installed, and the liquid-passing condenser is connected to a liquid-to-be-treated supply system through a flow path of the liquid to be treated, A desalinating step is performed in the storage tank when a desalting liquid is required, and a desalting liquid is obtained in the storage tank.When the desalting liquid is unnecessary, a regeneration step is performed exclusively.The regeneration step removes the liquid passing condenser from the storage tank. A method for producing a desalted liquid, wherein the method is connected to a separately provided liquid flow path, passes through the liquid-passing condenser, and is electrically dissociated to remove and recover ionic components.
【請求項4】 被処理液の循環流路内に、一対の電極に
直流電圧を印加して被処理液のイオン成分を除去して脱
塩液を得る脱塩工程と、前記一対の電極からイオン成分
を電気的解離により通液中の被処理液と共に回収する再
生工程とを有する通液コンデンサを配置してなり、前記
一対の電極に直流電圧を印加して循環中の被処理液のイ
オン成分を該一対の電極に付着させて循環中の被処理液
を脱塩液とし、その後、必要時に循環中の脱塩液を取り
出し、不必要時に前記再生工程に入り、脱塩液と共に付
着したイオン成分を除去・回収することを特徴とする脱
塩液製造方法。
4. A desalting step in which a DC voltage is applied to a pair of electrodes in a circulation flow path of a liquid to be treated to remove an ionic component of the liquid to be treated to obtain a desalted liquid. And a regeneration step of recovering the ionic component together with the liquid to be processed through the liquid by electric dissociation. The components were adhered to the pair of electrodes to turn the circulating liquid to be treated into a desalted solution. Thereafter, the circulating desalted solution was taken out when necessary, and when unnecessary, the regeneration process was started and adhered together with the desalted solution. A method for producing a desalted liquid, comprising removing and recovering ionic components.
【請求項5】 被処理液の循環流路内に貯留タンク、ポ
ンプ、一対の電極に直流電圧を印加して被処理液のイオ
ン成分を除去して脱塩液を得る脱塩工程と、前記一対の
電極からイオン成分を電気的解離により通液中の被処理
液と共に回収する再生工程とを有する通液コンデンサ及
び取出弁を配置してなり、前記一対の電極に直流電圧を
印加して循環中の被処理液のイオン成分を該一対の電極
に付着させて循環中の被処理液を脱塩液とし、その後、
必要時に前記取出弁を開いて脱塩液を取り出し、不必要
時に前記再生工程に入り、脱塩液と共に付着したイオン
成分を除去・回収することを特徴とする脱塩液製造方
法。
5. A desalting step of applying a DC voltage to a storage tank, a pump, and a pair of electrodes in a circulation flow path of a liquid to be treated to remove an ionic component of the liquid to be treated to obtain a desalted liquid; A recirculation step of recovering the ionic component from the pair of electrodes together with the liquid to be processed through the liquid by electrical dissociation; and a discharge valve, and circulating by applying a DC voltage to the pair of electrodes. The ionic components of the liquid to be treated are attached to the pair of electrodes, and the liquid to be treated in circulation is desalted.
A method for producing a desalted liquid, characterized in that the desalting liquid is taken out by opening the take-out valve when necessary, and the regenerating step is started when not necessary, and the ionic components attached together with the desalted liquid are removed and collected.
【請求項6】 貯留タンク内の下方部に、一対の電極に
直流電圧を印加して被処理液のイオン成分を除去して脱
塩液を得る脱塩工程と、前記一対の電極からイオン成分
を電気的解離により通液中の被処理液と共に回収する再
生工程とを有する通液コンデンサを収納してなり、前記
貯留タンク内に被処理液を投入して、必要とする脱塩液
量及び再生用の残液量を確保すると共に、前記通液コン
デンサ内に被処理液を循環可能とし、前記通液コンデン
サに直流電圧を印加して前記貯留タンク内の被処理液の
イオン成分を一対の電極に付着させて前記貯留タンク内
の被処理液を脱塩液とし、その後、必要時に前記貯留タ
ンク内から必要量の脱塩液を取り出し、不必要時に前記
再生工程に入り、前記貯留タンク内の再生用に残存して
いる脱塩液にイオン成分を回収し、かつ前記貯留タンク
内から排除することで除去・回収することを特徴とする
脱塩液製造方法。
6. A desalting step of applying a DC voltage to a pair of electrodes to remove a ionic component of a liquid to be treated to obtain a desalinated solution in a lower portion of the storage tank, and removing the ionic component from the pair of electrodes. And a regenerating step of recovering together with the liquid to be passed through the liquid by electrical dissociation.The liquid passing condenser is housed, and the liquid to be treated is charged into the storage tank, and the required amount of desalted liquid and In addition to securing the remaining liquid amount for regeneration, the liquid to be treated can be circulated in the liquid-passing condenser, and a DC voltage is applied to the liquid-passing condenser to form a pair of ionic components of the liquid to be treated in the storage tank. The liquid to be treated in the storage tank is made into a desalinated solution by attaching it to an electrode, and thereafter, a necessary amount of the desalinated solution is taken out from the storage tank when necessary, and when unnecessary, the regeneration process is started. To the remaining desalted solution for the regeneration of A method for producing a desalted liquid, comprising recovering components and removing and recovering the components by removing them from the storage tank.
JP2000003415A 2000-01-12 2000-01-12 Method for manufacturing desalting liquid Pending JP2001191077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003415A JP2001191077A (en) 2000-01-12 2000-01-12 Method for manufacturing desalting liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003415A JP2001191077A (en) 2000-01-12 2000-01-12 Method for manufacturing desalting liquid

