JP2001185687A - Integrated circuit device and manufacturing method thereof - Google Patents

Integrated circuit device and manufacturing method thereof

Info

Publication number
JP2001185687A
JP2001185687A JP36748999A JP36748999A JP2001185687A JP 2001185687 A JP2001185687 A JP 2001185687A JP 36748999 A JP36748999 A JP 36748999A JP 36748999 A JP36748999 A JP 36748999A JP 2001185687 A JP2001185687 A JP 2001185687A
Authority
JP
Japan
Prior art keywords
insulating film
dielectric layer
lower electrode
upper electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36748999A
Other languages
Japanese (ja)
Inventor
Shuji Asai
周二 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP36748999A priority Critical patent/JP2001185687A/en
Publication of JP2001185687A publication Critical patent/JP2001185687A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an integrated circuit device containing a stack type of capacitor, in which a dielectric layer having superior crystallinity is formed, an interlayer insulating film is made thinner and an influence of dry etching is suppressed by making depth of through holes uniform, and a method for manufacturing it. SOLUTION: A semiconductor substrate is provided with a dug part (2 in Fig.1) having a specified depth with a flat bottom part, and a lower electrode (4 in Fig.1) protruding from the bottom part of the dug part to the outside of an upper part is formed over there with an insulating film in between, and a dielectric layer having high dielectric constant (5 in Fig.1) whose thickness is almost equal to the depth of the dug part and an upper electrode (6 in Fig.1) are placed in the flat region of the bottom part of the dug part, to form a capacitor element (10 in Fig.1), thereby a difference in level of the capacitor element is made smaller. A through hole that penetrates to at least the lower electrode protruding to the upper part of the dug part and the upper electrode is provided in an interlayer insulating film covering the capacitor element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高誘電率の薄膜を
用いたキャパシタ(もしくはコンデンサや静電容量)を
含む集積回路装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit device including a capacitor (or a capacitor or a capacitance) using a thin film having a high dielectric constant and a method of manufacturing the same.

【0002】[0002]

【従来の技術】携帯電話の急速な普及と同時に、携帯電
話の小型化と軽量化の開発競争が活発化している。特
に、デジタルの信号処理LSIや音声増幅のアナログI
Cの開発がこの実現に結びついている。しかし、マイク
ロ波IC(MMIC)は初期に化合物半導体基板の価格
が高いため、広い面積を必要とするキャパシタやインダ
クタ等の受動素子をMMICの外に設けることが行われ
ていた。その後、携帯電話の普及により、さらなる小型
化と軽量化の要求があり、これらキャパシタやインダク
タの受動素子を含み一体小型化したMMICの要求が高
まっている。
2. Description of the Related Art With the rapid spread of mobile phones, competition for the development of smaller and lighter mobile phones has become active. In particular, digital signal processing LSIs and analog I
The development of C has led to this realization. However, since microwave ICs (MMICs) are initially expensive in compound semiconductor substrates, passive elements such as capacitors and inductors that require a large area have been provided outside the MMIC. Since then, with the spread of mobile phones, there has been a demand for further miniaturization and weight reduction, and there has been an increasing demand for an MMIC that is integrally miniaturized including these passive elements such as capacitors and inductors.

【0003】従来、マイクロ波ICのキャパシタは、シ
リコン窒化膜(SiN)やシリコン酸化膜(SiO2
が主に用いられていたが、比誘電率が4〜7と低いた
め、大きな面積を必要とした。そこで、キャパシタの面
積を低減するため、外付けのキャパシタに使用されてい
た比誘電率が数百と大きい高誘電率材料をMMIC内に
設ける方法が注目されている。この高誘電率材料として
は、SrTiO3、BaTiO3、Ba0.5Sr0.5TiO
3等である。
Conventionally, a capacitor of a microwave IC has a silicon nitride film (SiN) or a silicon oxide film (SiO 2 ).
However, since the relative dielectric constant was as low as 4 to 7, a large area was required. Therefore, in order to reduce the area of the capacitor, a method of providing a high dielectric constant material having a relative dielectric constant as large as several hundreds, which has been used for an external capacitor, in the MMIC has attracted attention. Examples of the high dielectric constant material include SrTiO 3 , BaTiO 3 , Ba 0.5 Sr 0.5 TiO
Third magnitude.

【0004】MMIC内に高誘電率薄膜のキャパシタを
形成する構造および製造方法として、例えば、特開平1
0−335582号公報に記載されている(従来例
1)。図6は、従来例1における半導体装置の製造方法
を模式的に示す工程断面図である。
As a structure and a manufacturing method for forming a capacitor having a high dielectric constant thin film in an MMIC, for example, Japanese Patent Application Laid-Open No.
No. 0-3355582 (conventional example 1). FIG. 6 is a process cross-sectional view schematically showing a method for manufacturing a semiconductor device in Conventional Example 1.

【0005】まず、図6(a)に示すように、GaAs
等の半導体基板21上に膜厚100nm程度のSiO2
からなる絶縁膜22を低圧CVD法により成膜する。そ
の上に、Pt(70nm)/Ti(20nm)/Pt
(70nm)/Ti(20nm)よりなる下部電極2
3、膜厚200nmのSrTiO3よりなる誘電体層2
4、膜厚70nmのPtよりなる上部電極25を順次ス
パッタにより成膜し、イオンミリングにより上から順に
加工し、MIM構造のキャパシタを作製する。なお、誘
電体層24の成膜温度は450℃である。
[0005] First, as shown in FIG.
SiO 2 having a thickness of about 100 nm on a semiconductor substrate 21 such as
Is formed by a low-pressure CVD method. On top of that, Pt (70 nm) / Ti (20 nm) / Pt
Lower electrode 2 made of (70 nm) / Ti (20 nm)
3, the dielectric layer 2 made of SrTiO 3 having a thickness of 200nm
4. An upper electrode 25 made of Pt having a film thickness of 70 nm is sequentially formed by sputtering, and is processed in order from the top by ion milling to produce a capacitor having an MIM structure. Note that the deposition temperature of the dielectric layer 24 is 450 ° C.

【0006】次に、図6(b)に示すように、キャパシ
タの上に膜厚100nmのSiO2よりなる保護膜26
を常圧CVD法によって形成する。この後、フォトレジ
ストをマスクとして、保護膜26と絶縁膜22を下部電
極23の外周から5μm外側までを残してウェットエッ
チングにより除去する(図6(c)参照)。
Next, as shown in FIG. 6B, a protective film 26 made of SiO 2 having a thickness of 100 nm is formed on the capacitor.
Is formed by a normal pressure CVD method. Thereafter, using the photoresist as a mask, the protective film 26 and the insulating film 22 are removed by wet etching except for a portion 5 μm outside from the outer periphery of the lower electrode 23 (see FIG. 6C).

