JP2001183188A - Monitoring apparatus for carried-out amount of rock - Google Patents

Monitoring apparatus for carried-out amount of rock

Info

Publication number
JP2001183188A
JP2001183188A JP36848899A JP36848899A JP2001183188A JP 2001183188 A JP2001183188 A JP 2001183188A JP 36848899 A JP36848899 A JP 36848899A JP 36848899 A JP36848899 A JP 36848899A JP 2001183188 A JP2001183188 A JP 2001183188A
Authority
JP
Japan
Prior art keywords
rock
signal
microwave beam
microwave
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36848899A
Other languages
Japanese (ja)
Inventor
Shigeru Tamaki
茂 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Denshikiki Co Ltd
Original Assignee
Yokogawa Denshikiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Denshikiki Co Ltd filed Critical Yokogawa Denshikiki Co Ltd
Priority to JP36848899A priority Critical patent/JP2001183188A/en
Publication of JP2001183188A publication Critical patent/JP2001183188A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus which can monitor a carried-out rock amount without being influenced by an environment such as dust or the like and without relying on the experience or the intuition of a human. SOLUTION: An excavating and carrying-out system for a rock is provided with a sensor means which is composed of a transmission means 12 for microwaves and a reception means 13 for a microwave beam MB from the transmission means and in which both means are faced and arranged in such a way that the microwave beam is disturbed by the carried-out rock to be detected. The carrying-out system is provided with a signal processing means 14 which detects a change in the flow rate of the carried-out rock on the basis of a change in the level of the reception signal of the mocrowave beam in the reception means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル掘削工
事、浚渫工事等で用いられる岩石の掘削搬出システムに
おいて、搬出岩石の流量、たい積量を高精度で検出する
ための装置に関し、検出の媒体としてマイクロ波ビーム
を利用した点を特徴とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting the flow rate and the amount of deposited rock with high accuracy in a rock excavation / export system used in tunnel excavation work, dredging work, and the like. It is characterized by using a microwave beam.

【0002】[0002]

【従来の技術】図6によりトンネルの掘削と岩石搬出監
視システムの例を説明する。1は掘削済みのトンネル、
2は掘削対象岩盤、3はシールドマシーン、4はシール
ドマシーンの制御装置、5は岩石搬出用のコンベア、6
はこのコンベアにより外部に搬出される岩石であり、コ
ンベア末端より落下してダンプカー7に積載されて外部
に運搬される。
2. Description of the Related Art An example of a tunnel excavation and rock removal monitoring system will be described with reference to FIG. 1 is an excavated tunnel,
2 is the rock to be excavated, 3 is the shield machine, 4 is the control device of the shield machine, 5 is the conveyor for transporting rocks, 6
Is a rock which is carried out to the outside by the conveyer, falls from the end of the conveyer, is loaded on the dump truck 7 and is carried to the outside.

【0003】8はCCDカメラ等の光学的監視手段であ
り、コンベアよりダンプカーに落下する搬出岩石のイメ
ージ信号IMをモニター9に出力する。10はオペレー
ターであり、モニター9のイメージを目視により監視
し、経験と勘に基づいて搬出岩石の流量の変化、所定期
間におけるたい積量を判断する。
Reference numeral 8 denotes an optical monitoring means such as a CCD camera or the like, which outputs an image signal IM of the unloaded rock dropped from the conveyor to the dump truck to the monitor 9. Reference numeral 10 denotes an operator, which visually monitors the image on the monitor 9 and determines a change in the flow rate of the transported rock and a deposition amount in a predetermined period based on experience and intuition.

【0004】11は、シールドマシーン制御装置4の遠
隔操作盤であり、オペレータ10の判断に基づく制御信
号CSを制御装置4に発信し、ダンプカーへの適正な搬
出量と所定期間のたい積量の管理を実行する。
Reference numeral 11 denotes a remote control panel of the shield machine control device 4, which transmits a control signal CS based on the judgment of the operator 10 to the control device 4, and manages a proper carry-out amount to the dump truck and an accumulation amount for a predetermined period. Execute

【0005】[0005]

【発明が解決しようとする課題】このような構成による
検出装置の問題点は、以下の点である。 (1)光学的監視手段が設置される環境は、粉塵などで
環境が極めて悪く、レンズ面の汚れも早い。ワイパー等
を使用しているが、モニターへの画像が不鮮明となり、
オペレーターの目視作業の効率が極めて悪い。 (2)人間の経験と勘に基づいて搬出岩石の流量の変
化、所定期間におけるたい積量を判断しており、個人差
が避けられず、高精度の測定と管理を実行することが困
難である。
Problems with the detection device having such a configuration are as follows. (1) The environment in which the optical monitoring means is installed is extremely poor due to dust and the like, and the lens surface is quickly stained. I use a wiper, etc., but the image on the monitor is unclear,
The efficiency of visual inspection by the operator is extremely low. (2) Based on human experience and intuition, changes in the flow rate of exported rocks and the amount of sediment during a predetermined period are determined. .

【0006】[0006]

【課題を解決するための手段】本発明は、このような問
題点を解消した検出装置の提供を目的とする。本発明の
構成上の特徴の第1は、岩石の掘削搬出システムにおい
て、マイクロ波の送信手段及びこの送信手段からのマイ
クロ波ビームの受信手段よりなり、検出すべき搬出岩石
によって上記のマイクロ波ビームが乱されるように対向
配置されたセンサー手段と、上記受信手段における上記
マイクロ波ビームの受信信号のレベル変化に基づいて上
記搬出岩石の流量変化を検出する信号処理手段とを具備
せしめた点にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a detecting device which solves such a problem. The first feature of the constitution of the present invention is that in a rock excavation and unloading system, the system comprises a microwave transmitting means and a microwave beam receiving means from the transmitting means. Sensor means disposed so as to be disturbed, and signal processing means for detecting a change in the flow rate of the transported rock based on a change in the level of the received signal of the microwave beam in the receiving means. is there.

【0007】特徴の第2は、岩石の掘削搬出システムに
おいて、マイクロ波の送信手段及びこの送信手段からの
マイクロ波ビームの受信手段よりなり、検出すべき搬出
岩石によって上記のマイクロ波ビームが乱されるように
対向配置されたセンサー手段と、上記受信手段における
上記マイクロ波ビームのレベル変化に基づいて上記搬出
岩石の流量変化を検出する信号処理手段とを具備し、上
記信号処理手段は上記受信信号の面積を計算し面積の大
きさにより上記搬出岩石の所定期間内のたい積量を検出
する点にある。
A second feature is that in a rock excavation and unloading system, the system includes a microwave transmitting means and a microwave beam receiving means from the transmitting means, and the microwave to be detected disturbs the microwave beam. Sensor means disposed so as to face each other, and signal processing means for detecting a change in the flow rate of the conveyed rock based on a change in the level of the microwave beam in the receiving means. The point is to calculate the area of the rock, and to detect the amount of the deposited rock within a predetermined period based on the size of the area.

【0008】特徴の第3は、上記送信手段は上記マイク
ロ波ビームに対して所定周波数の振幅変調をかける変調
手段を有し、上記受信手段は受信信号より上記所定周波
数の変調信号のエンベロープを抽出する手段を有する点
にある。
A third feature is that the transmitting means has a modulating means for applying amplitude modulation of a predetermined frequency to the microwave beam, and the receiving means extracts an envelope of the modulated signal of the predetermined frequency from a received signal. The point is to have a means to do.

【0009】特徴の第4は、上記搬出岩石の流量変化信
号に基づいて岩石掘削手段を制御する点にある。更に特
徴の第5は、上記搬出岩石のたい積信号に基づいて岩石
掘削手段を制御する点にある。
A fourth feature is that the rock excavating means is controlled based on the flow rate change signal of the carried out rock. A fifth feature is that the rock excavation means is controlled based on the signal of the pile of the transported rock.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態について説明する。図1は本発明による岩石搬
出量監視装置の現場設置状況の一例を示す全体概念図で
ある。図6で説明した従来装置と同一要素には同一符号
を付し、説明を省略する。12はマイクロ波の送信手
段、13は送信手段からのマイクロ波ビームMBの受信
手段であり、これらによりセンサー手段が構成される。
14は受信手段13の出力V0を入力する信号処理手
段、15はモニター手段である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall conceptual diagram showing an example of the on-site installation situation of the rock discharge amount monitoring device according to the present invention. The same elements as those of the conventional device described with reference to FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted. Reference numeral 12 denotes a microwave transmitting unit, and 13 denotes a microwave beam MB receiving unit from the transmitting unit, and these constitute a sensor unit.
14 is a signal processing means for inputting the output V0 of the receiving means 13, and 15 is a monitoring means.

【0011】送信手段12と受信手段13よりなるセン
サー手段は、コンベア5により搬送される岩石6がマイ
クロ波ビームMB内を通過する位置に一定距離を隔てて
適当な支持手段により対向的に配置されている。岩石6
がマイクロ波ビームMB内を通過することにより、受信
手段13の受信信号のレベル変化が発生し、このレベル
変化の信号処理により岩石の瞬時流量、平均値、たい積
量が検出される。
The sensor means consisting of the transmitting means 12 and the receiving means 13 are opposed to each other by a suitable supporting means at a position at a predetermined distance from the rock 6 conveyed by the conveyor 5 so as to pass through the microwave beam MB. ing. Rock 6
Passes through the microwave beam MB, a level change of the received signal of the receiving means 13 occurs, and the instantaneous flow rate, average value, and sediment amount of the rock are detected by signal processing of the level change.

【0012】図2により本発明を構成する送信手段1
2、受信手段13、信号処理手段14モニター手段15
の実施例を説明する。12aは送信手段12におけるマ
イクロ波の送信アンテナ、13a受信手段13における
マイクロ波ビームMBの受信アンテナであり、岩石6に
よりマイクロ波ビームMBの受信状態が乱される。
FIG. 2 shows a transmitting means 1 constituting the present invention.
2, receiving means 13, signal processing means 14, monitoring means 15
An example will be described. 12a is a microwave transmitting antenna in the transmitting means 12, and 13a is a microwave beam MB receiving antenna in the 13a receiving means 13, and the rock 6 disturbs the receiving state of the microwave beam MB.

【0013】送信手段12において、16はマイクロ波
発振部であり、所定の周波数F(例えば10GHz)の
マイクロ波を発振し、バッファ増幅器17を及び電力増
幅器18を介してマイクロ波をアンテナ12aに供給す
る。19は変調回路であり、マイクロ波発振部16の出
力に対し例えば10kHZの信号fmで振幅変調をかけ
る。従って送信アンテナ12aよりの送信波は10KH
Zで振幅変調されたマイクロ波ビームとなる。
In the transmitting means 12, reference numeral 16 denotes a microwave oscillating unit which oscillates a microwave having a predetermined frequency F (for example, 10 GHz) and supplies the microwave to the antenna 12a via a buffer amplifier 17 and a power amplifier 18. I do. Reference numeral 19 denotes a modulation circuit, which applies amplitude modulation to the output of the microwave oscillating unit 16 using, for example, a signal fm of 10 kHz. Therefore, the transmission wave from the transmission antenna 12a is 10 KH
It becomes a microwave beam amplitude-modulated in Z.

【0014】受信手段13において、受信アンテナ13
aで受信された振幅変調マイクロ波はダイオード等の比
直線素子20で検波され、直流分カットコンデンサー2
1を介して交流分が高周波増幅器22で増幅される。2
3は変調交流信号fmを中心周波数とするバンドパスフ
ィルタであり、交流信号のうち変調交流信号fmの周波
数で変調された信号のエンベロープ出力を抽出する。
The receiving means 13 includes a receiving antenna 13
The amplitude-modulated microwave received at a is detected by a linear element 20 such as a diode, and is supplied to a DC cut capacitor 2.
The AC component is amplified by the high-frequency amplifier 22 via 1. 2
Reference numeral 3 denotes a bandpass filter having a center frequency of the modulated AC signal fm, and extracts an envelope output of a signal modulated at a frequency of the modulated AC signal fm among the AC signals.

【0015】24はエンベロープ出力の整流平滑回路で
あり、エンベロープ出力の振幅に比例した直流信号Ve
に変換する。この信号Veのレベル変化は受信マイクロ
波のレベル変化と等価である。従って、マイクロ波ビー
ムMBが乱されて減衰する受信信号レベル変化をVeの
レベル変化で監視することにより、岩石の流量を検出す
ることがができる。
Reference numeral 24 denotes a rectifying / smoothing circuit for envelope output, which is a DC signal Ve proportional to the amplitude of the envelope output.
Convert to This level change of the signal Ve is equivalent to the level change of the received microwave. Therefore, the flow rate of the rock can be detected by monitoring the change in the received signal level, which is disturbed and attenuated by the microwave beam MB, based on the change in the Ve level.

【0016】図3は所定期間における岩石検出によるV
eのレベル変化例であり、岩石によって定常レベルVa
より減衰する。この信号の減衰レベルはマイクロ波ビー
ムMBの減衰量、即ち岩石の瞬時流量に比例する。
FIG. 3 is a graph showing V obtained by detecting a rock during a predetermined period.
This is an example of the level change of e, and the steady level Va depends on the rock.
More attenuated. The attenuation level of this signal is proportional to the amount of attenuation of the microwave beam MB, that is, the instantaneous flow rate of the rock.

【0017】エンベロープ出力の振幅に比例した直流信
号Veは、さらに信号処理回路25、フィルタ回路26
により、極性反転、レベルシフト、ノイズ処理され、図
4に示すように、岩石の流量に応じたピーク値を有し、
最大値Vh,最小値Vlのスパン内で変化する出力信号
V0に変換される。
The DC signal Ve proportional to the amplitude of the envelope output is further processed by a signal processing circuit 25 and a filter circuit 26.
, Has a peak value corresponding to the flow rate of the rock, as shown in FIG.
It is converted into an output signal V0 that changes within the span of the maximum value Vh and the minimum value Vl.

【0018】次に、受信手段14の出力信号V0を入力
する信号処理手段15につき説明する。27は平均値演
算回路であり、適当な平滑機能により図3でVpで示す
V0の時間平均値を演算し、モニター手段15に出力す
る。28はタイムベースであり、クロックCLを平均値
演算回路27並びに後述の面積計算回路に供給する。
Next, the signal processing means 15 for inputting the output signal V0 of the receiving means 14 will be described. Reference numeral 27 denotes an average value calculation circuit which calculates a time average value of V0 indicated by Vp in FIG. Reference numeral 28 denotes a time base, which supplies the clock CL to the average value calculation circuit 27 and an area calculation circuit described later.

【0019】29は面積計算回路であり、受信手段13
の出力信号V0並びにクロックCLを入力し、面積計算
結果Vsをモニター手段15に出力する。 図5は面積
計算の概念図であり、所定期間Tにおけるクロックで与
えられる時刻t1, t2 …tn に対応する出力信号V
0のレベル値によりハッチングで示すごとき棒状長方形
面積の合計で各パルス毎の面積S1、S2、S3を計算
し、これらを合計することにより所定期間Tにおけるた
い積量Vsを計算することができる。
Reference numeral 29 denotes an area calculation circuit, and the receiving means 13
And outputs the area calculation result Vs to the monitor 15. FIG. 5 is a conceptual diagram of the area calculation, in which an output signal V corresponding to times t1, t2,.
The area S1, S2, S3 for each pulse is calculated from the sum of the bar-shaped rectangular areas indicated by hatching with the level value of 0, and the sum Vs in the predetermined period T can be calculated by summing these areas.

【0020】モニター手段15は、現場に設けられてお
り、受信手段13の出力信号V0、平均値演算回路27
の出力信号Vp,面積計算回路の出力信号Vsを入力
し、V0の波形表示、平均値、たい積量のディジタル表
示を行い、必要の応じて遠隔の管理システムにテレメー
タ信号TMを発信する。
The monitoring means 15 is provided at the site, and outputs the output signal V0 of the receiving means 13 and the average value calculation circuit 27.
, And the output signal Vs of the area calculation circuit is input, the waveform display of V0, the average value, and the digital display of the volume are performed, and the telemeter signal TM is transmitted to a remote management system as required.

【0021】30並びに31は適当なインターフェイス
回路であり、平均値出力信号Vp、または面積出力信号
Vsをシールドマシーンの制御装置4にフィードバック
信号FBとして供給し、自動制御ループを形成する。
Reference numerals 30 and 31 denote appropriate interface circuits, which supply the average output signal Vp or the area output signal Vs to the control device 4 of the shield machine as a feedback signal FB to form an automatic control loop.

【0022】以上説明した実施態様では、信号処理の容
易化のためマイクロ波ビームは所定の周波数による振幅
変調波を用いたが、原理的には振幅変調手段を設けない
でマイクロ波の受信信号のレベル変化を直接監視するこ
とにより本発明を実施することも可能である。更に本発
明は、海底の汚泥を含む土石流の浚渫システム等にも適
用が可能である。
In the embodiment described above, an amplitude-modulated wave having a predetermined frequency is used as a microwave beam for the purpose of facilitating signal processing. However, in principle, the amplitude modulation means is not provided and a microwave reception signal is not used. It is also possible to implement the invention by directly monitoring the level changes. Further, the present invention is also applicable to a dredging system for debris flows including seabed sludge.

【0023】[0023]

【発明の効果】以上説明したように、本発明の装置にお
いては、従来方式に比較して次のような効果を期待でき
る。 (1)岩石の検知媒体にマイクロ波を用いているため、
光学的監視手段のようにワイパー等の必要が無く、メン
テナンスフリーで正確な情報を得ることができ、オペレ
ーターの作業効率を極めて向上せしめることが可能とな
る。 (2)岩石の流量、たい積量を高精度で測定できるの
で、人間の経験と勘に基づく個人差が避けられ、高精度
の測定と管理を実行することができる。
As described above, the following effects can be expected in the device of the present invention as compared with the conventional system. (1) Because microwaves are used as a rock detection medium,
Unlike the optical monitoring means, there is no need for a wiper or the like, accurate information can be obtained without any maintenance, and the working efficiency of the operator can be greatly improved. (2) Since the flow rate and sediment volume of rock can be measured with high accuracy, individual differences based on human experience and intuition can be avoided, and highly accurate measurement and management can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による岩石搬出量監視装置の現場設置
状況の一例を示す全体概念図である。
FIG. 1 is an overall conceptual diagram illustrating an example of a site installation state of a rock discharge amount monitoring device according to the present invention.

【図2】 本発明を構成する送信手段12、受信手段1
3、信号処理手段14、モニター手段15の実施例を説
明するブロック線図である。
FIG. 2 shows a transmitting means 12 and a receiving means 1 constituting the present invention.
FIG. 3 is a block diagram illustrating an embodiment of signal processing means 14 and monitoring means 15.

【図3】 所定期間Tにおける岩石検出によるレベル変
化例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of a level change due to rock detection during a predetermined period T;

【図4】 正規化された岩石検出量の変化を示す特性図
である。
FIG. 4 is a characteristic diagram showing a change in a normalized rock detection amount.

【図5】 たい積量検出のための面積計算の概念図であ
る。
FIG. 5 is a conceptual diagram of an area calculation for detecting an accumulation amount.

【図6】 従来のトンネルの掘削と岩石搬出監視システ
ムの一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a conventional tunnel excavation and rock removal monitoring system.

【符号の説明】 1……トンネル 2……掘削対象岩石 3……シールドマシーン 4……制御装置 5……コンベア 6……搬出岩石 12……送信手段 13……受信手段 14……信号処理手段 15……モニター手段 MB……マイクロ波ビーム[Explanation of Signs] 1 ... Tunnel 2 ... Rock to be excavated 3 ... Shielding machine 4 ... Control device 5 ... Conveyor 6 ... Outgoing rock 12 ... Transmission means 13 ... Receiving means 14 ... Signal processing means 15 Monitor means MB Microwave beam

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 岩石の掘削搬出システムにおいて、マイ
クロ波の送信手段及びこの送信手段からのマイクロ波ビ
ームの受信手段よりなり、検出すべき搬出岩石によって
上記のマイクロ波ビームが乱されるように対向配置され
たセンサー手段と、上記受信手段における上記マイクロ
波ビームの受信信号のレベル変化に基づいて上記搬出岩
石の流量変化を検出する信号処理手段とを具備する岩石
搬出量監視装置。
1. A rock excavation and unloading system comprising a microwave transmitting means and a microwave beam receiving means from the transmitting means, wherein the microwave beam is disturbed by the rock to be detected such that the microwave beam is disturbed. A rock unloading amount monitoring device, comprising: a sensor unit arranged; and a signal processing unit that detects a change in the flow rate of the unloading rock based on a change in the level of a received signal of the microwave beam in the receiving unit.
【請求項2】 岩石の掘削搬出システムにおいて、マイ
クロ波の送信手段及びこの送信手段からのマイクロ波ビ
ームの受信手段よりなり、検出すべき搬出岩石によって
上記のマイクロ波ビームが乱されるように対向配置され
たセンサー手段と、上記受信手段における上記マイクロ
波ビームのレベル変化に基づいて上記搬出岩石の流量変
化を検出する信号処理手段とを具備し、上記信号処理手
段は上記受信信号の面積を計算し面積の大きさにより上
記搬出岩石の所定期間内のたい積量を検出することを特
徴とする岩石搬出量監視装置。
2. A rock excavation and unloading system, comprising a microwave transmitting means and a microwave beam receiving means from the transmitting means, and facing each other so that the rock to be detected is disturbed by the rock to be detected. And a signal processing means for detecting a change in the flow rate of the conveyed rock based on a change in the level of the microwave beam in the receiving means, wherein the signal processing means calculates an area of the received signal. A rock discharge amount monitoring device characterized in that the amount of the discharged rock within a predetermined period is detected based on the size of the area.
【請求項3】 上記送信手段は上記マイクロ波ビームに
対して所定周波数の振幅変調をかける変調手段を有し、
上記受信手段は受信信号より上記所定周波数の変調信号
のエンベロープを抽出する手段を有する請求項1乃至2
記載の岩石搬出量監視装置。
3. The transmitting means has a modulating means for applying amplitude modulation of a predetermined frequency to the microwave beam,
3. The receiving means according to claim 1, further comprising means for extracting an envelope of the modulated signal having the predetermined frequency from a received signal.
The rock carry-out monitoring device described.
【請求項4】 上記搬出岩石の流量変化信号に基づいて
岩石掘削手段を制御することを特徴とする請求項1また
は3記載の岩石搬出量監視装置。
4. The rock discharge amount monitoring device according to claim 1, wherein a rock excavation means is controlled based on the flow change signal of the discharged rock.
【請求項5】 上記搬出岩石のたい積信号に基づいて岩
石掘削手段を制御することを特徴とする請求項2または
3記載の岩石搬出量監視装置。
5. The rock discharge monitoring device according to claim 2, wherein a rock excavation unit is controlled based on the pile signal of the output rock.
JP36848899A 1999-12-24 1999-12-24 Monitoring apparatus for carried-out amount of rock Withdrawn JP2001183188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36848899A JP2001183188A (en) 1999-12-24 1999-12-24 Monitoring apparatus for carried-out amount of rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36848899A JP2001183188A (en) 1999-12-24 1999-12-24 Monitoring apparatus for carried-out amount of rock

Publications (1)

Publication Number Publication Date
JP2001183188A true JP2001183188A (en) 2001-07-06

Family

ID=18491955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36848899A Withdrawn JP2001183188A (en) 1999-12-24 1999-12-24 Monitoring apparatus for carried-out amount of rock

Country Status (1)

Country Link
JP (1) JP2001183188A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646300A (en) * 2018-05-08 2018-10-12 华中科技大学 Fibre-optic current shielding tunnel forward probe device based on amplitude-modulated wave and detection method
CN108710152A (en) * 2018-05-08 2018-10-26 华中科技大学 Tunnel forward probe system based on binary channels amplitude-modulated wave and detection method
CN110439573A (en) * 2019-08-08 2019-11-12 中交第二航务工程局有限公司 The mobile dredging flusher in tunnel and method
CN112196550A (en) * 2020-03-04 2021-01-08 中铁工程装备集团有限公司 Hob-free hard rock tunneling machine for breaking rock by utilizing microwave and supercritical carbon dioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646300A (en) * 2018-05-08 2018-10-12 华中科技大学 Fibre-optic current shielding tunnel forward probe device based on amplitude-modulated wave and detection method
CN108710152A (en) * 2018-05-08 2018-10-26 华中科技大学 Tunnel forward probe system based on binary channels amplitude-modulated wave and detection method
CN108646300B (en) * 2018-05-08 2019-04-12 华中科技大学 Fibre-optic current shielding tunnel forward probe device and detection method based on amplitude-modulated wave
CN110439573A (en) * 2019-08-08 2019-11-12 中交第二航务工程局有限公司 The mobile dredging flusher in tunnel and method
CN112196550A (en) * 2020-03-04 2021-01-08 中铁工程装备集团有限公司 Hob-free hard rock tunneling machine for breaking rock by utilizing microwave and supercritical carbon dioxide

Similar Documents

Publication Publication Date Title
US6373261B1 (en) Two-wire level transmitter
EP0895095B1 (en) Vibration detection
KR100270821B1 (en) Particle moniter device
JP4478462B2 (en) Vacuum pump
JP2001183188A (en) Monitoring apparatus for carried-out amount of rock
CN111911815B (en) Water pipeline safety early warning system based on optical fiber interferometer
CN111049572A (en) Buried optical fiber fault point earth surface positioning system and method
KR101906451B1 (en) Ultrasonic measurement apparatus with automatic frequency recognition and automatic defense function in water level and sludge level meter
KR200252939Y1 (en) Administration system of layer under the ground using intelligence marker
KR20030004610A (en) Administration system of layer under the ground using intelligence marker
US5682235A (en) Dry particle-size distribution measuring apparatus
CN108008354B (en) Grab bucket ultrasonic positioning system
EP3736611B1 (en) Rain/liquid sensor with ir-light absorption
EP0481077A1 (en) Device for measuring position of underground excavator
CN108692766B (en) BFS measuring device, method and distributed fiber-optic sensor system
CN201225921Y (en) System for preventing mine car from weighing
JP2000009508A (en) Ultrasonic wave doppler current meter
JP3704202B2 (en) Antifouling device for interface level meter
JPH0384489A (en) Buried body detecting device
JPS62156496A (en) Falling-in detector for shielding excavator
US4509041A (en) Correlation type flicker flamon
CN209397643U (en) Chemical tank dredging robot
KR102217659B1 (en) Falling Stone and Vehicle Fall Obstacle Detection
CN216483356U (en) Underground fluid monitoring equipment
JP3145288B2 (en) Excavated sediment volume measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306