Publications (1)

Publication Number Publication Date
JP2001191077A true JP2001191077A (en) 2001-07-17

Family

ID=18532364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003415A Pending JP2001191077A (en) 2000-01-12 2000-01-12 Method for manufacturing desalting liquid

Country Status (1)

Country Link
JP (1) JP2001191077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125738A (en) * 2010-12-17 2012-07-05 Kurita Water Ind Ltd Pure water production apparatus
JP2022075339A (en) * 2020-11-06 2022-05-18 大同メタル工業株式会社 Recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125738A (en) * 2010-12-17 2012-07-05 Kurita Water Ind Ltd Pure water production apparatus
JP2022075339A (en) * 2020-11-06 2022-05-18 大同メタル工業株式会社 Recovery system
JP7105290B2 (en) 2020-11-06 2022-07-22 大同メタル工業株式会社 recovery system

Similar Documents

Publication Publication Date Title
JP6625288B1 (en) Water treatment device and water treatment method
US20080198531A1 (en) Capacitive deionization system for water treatment
CN106830227A (en) The membrane capacitance deionizer and processing method of a kind of circular treatment
JP2011078936A (en) Water treatment apparatus and water heater
KR20040000058A (en) The apparatus to remove inorgaic materials in waste water using osmosis membrane and energy saving electrodes
CN104445535B (en) Screw rod presses formula without the continuous water manufacturing system of film electrodeionization
KR102301795B1 (en) Household water purifier comprising carbon electrode filter
KR20130107041A (en) Water purifier
JP2001191077A (en) Method for manufacturing desalting liquid
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
CN212403787U (en) Household water purifying device
CN213924152U (en) Bipolar membrane water purification system and water purification unit
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
CN212532575U (en) Household water purifying device
JP4093386B2 (en) Liquid passing method and apparatus for liquid passing capacitor
KR100445575B1 (en) Device for removing the inorganic materials and ion of elecdtrode cell
CN111606397A (en) Water purifier and method based on dielectrophoresis nano-membrane and electrodialysis
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
CN103112931A (en) Electric ion replacement processing device for reducing liquid conductivity
CN113493267B (en) Household water purifying device
JP2012086189A (en) Electric double-layer capacitor, deionizer using the same, and operation method for the deionizer
JP3881120B2 (en) How to pass liquid-type capacitors
CN207726833U (en) A kind of double water water purifiers
CN110734171B (en) Large-scale open-type circulating desalting and energy storing device based on salt fishing method
WO2023175873A1 (en) Ion removal apparatus