JP2001185164A - Ion exchanger polymer solution and method of manufacturing electrode for solid polymeric electrolyte fuel cell - Google Patents

Ion exchanger polymer solution and method of manufacturing electrode for solid polymeric electrolyte fuel cell

Info

Publication number
JP2001185164A
JP2001185164A JP36482499A JP36482499A JP2001185164A JP 2001185164 A JP2001185164 A JP 2001185164A JP 36482499 A JP36482499 A JP 36482499A JP 36482499 A JP36482499 A JP 36482499A JP 2001185164 A JP2001185164 A JP 2001185164A
Authority
JP
Japan
Prior art keywords
group
ion exchanger
ion
polymer solution
vinyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36482499A
Other languages
Japanese (ja)
Other versions
JP4406984B2 (en
Inventor
Ichiro Terada
一郎 寺田
Atsushi Watakabe
淳 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP36482499A priority Critical patent/JP4406984B2/en
Publication of JP2001185164A publication Critical patent/JP2001185164A/en
Application granted granted Critical
Publication of JP4406984B2 publication Critical patent/JP4406984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stabilized ion exchanger polymer solution for a solid polymeric electrolyte fuel cell for a long period, to obtain a highly durable electrode. SOLUTION: An ion exchanger polymer consisting of a fluorine contained polymer containing functional groups capable of cross-linkage with covalent bond and sulfonic acid groups and being a dry resin having an ion exchange capacity of 1.0-4.0 milli-equivalent/g is dissolved in a solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はイオン交換体ポリマ
ー溶液に関する。
The present invention relates to an ion exchanger polymer solution.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子電
解質型燃料電池は、かつてジェミニ計画及びバイオサテ
ライト計画で宇宙船に搭載されたが、当時の電池出力密
度は低かった。その後、より高性能のアルカリ型燃料電
池が開発され、現在のスペースシャトルに至るまで宇宙
用にはアルカリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer electrolyte fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.

【0003】ところが、近年技術の進歩により固体高分
子電解質型燃料電池が再び注目されている。その理由と
して次の2点が挙げられる。(1)固体高分子電解質と
して高導電性の膜が開発された。(2)ガス拡散電極層
に用いられる触媒をカーボンに担持し、さらにこれをイ
オン交換樹脂で被覆することにより、きわめて大きな活
性が得られるようになった。
However, in recent years, attention has been paid again to solid polymer electrolyte fuel cells due to technological advances. The reasons are as follows. (1) A highly conductive film was developed as a solid polymer electrolyte. (2) By supporting the catalyst used for the gas diffusion electrode layer on carbon and coating this with an ion-exchange resin, an extremely large activity can be obtained.

【0004】しかし、現在使用されている触媒被覆用の
イオン交換樹脂は、低作動温度かつ高ガス利用率の運転
条件下では、特に水が生成する空気極において過膨潤状
態となったり部分的に溶解したりして構造が安定化せ
ず、長期間の電池性能安定性に問題があった。構造の安
定化のためにイオン交換樹脂の含水率を下げることも考
えられるが、導電性が低くなり、電池性能が低下する。
さらに、イオン交換樹脂のガス透過性が低下するため、
被覆したイオン交換樹脂を通して触媒表面に供給される
ガスの供給が遅くなる。したがって、反応サイトにおけ
るガス濃度が低下して電圧損失が大きくなる、すなわち
濃度過電圧が高くなって出力が低下する。
[0004] However, the ion exchange resins used for coating catalysts currently used under the operating conditions of a low operating temperature and a high gas utilization rate become excessively swelled or partially swelled, especially at the air electrode where water is generated. The structure was not stabilized due to melting or the like, and there was a problem in long-term stability of battery performance. Although it is conceivable to lower the water content of the ion exchange resin in order to stabilize the structure, the conductivity is lowered and the battery performance is lowered.
Furthermore, because the gas permeability of the ion exchange resin decreases,
The supply of gas supplied to the catalyst surface through the coated ion exchange resin is delayed. Therefore, the gas concentration at the reaction site decreases and the voltage loss increases, that is, the concentration overvoltage increases and the output decreases.

【0005】そのため、触媒を被覆するイオン交換樹脂
にはイオン交換容量の高い樹脂を用い、これに加えて、
例えば、ポリテトラフルオロエチレン(以下、PTFE
という。)、テトラフルオロエチレン/ヘキサフルオロ
プロピレン共重合体、テトラフルオロエチレン/パーフ
ルオロ(アルキルビニルエーテル)共重合体等のフッ素
樹脂等を撥水化剤として電極、特に空気極中に含有させ
ることで、発生する水を効率よく排出させ、フラッディ
ングを抑制すると同時に被覆イオン交換樹脂の過膨潤を
抑え、構造を安定化させる試みがなされている(特開平
5−36418)。
[0005] Therefore, a resin having a high ion exchange capacity is used as the ion exchange resin for coating the catalyst.
For example, polytetrafluoroethylene (hereinafter, PTFE)
That. ), A fluororesin such as a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, or the like as a water-repellent agent in an electrode, in particular, in an air electrode. Attempts have been made to efficiently discharge water, suppress flooding, suppress overswelling of the coated ion exchange resin, and stabilize the structure (Japanese Patent Laid-Open No. 5-36418).

【0006】しかし、水が生成するのはイオン交換樹脂
部分であるためその効果は小さく、充分に撥水化するた
めに電極中の撥水化剤の量を多くすると、上記撥水化剤
は絶縁体のため電極の電気抵抗が増大する。また、撥水
化剤を含有させることにより電極の厚さが厚くなるため
ガス透過性が悪化し、逆に出力が低下する問題がある。
そのため、充分な導電性と高出力かつ長期的に安定な固
体高分子型燃料電池を得ることは容易ではなかった。
However, since water is generated only in the ion-exchange resin portion, the effect is small. If the amount of the water repellent in the electrode is increased in order to achieve sufficient water repellency, the water repellent becomes less effective. The electric resistance of the electrode increases due to the insulator. In addition, the inclusion of the water repellent increases the thickness of the electrode, thereby deteriorating gas permeability and conversely lowering the output.
Therefore, it was not easy to obtain a polymer electrolyte fuel cell having sufficient conductivity, high output, and long-term stability.

【0007】[0007]

【発明が解決しようとする課題】すなわち、出力を高め
るには、触媒を被覆するイオン交換樹脂は、導電性が高
くかつガスの透過性が高いことが電池性能を高めるうえ
で重要であり、イオン交換基濃度が高いイオン交換樹脂
が好ましい。しかし、従来のイオン交換基濃度の高いイ
オン交換樹脂を用いた場合、燃料ガスの透過性及び導電
性は高く燃料電池の初期の出力は高くなるが、長期間使
用すると出力の低下が起こりやすい問題があった。
That is, in order to increase the output, it is important that the ion exchange resin coating the catalyst has high conductivity and high gas permeability in order to enhance the battery performance. Ion exchange resins having a high exchange group concentration are preferred. However, when a conventional ion exchange resin having a high ion exchange group concentration is used, the fuel gas permeability and conductivity are high and the initial output of the fuel cell is high, but the output tends to decrease when used for a long time. was there.

【0008】そこで本発明は、長期間使用しても性能が
安定している固体高分子電解質型燃料電池用の耐久性の
高い電極を得る方法、及びそのためのイオン交換体ポリ
マー溶液を提供することを目的とする。
Accordingly, the present invention provides a method for obtaining a highly durable electrode for a solid polymer electrolyte fuel cell whose performance is stable even after long-term use, and an ion exchanger polymer solution therefor. With the goal.

【0009】[0009]

【課題を解決するための手段】本発明は、共有結合によ
る架橋形成が可能な官能基と、スルホン酸基又はその前
駆体基と、を有する含フッ素重合体からなり、かつイオ
ン交換容量が1.0〜4.0ミリ当量/g乾燥樹脂であ
るイオン交換体ポリマーを、溶媒に溶解した溶液である
ことを特徴とするイオン交換体ポリマー溶液を提供す
る。
According to the present invention, there is provided a fluoropolymer having a functional group capable of forming a crosslink by a covalent bond, a sulfonic acid group or a precursor group thereof, and having an ion exchange capacity of 1: 1. Provided is an ion exchanger polymer solution, which is a solution obtained by dissolving an ion exchanger polymer, which is 0.0 to 4.0 meq / g dry resin, in a solvent.

【0010】また、本発明は、上記イオン交換体ポリマ
ー溶液に触媒を分散させて塗工液とし、該塗工液を用い
て成形された層を加熱してイオン交換体ポリマーを架橋
することにより電極層を得ることを特徴とする固体高分
子電解質型燃料電池用電極の製造方法を提供する。
[0010] Further, the present invention provides a coating solution obtained by dispersing a catalyst in the above ion exchange polymer solution, and heating the layer formed using the coating solution to crosslink the ion exchange polymer. Provided is a method for producing an electrode for a solid polymer electrolyte fuel cell, which comprises obtaining an electrode layer.

【0011】本発明で用いられる共有結合による架橋形
成が可能な官能基と、スルホン酸基又はその前駆体基
と、を有する含フッ素重合体としては、実質的に水素原
子が全てフッ素原子に置換されたパーフルオロカーボン
重合体(エーテル結合性の酸素原子等を含むものも含
む。)が好ましい。ここでスルホン酸基の前駆体基と
は、加水分解等によりスルホン酸基に変換できる基を示
し、具体的には−SO2F、−SO2Cl等である。ま
た、スルホン酸基又はその前駆体基を有する含フッ素ビ
ニルエーテルと、含フッ素オレフィンと、架橋部位とな
る官能基(以下、架橋性基という。)を有する含フッ素
化合物とを共重合した共重合体が好ましい。
The fluoropolymer having a functional group capable of forming a crosslink by a covalent bond and a sulfonic acid group or its precursor group used in the present invention has substantially all hydrogen atoms replaced by fluorine atoms. Perfluorocarbon polymers (including those containing ether-bonding oxygen atoms) are preferred. Here, the precursor group of a sulfonic acid group, a group that can be converted into a sulfonic acid group by hydrolysis or the like, specifically a -SO 2 F, -SO 2 Cl or the like. Further, a copolymer obtained by copolymerizing a fluorine-containing vinyl ether having a sulfonic acid group or a precursor group thereof, a fluorine-containing olefin, and a fluorine-containing compound having a functional group serving as a crosslinking site (hereinafter, referred to as a crosslinkable group). Is preferred.

【0012】上記スルホン酸基又はその前駆体基を有す
る含フッ素ビニルエーテルとしては種々のものが広く採
用されるが、好適なものとして一般式CF2=CF(O
CF2CFX)m−Op−(CF2n−SO2F(ただし、
Xはフッ素原子又はトリフルオロメチル基であり、mは
0〜3の整数であり、nは0〜12の整数であり、pは
0又は1であり、nが0のときにはpも0である。)で
表されるパーフルオロビニルエーテルが挙げられる。そ
の具体例として式1〜4の化合物等が挙げられる。ただ
し、式中、aは1〜9の整数であり、bは1〜8の整数
であり、cは0〜8の整数であり、dは2又は3であ
る。
As the fluorine-containing vinyl ether having a sulfonic acid group or a precursor group thereof, various ones are widely used, and a preferable one is a compound represented by the general formula CF 2 CFCF (O
CF 2 CFX) m -O p - (CF 2) n -SO 2 F ( where
X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 0 to 12, p is 0 or 1, and when n is 0, p is also 0 . )). Specific examples thereof include compounds of formulas 1 to 4. However, in the formula, a is an integer of 1 to 9, b is an integer of 1 to 8, c is an integer of 0 to 8, and d is 2 or 3.

【0013】[0013]

【化1】 Embedded image

【0014】−SO2F基を有するフルオロビニルエー
テルは、単独重合も可能であるが、ラジカル重合反応性
が小さいため、通常は他のオレフィン等のコモノマーと
共重合した重合体を用いる。本発明では該コモノマーと
してラジカル重合性を有する不飽和化合物、好ましくは
含フッ素不飽和化合物が選択される。
The fluorovinyl ether having a —SO 2 F group can be homopolymerized, but has a low radical polymerization reactivity. Therefore, a polymer copolymerized with a comonomer such as another olefin is usually used. In the present invention, an unsaturated compound having radical polymerizability, preferably a fluorine-containing unsaturated compound is selected as the comonomer.

【0015】このようなコモノマーとしては、テトラフ
ルオロエチレン、クロロトリフルオロエチレン、トリフ
ルオロエチレン、フッ化ビニリデン、フッ化ビニル、エ
チレン、パーフルオロ(3−ブテニルビニルエーテ
ル)、パーフルオロ(アリルビニルエーテル)、パーフ
ルオロ(2,2−ジメチル−1,3−ジオキソール)、
パーフルオロ(1,3−ジオキソール)、パーフルオロ
(2−メチレン−4−メチル−1,3−ジオキソラ
ン)、パーフルオロ(3,5−ジオキサ−1,6−ヘプ
タジエン)、パーフルオロ(4−メトキシ−1,3−ジ
オキソール)等が挙げられる。特に、テトラフルオロエ
チレンが好ましく採用される。
Such comonomers include tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, ethylene, perfluoro (3-butenyl vinyl ether), perfluoro (allyl vinyl ether), Perfluoro (2,2-dimethyl-1,3-dioxole),
Perfluoro (1,3-dioxole), perfluoro (2-methylene-4-methyl-1,3-dioxolane), perfluoro (3,5-dioxa-1,6-heptadiene), perfluoro (4-methoxy -1,3-dioxole) and the like. In particular, tetrafluoroethylene is preferably employed.

【0016】これらのコモノマーに加えてさらに、プロ
ピレン、ヘキサフルオロプロピレン等のパーフルオロ−
α−オレフィン類、(パーフルオロブチル)エチレン等
の(パーフルオロアルキル)エチレン類、3−パーフル
オロオクチル−1−プロペン等の(パーフルオロアルキ
ル)プロペン類、パーフルオロ(アルキルビニルエーテ
ル)類(アルキル基は直鎖構造でも分岐構造でもよく、
またエーテル結合性の酸素原子を含有していてもよ
い。)等を共重合させてもよい。
[0016] In addition to these comonomers, perfluoro- such as propylene and hexafluoropropylene may be used.
α-olefins, (perfluoroalkyl) ethylenes such as (perfluorobutyl) ethylene, (perfluoroalkyl) propenes such as 3-perfluorooctyl-1-propene, perfluoro (alkyl vinyl ether) s (alkyl group May have a linear or branched structure,
Further, it may contain an etheric oxygen atom. ) May be copolymerized.

【0017】パーフルオロ(アルキルビニルエーテル)
類としては、CF2=CF−(OCF2CFY)q−O−
fで表されるパーフルオロビニルエーテルが好まし
い。ただし、式中、Yはフッ素原子又はトリフルオロメ
チル基であり、qは0〜3の整数であり、Rfは炭素数
1〜12の、直鎖又は分岐鎖のパーフルオロアルキル基
である。
Perfluoro (alkyl vinyl ether)
As a class, CF 2 CFCF— (OCF 2 CFY) q —O—
Perfluorovinyl ether represented by R f is preferred. However, in the formula, Y is a fluorine atom or a trifluoromethyl group, q is an integer of 0 to 3, and R f is a linear or branched perfluoroalkyl group having 1 to 12 carbon atoms.

【0018】CF2=CF−(OCF2CFY)q−O−
fで表されるパーフルオロビニルエーテルの好ましい
例としては、式5〜7の化合物が挙げられる。ただし、
式5〜7において、eは1〜8の整数であり、fは1〜
8の整数であり、gは2又は3である。
CF 2 CFCF— (OCF 2 CFY) q —O—
Preferred examples of the perfluorovinyl ether represented by R f include compounds of formulas 5 to 7. However,
In Formulas 5 to 7, e is an integer of 1 to 8, and f is 1 to
An integer of 8; g is 2 or 3;

【0019】[0019]

【化2】 Embedded image

【0020】本発明における含フッ素重合体において、
架橋形成可能な官能基は、架橋部位を有するラジカル重
合性の含フッ素不飽和化合物を共重合させることにより
導入される。該含フッ素不飽和化合物が共重合された重
合体は、熱処理などにより架橋できる。また、必要に応
じて架橋剤を混合してもよい。上記含フッ素不飽和化合
物の具体例としては、以下の6種のものが例示される。
In the fluorine-containing polymer of the present invention,
The functional group capable of forming a crosslink is introduced by copolymerizing a radically polymerizable fluorine-containing unsaturated compound having a crosslink site. The polymer obtained by copolymerizing the fluorine-containing unsaturated compound can be crosslinked by heat treatment or the like. Moreover, you may mix a crosslinking agent as needed. Specific examples of the above fluorine-containing unsaturated compound include the following six types.

【0021】第1に、二重結合を2個有するパーフルオ
ロ不飽和化合物が挙げられ、具体的には式8〜15の化
合物等が好ましく挙げられる。なかでも式13〜15の
化合物は、反応性の異なる二重結合を有しており、パー
フルオロビニロキシ基の側が重合してももう一方の二重
結合の重合反応性はそれよりも小さいため重合時には反
応せずに架橋部位として容易に樹脂中に導入できる。
First, a perfluorounsaturated compound having two double bonds is mentioned, and specifically, compounds of formulas 8 to 15 are preferred. Among them, the compounds of formulas 13 to 15 have double bonds having different reactivities, and the polymerization reactivity of the other double bond is smaller even if the side of the perfluorovinyloxy group is polymerized. It can be easily introduced into the resin as a cross-linking site without reacting during polymerization.

【0022】ただし、式中、hは2〜8の整数であり、
iとjはそれぞれ独立に1〜5の整数であり、kは0〜
6の整数であり、rは0〜5の整数である。また、sは
1〜8の整数であり、tは2〜5の整数であり、uは0
〜5の整数である。
Wherein h is an integer of 2 to 8,
i and j are each independently an integer of 1 to 5, and k is 0 to
And r is an integer from 0 to 5. S is an integer of 1 to 8, t is an integer of 2 to 5, and u is 0.
Is an integer of up to 5.

【0023】[0023]

【化3】 Embedded image

【0024】[0024]

【化4】 Embedded image

【0025】第2に、臭素原子を有するパーフルオロエ
テン又はパーフルオロ(アルキルビニルエーテル)(ア
ルキル鎖はエーテル結合性の酸素原子を含んでいてもよ
い)が挙げられ、具体的には式16〜18の化合物等が
好ましく挙げられる。なお、式16〜18及び後述する
式19〜31において、v、wはそれぞれ独立に1〜5
の整数である。
Secondly, perfluoroethene or perfluoro (alkyl vinyl ether) having a bromine atom (the alkyl chain may contain an oxygen atom having an ether bond) is mentioned. And the like are preferred. In Formulas 16 to 18 and Formulas 19 to 31 described later, v and w are independently 1 to 5
Is an integer.

【0026】[0026]

【化5】 Embedded image

【0027】第3に、カルボン酸基、カルボン酸塩基又
はカルボン酸エステル基(アルコキシカルボニル基等)
を有するポリフルオロエテン又はポリフルオロ(アルキ
ルビニルエーテル)(アルキル鎖はエーテル結合性の酸
素原子を含んでいてもよい)が挙げられ、具体的には式
19〜21の化合物等が好ましく挙げられる。ただし、
式中、Mは、炭素数1〜5のアルキル基、水素原子、ア
ルカリ金属(リチウム、カリウム、ナトリウム)原子又
はNH4である。
Third, a carboxylic acid group, a carboxylic acid group or a carboxylic acid ester group (such as an alkoxycarbonyl group)
Or a polyfluoro (alkyl vinyl ether) having the formula (where the alkyl chain may contain an etheric oxygen atom), and specifically preferred are the compounds of the formulas 19 to 21 and the like. However,
In the formula, M is an alkyl group having 1 to 5 carbon atoms, a hydrogen atom, an alkali metal (lithium, potassium, sodium) atom or NH 4 .

【0028】[0028]

【化6】 Embedded image

【0029】第4に、水酸基を含有するポリフルオロエ
テン又はポリフルオロ(アルキルビニルエーテル)(ア
ルキル鎖はエーテル結合性の酸素原子を含んでいてもよ
い)が挙げられ、具体的には式22〜24の化合物等が
好ましく挙げられる。
Fourth, hydroxyl group-containing polyfluoroethene or polyfluoro (alkyl vinyl ether) (the alkyl chain may contain an oxygen atom having an ether bond) is mentioned. And the like are preferred.

【0030】[0030]

【化7】 Embedded image

【0031】第5に、シアノ基を有するパーフルオロエ
テン又はパーフルオロ(アルキルビニルエーテル)(ア
ルキル鎖はエーテル結合性の酸素原子を含んでいてもよ
い)が挙げられ、具体的には式25〜29の化合物等が
好ましく挙げられる。
Fifth, there can be mentioned perfluoroethene or perfluoro (alkyl vinyl ether) having a cyano group (the alkyl chain may contain an oxygen atom having an ether bond). And the like are preferred.

【0032】[0032]

【化8】 Embedded image

【0033】第6に、シアナト基を有するパーフルオロ
エテン又はパーフルオロ(アルキルビニルエーテル)
(アルキル鎖はエーテル結合性の酸素原子を含んでいて
もよい)が挙げられ、具体的には式30〜31の化合物
等が好ましく挙げられる。ただし、式中Zは水素原子又
はトリフルオロメチル基である。
Sixth, perfluoroethene or perfluoro (alkyl vinyl ether) having a cyanato group
(The alkyl chain may contain an oxygen atom having an ether bond), and specifically preferred are compounds of the formulas 30 to 31 and the like. Here, in the formula, Z is a hydrogen atom or a trifluoromethyl group.

【0034】[0034]

【化9】 Embedded image

【0035】本発明において、イオン交換体ポリマー中
のスルホン酸基の濃度、すなわちイオン交換容量として
は1.0〜4.0ミリ当量/g乾燥樹脂の範囲のものが
用いられる。イオン交換容量がこれより小さい場合には
膜の電気抵抗が大きくなり、一方、これより大きい場合
には膜の機械的強度が不十分となる。より好ましくは
1.3〜3.0ミリ当量/g乾燥樹脂のものが用いられ
る。
In the present invention, the concentration of the sulfonic acid groups in the ion exchanger polymer, that is, the ion exchange capacity, is in the range of 1.0 to 4.0 meq / g dry resin. If the ion exchange capacity is smaller than this, the electrical resistance of the membrane increases, while if it is larger, the mechanical strength of the membrane becomes insufficient. More preferably, a resin having a dry resin of 1.3 to 3.0 meq / g is used.

【0036】また、イオン交換体ポリマー中の、架橋部
位を構成する重合単位の含有量は0.1〜50mol%
であることが好ましい。0.1mol%未満では架橋形
成しても強度の向上効果が少なく、50mol%を超え
る場合には架橋形成された樹脂が脆くなる。より好まし
くは0.5〜30mol%である。
The content of the polymerized unit constituting the crosslinked site in the ion exchanger polymer is 0.1 to 50 mol%.
It is preferred that If the amount is less than 0.1 mol%, the effect of improving the strength is small even if cross-linking is formed, and if it exceeds 50 mol%, the cross-linked resin becomes brittle. More preferably, it is 0.5 to 30 mol%.

【0037】本発明において、イオン交換体ポリマー溶
液に含まれるイオン交換体ポリマーの製造方法として
は、通常、含フッ素オレフィン重合体の製造に用いられ
る乳化重合、溶液重合、懸濁重合、塊状重合のいずれも
好ましく採用できる。重合はラジカルが生起する条件で
行われ、紫外線、γ線、電子線等の放射線を照射する方
法、通常のラジカル重合で用いられるラジカル開始剤を
添加する方法が一般的である。重合温度は通常−20℃
〜150℃程度である。
In the present invention, the method for producing the ion-exchange polymer contained in the ion-exchange polymer solution may be any of emulsion polymerization, solution polymerization, suspension polymerization and bulk polymerization which are generally used for producing a fluorinated olefin polymer. Either can be preferably employed. The polymerization is carried out under conditions in which radicals are generated, and a method of irradiating radiation such as ultraviolet rays, γ rays, and an electron beam, and a method of adding a radical initiator used in ordinary radical polymerization are generally used. The polymerization temperature is usually -20 ° C
About 150 ° C.

【0038】本発明で用いられるイオン交換体ポリマー
溶液の溶媒としては、特に制限されないが、例えば下記
の溶媒が挙げられる。メチルアルコール、エチルアルコ
ール、n−プロピルアルコール、n−ブチルアルコー
ル、イソプロピルアルコール等のアルコール類。2,
2,2−トリフルオロエタノール、2,2,3,3,3
−ペンタフルオロ−1−プロパノール、2,2,3,3
−テトラフルオロ−1−プロパノール、2,2,3,
4,4,4−ヘキサフルオロ−1−ブタノール、2,
2,3,3,4,4,4−ヘプタフルオロ−1−ブタノ
ール、1,1,1,3,3,3−ヘキサフルオロ−2−
プロパノール等の含フッ素アルコール。
The solvent of the ion exchanger polymer solution used in the present invention is not particularly limited, and examples thereof include the following solvents. Alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, n-butyl alcohol and isopropyl alcohol. 2,
2,2-trifluoroethanol, 2,2,3,3,3
-Pentafluoro-1-propanol, 2,2,3,3
-Tetrafluoro-1-propanol, 2,2,3
4,4,4-hexafluoro-1-butanol, 2,
2,3,3,4,4,4-heptafluoro-1-butanol, 1,1,1,3,3,3-hexafluoro-2-
Fluorinated alcohols such as propanol.

【0039】パーフルオロトリブチルアミン、パーフル
オロ−2−n−ブチルテトラヒドロフラン等のパーフル
オロ含酸素又は含窒素化合物、1,1,2−トリクロロ
−1,2,2−トリフルオロエタン等のクロロフルオロ
カーボン類、3,3−ジクロロ−1,1,1,2,2,
−ペンタフルオロプロパン、1,3−ジクロロ−1,
1,2,2,3−ペンタフルオロプロパン等のヒドロク
ロロフルオロカーボン類の他、N,N−ジメチルホルム
アミドやN,N−ジメチルアセトアミド、ジメチルスル
ホキシド、水等の極性溶媒が使用できる。これらの溶媒
は単独で用いてもよいし、2種以上混合して用いてもよ
い。
Perfluoro oxygen-containing or nitrogen-containing compounds such as perfluorotributylamine and perfluoro-2-n-butyltetrahydrofuran; chlorofluorocarbons such as 1,1,2-trichloro-1,2,2-trifluoroethane , 3,3-dichloro-1,1,1,2,2
-Pentafluoropropane, 1,3-dichloro-1,
In addition to hydrochlorofluorocarbons such as 1,2,2,3-pentafluoropropane, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, and water can be used. These solvents may be used alone or as a mixture of two or more.

【0040】イオン交換体ポリマー溶液の濃度として
は、イオン交換体ポリマーが溶液全質量の0.3〜30
%であることが好ましい。0.3%未満であると、溶媒
を揮発させるために時間がかかったり、時間短縮の場合
は高温加熱が必要となるので好ましくない。30%を超
えると溶液粘度が高くなり成形性が悪くなる。また、イ
オン交換体ポリマー溶液に触媒を分散させてガス拡散電
極を作製する場合、触媒を被覆する樹脂膜の厚さが厚く
なり電池性能が低下するので好ましくない。2〜10%
の濃度の場合、特に好ましい。
The concentration of the ion-exchange polymer solution is 0.3 to 30% of the total mass of the solution.
%. If it is less than 0.3%, it takes time to volatilize the solvent, and if the time is reduced, high-temperature heating is required, which is not preferable. If it exceeds 30%, the solution viscosity increases and the moldability deteriorates. In addition, when a gas diffusion electrode is produced by dispersing a catalyst in an ion exchanger polymer solution, the thickness of a resin film covering the catalyst is increased and battery performance is deteriorated, which is not preferable. 2-10%
Is particularly preferred.