【0007】この後、塩酸:水=1:1溶液を用いて半
導体表面を表面処理した後、図6(d)に示すように、
低圧CVD法によってFET作製のためのプロセス絶縁
膜27を形成する。この後、このプロセス絶縁膜27を
用いてゲート形成、オーミック形成を行い、FETを形
成する(図6(e)参照)。
After that, the surface of the semiconductor is subjected to a surface treatment using a hydrochloric acid: water = 1: 1 solution, and as shown in FIG.
A process insulating film 27 for fabricating an FET is formed by a low-pressure CVD method. Thereafter, gate formation and ohmic formation are performed using the process insulating film 27 to form an FET (see FIG. 6E).

【0008】次に、高誘電率薄膜は、MMICのキャパ
シタのみならず、不揮発性メモリLSIの電荷保持用の
キャパシタに用いることが、例えば、特開平8−139
293号公報に記載されている(従来例2)。図7は、
従来例2における高誘電率薄膜を適用した不揮発性メモ
リのキャパシタの断面図である。
Next, the high dielectric constant thin film is used not only for the capacitor of the MMIC but also for the charge holding capacitor of the nonvolatile memory LSI.
No. 293 (Conventional Example 2). FIG.
FIG. 11 is a cross-sectional view of a capacitor of a nonvolatile memory to which a high-dielectric-constant thin film is applied in Conventional Example 2.

【0009】図7に示すように、シリコン等の半導体基
板31の表面にMOS型FETがあり、このオーミック
コンタクトとしての導電性不純物拡散領域33にポリシ
リコン等からなるコンタクトプラグ39が接続されてい
る。このコンタクトプラグ39の周りを平坦化用絶縁膜
44で埋めるが、平坦化用絶縁膜44は厚く設けられ、
コンタクトプラグ39の上部を露出するように掘り込み
(トレンチ)が設けられる。このトレンチ内にTiN等
のバリアメタル40、Ir等の下部電極41、Ba0.5
Sr0.5TiO3等の高誘電率の誘電体層42、Pt等の
上部電極43が設けられる。このようなキャパシタはト
レンチの側面を利用することによって、セル占有面積を
小さくできる。
As shown in FIG. 7, a MOS type FET is provided on the surface of a semiconductor substrate 31 made of silicon or the like, and a contact plug 39 made of polysilicon or the like is connected to the conductive impurity diffusion region 33 serving as an ohmic contact. . The periphery of the contact plug 39 is filled with a flattening insulating film 44. The flattening insulating film 44 is provided thickly.
A digging (trench) is provided so as to expose an upper portion of the contact plug 39. In this trench, a barrier metal 40 such as TiN, a lower electrode 41 such as Ir, Ba 0.5
A dielectric layer 42 having a high dielectric constant such as Sr 0.5 TiO 3 and an upper electrode 43 such as Pt are provided. In such a capacitor, the cell occupation area can be reduced by using the side surface of the trench.

【0010】次に、DRAMメモリLSIのキャパシタ
を半導体基板に深い掘り込みを設けて形成するトレンチ
・キャパシタが知られており、例えば、特開平10−2
23857号公報に記載されている(従来例3)。図8
は、従来例3におけるDRAMメモリLSIのトレンチ
・キャパシタの構造を模式的に示す断面図である。
Next, there is known a trench capacitor in which a capacitor of a DRAM memory LSI is formed by forming a deep trench in a semiconductor substrate.
No. 23857 (conventional example 3). FIG.
FIG. 11 is a cross-sectional view schematically showing a structure of a trench capacitor of a DRAM memory LSI according to Conventional Example 3.

【0011】図8に示すように、シリコン等の半導体基
板51には、垂直に深く掘り込み(トレンチ)63a、
63bが設けられ、このトレンチ内面にはn形不純物が
拡散されてプレート電極60とされ、その上にSiO2
からなる容量絶縁膜61が薄く形成され、更に、トレン
チ内部はポリシリコンからなる蓄積電極62が埋め込ま
れる。
As shown in FIG. 8, a semiconductor substrate 51 made of silicon or the like is vertically deeply dug (trench) 63a,
63b is provided, and an n-type impurity is diffused into the inner surface of the trench to form a plate electrode 60, on which SiO 2 is formed.
Is formed thinly, and further, a storage electrode 62 made of polysilicon is embedded in the trench.

【0012】[0012]

【発明が解決しようとする課題】ここで、携帯電話用の
MMICは、電源線間に高周波バイパスおよび電源平滑
化用にある程度大きなキャパシタを設ける必要がある。
また、冬場のセーター摩擦等で発生する静電サージに対
し、キャパシタの破壊耐圧は約100Vと外付けの場合
と同じだけ要求される。破壊耐圧は高誘電率膜の厚さに
ほぼ依存し、図6の従来例1に示すように厚さ200n
mでは耐圧が不足で、400〜600nmが必要であ
る。一方、比誘電率は100〜200とSiNの7に比
べて高いため、静電容量を確保し、面積を小型化でき
る。
Here, the MMIC for a portable telephone needs to provide a large-sized capacitor between the power supply lines for high-frequency bypass and power supply smoothing.
In addition, the breakdown voltage of the capacitor is required to be about 100 V, which is the same as that of an external case, against electrostatic surge generated by sweater friction in winter. The breakdown voltage substantially depends on the thickness of the high dielectric constant film, and as shown in the conventional example 1 of FIG.
With m, the withstand voltage is insufficient, and 400 to 600 nm is required. On the other hand, since the relative dielectric constant is 100 to 200, which is higher than that of SiN, the capacitance can be secured and the area can be reduced.

【0013】しかしながら、従来のキャパシタ素子は、
電極の厚さを含めると1μm近い厚さになり、基板表面
にあるFETの電極に比べてかなり高くなり、次に示す
ような問題が生じた。すなわち、キャパシタを挟んで配
線を形成する場合、層間絶縁膜を厚く設けて平坦化する
必要があるが、平坦化された層間絶縁膜からのスルーホ
ールの深さが、キャパシタ上部電極とFET電極とで大
きく異なることである。
However, the conventional capacitor element is
Including the thickness of the electrode, the thickness becomes close to 1 μm, which is considerably higher than the FET electrode on the substrate surface, and the following problems occur. That is, when wiring is formed with a capacitor interposed, it is necessary to provide a thick interlayer insulating film and planarize it. However, the depth of a through hole from the planarized interlayer insulating film is smaller than that of the capacitor upper electrode and the FET electrode. Is very different.

【0014】この場合、同時に両方のスルーホールを平
行平板型ドライエッチング(RIE)で開口すると、ス
ルーホールが浅いキャパシタ上部電極6はエッチングに
長く晒されることになり、電極とするPt等の金属はR
IEでスパッタされ、速度は遅いがエッチングされるた
めに電極を厚くする必要がある。また、電極の粒界から
ガスプラズマが染み込むことやスパッタ損傷等により、
誘電率の低下やリーク電流の増大という問題も生じた。
一方、スルーホールを深さにより分けて形成することも
可能であるが、その場合は製造工程が増え、製造期間が
長くなるという問題があった。
In this case, if both through holes are simultaneously opened by parallel plate dry etching (RIE), the capacitor upper electrode 6 having a shallow through hole is exposed to etching for a long time, and the metal such as Pt used as an electrode is R
It is sputtered by IE, and the speed is low, but the electrode needs to be thickened because it is etched. In addition, gas plasma penetrates from the grain boundary of the electrode, spatter damage, etc.,
Problems such as a decrease in the dielectric constant and an increase in the leak current also occurred.
On the other hand, it is possible to form the through holes separately according to the depth, but in this case, there is a problem that the number of manufacturing steps is increased and the manufacturing period is lengthened.

