CN212111386U - Airborne water quality detection device - Google Patents

Airborne water quality detection device Download PDF

Info

Publication number
CN212111386U
CN212111386U CN202020935252.4U CN202020935252U CN212111386U CN 212111386 U CN212111386 U CN 212111386U CN 202020935252 U CN202020935252 U CN 202020935252U CN 212111386 U CN212111386 U CN 212111386U
Authority
CN
China
Prior art keywords
water quality
container
valve plate
water
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020935252.4U
Other languages
Chinese (zh)
Inventor
张放
张潇小
解娟
章樑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui China Science And Technology Competition Technology Co ltd
Original Assignee
Anhui China Science And Technology Competition Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui China Science And Technology Competition Technology Co ltd filed Critical Anhui China Science And Technology Competition Technology Co ltd
Priority to CN202020935252.4U priority Critical patent/CN212111386U/en
Application granted granted Critical
Publication of CN212111386U publication Critical patent/CN212111386U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The utility model belongs to the technical field of water quality testing, concretely relates to airborne water quality testing device, including installing the detection container in the unmanned aerial vehicle below, be equipped with the water quality testing sensor in the detection container, the water quality testing sensor is including one or more detecting element that is used for detecting following one kind or several kinds of parameters: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD; detect container upper portion and be equipped with the inlet, detect the container bottom and be equipped with the leakage fluid dram, be equipped with automatically controlled valve on the leakage fluid dram, the induced duct can produce the negative pressure at the leakage fluid dram that detects the container, can be quick when the valve plate is opened take out the quality of water sample in the detection container to shed to the unmanned aerial vehicle afterbody, can improve detection module's circulation detection efficiency on the one hand, on the other hand can avoid the discarded quality of water sample to splash the electrical components of fuselage on shedding the in-process.