【0041】本発明のイオン交換体ポリマー溶液を用い
て固体高分子電解質型燃料電池の電極を製造する場合、
イオン交換体ポリマーは電極形成後に架橋処理を行うこ
とが好ましい。架橋方法としては、通常の高分子材料の
架橋に用いられる方法である、熱、放射線、電子線、光
架橋法等が採用される。なかでも加熱架橋法は装置の入
手しやすさや取扱いの容易さ等の点で好ましい。
When producing an electrode of a solid polymer electrolyte fuel cell using the ion exchanger polymer solution of the present invention,
It is preferable that the ion-exchange polymer is subjected to a crosslinking treatment after the formation of the electrode. As a cross-linking method, a heat, radiation, electron beam, photo-crosslinking method or the like, which is a method generally used for cross-linking a polymer material, is employed. Among them, the heat crosslinking method is preferred in view of the availability of the device and the ease of handling.

【0042】加熱架橋法は、単に加熱することで架橋で
きるが、架橋反応を促進させるために過酸化物等のラジ
カル開始剤、トリアリルイソシアヌレート、ビスフェノ
ール、ビスフェノールAF等の架橋剤を添加して加熱す
る方法も採用できる。また必要に応じて、炭酸ナトリウ
ム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリ
ウム、水酸化カルシウム、水酸化マグネシウム等の助剤
を添加してもよい。
In the heat crosslinking method, crosslinking can be carried out simply by heating, but a radical initiator such as a peroxide and a crosslinking agent such as triallyl isocyanurate, bisphenol and bisphenol AF are added to promote the crosslinking reaction. A heating method can also be adopted. If necessary, auxiliaries such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydroxide and magnesium hydroxide may be added.

【0043】式25〜29のようなシアノ基を有する化
合物や式30〜31のようなシアナト基を有する化合物
を含んで共重合された共重合体を用いる場合には、別途
に触媒を添加する必要はないが、必要に応じて硬化触媒
として、ルイス酸類、プロトン酸類、テトラフェニルス
ズ、水酸化トリフェニルスズ、(C715COO)2Zn
等のカルボン酸の遷移金属塩類、カルボン酸のアンモニ
ウム塩類、過酸化物、アミン類、アミジン類、イミドイ
ルアミジン構造を有する化合物類等から選ばれる1種以
上を用いてもよい。また、アンモニア又はアミン系化合
物の活性水素の一部又は全てを他の官能基で保護したブ
ロックドアミン化合物を触媒として添加することもでき
る。
In the case of using a copolymer containing a compound having a cyano group as represented by formulas 25 to 29 or a compound having a cyanato group as represented by formulas 30 to 31, a catalyst is separately added. Although not required, Lewis acids, protonic acids, tetraphenyl tin, triphenyl tin hydroxide, (C 7 F 15 COO) 2 Zn may be used as a curing catalyst if necessary.
And the like. One or more selected from transition metal salts of carboxylic acids, ammonium salts of carboxylic acids, peroxides, amines, amidines, compounds having an imidoylamidine structure, and the like may be used. Further, a blocked amine compound in which part or all of active hydrogen of ammonia or an amine compound is protected by another functional group can be added as a catalyst.

【0044】本発明のイオン交換体ポリマー溶液を用い
て固体高分子電解質型燃料電池用電極を製造する場合、
イオン交換体ポリマー溶液に触媒を分散させて塗工液と
し、該塗工液を用いて電極層のもととなる層を成形し、
成形された層を加熱してイオン交換体ポリマーを架橋さ
せることにより電極を形成することが好ましい。
When producing an electrode for a solid polymer electrolyte fuel cell using the ion exchanger polymer solution of the present invention,
A catalyst is dispersed in an ion exchanger polymer solution to form a coating solution, and a layer serving as an electrode layer is formed using the coating solution,
Preferably, the electrodes are formed by heating the shaped layer to crosslink the ion exchanger polymer.

【0045】さらに具体的に電極の製造方法を説明する
と、通常の手法にしたがって白金触媒微粒子を担持させ
た導電性のカーボンブラック粉末を混合して分散させ、
以下のいずれかの方法で膜−電極接合体を得ることが好
ましい。第1の方法は、カチオン交換膜の片面に上記分
散液を塗布し、膜のもう一方の面には燃料極を形成する
ための塗工液を塗布し、乾燥後2枚のカーボンクロス又
はカーボンペーパーで挟んで密着させる方法である。第
2の方法は、上記分散液をカーボンクロス又はカーボン
ペーパー上に塗布したものと、燃料極を形成するための
塗工液をカーボンクロス又はカーボンペーパー上に塗布
したものとを、乾燥後それぞれカチオン交換膜の両面に
密着させる方法である。
More specifically, a method of manufacturing an electrode will be described. A conductive carbon black powder carrying platinum catalyst fine particles is mixed and dispersed according to a usual method.
It is preferable to obtain the membrane-electrode assembly by any of the following methods. The first method is to apply the above-mentioned dispersion liquid to one side of a cation exchange membrane, apply a coating liquid for forming a fuel electrode to the other side of the membrane, and after drying, use two carbon cloths or carbon cloths. This is a method of sandwiching and adhering paper. In the second method, a dispersion obtained by applying the above-mentioned dispersion on carbon cloth or carbon paper and a coating obtained by applying a coating liquid for forming a fuel electrode on carbon cloth or carbon paper are dried, and then dried. This is a method of adhering to both surfaces of the exchange membrane.

【0046】なお、スルホン酸基の前駆体基を有する含
フッ素重合体を含むイオン交換体ポリマー溶液を使用す
る場合は、層を形成後、架橋する前に前駆体基を酸型化
してもよいし、架橋後に前駆体基を酸型化してもよい。
When an ion exchanger polymer solution containing a fluorine-containing polymer having a sulfonic acid group precursor group is used, the precursor group may be converted to an acid form after forming the layer and before crosslinking. After the crosslinking, the precursor group may be converted to an acid form.

【0047】得られた膜−電極接合体は、燃料ガス又は
酸化剤ガスの通路となる溝が形成され導電性カーボン板
等からなるセパレータの間に挟まれ、セルに組み込まれ
る。水素ガス燃料電池では、アノード側に水素ガスが供
給され、カソード側には酸素又は空気が供給される。反
応はアノードではH2→2H++2e-、カソードでは1
/2O2+2H++2e-→H2Oで、化学エネルギが電気
エネルギに変換される。
The obtained membrane-electrode assembly is provided with a groove serving as a passage for a fuel gas or an oxidizing gas, is sandwiched between separators made of a conductive carbon plate or the like, and is incorporated into a cell. In a hydrogen gas fuel cell, hydrogen gas is supplied to the anode side, and oxygen or air is supplied to the cathode side. The reaction is H 2 → 2H + + 2e − at the anode and 1 at the cathode.
With / 2O 2 + 2H + + 2e → H 2 O, chemical energy is converted to electric energy.

【0048】[0048]

【実施例】[例1(実施例)] [イオン交換体ポリマー溶液の作製]アゾビスイソブチ
ロニトリルを開始剤として、0.4molのテトラフル
オロエチレンと0.134molのCF2=CFOCF2
CF(CF3)O(CF22SO2Fと0.02molの
CF2=CFO(CF23COOCH3とを、70℃に
て、5時間共重合し、イオン交換容量1.27ミリ当量
/グラム乾燥樹脂の共重合体を得た。この共重合体を、
溶液全体の質量の30%のジメチルスルホキシドと溶液
全体の質量の15%の水酸化カリウムを含む水溶液中で
加水分解し、1mol/Lの塩酸に室温にて16時間浸
漬して酸型(スルホン酸基)に変換し、水洗乾燥した。
EXAMPLES [Example 1 (Example)] [Preparation of ion exchanger polymer solution] Using azobisisobutyronitrile as an initiator, 0.4 mol of tetrafluoroethylene and 0.134 mol of CF 2 = CFOCF 2 are used.
CF (CF 3 ) O (CF 2 ) 2 SO 2 F and 0.02 mol of CF 2 CFCFO (CF 2 ) 3 COOCH 3 were copolymerized at 70 ° C. for 5 hours to have an ion exchange capacity of 1.27. A copolymer of milliequivalent / gram dry resin was obtained. This copolymer is
It is hydrolyzed in an aqueous solution containing 30% of dimethyl sulfoxide of the total weight of the solution and potassium hydroxide of 15% of the total weight of the solution, immersed in 1 mol / L hydrochloric acid at room temperature for 16 hours, and acid-form (sulfonic acid). ), Washed with water and dried.

【0049】これを、エタノールと1,3−ジクロロ−
1,1,2,2,3−ペンタフルオロプロパンとの質量
比で80/20の混合溶媒に溶解し、溶質濃度が溶液全
体の質量の10%の、スルホン酸基及び架橋性カルボン
酸基を含有するパーフルオロカーボン重合体からなるイ
オン交換体ポリマー溶液を得た。
This was prepared by adding ethanol and 1,3-dichloro-
Dissolved in a mixed solvent of 80/20 with a mass ratio of 1,1,2,2,3-pentafluoropropane to form a sulfonic acid group and a crosslinkable carboxylic acid group having a solute concentration of 10% of the total mass of the solution An ion exchanger polymer solution comprising a perfluorocarbon polymer was obtained.

【0050】[燃料電池の作製及び性能の評価]上記溶
液(イオン交換容量1.27ミリ当量/グラム乾燥樹
脂)を用いて、上記共重合体と白金担持カーボンの質量
比が1:3となるように白金担持カーボンを混合分散さ
せて塗工液を得た。その塗工液を、カーボン布上にダイ
コート法で塗工し、乾燥して厚さ10μm、白金担持量
0.5mg/cm2のガス拡散電極層を形成したガス拡
散電極を得た。
[Preparation of Fuel Cell and Evaluation of Performance] Using the above solution (ion exchange capacity: 1.27 meq / g dry resin), the mass ratio of the copolymer to platinum-supported carbon was 1: 3. Thus, a platinum-supported carbon was mixed and dispersed to obtain a coating liquid. The coating liquid was applied on a carbon cloth by a die coating method, and dried to obtain a gas diffusion electrode having a thickness of 10 μm and a gas diffusion electrode layer having a platinum carrying amount of 0.5 mg / cm 2 .

【0051】一方、テトラフルオロエチレンとCF2
CFOCF2CF(CF3)O(CF22SO2Fの共重
合体(イオン交換容量1.1ミリ当量/グラム乾燥樹
脂)を押出し製膜し、加水分解、酸型化、水洗を行っ
て、スルホン酸基を有する、膜厚50μmのイオン交換
膜を得た。上記膜を、ガス拡散電極2枚の間に挟み、平
板プレス機を用いてプレスした。次いで180℃で2時
間加熱して電極中のイオン交換体ポリマーを架橋し、膜
−電極接合体を作製した。
On the other hand, tetrafluoroethylene and CF 2 =
A copolymer of CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F (ion exchange capacity: 1.1 meq / g dry resin) is extruded to form a film, which is subjected to hydrolysis, acidification, and washing with water. Thus, an ion exchange membrane having a sulfonic acid group and a thickness of 50 μm was obtained. The film was sandwiched between two gas diffusion electrodes and pressed using a flat plate press. Then, the mixture was heated at 180 ° C. for 2 hours to crosslink the ion-exchange polymer in the electrode, thereby producing a membrane-electrode assembly.

【0052】この膜−電極接合体の外側にチタン製の集
電体、さらにその外側にPTFE製のガス供給室、さら
にその外側にヒーターを配置し、有効膜面積9cm2
燃料電池を組み立てた。燃料電池の温度を80℃に保
ち、酸化剤極に酸素、燃料極に水素をそれぞれ2気圧で
供給した。電流密度1A/cm2のときの端子電圧を測
定したところ、端子電圧は0.58Vであった。また、
1000時間運転後の端子電圧は0.57Vであった。
A current collector made of titanium was placed outside the membrane-electrode assembly, a gas supply chamber made of PTFE was placed outside the current collector, and a heater was placed outside the current collector. A fuel cell having an effective membrane area of 9 cm 2 was assembled. . The temperature of the fuel cell was maintained at 80 ° C., and oxygen was supplied to the oxidant electrode and hydrogen was supplied to the fuel electrode at 2 atm. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.58 V. Also,
The terminal voltage after operation for 1000 hours was 0.57V.

【0053】[例2(実施例)]例1の共重合体の合成
の際に0.02molのCF2=CFO(CF23CO
OCH3を使用するかわりに、0.01molのCF2
CFOCF2CF(CF3)O(CF22CF=CF2
用いた以外は、例1と同様にしてイオン交換体ポリマー
溶液を調製した。得られた溶液(イオン交換容量1.2
8ミリ当量/グラム乾燥樹脂)を用いて、例1と同様に
膜−電極接合体を作製して燃料電池を組み立て、例1と
同様に評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.59Vであった。
また、1000時間運転後の端子電圧は0.57Vであ
った。
Example 2 (Example) In synthesizing the copolymer of Example 1, 0.02 mol of CF 2に CFO (CF 2 ) 3 CO
Instead of using OCH 3 , 0.01 mol CF 2 =
An ion exchanger polymer solution was prepared in the same manner as in Example 1, except that CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 CF = CF 2 was used. The resulting solution (ion exchange capacity 1.2
(8 meq / g dry resin), a membrane-electrode assembly was prepared in the same manner as in Example 1, a fuel cell was assembled, and evaluation was performed in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.59 V.
The terminal voltage after operation for 1000 hours was 0.57V.

【0054】[例3(比較例)]例1の共重合体の合成
の際に0.02molのCF2=CFO(CF23CO
OCH3を使用しなかった以外は例1と同様にしてイオ
ン交換体ポリマー溶液を調製した。得られた溶液(イオ
ン交換容量1.34ミリ当量/グラム乾燥樹脂)を用い
て、例1と同様に膜−電極接合体を作製して燃料電池を
組み立て、例1と同様に評価した。電流密度1A/cm
2のときの端子電圧を測定したところ、端子電圧は0.
60Vであった。しかし、1000時間運転後の端子電
圧は0.42Vに低下した。
Example 3 (Comparative Example) In synthesizing the copolymer of Example 1, 0.02 mol of CF 2 CFCFO (CF 2 ) 3 CO
An ion exchanger polymer solution was prepared in the same manner as in Example 1 except that OCH 3 was not used. Using the resulting solution (ion exchange capacity: 1.34 meq / g dry resin), a membrane-electrode assembly was prepared in the same manner as in Example 1, and a fuel cell was assembled. Current density 1A / cm
When the terminal voltage at 2 was measured, the terminal voltage was 0.1.
It was 60V. However, after 1000 hours of operation, the terminal voltage dropped to 0.42V.

【0055】[0055]

【発明の効果】本発明のイオン交換体ポリマー溶液を用
いて固体高分子電解質型燃料電池用電極を作製すると、
容易に電極中に、触媒被覆樹脂としてスルホン酸基を含
有する架橋された含フッ素重合体を含有させることがで
きる。このようにして得られる電極中のイオン交換体ポ
リマーは、高イオン交換容量としても燃料電池の作動に
よる樹脂の膨潤が少ない。したがって、高出力かつ長期
的耐久性に優れる固体高分子型燃料電池を得られる。
When an electrode for a solid polymer electrolyte fuel cell is produced using the ion exchanger polymer solution of the present invention,
The electrode can easily contain a crosslinked fluorine-containing polymer containing a sulfonic acid group as a catalyst coating resin. The ion-exchange polymer in the electrode thus obtained has little swelling of the resin due to the operation of the fuel cell even with a high ion-exchange capacity. Therefore, a polymer electrolyte fuel cell having high output and excellent long-term durability can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J100 AA02R AA03R AC01R AC23R AC24R AC25R AC26P AC26R AC27R AC31R AD07R AE38Q AE39R AE78R AJ03R AM03R BA07Q BA17R BA43R BA57Q BB07R BB12Q BB13Q BB13R CA05 JA16 JA43 5H018 AA06 AS01 BB16 DD01 DD08 EE03 EE05 EE18 HH00 5H026 AA06 BB10 CX05 EE02 EE05 EE19 HH00  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4J100 AA02R AA03R AC01R AC23R AC24R AC25R AC26P AC26R AC27R AC31R AD07R AE38Q AE39R AE78R AJ03R AM03R BA07Q BA17R BA43R BA57Q BB07R BB12Q0113 BB13Q BB13 BB13Q BB13Q0113 5H026 AA06 BB10 CX05 EE02 EE05 EE19 HH00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】共有結合による架橋形成が可能な官能基
と、スルホン酸基又はその前駆体基と、を有する含フッ
素重合体からなり、かつイオン交換容量が1.0〜4.
0ミリ当量/g乾燥樹脂であるイオン交換体ポリマー
を、溶媒に溶解した溶液であることを特徴とするイオン
交換体ポリマー溶液。
1. A fluoropolymer having a functional group capable of forming a crosslink by a covalent bond and a sulfonic acid group or its precursor group, and having an ion exchange capacity of 1.0 to 4.
An ion exchanger polymer solution characterized by being a solution in which an ion exchanger polymer which is 0 meq / g dry resin is dissolved in a solvent.
【請求項2】含フッ素重合体の基本骨格が、CF2=C
2に基づく重合単位とCF2=CF(OCF2CFX)m
−Op−(CF2nAに基づく重合単位(ここでXはフ
ッ素原子又はトリフルオロメチル基であり、Aはスルホ
ン酸基又はその前駆体基であり、mは0〜3の整数であ
り、nは0〜12の整数であり、pは0又は1であり、
nが0のときにはpも0である。)とからなる共重合体
である請求項1に記載のイオン交換体ポリマー溶液。
2. The basic skeleton of the fluoropolymer is CF 2 CC.
Polymerized unit based on F 2 and CF 2 = CF (OCF 2 CFX) m
-O p - (CF 2) based on the n A polymerized units (wherein X is a fluorine atom or a trifluoromethyl group, A is a sulfonic acid group or a precursor group, m is an integer of 0 to 3 And n is an integer of 0 to 12, p is 0 or 1,
When n is 0, p is also 0. The ion exchange polymer solution according to claim 1, which is a copolymer consisting of:
【請求項3】前記共重合体は、さらに、下記の(A)〜
(F)のいずれかの化合物をコモノマーとして共重合し
たものである請求項2に記載のイオン交換体ポリマー溶
液。 (A)二重結合を2個有するパーフルオロ不飽和化合
物。 (B)臭素原子を有するパーフルオロエテン又はパーフ
ルオロ(アルキルビニルエーテル)。 (C)カルボン酸基、カルボン酸塩基又はカルボン酸エ
ステル基を有するポリフルオロエテン若しくはポリフル
オロ(アルキルビニルエーテル)。 (D)水酸基を有するポリフルオロエテン又はポリフル
オロ(アルキルビニルエーテル)。 (E)シアノ基を有するパーフルオロエテン又はパーフ
ルオロ(アルキルビニルエーテル)。 (F)シアナト基を有するパーフルオロエテン又はパー
フルオロ(アルキルビニルエーテル)。
3. The copolymer further comprises the following (A) to
3. The ion exchanger polymer solution according to claim 2, wherein any one of the compounds (F) is copolymerized as a comonomer. (A) A perfluorounsaturated compound having two double bonds. (B) Perfluoroethene or perfluoro (alkyl vinyl ether) having a bromine atom. (C) Polyfluoroethene or polyfluoro (alkyl vinyl ether) having a carboxylic acid group, a carboxylic acid group or a carboxylic acid ester group. (D) Polyfluoroethene or polyfluoro (alkyl vinyl ether) having a hydroxyl group. (E) Perfluoroethene or perfluoro (alkyl vinyl ether) having a cyano group. (F) Perfluoroethene or perfluoro (alkyl vinyl ether) having a cyanato group.
【請求項4】請求項1、2又は3に記載のイオン交換体
ポリマー溶液に触媒を分散させて塗工液とし、該塗工液
を用いて成形された層を加熱して前記官能基を反応させ
てイオン交換体ポリマーを架橋することにより電極層を
得ることを特徴とする固体高分子電解質型燃料電池用電
極の製造方法。
4. A coating solution obtained by dispersing a catalyst in the ion-exchanger polymer solution according to claim 1, and heating the layer formed using the coating solution to convert the functional group. A method for producing an electrode for a solid polymer electrolyte fuel cell, characterized in that an electrode layer is obtained by reacting and crosslinking an ion exchanger polymer.
JP36482499A 1999-12-22 1999-12-22 COATING LIQUID FOR ELECTROLYTE FOR SOLID POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE FOR SOLID POLYMER ELECTROLYTE FUEL CELL Expired - Fee Related JP4406984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36482499A JP4406984B2 (en) 1999-12-22 1999-12-22 COATING LIQUID FOR ELECTROLYTE FOR SOLID POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE FOR SOLID POLYMER ELECTROLYTE FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36482499A JP4406984B2 (en) 1999-12-22 1999-12-22 COATING LIQUID FOR ELECTROLYTE FOR SOLID POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE FOR SOLID POLYMER ELECTROLYTE FUEL CELL

Publications (2)

Publication Number Publication Date
JP2001185164A true JP2001185164A (en) 2001-07-06
JP4406984B2 JP4406984B2 (en) 2010-02-03

Family

ID=18482756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36482499A Expired - Fee Related JP4406984B2 (en) 1999-12-22 1999-12-22 COATING LIQUID FOR ELECTROLYTE FOR SOLID POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE FOR SOLID POLYMER ELECTROLYTE FUEL CELL

Country Status (1)

Country Link
JP (1) JP4406984B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086193A (en) * 2001-09-13 2003-03-20 Tokuyama Corp Method of manufacturing gas diffusion electrode
WO2005029624A1 (en) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
JP2005511830A (en) * 2001-12-06 2005-04-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Low equivalent weight ionomer
WO2005124911A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
WO2005124912A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
WO2006006357A1 (en) * 2004-07-12 2006-01-19 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP2010084149A (en) * 2001-12-06 2010-04-15 Gore Enterp Holdings Inc Fluorinated ionomeric crosslinked copolymer
JP4943855B2 (en) * 2003-11-13 2012-05-30 スリーエム イノベイティブ プロパティズ カンパニー Bromine, chlorine or iodine functional polymer electrolyte crosslinked by E-beam
US8802793B2 (en) 2003-11-24 2014-08-12 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
JP2014529636A (en) * 2011-08-04 2014-11-13 スリーエム イノベイティブプロパティズカンパニー Low equivalent weight polymer
CN114085309A (en) * 2021-11-22 2022-02-25 浙江巨化技术中心有限公司 Solution polymerization preparation method of perfluorosulfonic acid resin
CN114213569A (en) * 2021-11-22 2022-03-22 浙江巨化技术中心有限公司 Suspension polymerization preparation method of perfluorosulfonic acid resin
CN114276482A (en) * 2021-11-22 2022-04-05 浙江巨化技术中心有限公司 Emulsion polymerization preparation method of perfluorosulfonic acid resin
CN115991826A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Perfluorinated phosphonic acid ion exchange membrane and preparation method thereof
KR20230077050A (en) * 2021-11-25 2023-06-01 한국화학연구원 A crosslinked fluorinated copolymer and the preparation method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086193A (en) * 2001-09-13 2003-03-20 Tokuyama Corp Method of manufacturing gas diffusion electrode
JP2014005471A (en) * 2001-12-06 2014-01-16 Gore Enterprise Holdings Inc Ionomer of low equivalent weight
JP2005511830A (en) * 2001-12-06 2005-04-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Low equivalent weight ionomer
JP2015227455A (en) * 2001-12-06 2015-12-17 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Ionomer of low equivalent weight
JP2014208846A (en) * 2001-12-06 2014-11-06 ゴア エンタープライズ ホールディングス,インコーポレイティド Fluorinated ionomer crosslinked copolymer
JP2010084149A (en) * 2001-12-06 2010-04-15 Gore Enterp Holdings Inc Fluorinated ionomeric crosslinked copolymer
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
WO2005029624A1 (en) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
JP4943855B2 (en) * 2003-11-13 2012-05-30 スリーエム イノベイティブ プロパティズ カンパニー Bromine, chlorine or iodine functional polymer electrolyte crosslinked by E-beam
US8802793B2 (en) 2003-11-24 2014-08-12 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
WO2005124912A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
US8546004B2 (en) 2004-06-22 2013-10-01 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US10153506B2 (en) 2004-06-22 2018-12-11 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
WO2005124911A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
US9331354B2 (en) 2004-06-22 2016-05-03 Asahi Glass Company, Limited Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US10916790B2 (en) 2004-06-22 2021-02-09 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
WO2006006357A1 (en) * 2004-07-12 2006-01-19 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
JP2014529636A (en) * 2011-08-04 2014-11-13 スリーエム イノベイティブプロパティズカンパニー Low equivalent weight polymer
US9711816B2 (en) 2011-08-04 2017-07-18 3M Innovative Properties Company Low equivalent weight polymers
CN115991826A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Perfluorinated phosphonic acid ion exchange membrane and preparation method thereof
CN115991826B (en) * 2021-10-18 2023-12-22 山东东岳未来氢能材料股份有限公司 Perfluorinated phosphonic acid ion exchange membrane and preparation method thereof
CN114085309A (en) * 2021-11-22 2022-02-25 浙江巨化技术中心有限公司 Solution polymerization preparation method of perfluorosulfonic acid resin
CN114213569A (en) * 2021-11-22 2022-03-22 浙江巨化技术中心有限公司 Suspension polymerization preparation method of perfluorosulfonic acid resin
CN114276482A (en) * 2021-11-22 2022-04-05 浙江巨化技术中心有限公司 Emulsion polymerization preparation method of perfluorosulfonic acid resin
KR20230077050A (en) * 2021-11-25 2023-06-01 한국화학연구원 A crosslinked fluorinated copolymer and the preparation method thereof
KR102587558B1 (en) 2021-11-25 2023-10-10 한국화학연구원 A crosslinked fluorinated copolymer and the preparation method thereof

Also Published As

Publication number Publication date
JP4406984B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4677898B2 (en) Method for producing electrolyte material for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
EP1914824B1 (en) Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
US7311989B2 (en) Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
JP4406984B2 (en) COATING LIQUID FOR ELECTROLYTE FOR SOLID POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE FOR SOLID POLYMER ELECTROLYTE FUEL CELL
JP5565410B2 (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
WO2011013577A1 (en) Electrolyte material, liquid composition, and membrane electrode assembly for solid polymer fuel cells
EP3476872B1 (en) Electrolyte material, method for producing same, and use of same
WO2013157395A1 (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
JP6856073B2 (en) Electrolyte material, liquid composition containing it and its use
WO2014175123A1 (en) Electrolyte material, liquid composition, and membrane electrode assembly for solid polymer fuel cells
US12018106B2 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
US8071254B2 (en) Crosslinkable fluoropolymer, crosslinked fluoropolymers and crosslinked fluoropolymer membranes
JP4714957B2 (en) Solid polymer electrolyte fuel cell
JP5521427B2 (en) Fuel cell system
US6914111B2 (en) Ion exchange polymer dispersion and process for its production
JP4848587B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
JP2002216804A (en) Solid polymer type fuel cell
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JP2002212246A (en) Block polymer, production method for polymer, and liquid composition containing block polymer
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JPH06275301A (en) Fuel cell
JP2000188110A (en) Solid high polymer electrolyte fuel cell and its gas diffusion electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees