JP2001183265A - Simultaneous multi-layer water sampler - Google Patents

Simultaneous multi-layer water sampler

Info

Publication number
JP2001183265A
JP2001183265A JP37697799A JP37697799A JP2001183265A JP 2001183265 A JP2001183265 A JP 2001183265A JP 37697799 A JP37697799 A JP 37697799A JP 37697799 A JP37697799 A JP 37697799A JP 2001183265 A JP2001183265 A JP 2001183265A
Authority
JP
Japan
Prior art keywords
water
water sampling
cylinder
piston
rope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37697799A
Other languages
Japanese (ja)
Inventor
Haruo Ando
晴夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP37697799A priority Critical patent/JP2001183265A/en
Publication of JP2001183265A publication Critical patent/JP2001183265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and inexpensive water collecting method capable of collecting water of a multi-layer at the same time with good accuracy by one operation in a comparatively shallow water area such as a river, a lake, a swamp, the coast of a sea area and the like. SOLUTION: A plumb 9 is fitted to each lower end of water collecting cells 1 connected in series to designated water collecting intervals. After the plumb 9 is set on its bottom by another rope 8, a rope 7 at the upper end of the water collecting cell 1 is pulled, and the load of the plumb 9 is applied to pull a piston 3 of each water collecting cell. Thus, simultaneous multi-layer water collecting can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、内湾や湖沼など
の比較的浅い水域で、水質分析に供する試料水を多層で
同時に精度良く採取するための採水器及びその採水方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water sampling device and a water sampling method for simultaneously and accurately collecting multiple layers of sample water for water quality analysis in relatively shallow water areas such as inner bays and lakes. .

【0002】[0002]

【従来の技術】水質分析に供する試料水を水深別に採取
するために使用する多層採水器は、外洋などの水深の大
きい水域を対象としたものについては、従来から使用さ
れている。しかし、これらの多層採水器は重量が大きく
ウインチなどを装備した専用の調査船が必要なことや、
10〜100m以上の広い水深間隔での採水を想定した
ものであり、沿岸海域のように水深が10〜30m程度
の浅い水域で、水深間隔1〜2m程度の多層採水を行う
場合には利用できない。そのため、従来はバンドン式採
水器や北原式採水器など、1回に所定の水深1層で試料
水が採取できる単層採水器を、水深を変えながら反復使
用して多層採水が行われてきた。
2. Description of the Related Art A multi-layer water sampling apparatus used for collecting water samples for water quality analysis at different depths has been used for a deep water area such as the open sea. However, these multi-layer water bottles are heavy and require a dedicated research vessel equipped with winches,
In the case where water sampling is performed at a wide water depth interval of 10 to 100 m or more, and in a shallow water area with a water depth of about 10 to 30 m such as coastal sea area, when performing multilayer water sampling with a water depth interval of about 1 to 2 m Not available. Conventionally, a single-layer water sampling device, such as a bandung type water sampling device or a Kitahara type water sampling device, which can collect sample water at a predetermined depth at one time, is used repeatedly while changing the water depth to achieve multi-layer water sampling. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかし、バンドン式採
水器や北原式採水器などの単層採水器による多層採水で
は、つぎのような問題点があった。 (イ) これらの採水器では1回の操作で1層でしか採
水できず、多層の水を採取するためには採水操作を反復
する必要がある。しかし、比較的重い採水器を、ロープ
で上げ下げせねばならないため、採水層数が多くなると
多大な労力と時間がかかり、10層を越える多層採水や
船舶の往来が激しい水域での多層採水は困難であった。 (ロ) 海域では潮流や流入河川による流れの影響で採
水器が流されやすい。このため水面下に投入したロープ
の長さで水深を判断し、目標水深の水を採取することが
難しい。しかもこうした状況は時々刻々と変化し、採水
操作の度ごとにその影響の程度も異なる。したがって細
かい水深間隔で採水しても、水深の差が小さい場合には
実際の採取水深が逆転してしまう恐れがあった。 (ハ) 河口域や沖合部などでは風や流れの影響がある
ため、調査船の位置を完全に固定することはできない。
こうした状況下で上層から下層までの採水を繰り返して
行った場合、時間の経過とともに採水地点が少しづつ移
動するため、水質の違いが鉛直方向の位置変化によるも
のか、水平方向の位置変化によるものかがはっきりしな
い恐れがあった。 以上に述べたような問題点から、水深にともなう水質の
濃度変化が著しい沿岸海域では、多層での水質観測の必
要性は認識されていたが、採水が困難であったため、詳
細な多層採水、分析結果はこれまでほとんど報告されて
いない。
However, multi-layer water sampling using a single-layer water sampling apparatus such as a bandung-type water sampling apparatus or a Kitahara-type water sampling apparatus has the following problems. (A) These water sampling devices can collect water only in one layer in one operation, and it is necessary to repeat the water sampling operation in order to collect multiple layers of water. However, since a relatively heavy water sampling device must be lifted and lowered with a rope, a large number of water sampling layers takes a great deal of labor and time, and multi-layer water sampling exceeding 10 layers and multi-layering in water areas where ships come and go are intense. Sampling was difficult. (B) In the sea area, the water sampler is likely to be washed away due to the tide and the flow from the incoming river. For this reason, it is difficult to determine the water depth based on the length of the rope inserted below the water surface and to collect water at the target water depth. In addition, this situation changes from moment to moment, and the degree of the effect varies with each sampling operation. Therefore, even if water is collected at small water depth intervals, the actual water depth may be reversed if the difference in water depth is small. (C) In the estuary and offshore areas, the position of the research vessel cannot be completely fixed due to the effects of wind and current.
In such a situation, if water is repeatedly sampled from the upper layer to the lower layer, the sampling point moves little by little with the lapse of time, so the difference in water quality may be due to a change in the vertical position or a change in the horizontal position. There was a fear that it was not clear whether it was due to. From the problems described above, the need for multi-layer water quality observation was recognized in coastal waters where water quality changes significantly with water depth, but it was difficult to collect water, so detailed multi-layer sampling was required. Water and analytical results have been rarely reported.

【0004】本発明は、このような問題点を解決しよう
とするもので、河川や湖沼、沿岸海域などの比較的浅い
水域において、1回の操作で多層の試料水を精度良く同
時に採取することのできる簡便で安価な採水方法を提供
することを課題とする。
[0004] The present invention is intended to solve such a problem, and is intended to simultaneously and accurately collect multiple layers of sample water in a single operation in a relatively shallow water area such as a river, a lake, or a coastal sea area. It is an object of the present invention to provide a simple and inexpensive water sampling method that can be performed.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の発明者は、市販の合成樹脂製注射器に着
目した。すなわち、上記の注射器を一列に並べ、1番目
の注射器のシリンダと2番目の注射器のピストン、2番
目の注射器のシリンダと3番目の注射器のピストンとい
う具合に多数の注射器をロープで順次直列に連結し、先
頭の注射器のピストンのロープと最後尾の注射器のシリ
ンダのロープを反対方向に引くことにより、最終的には
すべてのピストンが引かれて、各注射器を水中に配置し
て同様な操作を行えば各層の試料水が採取可能であるこ
とに気づいた。しかし、市販の注射器で上記の採水器を
作成しようとする場合、シリンダおよびピストンには、
直接ロープを連結できるような部分がないことと、ロー
プを引いていった場合に最終的にはピストンがシリンダ
から離脱してしまうことが問題であった。そのためシリ
ンダとピストンにロープを接続できる部分を設け、さら
にシリンダ内に一定量の試料水が吸引されたらピストン
の摺動を止め、ピストンがシリンダから離脱しないよう
なストッパー機構を有する注射器型の採水セルを考案す
ることにより課題を解決した。
Means for Solving the Problems In order to solve the above problems, the inventors of the present invention focused on a commercially available synthetic resin syringe. That is, the above-mentioned syringes are arranged in a line, and a number of syringes are sequentially connected in series with a rope, such as a cylinder of the first syringe, a piston of the second syringe, a cylinder of the second syringe, and a piston of the third syringe. By pulling the ropes of the first syringe piston and the last syringe cylinder in opposite directions, eventually all pistons are pulled, and each syringe is placed underwater to perform the same operation. I realized that it would be possible to collect sample water for each layer if I did. However, when trying to make the above water dispenser with a commercially available syringe, the cylinder and piston are:
There is a problem that there is no portion where the rope can be directly connected and that the piston eventually comes off the cylinder when the rope is pulled. For this purpose, a cylinder and piston are provided with a part where a rope can be connected, and furthermore, when a certain amount of sample water is sucked into the cylinder, the piston stops sliding and a syringe mechanism with a stopper mechanism that prevents the piston from coming off the cylinder. The problem was solved by devising a cell.

【0006】上記の直列に連結した採水セルの両端のロ
ープを引く方法としては、最下層の採水セルのシリンダ
のロープを錘に接続し、水面上の他端のロープを引き上
げれることにより各採水セルのピストンが引かれて試料
水をシリンダ内に吸引採取することで課題を解決した。
ただし、直接、採水セルのロープで錘を下ろすと、所定
の採水位置まで採水セルが配置される前に、ピストンが
引かれて水を吸引してしまうため、まず、錘には採水セ
ルの連鎖の他にもう一本別のロープを接続し、そのロー
プで錘を吊して海底まで下ろす。そのとき錘に引き込ま
れて下層側の採水セルから水中に沈降していくが、採水
セルが接続したロープに張力が加わらないように採水セ
ルを順次水中に投入していき、錘が着底したら初めて採
水セル側のロープを引いて各採水セルのシリンダ、ピス
トン間に張力を加えることにより、多層での同時採水を
可能にした。
[0006] As a method of pulling the ropes at both ends of the water collection cells connected in series, the rope of the cylinder of the lowermost water collection cell is connected to the weight, and the rope at the other end on the water surface is pulled up. The problem was solved by drawing the sample water into the cylinder by pulling the piston of each water sampling cell.
However, if the weight is directly lowered with the rope of the water sampling cell, the piston will be pulled and the water will be sucked before the water sampling cell is arranged to the predetermined water sampling position. In addition to the chain of water cells, another rope is connected, and a weight is suspended by the rope and lowered to the sea floor. At that time, it is drawn into the weight and sinks into the water from the lower water sampling cell, but the water sampling cells are sequentially introduced into the water so that tension is not applied to the rope connected to the water sampling cell, and the weight is For the first time after landing, pulling the rope on the water sampling cell side and applying tension between the cylinder and piston of each water sampling cell enabled simultaneous water sampling in multiple layers.

【0007】[0007]

【発明の実施の形態】以下、図面により本発明の実施形
態としての採水セル、および市販の合成樹脂製注射器に
取り付けて同採水セルを作成するための部品、さらに、
これらの採水セルを用いた同時多層採水の方法について
実施例に基づき図面を参照して説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a water sampling cell according to an embodiment of the present invention; FIG.
A method for simultaneous multi-layer water sampling using these water sampling cells will be described based on embodiments with reference to the drawings.

【0008】図1は、採水セル1の斜視図で、市販の合
成樹脂製注射器と同様な構造のシリンダ2とピストン3
で構成する。図1は、ピストンがいっぱいに引かれて採
水が完了した採水セルの状態を示している。そして図2
は、図1に示した採水セル1の分解斜視図である。
FIG. 1 is a perspective view of a water sampling cell 1 having a cylinder 2 and a piston 3 having the same structure as a commercially available synthetic resin syringe.
It consists of. FIG. 1 shows a state of a water sampling cell in which water is completely drawn by fully drawing a piston. And FIG.
FIG. 2 is an exploded perspective view of the water sampling cell 1 shown in FIG.

【0009】シリンダ2は合成樹脂製を素材とし、シリ
ンダ上端の開口部外側には、ピストンを指で押して試料
水をシリンダ内から吐き出す時に使用する指掛部2dを
設け、シリンダ底部2aには、外部から試料水を取り込
むための通水管2cと、ロープ接続孔2bを設ける。な
お、採水セルに市販のディスポーザブル型フィルターユ
ニットを取り付けて、現場ですぐに試料水のろ過ができ
るようにするため、通水管2cの形状は、市販の注射器
とルアーチップまたはルアーロック型にする。
The cylinder 2 is made of synthetic resin, and a finger hook 2d is provided outside the opening at the upper end of the cylinder to press the piston with a finger to discharge the sample water from the inside of the cylinder. A water pipe 2c for taking in sample water from outside and a rope connection hole 2b are provided. In addition, in order to attach a commercially available disposable type filter unit to the water sampling cell and to immediately filter the sample water on site, the shape of the water pipe 2c is a commercially available syringe and a luer tip or luer lock type. .

【0010】ピストン3も合成樹脂を素材とし、空気の
閉じこめによる浮力の発生を防ぐため軸の断面は十字型
にする。また、ピストンの下端にはゴム製シール部3b
を設けてシリンダ2の内部2fを液封し、円盤状のピス
トン頭部3aにはロープ接続孔3cを設ける。
The piston 3 is also made of a synthetic resin, and has a cross-shaped shaft in order to prevent the occurrence of buoyancy due to the trapping of air. A rubber seal 3b is provided at the lower end of the piston.
Is provided to seal the inside 2f of the cylinder 2 with liquid, and a rope connection hole 3c is provided in the disk-shaped piston head 3a.

【0011】シリンダの指掛部2dの両側にはストッパ
ー取り付け孔2eを設け、またピストン頭部3aの両側
にもストッパー取り付け孔3dを設ける。
A stopper mounting hole 2e is provided on both sides of the finger hook 2d of the cylinder, and a stopper mounting hole 3d is provided on both sides of the piston head 3a.

【0012】ストッパー4は、ストッパー用糸4bと両
端のフック4aからなり、シリンダとピストンのストッ
パー取り付け孔2e、3dにフック4aで接続すること
により、ピストン3がシリンダ2から脱離するのを防
ぐ。また、ストッパー用糸4bの長さを変えることによ
り採水量を調節できる。
The stopper 4 is composed of a stopper thread 4b and hooks 4a at both ends. The stopper 4 is connected to the stopper mounting holes 2e and 3d of the cylinder and the piston by the hook 4a to prevent the piston 3 from being detached from the cylinder 2. . Further, the amount of water taken can be adjusted by changing the length of the stopper thread 4b.

【0013】ストッパーについては、図1、2の実施例
の他に、後述の図3のシリンダ用部品6や、シリンダの
開口部付近内側に突起を設ける方法などが考えられる。
As for the stopper, in addition to the embodiment shown in FIGS. 1 and 2, a cylinder part 6 shown in FIG.

【0014】図3は、市販の合成樹脂製注射器に取り付
けて採水セルを作るための部品を、図4はその取り付け
方法を示したものである。
FIG. 3 shows components for making a water sampling cell by attaching to a commercially available synthetic resin syringe, and FIG. 4 shows a method of attaching the components.

【0015】ピストン用部品5は、市販の合成樹脂製注
射器のピストン頭部に取り付けて、ロープ接続孔5aを
設けるためのもので、図4(A)に示すように、2枚の
ピストン用部品5のT字型の切り込み5bにピストン頭
部3aとピストン軸部をはめ込み、最終的には図4
(B)のように2枚の部品を密着させて用いる。
The piston part 5 is attached to the piston head of a commercially available synthetic resin syringe to provide a rope connection hole 5a. As shown in FIG. 4A, two piston parts are used. 5, the piston head 3a and the piston shaft are fitted into the T-shaped notch 5b.
As shown in (B), two parts are used in close contact.

【0016】シリンダ用部品6は、図4(B)に示すよ
うに、市販の合成樹脂製注射器のシリンダ1にはめ込ん
で、ロープ接続孔6aを設けるとともに、シリンダ内部
に挿入された突起部6bにより、ピストンの摺動範囲を
制限し、ストッパー機能を付加するためのもので、この
突起部6bの長さにより採水量が調節できる。取り付け
方は、まずピストン3をシリンダ2の途中まで嵌入す
る。次に、シリンダ用部品6の両側の突起部6bで、十
字型のピストン3の軸を対角線状に挟む。シリンダ用部
品6を回転してシリンダ2の指掛部2dの幅の狭い2方
向に切り込み6cの位置を合わせ、シリンダ用部品6を
シリンダ内に押し込む。いっぱいまで押し込んだら、シ
リンダ用部品6を直角に回転させ、切り込み6dに指掛
部2dの幅が広い部分を咬ませて上下にずれないように
固定される。シリンダ用部品6の取り付けが完了した
ら、シリンダ底部2aのぐらつきを防ぐために、輪ゴム
6eをかける。
As shown in FIG. 4 (B), the cylinder part 6 is fitted into the cylinder 1 of a commercially available synthetic resin syringe, provided with a rope connection hole 6a, and provided with a projection 6b inserted inside the cylinder. The purpose of this is to limit the sliding range of the piston and add a stopper function, and the amount of water taken can be adjusted by the length of the projection 6b. In mounting, first, the piston 3 is fitted into the cylinder 2 halfway. Next, the axis of the cross-shaped piston 3 is diagonally sandwiched between the protrusions 6b on both sides of the cylinder component 6. The cylinder part 6 is rotated to position the cut 6c in two directions where the finger hook 2d of the cylinder 2 is narrow, and the cylinder part 6 is pushed into the cylinder. When the cylinder part 6 is fully pushed, the cylinder part 6 is rotated at a right angle, and the notch 6d is fixed so that the wide part of the finger hook 2d is bitten by the notch 6d. When the mounting of the cylinder component 6 is completed, a rubber band 6e is applied to prevent the wobble of the cylinder bottom 2a.

【0017】採水セル1を直列に連結するために使用す
るロープ7は、両端にフック7aを設けて、着脱を容易
にすることにより、地点による水深間隔の変更等に対応
できるようにする。
The ropes 7 used to connect the water sampling cells 1 in series are provided with hooks 7a at both ends to facilitate attachment / detachment so that it is possible to cope with a change in water depth interval depending on a point.

【0018】次に実際の採水方法について、図5に示す
模式図により説明する。採水セル1を採水間隔に応じた
ロープ7で直列に連結し、その末端のロープ7をより戻
し10を介して錘9に接続する。より戻し10には、錘
吊り下げ用ロープ8も接続する。採水操作開始後、錘9
が着底するまでは図5(A)に示すように、船から錘9
を吊り下げ用ロープ8で水中に少しずつ下ろし、それと
同時に、ロープ7で直列に接続された採水セルを、錘9
に接続された最下層の採水セル1から順に水中に投入す
ることにより、採水セル1は錘9に引かれて水中に沈ん
でいく。この時、途中で錘9の荷重がかかってシリンダ
内に水が吸引されることがないように採水セル側のロー
プ7は弛ませおく。
Next, an actual water sampling method will be described with reference to a schematic diagram shown in FIG. The water sampling cell 1 is connected in series with a rope 7 corresponding to the water sampling interval, and the terminal rope 7 is returned to the weight 9 via a return 10. The rope 10 for hanging a weight is also connected to the return 10. After starting the water sampling operation, weight 9
As shown in FIG. 5 (A), the weight 9
Is gradually lowered into the water with a hanging rope 8, and at the same time, a sampling cell connected in series with the rope 7 is
The water is taken into the water in order from the lowermost water sampling cell 1 connected to the water collecting cell 1, and the water sampling cell 1 is pulled by the weight 9 and sinks in the water. At this time, the rope 7 on the water sampling cell side is slackened so that the weight of the weight 9 is not applied on the way and water is sucked into the cylinder.

【0019】錘9が着底したら図5(B)に示すよう
に、錘吊り下げ用ロープ8はそのままに固定し、採水セ
ルを連結したロープ7を1〜2分間細かく上下させ、錘
9の荷重を各層の採水セルのシリンダ、ピストン間に加
え、試料水を採水セル内に吸引する。
When the weight 9 has landed, as shown in FIG. 5 (B), the weight hanging rope 8 is fixed as it is, and the rope 7 connecting the water sampling cells is finely moved up and down for 1 to 2 minutes. Is applied between the cylinder and the piston of the water sampling cell of each layer, and the sample water is sucked into the water sampling cell.

【0020】すべての採水セル内に試料水が吸引された
と考えられたら、図5(C)に示すように、再び錘9を
吊り下げ用ロープ8を引き上げ、それと同時に採水セル
側のロープ7も引き上げて、上層側の採水セルから順に
船上に回収する。
If it is considered that the sample water has been sucked into all of the water sampling cells, the weight 9 is suspended again and the ropes 8 are lifted, as shown in FIG. 7 is also pulled up and collected on board in order from the upper water sampling cell.

【0021】[0021]

【発明の実施例】図6は、本発明を用いて、東京湾で多
層採水を行ない、水中の栄養塩濃度の鉛直濃度分布を測
定した結果を示したものである。全水深が約25mのこ
の地点では、水深間隔約1mで採水を行ったが、採水に
要した時間は15分以内であった。また、図6のよう
に、採水試料水を分析して得られた硝酸性窒素(A)、
亜硝酸性窒素(B)、アンモニア性窒素(C)、りん酸
性りん(D)の鉛直濃度分布は、水深にともなって濃度
が比較的なめらかに変化していることから、多層採水が
精度良く行われたと考えられる。
FIG. 6 shows the results of measuring the vertical distribution of nutrient concentration in water by performing multi-layer water sampling in Tokyo Bay using the present invention. At this point where the total water depth was about 25 m, water sampling was performed at a water depth interval of about 1 m, but the time required for water sampling was within 15 minutes. Also, as shown in FIG. 6, nitrate nitrogen (A) obtained by analyzing a sample water sample,
The vertical concentration distributions of nitrite nitrogen (B), ammonia nitrogen (C), and phosphoric acid phosphorus (D) vary relatively smoothly with water depth, so multi-layer sampling can be performed with high accuracy. Probably done.

【0022】[0022]

【発明の効果】本発明を用いることにより、以下に挙げ
る効果がある。従来は困難であった、1m程度の狭い水
深間隔での多層採水が可能であり、地点による採水間隔
の変更も容易に行うことができる。
According to the present invention, the following effects can be obtained. Multi-layer water sampling at a narrow water depth interval of about 1 m, which was difficult in the past, is possible, and it is possible to easily change the water sampling interval depending on a point.

【0023】風などの影響で観測船が動いても、多層の
試料水がほぼ同時に採取されるため、観測船の位置変化
に影響されずに精度の高い採水が可能となり、また採水
に要する時間は採水層数に関係せず、非常に短い。この
ため船舶の航行などにより、時間的制約のある海域など
でも、多層での採水が可能になる。
Even if the observation vessel moves due to the wind or the like, since multiple layers of sample water are sampled almost simultaneously, highly accurate sampling can be performed without being affected by changes in the position of the observation vessel. The required time is very short regardless of the number of sampling layers. For this reason, multi-layer water sampling can be performed even in a sea area where time is limited due to navigation of a ship or the like.

【0024】採水に電源等を必要とせず、採水操作が非
常に簡単である。
[0024] A water supply operation is very simple without requiring a power source or the like for water collection.

【0025】採水器を非常に安価に制作できる。[0025] The water dispenser can be manufactured very inexpensively.

【0026】試料水を吸引する通水管にキャップをする
ことにより、そのまま容器として試料水を実験室に持ち
帰ることができる。
By capping the water pipe for sucking the sample water, the sample water can be brought back to the laboratory as a container.

【0027】通水管に市販のディスポーザブル型フィル
タユニットを装着することにより、現地ですぐろ過試料
を得ることができる。
By attaching a commercially available disposable filter unit to the water pipe, a filtered sample can be obtained immediately on site.

【0028】河川や湖沼などで水中にロープで直列に連
結した複数の採水セルを水平に配置し、両端から引くこ
とにより、水平方向の同時採水にも適用できる。
By arranging a plurality of water sampling cells connected in series in a river or a lake with a rope in a horizontal line and pulling them from both ends, the present invention can also be applied to simultaneous water sampling in the horizontal direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】採水セルの実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a water sampling cell.

【図2】採水セルの実施例を示す分解斜視図である。FIG. 2 is an exploded perspective view showing an embodiment of a water sampling cell.

【図3】市販の注射器を用いた採水セル作成用部品の実
施例を示す斜視図である。 (A)ピストン用部品 (B)シリンダ用部品
FIG. 3 is a perspective view showing an embodiment of a part for preparing a water sampling cell using a commercially available syringe. (A) Piston parts (B) Cylinder parts

【図4】採水セル作成用部品の取り付け方法と完成時の
状態を示す斜視図である。 (A)ピストン用部品の取り付け過程を示す斜視図 (B)部品を取り付けて完成した採水セルの斜視図
FIG. 4 is a perspective view showing a mounting method of a component for preparing a water sampling cell and a state at the time of completion. (A) Perspective view showing a process of attaching parts for a piston (B) Perspective view of a water sampling cell completed by attaching parts

【図5】採水手順を示す模式図である。 (A)錘が着底するまでの手順 (B)採水セルに試料水を採取する時の手順 (C)採取した試料水を回収する手順FIG. 5 is a schematic diagram showing a water sampling procedure. (A) Procedure until the weight reaches the bottom (B) Procedure for collecting the sample water in the water sampling cell (C) Procedure for collecting the collected sample water

【図6】本採水器を用いた観測結果 (A)硝酸性窒素の鉛直濃度分布図 (B)亜硝酸性窒素の鉛直濃度分布図 (C)アンモニア性窒素の鉛直濃度分布図 (D)りん酸性りんの鉛直濃度分布図Fig. 6 Observation results using this water sampling device (A) Vertical concentration distribution map of nitrate nitrogen (B) Vertical concentration distribution map of nitrite nitrogen (C) Vertical concentration distribution map of ammonia nitrogen (D) Vertical concentration distribution map of phosphoric acid phosphorus

【符号の説明】[Explanation of symbols]

1 採水セル 2 シリンダ 2a シリンダ底部 2b ロープ接続孔 2c 通水管 2d 指掛部 2e ストッパー取り付け孔 2f 液封部 3 ピストン 3a ピストン頭部 3b シール部 3c ロープ接続孔 3d ストッパー取り付け孔 4 ストッパー 4a フック 4b ストッパー用糸 5 ピストン用部品 5a ロープ接続孔 5b ピストンはめ込み部 6 シリンダ用部品 6a ロープ接続孔 6b 突起部 6c 切込部 6d 切込部 6e 輪ゴム 7 採水セル接続用ロープ 8 錘吊り下げ用ロープ 9 錘 10 より戻し DESCRIPTION OF SYMBOLS 1 Sampling cell 2 Cylinder 2a Cylinder bottom 2b Rope connection hole 2c Water passage 2d Finger hook portion 2e Stopper mounting hole 2f Liquid seal portion 3 Piston 3a Piston head 3b Seal portion 3c Rope connection hole 3d Stopper mounting hole 4 Stopper 4a Hook 4b Stopper thread 5 Piston part 5a Rope connection hole 5b Piston fitting part 6 Cylinder part 6a Rope connection hole 6b Projection part 6c Cut part 6d Cut part 6e Rubber band 7 Rope for connecting water sampling cell 8 Rope for hanging weight 9 Return from weight 10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリンダ(2)と、同シリンダ内に嵌入さ
れ軸方向に慴動可能なピストン(3)からなる注射器型
容器で、同シリンダ底部(2a)と同ピストン頭部(3
a)にはそれぞれロープ接続孔(2b、3c)を設け、
さらにストッパー(4)によりピストン(3)の摺動距
離を一定に保つとともにピストン(3)がシリンダ
(2)から離脱しないように構成された採水セル
(1)。
1. A syringe type container comprising a cylinder (2) and a piston (3) fitted in the cylinder and slidable in the axial direction, wherein the cylinder bottom (2a) and the piston head (3) are provided.
a) is provided with rope connection holes (2b, 3c),
Further, a water sampling cell (1) configured so that the sliding distance of the piston (3) is kept constant by the stopper (4) and the piston (3) is not separated from the cylinder (2).
【請求項2】市販の合成樹脂製注射器のピストン(3)
およびシリンダ(2)に装着することにより、請求項1
の機能を有する採水セル(1)を作成するための取り付
け部品(5,6)。
2. A piston (3) for a commercially available synthetic resin syringe.
Claim 1 by being mounted on the cylinder and the cylinder (2).
Mounting parts (5, 6) for producing a water sampling cell (1) having the function of (1).
【請求項3】(イ)ピストン(3)を押し込んだ複数個
の請求項1に記載した採水セル(1)のシリンダ(2)
とピストン(3)をロープ(7)で相互に連結して採水
セルの直列な連鎖を作り、最下層用の採水セルのシリン
ダ(2)をロープで錘(9)と結ぶ。 (ロ)上記の錘には、別に吊り下げ用ロープ(8)も接
続する。 (ハ)吊り下げ用ロープ(8)で上記の錘(9)を少し
ずつ水中に下ろし、それと同時に、錘(9)に結ばれた
下層側の採水セル(1)から順に、採水セル間を連結す
るロープ(7)に荷重をかけないようにしながら水中へ
投入する。 (ニ)錘(9)が着底したら採水セル(1)を連結して
いるロープ(7)を引いて各採水セル(1)に錘(9)
の荷重をかけ、各採水セル内(2f)に試料水を吸引す
る。 (ホ)錘(9)を再び上記の吊り下げロープ(8)で吊
り上げ、それに合わせて上層の採水セル(1)から順番
に回収する。 以上のようにして行う採水方法。
3. A cylinder (2) of a water sampling cell (1) according to claim 1, wherein a plurality of pistons (3) are pushed in.
The piston (3) and the piston (3) are interconnected by a rope (7) to form a serial chain of water sampling cells, and the cylinder (2) of the water sampling cell for the lowermost layer is connected to the weight (9) by a rope. (B) A hanging rope (8) is also connected to the weight. (C) The weight (9) is lowered into the water little by little with the hanging rope (8), and at the same time, the water sampling cells are sequentially arranged from the lower water sampling cell (1) connected to the weight (9). The rope (7) connecting the spaces is put into the water without applying a load. (D) When the weight (9) has landed, pull the rope (7) connecting the water sampling cell (1) and pull the weight (9) to each water sampling cell (1).
Is applied, and sample water is sucked into each water sampling cell (2f). (E) The weight (9) is lifted again by the above-mentioned hanging rope (8), and the weight (9) is sequentially collected from the upper water sampling cell (1). A water sampling method performed as described above.
JP37697799A 1999-12-22 1999-12-22 Simultaneous multi-layer water sampler Pending JP2001183265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37697799A JP2001183265A (en) 1999-12-22 1999-12-22 Simultaneous multi-layer water sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37697799A JP2001183265A (en) 1999-12-22 1999-12-22 Simultaneous multi-layer water sampler

Publications (1)

Publication Number Publication Date
JP2001183265A true JP2001183265A (en) 2001-07-06

Family

ID=18508053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37697799A Pending JP2001183265A (en) 1999-12-22 1999-12-22 Simultaneous multi-layer water sampler

Country Status (1)

Country Link
JP (1) JP2001183265A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450558Y1 (en) 2008-08-13 2010-10-12 주식회사 중원엔지니어링 Sensing device for underwater bottom of the river
CN101413849B (en) * 2008-11-24 2010-12-01 浙江大学 Deep sea layered air-tight water sampling system
CN103335863A (en) * 2013-07-16 2013-10-02 上海大学 Collector for particles in water
CN107144445A (en) * 2017-04-21 2017-09-08 中国水利水电科学研究院 A kind of water sample collects location device
CN108426739A (en) * 2018-05-24 2018-08-21 安徽省佳逸环保科技有限公司 A kind of combined type water-quality sampler
CN109580295A (en) * 2018-11-08 2019-04-05 陈伟 Adjustable-depth sampling rack structure for environmental project water quality monitoring
CN109724846A (en) * 2019-02-18 2019-05-07 徐明立 A kind of continuous sampling device of hydrology acquisition
CN111964979A (en) * 2020-08-27 2020-11-20 滁州学院 A sampling device for hydrology information acquisition
CN112255029A (en) * 2020-09-08 2021-01-22 浙江省海洋水产研究所 Portable shipborne crank type water sampler lifting device capable of being fixed on ship edge
CN112414771A (en) * 2020-09-29 2021-02-26 浙江省海洋水产研究所 Bottom-touching type anti-interference sampling equipment and water sampling method for seabed water sample
CN116183307A (en) * 2023-04-24 2023-05-30 北京承启通科技有限公司 Multilayer water quality continuous sampling device and sampling method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450558Y1 (en) 2008-08-13 2010-10-12 주식회사 중원엔지니어링 Sensing device for underwater bottom of the river
CN101413849B (en) * 2008-11-24 2010-12-01 浙江大学 Deep sea layered air-tight water sampling system
CN103335863A (en) * 2013-07-16 2013-10-02 上海大学 Collector for particles in water
CN107144445A (en) * 2017-04-21 2017-09-08 中国水利水电科学研究院 A kind of water sample collects location device
CN107144445B (en) * 2017-04-21 2019-07-02 中国水利水电科学研究院 A kind of water sample collection location device
CN108426739A (en) * 2018-05-24 2018-08-21 安徽省佳逸环保科技有限公司 A kind of combined type water-quality sampler
CN108426739B (en) * 2018-05-24 2021-01-01 安徽省佳逸环保科技有限公司 Combined water quality sampler
CN109580295B (en) * 2018-11-08 2021-05-07 丁丹丹 Depth-adjustable sampling frame structure for water quality monitoring of environmental engineering
CN109580295A (en) * 2018-11-08 2019-04-05 陈伟 Adjustable-depth sampling rack structure for environmental project water quality monitoring
CN109724846A (en) * 2019-02-18 2019-05-07 徐明立 A kind of continuous sampling device of hydrology acquisition
CN111964979A (en) * 2020-08-27 2020-11-20 滁州学院 A sampling device for hydrology information acquisition
CN111964979B (en) * 2020-08-27 2021-03-16 滁州学院 A sampling device for hydrology information acquisition
CN112255029A (en) * 2020-09-08 2021-01-22 浙江省海洋水产研究所 Portable shipborne crank type water sampler lifting device capable of being fixed on ship edge
CN112255029B (en) * 2020-09-08 2024-02-27 浙江省海洋水产研究所 Portable shipborne crank type water sampler lifting device capable of being fixed on ship side
CN112414771A (en) * 2020-09-29 2021-02-26 浙江省海洋水产研究所 Bottom-touching type anti-interference sampling equipment and water sampling method for seabed water sample
CN112414771B (en) * 2020-09-29 2024-02-09 浙江省海洋水产研究所 Bottoming type seabed water sample anti-interference sampling equipment and water sampling method
CN116183307A (en) * 2023-04-24 2023-05-30 北京承启通科技有限公司 Multilayer water quality continuous sampling device and sampling method thereof

Similar Documents

Publication Publication Date Title
JP2001183265A (en) Simultaneous multi-layer water sampler
CN209027853U (en) UAV system automatic water quality sampler
CN111458474B (en) Water quality online detection method based on unmanned aerial vehicle
CN104990765B (en) A kind of monitoring instrument and monitoring method for offshore and estuarine deposit pore water
CN111443180B (en) Water quality detection system based on unmanned aerial vehicle
CN110398397B (en) High dam deep reservoir layering water sample multidimensional fidelity acquisition and water quality monitoring artificial intelligence device
CN110631870A (en) Gas taking device and gas taking method suitable for seabed free gas
CN114593952B (en) Water body micro-plastic collecting device and three-dimensional collecting system
Johnson et al. Continuous determination of nitrate concentrations in situ
AU2021106187A4 (en) Columnar Sediment Sampling System with In-Situ Data Acquisition Function
CN212110780U (en) Airborne water quality sampler
CN111426519B (en) Airborne water quality sampler
CN212111387U (en) Water quality detection system based on unmanned aerial vehicle
CN101726286A (en) Method for measuring underwater vertical lifting section
Franks et al. Sampling techniques and strategies for coastal phytoplankton blooms
CN108426506B (en) Ice layer thickness measuring device and method
CN111175464A (en) Water quality index vertical distribution monitoring system under pressure check and use method
CN110749478A (en) Offshore sediment in-situ interstitial water and overlying water collecting device
CN115791291A (en) Water quality monitoring's collection system
CN212111386U (en) Airborne water quality detection device
CN215005329U (en) River course sewage monitoring devices based on thing networking
CN208043489U (en) Full-automatic water quality divides sampling device
Sansone et al. Kilo Nalu: physical/biogeochemical dynamics above and within permeable sediments
CN212110767U (en) Flow guiding device
CN212082968U (en) Multi-stage sampler