【0015】また、図7に示す従来例2では、キャパシ
タ面積を小さくするために、掘り込みを設けて側面を利
用する方法が提案されているが、この方法は図8に示す
従来例3の基板に掘り込みを設けるトレンチキャパシタ
を原理的に延長したものにすぎない。
Further, in the conventional example 2 shown in FIG. 7, a method of using a side surface by digging is proposed in order to reduce the capacitor area, but this method is the same as the conventional example 3 shown in FIG. It is merely an extension of a trench capacitor in which a substrate is dug in principle.

【0016】ここで、高誘電率薄膜5が高誘電率を発揮
するためには、薄膜がペロブスカイト型結晶を構成する
必要があり、元素組成を整えて柱状結晶をできる限り単
結晶に近くすることが重要とされる。何故なら、元素組
成のずれは結晶粒界で成分元素の偏析を生じるからであ
る。
Here, in order for the high dielectric constant thin film 5 to exhibit a high dielectric constant, it is necessary that the thin film constitutes a perovskite type crystal, and the columnar crystal is made as close as possible to a single crystal by adjusting the element composition. Is important. This is because a shift in the element composition causes segregation of component elements at crystal grain boundaries.

【0017】これは逆に言うと、結晶性の高誘電率膜は
一平面にしか形成できないということであり、誘電体層
として角や側面を含むと、柱状結晶方位(配向面)が当
たるため、そこで結晶性が崩れて成分元素の偏析が生
じ、リーク電流が生じる。このため、最近の高誘電率キ
ャパシタを用いたメモリLSIでは図7に示す従来例2
のようなトレンチ型は用いられず、絶縁膜の平面上に設
けるスタック型が一般化している。
Conversely, this means that a crystalline high-dielectric-constant film can be formed only on one plane, and if the dielectric layer includes corners and side surfaces, the columnar crystal orientation (orientation plane) is applied. In this case, the crystallinity is broken and the component elements are segregated, and a leak current is generated. For this reason, in a recent memory LSI using a high dielectric constant capacitor, a second conventional example shown in FIG.
Such a trench type is not used, and a stack type provided on a plane surface of an insulating film is generally used.

【0018】本発明は、上記問題点に鑑みてなされたも
のであって、その主たる目的は、結晶性のよい誘電体層
を形成すると共に、層間絶縁膜を薄くし、スルーホール
の深さを揃えてドライエッチングの影響を抑制すること
ができる、スタック型キャパシタを含む集積回路装置及
びその製造方法を提供することにある。
The present invention has been made in view of the above problems, and its main purpose is to form a dielectric layer having good crystallinity, reduce the thickness of an interlayer insulating film, and reduce the depth of a through hole. An object of the present invention is to provide an integrated circuit device including a stacked capacitor and a method of manufacturing the integrated circuit device, which can uniformly suppress the influence of dry etching.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、第1の視点において、基板又は該基板上
に設けた絶縁膜に、底部が平坦な所定の深さの窪みを有
し、前記窪みの底部から上部に張り出すように下部電極
が形成され、前記窪み底部の平坦な領域の前記下部電極
上に、前記窪みの角部及び側壁から離して誘電体層及び
上部電極が形成されているものである。
In order to achieve the above object, according to the present invention, in a first aspect, a substrate or an insulating film provided on the substrate is provided with a recess having a flat bottom and a predetermined depth. A lower electrode formed so as to protrude upward from the bottom of the depression, and a dielectric layer and an upper electrode separated from corners and sidewalls of the depression on the lower electrode in a flat region of the bottom of the depression. Are formed.

【0020】本発明は、第2の視点において、基板又は
該基板上に設けた絶縁膜に、底部が平坦な所定の深さの
窪みを有し、前記窪みの底部から上部に張り出すように
下部電極が形成され、前記窪み底部の平坦な領域の前記
下部電極上に、前記窪みの角部及び側壁から離して誘電
体層及び上部電極が形成されて容量素子を形成し、前記
容量素子を覆う絶縁膜に、少なくとも、前記窪みの上部
に張り出された前記下部電極及び前記上部電極の各々ま
で貫通するスルーホールが形成されているものである。
According to a second aspect of the present invention, in the second aspect, the substrate or the insulating film provided on the substrate has a recess having a flat bottom and a predetermined depth, and is formed to protrude upward from the bottom of the recess. A lower electrode is formed, a dielectric layer and an upper electrode are formed on the lower electrode in a flat region at the bottom of the recess, away from corners and side walls of the recess, and a capacitive element is formed. At least a through-hole penetrating to each of the lower electrode and the upper electrode protruding above the depression is formed in the covering insulating film.

【0021】本発明は、第3の視点において、集積回路
装置の製造方法を提供する。該方法は、(a)基板又は
該基板上層に設けた絶縁膜に、底部が平坦な所定の深さ
の窪みを形成する工程と、(b)前記基板又は前記絶縁
膜上に、下部電極と誘電体層と上部電極とをこの順で堆
積する工程と、(c)前記窪み底部の平坦な領域上に前
記上部電極と前記誘電体層とが残るように、前記上部電
極と前記誘電体層とをエッチングする工程と、(d)前
記窪みの前記底部から前記窪みの外側の所定の領域まで
前記下部電極が残るように、前記下部電極をエッチング
する工程と、を少なくとも有するものである。
According to a third aspect of the present invention, there is provided a method of manufacturing an integrated circuit device. The method comprises the steps of (a) forming a recess having a flat bottom at a predetermined depth in a substrate or an insulating film provided on the substrate, and (b) forming a lower electrode on the substrate or the insulating film. Depositing a dielectric layer and an upper electrode in this order; and (c) depositing the upper electrode and the dielectric layer such that the upper electrode and the dielectric layer remain on a flat region at the bottom of the recess. And (d) etching the lower electrode such that the lower electrode remains from the bottom of the dent to a predetermined region outside the dent.

【0022】[0022]

【発明の実施の形態】本発明に係る集積回路装置は、そ
の好ましい一実施の形態において、基板に底部が平坦な
所定の深さの掘り込み(又は窪み)(図1の2)を設
け、絶縁膜を介して、掘り込みの底部から上部外側まで
張り出した下部電極(図1の4)を形成し、掘り込み底
部の平坦な領域に掘り込みの深さと略等しい高誘電率の
誘電体層(図1の5)と上部電極(図1の6)とを配設
してキャパシタ素子(図1の10)を形成することによ
ってキャパシタ素子の段差を小さくし、この容量素子を
覆う層間絶縁膜に、少なくとも掘り込みの外側に張り出
した下部電極と上部電極の各々まで貫通するスルーホー
ルを設ける。
BEST MODE FOR CARRYING OUT THE INVENTION In a preferred embodiment of the integrated circuit device according to the present invention, a substrate is provided with a digging (or dent) (2 in FIG. 1) having a flat bottom and a predetermined depth. A lower electrode (4 in FIG. 1) projecting from the bottom of the digging to the upper outside is formed via an insulating film, and a dielectric layer having a high dielectric constant substantially equal to the digging depth is formed in a flat region of the digging bottom. (5 in FIG. 1) and the upper electrode (6 in FIG. 1) are arranged to form a capacitor element (10 in FIG. 1), thereby reducing the step of the capacitor element and an interlayer insulating film covering the capacitor. In addition, a through-hole is provided at least to each of the lower electrode and the upper electrode which protrude outside the digging.

【0023】[0023]

【実施例】上記した本発明の実施の形態についてさらに
詳細に説明すべく、本発明の実施例について図面を参照
して以下に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention;

【0024】[実施例1]まず、図1乃至図4を参照し
て、本発明の第1の実施例にかかる集積回路装置につい
て説明する。図1は、本発明の第1の実施例にかかる集
積回路装置の構造を説明する断面図である。また、図2
(a)乃至図4(h)は、その製造方法を模式的に示す
工程断面図であり、作図の都合上分図したものである。
Embodiment 1 First, an integrated circuit device according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view illustrating the structure of an integrated circuit device according to a first embodiment of the present invention. FIG.
4A to 4H are process sectional views schematically showing the manufacturing method, and are separated for convenience of drawing.

【0025】図1を参照して、本実施例の集積回路装置
の構造を説明すると、キャパシタ素子10として、Ga
As等からなる半導体基板1の表面に深さ500nm程
度の掘り込み2があり、この掘り込み2を含む表面が厚
さ200nmのSiO2からなる絶縁膜3で覆われる。
この絶縁膜3の上に、上側よりPt(70nm)/Ti
(20nm)/Pt(70nm)/Ti(20nm)か
らなる下部電極4が掘り込み2および周辺上部の基板表
面に張り出すように設けられ、この掘り込み2の底面の
下部電極4上に、厚さ500nm程度のSrTiO3
らなる高誘電率の誘電体層5およびTi(20nm)/
Pt(70nm)の上部電極6が設けられている。
Referring to FIG. 1, the structure of the integrated circuit device of this embodiment will be described.
The surface of the semiconductor substrate 1 made of As or the like has a recess 2 having a depth of about 500 nm, and the surface including the recess 2 is covered with an insulating film 3 made of SiO 2 having a thickness of 200 nm.
On this insulating film 3, Pt (70 nm) / Ti
A lower electrode 4 made of (20 nm) / Pt (70 nm) / Ti (20 nm) is provided so as to protrude into the dug 2 and the substrate surface on the upper periphery. High dielectric constant dielectric layer 5 made of SrTiO 3 having a thickness of about 500 nm and Ti (20 nm) /
An upper electrode 6 of Pt (70 nm) is provided.

【0026】これらのキャパシタは、厚さ1μmのSi
2からなる平坦化された層間絶縁膜7で覆われる。掘
り込み2内から基板表面に引き出された下部電極4と上
部電極6の上の層間絶縁膜7にスルーホール(開口)8
が設けられ、Auメッキ(2μm)/Ti(100n
m)等の配線9が設けられている。また、このキャパシ
タの近くの半導体基板1表面にはMESFET等の半導
体素子11が設けられ、この半導体素子11のFET電
極13にもスルーホール8と配線9とが設けられてい
る。
These capacitors are made of 1 μm thick Si
It is covered with a flattened interlayer insulating film 7 made of O 2 . A through-hole (opening) 8 is formed in the interlayer insulating film 7 on the lower electrode 4 and the upper electrode 6 drawn out of the digging 2 to the substrate surface.
Is provided, and Au plating (2 μm) / Ti (100 n
m) etc. are provided. Further, a semiconductor element 11 such as a MESFET is provided on the surface of the semiconductor substrate 1 near the capacitor, and a through hole 8 and a wiring 9 are also provided in an FET electrode 13 of the semiconductor element 11.

【0027】このような集積回路装置の製造方法につい
て、図2(a)乃至図4(h)を用いて説明する。ま
ず、図2(a)に示すように、半絶縁性のGaAs等か
らなる半導体基板1の表面に、ホトレジスト膜のマスク
を用いた選択イオン注入等でn形GaAsのFET活性
層領域12を形成する。また、MOCVD等でエピタキ
シャル成長した半導体層をイオン注入で欠陥を発生させ
て絶縁化し、素子分離してもよい。
A method of manufacturing such an integrated circuit device will be described with reference to FIGS. 2 (a) to 4 (h). First, as shown in FIG. 2A, an n-type GaAs FET active layer region 12 is formed on a surface of a semiconductor substrate 1 made of semi-insulating GaAs or the like by selective ion implantation using a photoresist film mask. I do. Further, a semiconductor layer epitaxially grown by MOCVD or the like may be insulated by generating defects by ion implantation and may be subjected to element isolation.

【0028】この後、ホトレジスト膜パターン15をマ
スクとして、例えば、リン酸と過酸化水素水と水を混合
した溶液でGaAs半導体基板1を0.5μm程度エッ
チングし、掘り込み2を設ける。このウェットエッチン
グではGaAs面のエッチングは平滑に行われる。その
後、ホトレジスト膜15を有機溶剤で除去する。
Thereafter, using the photoresist film pattern 15 as a mask, for example, the GaAs semiconductor substrate 1 is etched by about 0.5 μm with a solution obtained by mixing phosphoric acid, hydrogen peroxide solution and water, and a recess 2 is provided. In this wet etching, the etching of the GaAs surface is performed smoothly. After that, the photoresist film 15 is removed with an organic solvent.

【0029】次に、図2(b)に示すように、減圧気相
成長法を用いてSiO2等の絶縁膜3を厚さ200nm
程度で基板全面に堆積し、続いて、スパッタ法により、
Ti20nm、Pt70nm、Ti20nm、Pt70
nmを順次堆積し、下部電極4を形成する。このとき、
基板温度は300℃程度に高めることでPtの柱状化を
進める。続いて、SrTiO3等の焼結ターゲットを用
い、Arと酸素の雰囲気中で基板温度450℃の条件で
スパッタを行い、誘電体層5を形成する。その後、Pt
70nm、Ti20nmを基板温度300℃の条件でス
パッタし、上部電極6を形成する。
Next, as shown in FIG. 2B, an insulating film 3 of SiO 2 or the like is formed to a thickness of 200 nm by using a low pressure vapor deposition method.
About the entire surface of the substrate, and then, by sputtering,
Ti 20 nm, Pt 70 nm, Ti 20 nm, Pt 70
nm is sequentially deposited to form the lower electrode 4. At this time,
By increasing the substrate temperature to about 300 ° C., the columnarization of Pt is promoted. Subsequently, using a sintered target such as SrTiO 3 , sputtering is performed at a substrate temperature of 450 ° C. in an atmosphere of Ar and oxygen to form a dielectric layer 5. Then, Pt
The upper electrode 6 is formed by sputtering 70 nm and Ti 20 nm at a substrate temperature of 300 ° C.

【0030】次に、図2(c)に示すように、掘り込み
2内にホトレジスト膜パターン16を設け、イオンミリ
ングで上部電極6と誘電体層5とを順次エッチングす
る。なお、下部電極4内のTiのイオンミリングに対す
るエッチング速度が遅いため、上側のPt/Ti内でエ
ッチングを停止させることができる。その後、ホトレジ
スト膜16を酸素プラズマ等で処理した後に有機溶剤で
除去する。
Next, as shown in FIG. 2C, a photoresist film pattern 16 is provided in the recess 2 and the upper electrode 6 and the dielectric layer 5 are sequentially etched by ion milling. Since the etching rate for ion milling of Ti in the lower electrode 4 is low, the etching can be stopped in the upper Pt / Ti. Thereafter, the photoresist film 16 is treated with oxygen plasma or the like, and then removed with an organic solvent.

【0031】そして、図3(d)に示すように、掘り込
み2の外側上部の平坦面まで覆うようにホトレジスト膜
パターン17を設け、下部電極4をイオンミリングでエ
ッチングし、SiO2絶縁膜3が露出したところで停止
させる。その後、ホトレジスト膜17を酸素プラズマ等
で処理した後に有機溶剤で除去する。
[0031] Then, as shown in FIG. 3 (d), a photoresist layer pattern 17 to cover provided to the flat surface of the outer upper of the two digging, etching the lower electrode 4 by ion milling, SiO 2 insulating film 3 Stop when exposed. After that, the photoresist film 17 is treated with an oxygen plasma or the like and then removed with an organic solvent.

【0032】次に、図3(e)に示すように、プラズマ
気相成長法により、SiO2等の保護膜14を厚さ20
0nm程度堆積し、キャパシタ素子10等を覆い保護す
る。そして、図3(f)に示すように、加工された下部
電極6よりもすこし広い領域をホトレジスト膜パターン
18で覆い、バッファード弗酸で保護膜14と絶縁膜3
をエッチングし、GaAs半導体基板1の表面を露出す
る。なお、この工程はウェットエッチングにより行うた
め、基板表面にはドライエッチング損傷は生じることは
ない。その後、ホトレジスト膜17を有機溶剤で除去す
る。
Next, as shown in FIG. 3E, a protective film 14 of SiO 2 or the like having a thickness of 20
Deposit about 0 nm to cover and protect the capacitor element 10 and the like. Then, as shown in FIG. 3F, a region slightly larger than the processed lower electrode 6 is covered with a photoresist film pattern 18, and the protective film 14 and the insulating film 3 are buffered with hydrofluoric acid.
Is etched to expose the surface of the GaAs semiconductor substrate 1. Since this step is performed by wet etching, no dry etching damage occurs on the substrate surface. After that, the photoresist film 17 is removed with an organic solvent.

【0033】次に、図4(g)に示すように、FETの
半導体素子11の領域に、AlのゲートとAuGe合金
のオーム性によるFET電極13を形成した後、図4
(h)に示すように、プラズマ気相成長法によりSiO
を厚さ1μm程度堆積し、表面をホトレジストのエッチ
バックや研磨等で平坦化して層間絶縁膜7を形成する。
なお、膜厚が減った場合は膜を追加成長して所望の膜厚
に調整する。
Next, as shown in FIG. 4 (g), an Al gate and an FET electrode 13 made of AuGe alloy are formed in the region of the semiconductor element 11 of the FET.
(H) As shown in FIG.
Is deposited to a thickness of about 1 μm, and the surface is flattened by etching back or polishing of a photoresist to form an interlayer insulating film 7.
When the film thickness is reduced, the film is additionally grown and adjusted to a desired film thickness.

【0034】次に、ホトレジスト膜パターン19を設
け、CF4ガス等を用いたRIEでスルーホール8を設
ける。このRIE作業は平坦部のSiO2膜の厚さに対
して30%過剰にエッチングするように設定する。
Next, a photoresist film pattern 19 is provided, and a through hole 8 is provided by RIE using CF 4 gas or the like. This RIE operation is set so that the etching is performed by 30% in excess of the thickness of the SiO 2 film in the flat portion.

【0035】そして、Ti100nmとAu200nm
を基板全面にスパッタして堆積し、ホトレジスト膜パタ
ーンを設けて配線9となる部分にAuメッキを2.5μ
m程度形成し、ホトレジスト膜を除去した後イオンミリ
ングを全面に行い、余分なAu/Tiスパッタ層を除去
して配線9を形成する。以上の製造工程により図1に示
す集積回路装置が得られる。
Then, Ti 100 nm and Au 200 nm
Is deposited on the entire surface of the substrate by sputtering, a photoresist film pattern is provided, and Au
After the photoresist film is removed, ion milling is performed on the entire surface, and an extra Au / Ti sputter layer is removed to form the wiring 9. Through the above manufacturing steps, the integrated circuit device shown in FIG. 1 is obtained.

【0036】ここで、図6に示す従来例のように掘り込
みがない場合は、上部電極6は下部電極4より0.6μ
m程度高い位置に形成されることになり、この高い位置
に合わせて層間絶縁膜7も約1.5μmと厚くする必要
がある。その場合、厚さが最も深いスルーホールに対応
したエッチングが行われることになり、スルーホールの
深さが浅い上部電極6は過剰にエッチングされ、その表
面が損傷を受けることになる。
When there is no digging as in the conventional example shown in FIG. 6, the upper electrode 6 is 0.6 μm thicker than the lower electrode 4.
Therefore, the interlayer insulating film 7 needs to be thickened to about 1.5 μm in accordance with the height. In this case, etching corresponding to the through hole having the deepest thickness is performed, and the upper electrode 6 having the shallow through hole is excessively etched, and the surface thereof is damaged.

【0037】しかしながら、本実施例の集積回路装置の
製造方法によれば、キャパシタ10の上部電極6の領域
近傍を掘り下げることで、接続する下部電極4や半導体
素子11のFET電極13の高さとほぼ一致させること
ができる。従って、層間絶縁膜7を厚くする必要がな
く、スルーホール8の深さがほぼ一様になり、RIE加
工で上部電極6のみが長くエッチングされることがなく
なり、誘電率の低下やリーク電流の増大等の劣化を抑制
することができる。
However, according to the manufacturing method of the integrated circuit device of the present embodiment, the height of the lower electrode 4 to be connected and the height of the FET electrode 13 of the semiconductor element 11 are substantially reduced by digging the vicinity of the region of the upper electrode 6 of the capacitor 10. Can be matched. Therefore, it is not necessary to increase the thickness of the interlayer insulating film 7, the depth of the through hole 8 becomes substantially uniform, only the upper electrode 6 is not etched long by RIE, and the dielectric constant decreases and the leakage current decreases. Deterioration such as increase can be suppressed.

【0038】なお、本実施例の方法で形成した誘電体層
5は厚さ500nmのSrTiO3膜からなり、比誘電
率180、破壊耐圧140Vが確認されている。
The dielectric layer 5 formed by the method of this embodiment is made of a 500 nm-thick SrTiO 3 film, and has been confirmed to have a relative dielectric constant of 180 and a breakdown voltage of 140 V.

【0039】[実施例2]次に、本発明の第2の実施例
にかかる集積回路装置について、図5を参照して説明す
る。図5は、本実施例にかかる集積回路装置の構造を模
式的に示す断面図である。なお、前記した第1の実施例
では半導体基板1に掘り込み2を設けたが、本実施例で
は、絶縁膜3b中に掘り込みを設けたことが異なり、他
の部分の構造、製法等については前記した第1の実施例
と同様である。
Second Embodiment Next, an integrated circuit device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view schematically illustrating the structure of the integrated circuit device according to the present embodiment. In the first embodiment, the digging 2 is provided in the semiconductor substrate 1. However, in the present embodiment, the digging is provided in the insulating film 3b. Is the same as in the first embodiment.

【0040】本実施例の集積回路装置は、図5に示すよ
うに、半導体基板1の表面に、第1絶縁膜3aとして、
プラズマ気相成長法によりのSiN等を厚さ0.3μm
程度堆積し、第2絶縁膜3bとしてプラズマ気相成長法
によりのSiO2を厚さ0.5μm程度堆積し、絶縁膜
の選択性エッチングを利用して第2絶縁膜3bを開口
し、第1絶縁膜3aが露出したところでエッチングを停
止する。
As shown in FIG. 5, the integrated circuit device according to the present embodiment forms a first insulating film 3a on the surface of a semiconductor substrate 1.
0.3 μm thick SiN etc. by plasma vapor deposition
And extent deposition thickness was 0.5μm about depositing SiO 2 of more plasma vapor deposition as a second insulating film 3b, a second insulating film 3b is opened by utilizing the selectivity of etching of the insulating film, the first Etching is stopped when the insulating film 3a is exposed.

【0041】その後、前記した第1の実施例と同様に、
SiO2からなる絶縁膜3、Ti20nm、Pt70n
m、Ti20nm、Pt70nmからなる下部電極4、
SrTiO3からなる誘電体層5、Pt70nm、Ti
20nmからなる上部電極6、SiO2等からなる保護
膜14を所定の形状に形成し、SiOを厚さ1μm程度
堆積し、表面を平坦化して層間絶縁膜7を形成する。そ
の後、層間絶縁膜7にスルーホール8を設け、配線9を
形成して図5に示す集積回路装置が得られる。
Thereafter, similar to the first embodiment,
Insulating film 3 made of SiO 2 , Ti 20 nm, Pt 70 n
m, lower electrode 4 made of Ti 20 nm, Pt 70 nm,
Dielectric layer 5 of SrTiO 3 , Pt 70 nm, Ti
An upper electrode 6 of 20 nm, a protective film 14 of SiO 2 or the like are formed in a predetermined shape, SiO is deposited to a thickness of about 1 μm, and the surface is flattened to form an interlayer insulating film 7. After that, a through hole 8 is provided in the interlayer insulating film 7 and a wiring 9 is formed to obtain the integrated circuit device shown in FIG.

【0042】このように、キャパシタ10の上部電極6
の領域近傍を掘り下げることで、接続する下部電極4や
半導体素子11の電極の高さとほぼ一致できる。従っ
て、層間絶縁膜7を厚くする必要がなく、スルーホール
8の深さをほぼ一様にできるため、RIE加工で上部電
極6のみが長くエッチングされなくなり、誘電率の低下
やリーク電流の増大等の劣化を抑制できる。
As described above, the upper electrode 6 of the capacitor 10
By digging in the vicinity of the region, the height of the lower electrode 4 to be connected or the height of the electrode of the semiconductor element 11 can be substantially matched. Therefore, the thickness of the interlayer insulating film 7 does not need to be increased, and the depth of the through hole 8 can be made substantially uniform. Therefore, only the upper electrode 6 is not etched long by the RIE process, and the dielectric constant decreases and the leak current increases. Degradation can be suppressed.

【0043】なお、上記第1の実施例及び第2の実施例
では、誘電体層としてSrTiO3を用いた例について
説明したが、本発明は上記実施例に限定されるものでは
なく、BaTiO3、Ba0.5Sr0.5TiO3、PbZr
TiO3等の高誘電率膜を用いても同様の効果が得られ
る。また、キャパシタの上下の電極はPtを主にした
が、IrやTa等の金属、IrO2やSrRuO3やPb
TiO3等の導電性酸化物の層を含むものであってもよ
い。更に、基板はGaAs半導体で説明したが、Si半
導体やセラミックやガラス等の一般基板でもよいことは
明らかである。
[0043] In the above first and second embodiments, an example is described using SrTiO 3 as a dielectric layer, the present invention is not limited to the above embodiments, BaTiO 3 , Ba 0.5 Sr 0.5 TiO 3 , PbZr
Similar effects can be obtained by using a high dielectric constant film such as TiO 3 . Although the upper and lower electrodes of the capacitor were mainly made of Pt, metals such as Ir and Ta, IrO 2 , SrRuO 3 and Pb
It may include a layer of a conductive oxide such as TiO 3 . Furthermore, although the substrate has been described as a GaAs semiconductor, it is apparent that a general substrate such as a Si semiconductor, ceramic, or glass may be used.

【0044】[0044]

【発明の効果】以上説明したように、本発明の集積回路
装置の構成によれば、層間絶縁膜を薄くすることができ
るため、各電極へのスルーホールの深さを揃えることが
でき、キャパシタへのドライエッチングの影響を抑制す
ることができるため、誘電率の低下やリーク電流の増大
等の劣化を抑制することができる。その理由は、キャパ
シタの誘電体層を形成する前に、基板又は絶縁層に掘り
込みを設け、キャパシタ部分の突出を防止するからであ
る。
As described above, according to the structure of the integrated circuit device of the present invention, the thickness of the interlayer insulating film can be reduced, so that the depths of the through holes to the respective electrodes can be made uniform, and the capacitor can be formed. Therefore, since the influence of dry etching can be suppressed, deterioration such as a decrease in dielectric constant and an increase in leak current can be suppressed. This is because, before forming the dielectric layer of the capacitor, the substrate or the insulating layer is dug to prevent the capacitor portion from protruding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る集積回路装置の構
造を模式的に示す断面図である。
FIG. 1 is a sectional view schematically showing a structure of an integrated circuit device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る集積回路装置の製
造方法を工程順に示した工程断面図である。
FIG. 2 is a process sectional view showing a method of manufacturing an integrated circuit device according to a first example of the present invention in the order of processes.

【図3】本発明の第1の実施例に係る集積回路装置の製
造方法を工程順に示した工程断面図である。
FIG. 3 is a process cross-sectional view showing a method of manufacturing the integrated circuit device according to the first embodiment of the present invention in the order of processes.

【図4】本発明の第1の実施例に係る集積回路装置の製
造方法を工程順に示した工程断面図である。
FIG. 4 is a process sectional view showing a method of manufacturing the integrated circuit device according to the first example of the present invention in the order of processes.

【図5】本発明の第2の実施例に係る集積回路装置の構
造を模式的に示す断面図である。
FIG. 5 is a sectional view schematically showing a structure of an integrated circuit device according to a second embodiment of the present invention.

【図6】従来例1の半導体装置の製造方法を工程順に示
す工程断面図である。
FIG. 6 is a process cross-sectional view showing a method for manufacturing the semiconductor device of Conventional Example 1 in process order.

【図7】従来例2の半導体装置の断面図である。FIG. 7 is a cross-sectional view of a semiconductor device of Conventional Example 2.

【図8】従来例3の半導体装置の断面図である。FIG. 8 is a cross-sectional view of a semiconductor device of Conventional Example 3.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 掘り込み 3 絶縁膜 3a 第1絶縁膜 3b 第2絶縁膜 4 下部電極 5 誘電体層 6 上部電極 7 プロセス絶縁膜 8 スルーホール 9 配線 10 キャパシタ素子 11 半導体素子 12 FET活性層領域 13 FET電極 14 保護膜 15〜19 ホトレジスト膜 21 半導体基板 22 絶縁膜 23 下部電極 24 誘電体層 25 上部電極 26 保護膜 27 プロセス絶縁膜 28 半導体素子 31 半導体基板 32 素子分離酸化膜 33 不純物拡散層 34 絶縁膜 35 ワード線 36 絶縁膜 37 ビット線 38 層間絶縁膜 39 コンタクトプラグ 40 バリアメタル 41 下部電極 42 誘電体層 43 上部電極 44 平坦化用絶縁膜 45 ポリッシングストッパ 51 半導体基板 52 素子分離酸化膜 53 n+ドレイン拡散層 54 n+ソース拡散層 55 シリコン酸化膜 56 絶縁膜 57 ゲート電極 58 絶縁膜 59 接続電極 60 n+拡散層(プレート電極) 61 容量絶縁膜 62 蓄積電極 63a、63b トレンチ 64 シリコン酸化膜 65 p+反転防止層 66 ディジット線DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Digging 3 Insulating film 3a 1st insulating film 3b 2nd insulating film 4 Lower electrode 5 Dielectric layer 6 Upper electrode 7 Process insulating film 8 Through hole 9 Wiring 10 Capacitor element 11 Semiconductor element 12 FET active layer area 13 FET electrode 14 Protective film 15 to 19 Photoresist film 21 Semiconductor substrate 22 Insulating film 23 Lower electrode 24 Dielectric layer 25 Upper electrode 26 Protective film 27 Process insulating film 28 Semiconductor element 31 Semiconductor substrate 32 Element isolation oxide film 33 Impurity diffusion layer 34 Insulation Film 35 word line 36 insulating film 37 bit line 38 interlayer insulating film 39 contact plug 40 barrier metal 41 lower electrode 42 dielectric layer 43 upper electrode 44 planarization insulating film 45 polishing stopper 51 semiconductor substrate 52 element isolation oxide film 53 n + Drain diffusion layer 54 n + Source diffusion layer 55 Silicon oxide film 56 Insulation film 57 Gate electrode 58 Insulation film 59 Connection electrode 60 n + Diffusion layer (plate electrode) 61 Capacitance insulation film 62 Storage electrode 63 a, 63 b Trench 64 Silicon oxide film 65 p + Inversion prevention layer 66 digit line

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板又は該基板上に設けた絶縁膜に、底部
が平坦な所定の深さの窪みを有し、前記窪みの底部から
上部に張り出すように下部電極が形成され、前記窪み底
部の平坦な領域の前記下部電極上に、前記窪みの角部及
び側壁から離して誘電体層及び上部電極が形成されてい
ることを特徴とする集積回路装置。
1. A substrate or an insulating film provided on the substrate has a recess having a flat bottom and a predetermined depth, and a lower electrode is formed so as to project upward from the bottom of the recess. An integrated circuit device, wherein a dielectric layer and an upper electrode are formed on the lower electrode in a flat region at the bottom, away from corners and side walls of the depression.
【請求項2】基板又は該基板上に設けた絶縁膜に、底部
が平坦な所定の深さの窪みを有し、前記窪みの底部から
上部に張り出すように下部電極が形成され、前記窪み底
部の平坦な領域の前記下部電極上に、前記窪みの角部及
び側壁から離して誘電体層及び上部電極が形成されて容
量素子を形成し、 前記容量素子を覆う絶縁膜に、少なくとも、前記窪みの
上部に張り出された前記下部電極及び前記上部電極の各
々まで貫通するスルーホールが形成されていることを特
徴とする集積回路装置。
2. A substrate or an insulating film provided on the substrate, wherein the bottom has a flat recess having a predetermined depth, and a lower electrode is formed so as to project upward from the bottom of the recess. A dielectric layer and an upper electrode are formed apart from the corners and side walls of the depression on the lower electrode in the flat region at the bottom to form a capacitive element, and at least an insulating film covering the capacitive element, An integrated circuit device, wherein a through-hole penetrating to each of the lower electrode and the upper electrode protruding above the depression is formed.
【請求項3】前記窪みの所定の深さが、前記誘電体層及
び前記上部電極の厚さと略等しくなるように設定されて
いることを特徴とする請求項1又は2に記載の集積回路
装置。
3. The integrated circuit device according to claim 1, wherein a predetermined depth of the depression is set to be substantially equal to a thickness of the dielectric layer and the upper electrode. .
【請求項4】前記誘電体層が、所定の結晶方位で結晶性
を保った膜であることを特徴とする請求項1乃至3のい
ずれか一に記載の集積回路装置。
4. The integrated circuit device according to claim 1, wherein the dielectric layer is a film that maintains crystallinity in a predetermined crystal orientation.
【請求項5】(a)基板又は該基板上層に設けた絶縁膜
に、底部が平坦な所定の深さの窪みを形成する工程と、 (b)前記基板又は前記絶縁膜上に、下部電極と誘電体
層と上部電極とをこの順で堆積する工程と、 (c)前記窪み底部の平坦な領域上に前記上部電極と前
記誘電体層とが残るように、前記上部電極と前記誘電体
層とをエッチングする工程と、 (d)前記窪みの前記底部から前記窪みの外側の所定の
領域まで前記下部電極が残るように、前記下部電極をエ
ッチングする工程と、を少なくとも有することを特徴と
する集積回路装置の製造方法。
5. A step of: (a) forming a recess having a flat bottom at a predetermined depth in a substrate or an insulating film provided on the substrate; and (b) forming a lower electrode on the substrate or the insulating film. Depositing a dielectric layer and an upper electrode in this order; and (c) depositing the upper electrode and the dielectric so that the upper electrode and the dielectric layer remain on a flat region at the bottom of the recess. And (d) etching the lower electrode such that the lower electrode remains from the bottom of the depression to a predetermined region outside the depression. Of manufacturing an integrated circuit device.
【請求項6】(a)基板又は該基板上層に設けた第1の
絶縁膜に、底部が平坦な所定の深さの窪みを形成する工
程と、 (b)前記基板又は前記第1の絶縁膜上に、下部電極と
誘電体層と上部電極とをこの順で堆積する工程と、 (c)前記窪み底部の平坦な領域上に前記上部電極と前
記誘電体層とが残るように、前記上部電極と前記誘電体
層とをエッチングする工程と、 (d)前記窪みの前記底部から前記窪みの外側の所定の
領域まで前記下部電極が残るように、前記下部電極をエ
ッチングする工程と、 (e)前記下部電極と前記誘電体層と前記上部電極とを
覆うように第2の絶縁膜を堆積した後、前記第2の絶縁
膜を平坦化する工程と、 (f)前記第2の絶縁膜に、前記窪みの上部に張り出さ
れた前記下部電極及び前記上部電極の各々まで貫通する
スルーホールを形成する工程と、を少なくとも有するこ
とを特徴とする集積回路装置の製造方法。
6. A step of: (a) forming a recess having a flat bottom at a predetermined depth in a substrate or a first insulating film provided on an upper layer of the substrate; and (b) forming the recess in the substrate or the first insulating film. Depositing a lower electrode, a dielectric layer, and an upper electrode in this order on the film; and (c) removing the upper electrode and the dielectric layer so that the upper electrode and the dielectric layer remain on a flat region at the bottom of the depression. Etching the upper electrode and the dielectric layer; and (d) etching the lower electrode such that the lower electrode remains from the bottom of the depression to a predetermined region outside the depression. e) depositing a second insulating film so as to cover the lower electrode, the dielectric layer, and the upper electrode, and then planarizing the second insulating film; and (f) the second insulating film. Each of the lower electrode and the upper electrode protruding above the depression is provided on the film. Method of manufacturing an integrated circuit device characterized in that it comprises a step of forming a through hole penetrating at least.
【請求項7】前記窪みの所定の深さが、前記誘電体層及
び前記上部電極の厚さと略等しくなるように設定されて
いることを特徴とする請求項5又は6に記載の集積回路
装置の製造方法。
7. The integrated circuit device according to claim 5, wherein a predetermined depth of the depression is set to be substantially equal to a thickness of the dielectric layer and the upper electrode. Manufacturing method.
JP36748999A 1999-12-24 1999-12-24 Integrated circuit device and manufacturing method thereof Pending JP2001185687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36748999A JP2001185687A (en) 1999-12-24 1999-12-24 Integrated circuit device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36748999A JP2001185687A (en) 1999-12-24 1999-12-24 Integrated circuit device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2001185687A true JP2001185687A (en) 2001-07-06

Family

ID=18489442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36748999A Pending JP2001185687A (en) 1999-12-24 1999-12-24 Integrated circuit device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2001185687A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003458A1 (en) * 2000-06-30 2002-01-10 Sony Corporation Semiconductor device and its manufacturing method
JP2004186558A (en) * 2002-12-05 2004-07-02 Furukawa Electric Co Ltd:The GaN SYSTEM SEMICONDUCTOR DEVICE EQUIPPED WITH CURRENT BREAKER
JP2008041833A (en) * 2006-08-03 2008-02-21 Sony Corp Planar-inductor manufacturing method, and planar-inductor inspection method
JP2014056887A (en) * 2012-09-11 2014-03-27 Sumitomo Electric Device Innovations Inc Method for manufacturing capacitor
JP2014120732A (en) * 2012-12-19 2014-06-30 Fujitsu Ltd Electronic apparatus and method of manufacturing the same
JP2018200911A (en) * 2017-05-25 2018-12-20 凸版印刷株式会社 Glass circuit board and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003458A1 (en) * 2000-06-30 2002-01-10 Sony Corporation Semiconductor device and its manufacturing method
US6770974B2 (en) 2000-06-30 2004-08-03 Sony Corporation Semiconductor device and its manufacturing method
JP4997682B2 (en) * 2000-06-30 2012-08-08 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2004186558A (en) * 2002-12-05 2004-07-02 Furukawa Electric Co Ltd:The GaN SYSTEM SEMICONDUCTOR DEVICE EQUIPPED WITH CURRENT BREAKER
JP2008041833A (en) * 2006-08-03 2008-02-21 Sony Corp Planar-inductor manufacturing method, and planar-inductor inspection method
JP2014056887A (en) * 2012-09-11 2014-03-27 Sumitomo Electric Device Innovations Inc Method for manufacturing capacitor
JP2014120732A (en) * 2012-12-19 2014-06-30 Fujitsu Ltd Electronic apparatus and method of manufacturing the same
JP2018200911A (en) * 2017-05-25 2018-12-20 凸版印刷株式会社 Glass circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5789303A (en) Method of adding on chip capacitors to an integrated circuit
JP3466851B2 (en) Semiconductor device and manufacturing method thereof
US6344964B1 (en) Capacitor having sidewall spacer protecting the dielectric layer
US6794694B2 (en) Inter-wiring-layer capacitors
US5902131A (en) Dual-level metalization method for integrated circuit ferroelectric devices
US6461913B2 (en) Semiconductor memory device having plug contacted to a capacitor electrode and method for fabricating a capacitor of the semiconductor memory device
US6331442B1 (en) Pre-patterned contact fill capacitor for dielectric etch protection
KR100533971B1 (en) Method of manufacturing capacitor for semiconductor device
JPH06268156A (en) Thin-film capacitor and its manufacture
US6030866A (en) Method of manufacturing a capacitor
US5801916A (en) Pre-patterned contact fill capacitor for dielectric etch protection
US6479364B2 (en) Method for forming a capacitor for semiconductor devices with diffusion barrier layer on both sides of dielectric layer
JPH0563156A (en) Manufacture of semiconductor device
US6734061B2 (en) Semiconductor memory device having a plug contacted to a capacitor electrode and method for fabricating the capacitor
US20040089891A1 (en) Semiconductor device including electrode or the like having opening closed and method of manufacturing the same
US20040077141A1 (en) Capacitor and fabrication method thereof
JP2001185687A (en) Integrated circuit device and manufacturing method thereof
JP2000349257A (en) Thin-film capacitor and manufacture thereof
JP3820003B2 (en) Thin film capacitor manufacturing method
US6762476B2 (en) Dielectric element including oxide dielectric film and method of manufacturing the same
JPH09232542A (en) Semiconductor device and manufacture thereof
TWI234876B (en) Capacitor over plug structure
JP2003174092A (en) Semiconductor device and method of manufacturing the same
KR100843940B1 (en) Forming method for capacitor of semiconductor device
US20040108534A1 (en) Semiconductor device and manufacturing method for the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030318