Description

Airborne water quality detection device
Technical Field
The utility model belongs to the technical field of water quality testing, concretely relates to airborne water quality testing device.
Background
Traditional water quality testing equipment can't realize the multiple spot short-term test to target waters on a large scale, and along with the gradual maturity of unmanned aerial vehicle technique, people begin to utilize unmanned aerial vehicle to carry out quick sampling to the water, operations such as detection, but unmanned aerial vehicle water quality sampling test equipment among the prior art has a plurality of defects, one of them is when sampling equipment is put in again, because the hawser receives wind-force, unrestrained influence etc. of water, hawser length can't really reflect the degree of depth that the sampling container submerged the water layer, consequently, the water to the target water layer that can't be accurate samples, it is second that current sampling equipment and check out test can't carry out continuous sampling and detection to the water in a plurality of waters of water layers simultaneously, detection efficiency.
SUMMERY OF THE UTILITY MODEL
The utility model aims at providing an airborne water quality testing device can carry out the continuous long-range detection of not navigating back to multiple spot position waters, improves detection efficiency.
The utility model discloses the technical scheme who takes specifically as follows:
the utility model provides an airborne water quality testing device, is including installing the detection container in unmanned aerial vehicle below, be equipped with the water quality testing sensor in the detection container, the water quality testing sensor is including one or more detecting element that is used for detecting following one kind or several kinds of parameter: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD; the upper part of the detection container is provided with a liquid inlet, the bottom of the detection container is provided with a liquid outlet, and the liquid outlet is provided with an electric control valve.
The liquid inlet is positioned at the upper end of the side wall of the detection container, and a flashboard for opening and closing the liquid inlet is arranged on the inner side of the liquid inlet.
The flashboard is movably matched with the inner wall of the detection container along the height direction of the detection container.
The electric control valve comprises a valve plate arranged on the inner side of the liquid discharge port, and the edge of the valve plate is in blocking connection with the edge of the inner side of the liquid discharge port.
The top surface of the valve plate is conical surface-shaped.
The valve plate is connected with a valve plate driving element arranged below the detection container, and the valve plate driving element is a linear motor or an electromagnetic clutch.
The valve plate is fixedly connected with the gate plate through a connecting rod, the gate plate is opened when the valve plate is closed, and the gate plate is closed when the valve plate is opened.
An induced duct horizontally arranged is further arranged below the detection container, horn-shaped structures are arranged at two ends of the induced duct, and the liquid outlet is communicated with the middle of the induced duct.
The valve plate driving element is installed at the bottom of the induced draft pipe, and a telescopic rod of the valve plate driving element penetrates through the induced draft pipe and is fixedly connected with the valve plate.
A water quality detection system based on an unmanned aerial vehicle comprises an airborne water quality detection device.
The utility model discloses the technological effect who gains does: the induced duct can produce the negative pressure at the leakage fluid dram that detects the container, can be quick when the valve plate is opened take out the quality of water sample that will detect in the container to the jettisoning can improve detection module's circulation detection efficiency on the one hand to the unmanned aerial vehicle afterbody, and on the other hand can avoid the dumped quality of water sample to sputter on the electrical components of fuselage in the jettisoning process.
Drawings
Fig. 1 is a perspective view of a water quality detecting system based on an unmanned aerial vehicle according to an embodiment of the present invention;
fig. 2 is a top view of the water quality detecting system based on the unmanned aerial vehicle provided by the embodiment of the present invention;
fig. 3 is an exploded view of the water quality detecting system based on the unmanned aerial vehicle provided by the embodiment of the present invention, in which the unmanned aerial vehicle is hidden;
FIG. 4 is a cross-sectional view A-A of FIG. 3;
FIG. 5 is a cross-sectional view B-B of FIG. 4;
fig. 6 is a schematic diagram of a locked state of the pressure sensitive locking mechanism according to the embodiment of the present invention;
fig. 7 is a schematic diagram of an unlocked state of the pressure sensitive locking mechanism according to an embodiment of the present invention;
fig. 8 is a schematic view of a wedge-shaped locking assembly of the pressure-sensitive locking mechanism according to an embodiment of the present invention;
fig. 9 is a perspective view of a water quality detecting system according to an embodiment of the present invention, in which a sampling module is in a recovery state;
fig. 10 is a perspective view of a water quality detecting system according to an embodiment of the present invention; in the figure, a sampling module is in a state of waiting for recovery;
FIG. 11 is a sectional view of the water quality detecting system shown in FIG. 10 in a state;
fig. 12 is a cross-sectional view C-C of fig. 11.
Detailed Description
In order to make the objects and advantages of the present invention more apparent, the present invention will be described in detail with reference to the following embodiments. It is to be understood that the following text is only intended to describe one or several particular embodiments of the invention, and does not strictly limit the scope of the claims specifically claimed.
Example 1
As shown in fig. 1 and 2, a water quality detection system based on unmanned aerial vehicle, including unmanned aerial vehicle 10, sampling module 20 and detection module 30, detection module 30 and sampling module 20 all carry on unmanned aerial vehicle 10, still are equipped with on the unmanned aerial vehicle 10 and are used for releasing sampling module 20 to the water body that awaits measuring and can retrieve the receiving and releasing device 40 to unmanned aerial vehicle 10 with sampling module 20 from the water body that awaits measuring in, sampling module 20 is used for gathering the water body sample that awaits measuring, detection module 30 is used for detecting the water body sample of sampling, unmanned aerial vehicle 10 has wireless communication module, detection module 30's detection data passes through wireless communication module and sends to remote terminal. The utility model provides a fixed point quick sampling in large tracts of land waters can be realized to unmanned aerial vehicle 10's water quality testing system, carries on simultaneously and carries on machine detection module 30, realizes the teledetection to the water quality parameter and the teletransmission of data, has improved the water quality testing efficiency in large tracts of land waters, can establish waters quality of water distribution map, provides more directly perceived accurate detection data.
Preferably, as shown in fig. 3 to 12, the sampling module 20 includes a sampling container 21, the sampling container 21 is provided with a liquid inlet and outlet, the liquid inlet and outlet is connected to a pressure-sensitive suction module, and the pressure-sensitive suction module is configured such that when the sampling container 21 is submerged into a water body to a preset depth, a water pressure of the preset depth can trigger the pressure-sensitive suction module to act so that the pressure-sensitive suction module sucks the water body at the preset depth position into the sampling container 21; the sampling container 21 is a cylindrical container with one closed end and the other open end, the pressure-sensitive suction module comprises a piston 211 which is arranged in the sampling container 21 in a sliding manner along the axial direction of the sampling container 21, a rubber ring which is attached to the inner annular surface of the sampling container 21 is arranged at the edge of the piston 211, a first elastic element 2123 is arranged between the piston 211 and the sampling container 21, and the first elastic element 2123 is assembled in a manner that the elastic force of the first elastic element 2123 can drive the piston 211 to slide in a direction away from the closed end of the sampling container 21; the pressure-sensitive suction module further includes a pressure-sensitive locking mechanism which is fitted to be able to lock the piston 211 at a prescribed position in the sampling vessel 21, and which is able to release the piston 211 to slide in a direction away from the closed end of the sampling vessel 21 by the first elastic member 2123 when the sampling vessel 21 is submerged in the body of water to a preset depth. The utility model provides a sampling module 20 can utilize the water pressure automatic triggering suction module action of specific degree of depth, and then the water sample of the specific degree of depth of accurate collection, avoids the sampling depth error that factors such as transmission sampling process apoplexy, unrestrained led to the fact.
Specifically, the piston 211 is connected to a piston rod 212 on a side facing the open end of the sampling container 21, the end of the piston rod 212 far away from the piston 211 is provided with an end plate 213, the end plate 213 is provided with a locking pin 221 parallel to the piston rod 212, a locking seat 22 fixedly connected with the sampling container 21 is arranged beside the sampling container 21, a pin hole for the locking pin 221 to pass through is arranged on the locking seat 22, a wedge-shaped bolt 223 is arranged in the locking seat 22, the wedge-shaped bolt 223 radially protrudes to the inner side of the pin hole along the pin hole, the locking pin 221 is provided with a wedge-shaped slot matched with the wedge-shaped bolt 223, the wedge-shaped bolt 223 is arranged on a sliding seat 222, the sliding base 222 is arranged in the locking base 22 along the pin hole in a sliding manner, a plunger 224 is arranged on the sliding base 222, the axial direction of the plunger 224 is parallel to the sliding direction of the sliding seat 222, and the plunger 224 protrudes to the outside of the locking seat 22 through a pore channel formed on the locking seat 22; a second elastic element 225 is further arranged between the sliding base 222 and the locking base 22, the elastic force of the second elastic element 225 is set to be opposite to the pressure direction of the water body on the end surface of the plunger 224 after the sampling container 21 is submerged in the water body, when the pressure of the water body on the end surface of the plunger 224 is smaller than the elastic force of the second elastic element 225, the sliding base 222 drives the wedge-shaped latch 223 to protrude into the pin hole under the action of the second elastic element 225, and when the pressure of the water body on the end surface of the plunger 224 is larger than the elastic force of the second elastic element 225, the sliding base 222 drives the wedge-shaped latch 223 to move out of the pin hole under the push of the plunger 224. Under normal pressure, wedge spring bolt 223 is protruding inwards in the pinhole under the effect of second elastic element 225, and when wedge draw-in groove and wedge spring bolt 223 just right at this moment, wedge spring bolt 223 is with the chucking of lock pin 221, and then prevents piston 211 upward movement, and when the water pressure that plunger 224 received was greater than second elastic element 225's elasticity, plunger 224 promoted slide 222 and slides, makes wedge spring bolt 223 withdraw from in the pinhole, and lock pin 221 relieved spacing this moment, and piston 211 upward movement and then the water sample of this water layer under the effect of first elastic element 2123.
Further, the wedge-shaped bolt 223 is movably connected with the sliding base 222, the relative movement direction of the wedge-shaped bolt 223 and the sliding base 222 is parallel to the sliding direction of the sliding base 222, a third elastic element 228 is further arranged between the wedge-shaped bolt 223 and the sliding base 222, the third elastic element 228 is assembled such that the elastic force of the third elastic element can drive the wedge-shaped bolt 223 to move towards the center direction of the pin hole relative to the sliding base 222, and a limit member 229 for limiting the displacement amount of the wedge-shaped bolt 223 on the sliding block is further arranged between the bolt and the sliding base 222; the wedge-shaped bolt 223 is in sliding fit with a guide hole arranged on the sliding seat 222 through a guide post 227, and the limit component 229 comprises a limit block arranged at one end of the guide post 227 far away from the wedge-shaped bolt and a limit block arranged at one end of the guide hole far away from the wedge-shaped bolt 223; the wedge-shaped bolt 223 is elastically connected with the sliding base 222 so as to facilitate the resetting of the locking pin 221, the elastic coefficient of the third elastic element 228 is smaller than that of the second elastic element 225, when the locking pin 221 is inserted into the pin hole, the wedge-shaped bolt 223 is pushed to contract under the action of the inclined plane above the wedge-shaped bolt 223, and at the moment, the wedge-shaped bolt 223 compresses the third elastic element 228, so that the sliding base 222 does not need to be pushed to slide, and the resistance when the locking pin 221 is inserted into the pin hole is reduced. The locking seat 22 is further provided with an adjusting bolt 226, the adjusting bolt 226 is in threaded connection with a threaded hole formed in the locking seat 22, one end of the adjusting bolt 226, which is located in the threaded hole, is abutted to the second elastic element 225, the elastic force of the second elastic element 225 can be adjusted by rotating the adjusting bolt 226, and therefore the critical pressure when the plunger 224 pushes the sliding seat 222 is adjusted, so that water bodies with different depths can be sampled according to actual requirements.
Further, at least one rodless piston 214 is arranged between the piston 211 and the closed end of the sampling container 21, and a rubber ring attached to the inner annular surface of the sampling container 21 is arranged on the peripheral surface of the rodless piston 214; the liquid inlet and outlet ports are at least two, the number of the liquid inlet and outlet ports is equal to the number of the non-inductive pistons 211 plus 1, each liquid inlet and outlet port is arranged on the annular side wall of the sampling container 21 at equal intervals along the axial direction of the sampling container 21, each liquid inlet and outlet port is connected with a valve body, the valve body comprises a valve shell 23 with a cylindrical inner cavity and a valve rod 231 arranged in the valve shell 23 in a sliding mode, the valve rod 231 is parallel to the axial direction of the sampling container 21, an annular groove 232 is formed in the valve rod 231, a radial through hole and an axial through hole are formed in the valve rod 231, one end of the radial through hole penetrates through the annular groove 232, the other end of the radial through hole extends to the center of the valve rod 231, and one end of the axial through hole; through holes penetrating through the side wall of the valve casing 23 are formed in the valve casing 23, the number of the through holes is consistent with that of the liquid inlet and outlet ports, the liquid inlet and outlet ports are communicated with the through holes in a one-to-one correspondence mode, and the width of the annular groove 232 in the axial direction of the valve rod 231 is consistent with the distance between the adjacent through holes; the valve rod 231 is fixedly connected with the end plate 213, and the valve rod 231 penetrates through the end plate 213; when the piston 211, the rodless piston 214 and the closed end of the sampling container 21 are closed, the side of the annular groove 232 close to the end plate 213 is flush with the center of a through hole closest to the closed end of the sampling container 21. The utility model provides a sampling module 20 once puts in just can sample the water of a plurality of water layers, and its concrete realization principle is: when the sampling module 20 sinks to the first target water layer, the pressure-sensitive locking mechanism releases the piston 211 for a stroke, so that the joint surface of the bottommost rodless piston 214 and the next-lower-layer rodless piston 214 just reaches the liquid inlet and outlet of the next lower layer, the valve body communicates the liquid inlet and outlet of the bottommost layer with the water body in the process, and other liquid inlet and outlet are closed, so that vacuum is formed between the piston 211 and each rodless piston 214, at the moment, the piston 211 ascends to drive all rodless pistons 214 below to ascend, so that a water body sample is sucked to the position below the bottommost-layer rodless piston 214, and when the joint surface of the bottommost-layer rodless piston 214 and the next-lower-layer rodless piston 214 reaches the liquid inlet and outlet of the next lower layer, the valve body can just seal the liquid inlet and outlet of the bottommost layer and communicate the liquid inlet and outlet with the water body; when the sampling module 20 reaches the second target water layer, the pressure-sensitive locking mechanism releases the piston 211 for a stroke again, so that the abutting surfaces of the second lower rodless piston 214 and the third lower rodless piston 214 just reach the liquid inlet and outlet of the third lower layer, the valve body keeps the liquid inlet and outlet of the second lower layer communicated with the water body, and other liquid inlets and outlets are closed, so that the space between the piston 211 and all rodless pistons 214 except the lowermost layer is vacuum, at the moment, the piston 211 ascends and simultaneously drives all rodless pistons 214 except the lowermost layer to ascend, so that the water body sample is sucked between the second lower rodless piston 214 and the lowermost rodless piston 214, and when the abutting surfaces of the second lower rodless piston 214 and the third lower rodless piston 214 reach the liquid inlet and outlet of the third lower layer, the valve body just can close the liquid inlet and outlet of the second lower layer and the lowermost liquid inlet and outlet and communicate the water body, by circulating in this way, water samples of different water layers can be respectively sucked between each adjacent piston 211 and rodless piston 214.
Specifically, the number of the pressure-sensitive locking mechanisms is consistent with that of the liquid inlet and outlet ports, the pressure-sensitive locking mechanisms are arranged at intervals along the direction parallel to the axis of the sampling container 21, and the pressure-sensitive locking mechanisms share the same locking pin 221; the elasticity of the second elastic element 225 of each pressure-sensitive locking mechanism arranged from the closed end of the sampling container 21 to the open end of the sampling container 21 is increased in sequence; the closed end of the sampling container 21 is further provided with a balancing weight 215, the open end of the sampling container 21 is provided with a radial pin 2122 used for being connected with a lifting rope, the piston rod 212 is provided with a strip-shaped hole 2121 through which the radial pin 2122 penetrates and is in sliding fit with the radial pin 2122, the center of the piston rod 212 is provided with a threading hole, the threading hole penetrates from the inner wall of the strip-shaped hole 2121 to the end plate 213, one end of the lifting rope 41 is connected with the radial pin 2122, the other end of the lifting rope penetrates through the threading hole and is used for being connected with the winding and unwinding device 40, the winding and unwinding device 40 is a winch installed on the unmanned aerial vehicle 10.
Preferably, the detection module 30 includes a detection container 31, a water quality detection sensor 32 is disposed in the detection container 31, and the water quality detection sensor 32 includes one or more detection units for detecting one or more of the following parameters: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD.
A liquid inlet is formed in the upper part of the detection container 31, a liquid outlet is formed in the bottom of the detection container 31, and an electric control valve is arranged on the liquid outlet; still include guiding device, guiding device includes guide plate 61 that end plate 213 upper end of sampling module 20 set up, the top surface of guide plate 61 is the inclined plane, the unmanned aerial vehicle 10 below is equipped with guide ring 62, guide ring 62 constitutes the slip grafting cooperation with guide plate 61 global, is equipped with annular guiding gutter 63 on guide ring 62's the lateral wall, the diapire slope of annular guiding gutter 63 sets up and annular guiding gutter 63's low side with the inlet intercommunication of detection container 31, annular guiding gutter 63 upper end is equipped with a apron 64, guide ring 62's upper end sets up with apron 64 bottom surface interval, guide plate 61's center is equipped with a tubular column 611 that upwards convexly stretches the setting, the centre bore of tubular column 611 runs through guide plate 61 face setting, and the centre bore of tubular column 611 and the coaxial setting of through wires hole on sampling module 20's piston rod 212, when tubular column 611 upper end and apron 64 bottom surface butt the top surface of guide plate 61 convexly stretch to guide ring 62's up end top and guide ring The bottom surface of flow plate 61 is located within guide ring 62; a line passing hole for the lifting rope 41 to pass through is formed in the position, corresponding to the central hole of the pipe column 611, of the cover plate 64; the upper end of the cover plate 64 is provided with a connecting bracket 65 for connecting the unmanned aerial vehicle 10 body; the cover plate 64 is provided with an exhaust hole. The utility model discloses utilize sampling module 20's promotion action to realize the release of water sample among sampling module 20, its principle is: when the pipe column 611 abuts against the bottom surface of the cover plate 64, the flow guide plate 61, the guide ring 62 and the annular flow guide groove 63 form a closed space, the sampling container 21 of the sampling module 20 continues to move upwards along with the continuous lifting of the winch, the piston 211 stops moving upwards under the blocking of the cover plate 64, and then the piston 211 extrudes the water quality sample out of the sampling container 21, and the water quality sample enters the closed space through the through hole in the valve rod 231 and flows into the detection container 31 through the closed space.
Preferably, the liquid inlet is located at the upper end of the side wall of the detection container 31, a gate plate 35 for opening and closing the liquid inlet is arranged on the inner side of the liquid inlet, the gate plate 35 is movably matched with the inner wall of the detection container 31 along the height direction of the detection container 31, the electronic control valve comprises a valve plate 33 arranged on the inner side of the liquid outlet, the edge of the valve plate 33 is in blocking connection with the edge of the inner side of the liquid outlet, the top surface of the valve plate 33 is in a conical surface shape, the valve plate 33 is connected with a valve plate driving element 37 arranged below the detection container 31, the valve plate driving element 37 is a linear motor or an electromagnetic clutch, the valve plate 33 is fixedly connected with the gate plate 35 through a connecting rod 36, the gate plate; an air guiding pipe 34 horizontally arranged is further arranged below the detection container 31, horn-shaped structures are arranged at two ends of the air guiding pipe 34, a liquid outlet is communicated with the middle of the air guiding pipe 34, the valve plate driving element 37 is installed at the bottom of the air guiding pipe 34, and a telescopic rod of the valve plate driving element 37 penetrates through the air guiding pipe 34 and is fixedly connected with the valve plate 33. Induced duct 34 can produce the negative pressure at the leakage fluid dram that detects container 31, can be quick when valve plate 33 is opened take out the quality of water sample in detecting container 31 to the jettisoning can improve detection module 30's circulation detection efficiency to unmanned aerial vehicle 10 afterbody, on the one hand, and on the other hand can avoid the discarded quality of water sample to sputter on the electrical components of fuselage in the jettisoning process.
Further, including belt cleaning device, belt cleaning device includes the clear water tank 50 that sets up on the unmanned aerial vehicle 10, clear water tank 50 is equipped with scavenging pump 51 through the shower nozzle intercommunication that sets up on pipeline and the apron 64 bottom surface on the pipeline.
Example 2
An on-line water quality detection method based on an unmanned aerial vehicle (10) is characterized in that an airborne sampling module (20) carried by the unmanned aerial vehicle (10) is used for sampling a water body, a collected water body sample is detected through an airborne detection module (30), the unmanned aerial vehicle (10) is further provided with a collecting and releasing device (40) which is used for releasing the sampling module (20) into a water body to be detected and recovering the sampling module (20) from the water body to be detected to the unmanned aerial vehicle (10), the unmanned aerial vehicle (10) is provided with a wireless communication module, and the wireless communication module matches a detection result with a GPS coordinate of a water sample collection point and; the method comprises the following steps:
step 1: the method comprises the steps of debugging equipment, installing a sampling module 20 and a detection module 30 on the unmanned aerial vehicle 10, and ensuring that the unmanned aerial vehicle 10 is normally communicated with a remote terminal;
step 2: sampling, wherein an operating hand of the unmanned aerial vehicle 10 controls the unmanned aerial vehicle 10 to fly to the sky above a target water area, and the unmanned aerial vehicle 10 hovers above the target water area; the unmanned aerial vehicle 10 releases the sampling module 20, and the sampling module 20 enters the water body of the target water area to collect samples of the water body; after the sampling module 20 is immersed in the target water area for a preset time, the unmanned aerial vehicle 10 recovers the sampling module 20 to the lower part of the machine body;
and step 3: during detection, the sampling module 20 releases the water body sample to the detection module 30, the detection module 30 detects the water body sample, and sends detection data and the GPS coordinate of the water area where the sample is located to the remote terminal;
and 4, step 4: and (5) repeating the steps 2 and 3 to finish the water quality detection of all the target water areas.
In step 2, before the sampling module 20 is released, the piston 211 is compressed to a position close to or closely attached to the closed end of the sampling container 21 and is locked by the pressure-sensitive locking mechanism, when the sampling module 20 reaches a specified depth of the target water body, the pressure-sensitive locking mechanism automatically releases the piston 211 under the action of water pressure, and the piston 211 moves in a direction away from the closed end of the sampling container 21 under the action of the first elastic element 2123, so that the water body in the target water layer is sucked.
In the step 2, one submergence of the sampling container 21 samples the water bodies of a plurality of different water layers of the target water area.
In the step 2, the sampling device only releases the water body sample of one water layer at a time for detection, after the detection of each water body poplar level is finished, the electric control valve at the bottom of the detection container 31 is opened, the detected water body sample is directly discharged, then the electric control valve is closed, the sampling device releases the water body sample of the next water layer for detection, and the detection of all the samples of different water layers in the same target water area is completed in such a circulating way.
In the step 2, the electric control valve is opened and the gate plate 35 is closed at the same time, so that the detection container 31 is isolated from the annular diversion trench 63, and at this time, in the process of draining the detection container 31, the sampling module 20 releases the next water sample to the annular diversion trench 63 in advance to accelerate the detection rate.
In the step 2, the cleaning device cleans the diversion device and the detection container 31 once every time the detection module 30 detects one sample.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, a plurality of modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention. The structures, devices, and methods of operation of the present invention, not specifically described and illustrated, are generally practiced by those of ordinary skill in the art without specific recitation or limitation.

Claims (9)

1. An airborne water quality detection device, its characterized in that: including installing detection container (31) in unmanned aerial vehicle (10) below, be equipped with water quality testing sensor (32) in detection container (31), water quality testing sensor (32) are including one or more detecting element that are used for detecting following one kind or several kinds of parameter: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD; the upper part of the detection container (31) is provided with a liquid inlet, the bottom of the detection container (31) is provided with a liquid outlet, and the liquid outlet is provided with an electric control valve.
2. The airborne water quality detection apparatus according to claim 1, wherein: the liquid inlet is positioned at the upper end of the side wall of the detection container (31), and a flashboard (35) for opening and closing the liquid inlet is arranged on the inner side of the liquid inlet.
3. The airborne water quality detection apparatus according to claim 2, wherein: the flashboard (35) is movably matched with the inner wall of the detection container (31) along the height direction of the detection container (31).
4. The airborne water quality detection apparatus according to claim 3, wherein: the electric control valve comprises a valve plate (33) arranged on the inner side of the liquid discharge port, and the edge of the valve plate (33) is in blocking connection with the edge of the inner side of the liquid discharge port.
5. The airborne water quality detection apparatus according to claim 4, wherein: the top surface of the valve plate (33) is conical.
6. The airborne water quality detection apparatus according to claim 5, wherein: the valve plate (33) is connected with a valve plate driving element (37) arranged below the detection container (31), and the valve plate driving element (37) is a linear motor or an electromagnetic clutch.
7. The airborne water quality detection apparatus according to claim 4, wherein: the valve plate (33) is fixedly connected with the flashboard (35) through a connecting rod (36), the flashboard (35) is opened when the valve plate (33) is closed, and the flashboard (35) is closed when the valve plate (33) is opened.
8. The airborne water quality detection apparatus according to claim 4, wherein: an air guide pipe (34) horizontally arranged is further arranged below the detection container (31), horn-shaped structures are arranged at two ends of the air guide pipe (34), and the liquid outlet is communicated with the middle of the air guide pipe (34).
9. The airborne water quality detection apparatus according to claim 8, wherein: the valve plate driving element (37) is installed at the bottom of the air guiding pipe (34), and a telescopic rod of the valve plate driving element (37) penetrates through the air guiding pipe (34) and is fixedly connected with the valve plate (33).
CN202020935252.4U 2020-05-28 2020-05-28 Airborne water quality detection device Active CN212111386U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020935252.4U CN212111386U (en) 2020-05-28 2020-05-28 Airborne water quality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020935252.4U CN212111386U (en) 2020-05-28 2020-05-28 Airborne water quality detection device

Publications (1)

Publication Number Publication Date
CN212111386U true CN212111386U (en) 2020-12-08

Family

ID=73614731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020935252.4U Active CN212111386U (en) 2020-05-28 2020-05-28 Airborne water quality detection device

Country Status (1)

Country Link
CN (1) CN212111386U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901873A (en) * 2023-02-22 2023-04-04 北京江云智能科技有限公司 Integrated multi-parameter water quality analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901873A (en) * 2023-02-22 2023-04-04 北京江云智能科技有限公司 Integrated multi-parameter water quality analyzer
CN115901873B (en) * 2023-02-22 2023-05-16 北京江云智能科技有限公司 Integrated multiparameter water quality analyzer

Similar Documents

Publication Publication Date Title
CN111458474B (en) Water quality online detection method based on unmanned aerial vehicle
CN111443180B (en) Water quality detection system based on unmanned aerial vehicle
CN109781467B (en) Water quality distribution detection system and detection method in depth direction of sewage water area
CN212111387U (en) Water quality detection system based on unmanned aerial vehicle
CN212110780U (en) Airborne water quality sampler
CN108535043B (en) Piston transfer type deep sea sediment pressure maintaining sampler
CN111426519B (en) Airborne water quality sampler
CN212111386U (en) Airborne water quality detection device
CN113447317B (en) Seawater sampler
CN114034647B (en) Formula of sailing metal monitoring facilities
CN115266238A (en) Hydrogeology reconnaissance is with sampling mechanism and sampling device
CN110389053A (en) The long-term in-situ sampling of the big depth section pore water of bottom sediment and analytical equipment
CN212110767U (en) Flow guiding device
CN212082968U (en) Multi-stage sampler
CN212110781U (en) Pressure-sensitive locking mechanism for airborne water sampler
CN114034517A (en) Hydraulic drive type high-resolution deep sea sediment pore water in-situ fidelity sampler
CN110967462A (en) Distributed automatic water quality monitoring device, monitoring ship and monitoring method
CN214277548U (en) Groundwater resource pollution detection device
CN116736387B (en) Submarine exploration equipment
CN115980299B (en) Monitoring device for groundwater pollutants
CN209102448U (en) A kind of hydrogeology sampler
JP2001183265A (en) Simultaneous multi-layer water sampler
CN211856331U (en) Water quality detection device for fresh water biotoxicity monitoring system
CN115508152A (en) Water quality heavy metal analyzer
CN212483004U (en) Water quality sampling equipment for underground water environment detection

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant