JP2001183030A - Geothermal sampling testing device - Google Patents

Geothermal sampling testing device

Info

Publication number
JP2001183030A
JP2001183030A JP2000157721A JP2000157721A JP2001183030A JP 2001183030 A JP2001183030 A JP 2001183030A JP 2000157721 A JP2000157721 A JP 2000157721A JP 2000157721 A JP2000157721 A JP 2000157721A JP 2001183030 A JP2001183030 A JP 2001183030A
Authority
JP
Japan
Prior art keywords
heat
medium
heating
heat medium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000157721A
Other languages
Japanese (ja)
Inventor
Masahisa Fukahori
賢久 深堀
Takashi Oshima
高 大島
Masafumi Inoue
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000157721A priority Critical patent/JP2001183030A/en
Publication of JP2001183030A publication Critical patent/JP2001183030A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T2201/00Prediction; Simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal sampling testing device to provide a high deciding function as a device cost is reduced. SOLUTION: A heat pump device 2 comprises an evaporator 4 to circulate a heating medium L between the heat pump device and an underground heat- exchanger 1 to effect heat-exchange of the heating medium L with geothermy and sample heat from the circulation heating medium L; and a condenser 6 to dissipate a quantity of sampling heat by the vaporizer 4. A geothermy sampling testing device comprises a heating device 8 to heat the circulation medium L between the underground heat-exchanger 1 and the vaporizer 4 by using a part Qb of a quantity of heat generated by a condenser 6, and control means 9, 12, and 13 to control the heating medium heating quantity Qb by the heating means 8 based on detection of a heating medium temperature ti so that the temperature ti of the circulation heating medium L fed to the underground heat-exchanger 1 from the vaporizer 4 is kept at a set temperature ts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱媒を地中熱交換
器で対地熱交換させて地中から採熱する地熱採熱設備の
構築にあたり、対象地の採熱特性を判定するのに用いる
地熱採熱試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the construction of a geothermal heat-exchange facility for extracting heat from the ground by exchanging a heat medium with an underground heat exchanger for geothermal heat exchange. The present invention relates to a geothermal heat sampling test device to be used.

【0002】[0002]

【従来の技術】ところで、地中熱交換とヒートポンプ装
置の蒸発器との間で熱媒を循環させて地中からの採熱す
る採熱試験では、採熱の進行に伴い採熱量が大きく変化
(特に採熱初期に大きく変化)するが、従来の地熱採熱
試験装置では、このような採熱量の変化に対し、蒸発器
から地中熱交換器に送る循環熱媒の温度を設定温度に保
つように、アンロード制御やインバータ制御によりヒー
トポンプ装置の出力を調整し、この送り熱媒の温度調整
下で、地中熱交換器から送出される循環熱媒の温度変化
やヒートポンプ装置の運転状態を見ることにより、対象
地の採熱特性を判定するようにしていた。
2. Description of the Related Art In a heat sampling test in which a heat medium is circulated between an underground heat exchange and an evaporator of a heat pump device to collect heat from the ground, the amount of heat significantly changes with the progress of heat collection. (Especially, a large change occurs at the beginning of heat collection.) However, in the conventional geothermal heat sampling test equipment, the temperature of the circulating heat medium sent from the evaporator to the underground heat exchanger reaches the set temperature in response to such a change in the amount of heat collected. The output of the heat pump device is adjusted by unload control or inverter control to maintain the temperature of the circulating heat medium sent from the underground heat exchanger and the operating state of the heat pump device under the temperature control of the feed heat medium. To determine the heat collection characteristics of the target area.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のアンロ
ード制御ではヒートポンプ装置の出力を段階的にしか調
整できないため、採熱量の連続的な変化に対してきめ細
かに対応できず、この為、採熱特性の判定精度が低くな
る問題があった。
However, in the above-described unload control, the output of the heat pump device can be adjusted only in a stepwise manner. There was a problem that the accuracy of determining the thermal characteristics was reduced.

【0004】一方、インバータ制御を用いるものではヒ
ートポンプ装置の出力を連続的(無段階)に調整し得る
ものの、インバータ制御に要する制御機器のために装置
コストが嵩み、特に、地熱採熱では大能力のヒートポン
プ装置が必要になることが多いことから汎用インバータ
では対応できず、このことが装置コストの大きな増大要
因になっていた。
On the other hand, in the case of using the inverter control, the output of the heat pump device can be adjusted continuously (steplessly). However, since the control equipment required for the inverter control increases the cost of the device, it is particularly large in geothermal heat extraction. Since a heat pump device having a high capacity is often required, a general-purpose inverter cannot cope with the heat pump device, and this has caused a large increase in the cost of the device.

【0005】また、アンロード制御及びインバータ制御
のいずれによるヒートポンプ装置の出力調整にしても、
ヒートポンプ装置の安定運転上で出力調整範囲が制限さ
れ、これにより採熱特性の判定機能が制限される問題も
あった。
[0005] Further, even when the output of the heat pump device is adjusted by either the unload control or the inverter control,
There is also a problem that the output adjustment range is limited in the stable operation of the heat pump device, which limits the function of determining the heat collection characteristics.

【0006】この実情に鑑み、本発明の主たる課題は、
合理的な装置構成により装置コストを安価にしながらも
高い判定機能を得られる地熱採熱試験装置を提供する点
にある。
In view of this situation, the main problems of the present invention are:
An object of the present invention is to provide a geothermal heat sampling test apparatus that can obtain a high determination function while reducing the apparatus cost by a reasonable apparatus configuration.

【0007】[0007]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、熱媒を対地熱交換させる地中熱交換器との間で
前記熱媒を循環させて、その循環熱媒から採熱する蒸発
器と、この蒸発器による採熱熱量を放熱する凝縮器とを
備えるヒートポンプ装置において、前記地中熱交換器と
前記蒸発器との間での循環熱媒を前記凝縮器での発生熱
量の一部を用いて加熱する加熱手段と、前記蒸発器から
前記地中熱交換器へ送る循環熱媒の温度を設定温度に保
つように、その熱媒温度の検出に基づき前記加熱手段に
よる熱媒加熱量を調整する制御手段とを設ける。
Means for Solving the Problems [1] In the invention according to claim 1, the heat medium is circulated between the heat medium and an underground heat exchanger for exchanging heat with ground, and the heat medium is collected from the circulated heat medium. In a heat pump device including a heating evaporator and a condenser that radiates heat collected by the evaporator, a heat medium circulating between the underground heat exchanger and the evaporator is generated in the condenser. Heating means for heating using a part of the heat amount, and the heating means based on the detection of the heat medium temperature so as to keep the temperature of the circulating heat medium sent from the evaporator to the underground heat exchanger at a set temperature. And control means for adjusting the heating medium heating amount.

【0008】つまり、この構成では、上記加熱手段によ
り凝縮器での発生熱量の一部を用いて循環熱媒を加熱す
ることで、蒸発器による循環熱媒からの採熱量の一部を
循環熱媒に戻す形態にする。
That is, in this configuration, the circulating heat medium is heated by the heating means using a part of the heat generated in the condenser, so that a part of the heat collected from the circulated heat medium by the evaporator is circulated by the circulating heat. Return to the medium.

【0009】そして、この加熱手段による熱媒加熱量
(すなわち、循環熱媒への戻し熱量)を熱媒温度の検出
に基づき調整することで、地中熱交換器における地中か
ら循環熱媒への採熱量の変化に対し、その地中から循環
熱媒への採熱量と、加熱手段よる熱媒加熱量と、蒸発器
による循環熱媒からの採熱量との収支関係を調整して、
蒸発器から地中熱交換器へ送る循環熱媒の温度を設定温
度に保つようにする。
The amount of heating of the heating medium by the heating means (that is, the amount of heat returned to the circulating heating medium) is adjusted based on the detection of the temperature of the heating medium, so that the underground heat exchanger transfers the heating medium from the ground to the circulating heating medium. With respect to the change in the amount of heat taken, the balance between the amount of heat taken from the ground to the circulating heat medium, the amount of heat medium heating by the heating means, and the amount of heat taken from the circulating heat medium by the evaporator is adjusted.
The temperature of the circulating heat medium sent from the evaporator to the underground heat exchanger is maintained at the set temperature.

【0010】すなわち、この構成であれば、凝縮器での
発生熱量の一部を用いた熱媒加熱において、その加熱量
(循環熱媒への戻し熱量)を調整するだけであるから、
その調整を連続的(無段階)なものにすることは容易で
あり、このことから、アンロード制御を用いてヒートポ
ンプ装置の出力を段階的に調整する従来装置に比べ、地
中から循環熱媒への採熱量の連続的な変化に対しきめ細
かに対応することができて、採熱特性の判定精度を高く
することができる。
That is, with this configuration, in heating the heating medium using a part of the heat generated in the condenser, only the amount of heating (the amount of heat returned to the circulating heating medium) is adjusted.
It is easy to make the adjustment continuous (stepless), and therefore, compared with the conventional device that adjusts the output of the heat pump device step by step using unload control, the circulation heat medium Therefore, it is possible to respond finely to a continuous change in the amount of heat taken into the device, and to improve the accuracy of determining the heat collecting characteristics.

【0011】また、地中から循環熱媒への採熱量の変化
に対し、インバータ制御によりヒートポンプ装置の出力
を調整して地中熱交換器への送り熱媒温度を設定温度に
保つ従来装置に比べれば、インバータ制御に要する高価
な制御機器を不要にして、装置コストを安価にすること
ができる。
Further, in response to a change in the amount of heat taken from the ground to the circulating heat medium, the output of the heat pump device is adjusted by inverter control to maintain the temperature of the heat medium sent to the underground heat exchanger at a set temperature. In comparison, expensive control equipment required for inverter control is not required, and the apparatus cost can be reduced.

【0012】そしてまた、アンロード制御やインバータ
制御によりヒートポンプ装置の出力そのものを調整する
従来装置の如く装置の安定運転上で出力調整範囲(すな
わち、地中からの採熱量の変化に対する対応可能範囲)
が制限されるといったこともなく、これにより、地中か
らの採熱量のより大きな変化に対応することができて、
採熱特性の判定機能を一層高めることができる。
In addition, an output adjustment range (that is, a range that can cope with a change in the amount of heat taken from underground) in a stable operation of the device as in a conventional device in which the output itself of the heat pump device is adjusted by unload control or inverter control.
Is not limited, which allows for greater changes in underground heat harvesting,
The function of determining the heat collection characteristics can be further enhanced.

【0013】〔2〕請求項2に係る発明では、請求項1
に係る発明の実施において、前記凝縮器として、発生熱
量を外部へ放熱する放熱用凝縮器と、発生熱量を前記加
熱手段の熱媒加熱源とする熱媒加熱用凝縮器とを、それ
ら凝縮器に対し凝縮対象の冷媒を直列に通過させる直列
接続状態で設ける。
[2] According to the second aspect of the invention, the first aspect
In the embodiment of the invention according to the present invention, as the condenser, a condenser for radiating heat generated to the outside and a heat medium heating condenser using the generated heat as a heating medium heating source of the heating means, these condensers Are provided in a series connection state in which the refrigerant to be condensed passes in series.

【0014】つまり、この構成によれば、上記放熱用凝
縮器と熱媒加熱用凝縮器とが直列接続であることから、
加熱手段による熱媒加熱量の増加(換言すれば、熱媒加
熱用凝縮器からの取得熱量の増加)に対しては、それに
伴い熱媒加熱用凝縮器での冷媒凝縮量が自ずと増加し、
その分、放熱用凝縮器での冷媒凝縮量が自ずと減少する
形態で、また逆に、加熱手段による熱媒加熱量の減少
(熱媒加熱用凝縮器からの取得熱量の減少)に対して
は、それに伴い熱媒加熱用凝縮器での冷媒凝縮量が自ず
と減少し、その分、放熱用凝縮器での冷媒凝縮量が自ず
と増加する形態で、加熱手段による熱媒加熱量の増減に
伴い、両凝縮器における冷媒凝縮量の比が自然に調整さ
れる。
That is, according to this configuration, the condenser for heat dissipation and the condenser for heating medium are connected in series.
With respect to the increase in the heating medium heating amount by the heating means (in other words, the increase in the amount of heat obtained from the heating medium heating condenser), the refrigerant condensation amount in the heating medium heating condenser naturally increases,
The amount of refrigerant condensed in the condenser for heat dissipation naturally decreases, and conversely, the decrease in the amount of heat medium heating by the heating means (the decrease in the amount of heat obtained from the condenser for heat medium heating) Accordingly, the amount of refrigerant condensed in the heat medium heating condenser naturally decreases, and accordingly, the amount of refrigerant condensed in the heat radiation condenser naturally increases. The ratio of the amount of condensed refrigerant in both condensers is naturally adjusted.

【0015】したがって、放熱用凝縮器と熱媒加熱用凝
縮器とを並列接続する構成において、加熱手段による熱
媒加熱量の増減に応じ、両凝縮器に対する冷媒分配比を
弁により調整して各凝縮器での冷媒凝縮量(すなわち、
発生熱量)を調整制御する方式を採るに比べ、装置構成
を簡略にして装置コストをさらに安価にすることができ
る。
Therefore, in a configuration in which the condenser for heat radiation and the condenser for heating medium are connected in parallel, the distribution ratio of refrigerant to both condensers is adjusted by a valve according to the increase or decrease of the heating medium heating amount by the heating means. The amount of refrigerant condensed in the condenser (ie,
As compared with a method of adjusting and controlling the amount of generated heat), the apparatus configuration can be simplified and the apparatus cost can be further reduced.

【0016】〔3〕請求項3に係る発明では、請求項1
又は2に係る発明の実施において、前記加熱手段とし
て、前記地中熱交換器から前記蒸発器に戻る循環熱媒の
一部を前記蒸発器を迂回させる状態に分流して、この分
流熱媒を前記凝縮器での発生熱量の一部を用いて加熱し
た上で前記蒸発器からの送出熱媒に合流させる迂回循環
路を設け、前記制御手段として、前記迂回循環路への熱
媒分流量を調整する弁装置、前記迂回循環路の通過熱媒
と前記蒸発器からの送出熱媒との合流後における混合熱
媒の温度を両熱媒の合流箇所の近傍で検出する温度セン
サ、及び、この温度センサの検出温度に基づいて前記混
合熱媒の温度を設定温度に保つように前記弁装置を調整
する弁制御器を設ける。
[3] In the invention according to claim 3, claim 1
Or, in the implementation of the invention according to 2, as the heating means, a part of the circulating heat medium returning from the underground heat exchanger to the evaporator is diverted to a state of bypassing the evaporator, and the divided heat medium is Providing a bypass circuit that heats using a part of the heat generated in the condenser and then joins the heat medium to be delivered from the evaporator, and as the control unit, controls the heat medium branch flow to the bypass circuit. A valve device for adjusting a temperature sensor for detecting the temperature of the mixed heat medium after the heat medium passing through the bypass circuit and the heat medium delivered from the evaporator merge near the junction of the heat medium, and A valve controller is provided for adjusting the valve device so as to maintain the temperature of the mixed heat medium at a set temperature based on the temperature detected by the temperature sensor.

【0017】つまり、この構成では、蒸発器を迂回させ
るように上記迂回循環路へ分流した熱媒を凝縮器での発
生熱量の一部を用いて加熱した上で蒸発器からの送出熱
媒に合流させることにより、地中熱交換器と蒸発器との
間での循環熱媒を凝縮器での発生熱量の一部を用いて加
熱する形態にする。
In other words, in this configuration, the heat medium diverted to the bypass circuit so as to bypass the evaporator is heated using a part of the heat generated in the condenser, and then heated to the heat medium delivered from the evaporator. By joining, the circulating heat medium between the underground heat exchanger and the evaporator is heated by using a part of the heat generated in the condenser.

【0018】そして、この熱媒加熱において、上記温度
センサの検出温度に基づき上記弁装置により迂回循環路
への熱媒分流量を調整して、その分流熱媒に対する凝縮
器の付与熱量(換言すれば、地中熱交換器と蒸発器との
間の循環熱媒に対する凝縮器の付与熱量)を調整するこ
とにより、地中熱交換器における地中から循環熱媒への
採熱量の変化に対し、その地中から循環熱媒への採熱量
と、凝縮器よる循環熱媒への付与熱量(循環熱媒への戻
し熱量)と、蒸発器による循環熱媒からの採熱量との収
支関係を調整して、上記混合熱媒の温度(すなわち、地
中熱交換器に送る循環熱媒の温度)を設定温度に保つ。
In the heating of the heating medium, the flow rate of the heating medium to the bypass circuit is adjusted by the valve device based on the temperature detected by the temperature sensor, and the amount of heat applied to the divided heating medium by the condenser (in other words, For example, by adjusting the amount of heat provided by the condenser to the circulating heat medium between the underground heat exchanger and the evaporator, the amount of heat taken from the ground to the circulating heat medium in the underground heat exchanger can be adjusted. And the amount of heat collected from the ground to the circulating heat medium, the amount of heat applied to the circulating heat medium by the condenser (the amount of heat returned to the circulating heat medium), and the amount of heat collected from the circulating heat medium by the evaporator. By adjusting the temperature, the temperature of the mixed heat medium (that is, the temperature of the circulating heat medium sent to the underground heat exchanger) is maintained at the set temperature.

【0019】すなわち、この構成によれば、例えば、地
中熱交換器から蒸発器に戻る循環熱媒の一部を分流し
て、その分流熱媒を凝縮器での発生熱量の一部を用いて
加熱した上で他の熱媒とともに蒸発器に送るといった流
路構成で、その熱媒分流量を蒸発器からの送出熱媒の検
出温度に基づき調整して地中熱交換器に送る循環熱媒の
温度を設定温度に保つといった温度調整形態を採るに比
べ、熱媒温度の検出部と熱媒合流部との間の熱媒流路長
を短くして、熱媒温度検出に基づく熱媒分流量の調整上
でその調整結果の熱媒温度が検出温度として反映される
までの遅れ時間を短くすることができ、これにより、地
中熱交換器における地中から循環熱媒への採熱量の変化
に対し、地中熱交換器へ送る循環熱媒の温度をより精度
良く安定的に設定温度に保つことができて、採熱特性の
判定精度を一層効果的に向上させることができる。
That is, according to this configuration, for example, a part of the circulating heat medium returning from the underground heat exchanger to the evaporator is divided, and the divided heat medium is used as a part of the heat generated in the condenser. Circulating heat is sent to the underground heat exchanger by adjusting the flow rate of the heat medium based on the detected temperature of the heat medium sent from the evaporator, and then sending it to the underground heat exchanger. Compared to adopting a temperature adjustment mode in which the temperature of the medium is kept at a set temperature, the length of the heat medium flow path between the heat medium temperature detection unit and the heat medium junction is shortened, and the heat medium based on the heat medium temperature detection is used. The delay time until the heat medium temperature as a result of the adjustment is reflected as the detected temperature in the adjustment of the divided flow rate can be shortened, and thus, the amount of heat taken from the ground to the circulation heat medium in the underground heat exchanger can be reduced. Temperature, the temperature of the circulating heat medium sent to the underground heat exchanger can be set more accurately and stably. And it can be kept, the determination accuracy of Tonetsu characteristics can be more effectively improved.

【0020】また、地中熱交換器から蒸発器に戻る循環
熱媒の一部を分流して、その分流熱媒を凝縮器での発生
熱量の一部を用いて加熱した上で他の熱媒とともに蒸発
器に送るといった流路構成で、その熱媒分流量を蒸発器
からの送出熱媒の検出温度に基づき調整する上記の如き
温度調整形態、あるいは、蒸発器からの送出熱媒の一部
を分流して、その分流熱媒を凝縮器での発生熱量の一部
を用いて加熱した上で他の熱媒とともに地中熱交換器に
送るといった流路構成で、その熱媒分流量を地中熱交換
器に送る熱媒の検出温度に基づき調整するといった温度
調整形態を採るに比べ、蒸発器を迂回させる分流形態を
採ることで、熱媒循環系における全体としての熱媒通過
抵抗を平均的に小さくすることができ、その分、熱媒循
環ポンプの消費動力を低減して試験装置の運転コストも
安価にすることができる。
Further, a part of the circulating heat medium returning from the underground heat exchanger to the evaporator is diverted, and the diverted heat medium is heated using a part of the amount of heat generated in the condenser, and then the other heat medium is heated. In a flow path configuration in which the heat medium is sent to the evaporator together with the medium, the flow rate of the heat medium is adjusted based on the detected temperature of the heat medium sent from the evaporator. Part of the heat medium, the divided heat medium is heated using a part of the heat generated in the condenser, and then sent to the underground heat exchanger together with other heat medium. In contrast to taking a temperature adjustment mode that adjusts the temperature based on the detected temperature of the heat medium sent to the underground heat exchanger, the flow path of the heat medium as a whole in the heat medium circulation system is Can be reduced on average, and the consumption It can be made cheaper operating costs reduced by testing apparatus.

【0021】[0021]

【発明の実施の形態】〔第1実施形態〕図1は、地中か
ら採熱する地熱採熱設備の構築にあたり、対象地の採熱
特性を判定するのに用いる地熱採熱試験装置を示し、1
は地中Gに埋設して器内の通過熱媒L(例えばブライン
や水)を対地熱交換させる地中熱交換器、2は圧縮機
3、蒸発器4、膨張弁5及び凝縮器6を主要構成装置と
する圧縮式のヒートポンプ装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG. 1 shows a geothermal heat test apparatus used to determine the heat-collecting characteristics of a target site when constructing a geothermal heat-harvesting facility for collecting heat from underground. , 1
Is an underground heat exchanger which is buried in the underground G and exchanges the passing heat medium L (for example, brine or water) in the vessel with the ground, and 2 is a compressor 3, an evaporator 4, an expansion valve 5, and a condenser 6 It is a compression heat pump device that is the main component device.

【0022】7は地中熱交換器1と蒸発器4との間で熱
媒Lを循環させる熱媒循環路であり、この熱媒循環にお
いて循環熱媒Lに対し蒸発器4を採熱作用させる。
Reference numeral 7 denotes a heat medium circulating path for circulating the heat medium L between the underground heat exchanger 1 and the evaporator 4. In this heat medium circulation, the evaporator 4 heats the circulating heat medium L. Let it.

【0023】8は上記の熱媒循環路7において地中熱交
換器1からの戻り熱媒Lの一部L′を分流し、その後、
その分流熱媒L′を再び熱媒循環路7に戻して他の熱媒
Lとの合流状態で蒸発器4を経て地中熱交換器1へ送る
分岐循環路であり、9はこの熱媒分流における分流比を
調整する三方弁である。
8 divides a part L 'of the return heat medium L from the underground heat exchanger 1 in the heat medium circulation path 7, and thereafter,
A branch circulation path for returning the divided heat medium L 'to the heat medium circulation path 7 and sending it to the underground heat exchanger 1 via the evaporator 4 in a state of being joined with the other heat medium L. This is a three-way valve that adjusts a branch ratio in a branch flow.

【0024】また、ヒートポンプ装置2では、凝縮器6
として、分岐循環路8における循環熱媒L′を放熱対象
(加熱対象)とする熱媒加熱用凝縮器6bと、通風外気
A(大気空気)を放熱対象とする放熱用凝縮器6aと
を、その順に凝縮対象冷媒を通過させる直列接続状態で
設けてある。
In the heat pump device 2, the condenser 6
A heat medium heating condenser 6b having the circulation heat medium L ′ in the branch circulation path 8 as a heat radiation target (heating object), and a heat radiation condenser 6a having the ventilation outside air A (atmospheric air) as a heat radiation target, In this order, the refrigerant to be condensed is provided in series connection to allow the refrigerant to pass through.

【0025】10は熱媒循環ポンプ、11は熱媒循環路
7に対する熱媒補給槽である。
Reference numeral 10 denotes a heat medium circulation pump, and 11 denotes a heat medium supply tank for the heat medium circulation path 7.

【0026】12は蒸発器4から地中熱交換器1へ送る
熱媒Lの温度tiを検出する温度センサ、13は三方弁
9を自動調整する制御器であり、この制御器13は、温
度センサ12の検出温度tiに基づき、蒸発器4から地
中熱交換器1へ送る熱媒Lの温度tiを設定温度tsに
保つように、三方弁9を調整して分岐循環路8への熱媒
分流量を調整する構成にしてある。
Reference numeral 12 denotes a temperature sensor for detecting the temperature ti of the heat medium L sent from the evaporator 4 to the underground heat exchanger 1. Reference numeral 13 denotes a controller for automatically adjusting the three-way valve 9. Based on the temperature ti detected by the sensor 12, the three-way valve 9 is adjusted so that the temperature ti of the heat medium L sent from the evaporator 4 to the underground heat exchanger 1 is maintained at the set temperature ts. The configuration is such that the medium flow rate is adjusted.

【0027】つまり、分岐循環路8への熱媒分流量を調
整して、その分流熱媒L′に対する熱媒加熱用凝縮器6
bの付与熱量Qb(換言すれば、循環熱媒Lに対する熱
媒加熱用凝縮器6bの付与熱量Q)を調整することによ
り、地中熱交換器1における地中Gから循環熱媒Lへの
採熱量Qgの変化に対し、その地中Gから循環熱媒Lへ
の採熱量Qgと、熱媒加熱用凝縮器6bよる循環熱媒L
(L′)への付与熱量Qbと、蒸発器4による循環熱媒
Lからの採熱量Qeとの収支関係を調整して、蒸発器4
から地中熱交換器1へ送る循環熱媒Lの温度tiを設定
温度tsに保つようにしてある。
That is, the flow rate of the heat medium to the branch circulation path 8 is adjusted so that the heat medium heating condenser 6
By adjusting the applied heat amount Qb of b (in other words, the applied heat amount Q of the heat medium heating condenser 6b to the circulating heat medium L), the amount of heat from the underground G to the circulating heat medium L in the underground heat exchanger 1 is increased. With respect to the change in the heat collection amount Qg, the heat collection amount Qg from the underground G to the circulation heat medium L and the circulation heat medium L by the heat medium heating condenser 6b.
By adjusting the balance between the amount of heat Qb applied to (L ') and the amount of heat Qe collected from the circulating heat medium L by the evaporator 4, the evaporator 4
, The temperature ti of the circulating heat medium L sent to the underground heat exchanger 1 is kept at the set temperature ts.

【0028】そして、この送り熱媒Lの温度調整下にお
いて、地中熱交換器1から送出される循環熱媒Lの温度
toや流量f、あるいはまた、三方弁9の調整状態など
に基づき対象地の採熱特性を判定する。
Under the temperature control of the feed heat medium L, the target is determined based on the temperature to and the flow rate f of the circulating heat medium L sent out from the underground heat exchanger 1 or the adjustment state of the three-way valve 9. Determine the heat collection characteristics of the ground.

【0029】なお、上記の如く分岐循環路8への熱媒分
流量を調整して地中熱交換器1への送り熱媒温度tiを
設定温度tsに保つことにおいて、循環熱媒Lについて
の熱収支は次のイ式で示され、 Qg+Qb−Qe=0 ……(イ)
As described above, the flow rate of the heat medium to the branch circulation path 8 is adjusted to maintain the temperature ti of the heat medium sent to the underground heat exchanger 1 at the set temperature ts. The heat balance is expressed by the following equation (1): Qg + Qb-Qe = 0 (a)

【0030】ヒートポンプ装置2についての熱収支は次
のロ式で示され、 Qe+W―Qb−Qa=0 ……(ロ) W:圧縮機仕事、Qa:放熱用凝縮器6aの発生熱量
The heat balance of the heat pump device 2 is expressed by the following equation (2): Qe + W-Qb-Qa = 0 (b) W: work of the compressor, Qa: heat generated by the condenser 6a for heat radiation.

【0031】装置全体についての熱収支は次のハ式で示
される。 Qg+W−Qa=0 ……(ハ)
The heat balance of the entire apparatus is expressed by the following equation (3). Qg + W-Qa = 0 (c)

【0032】以上要するに、本第1実施形態において、
循環熱媒Lの一部L′を熱媒加熱用凝縮器6bに導く分
岐循環路8は、地中熱交換器1と蒸発器4との間での循
環熱媒Lを凝縮器6(6a,6b)での発生熱量(Qa
+Qb)の一部Qbを用いて加熱する加熱手段を構成
し、これに対し、三方弁9、温度センサ12、及び、制
御器13は、蒸発器4から地中熱交換器1へ送る循環熱
媒Lの温度tiを設定温度tsに保つように、その熱媒
温度tiの検出に基づき上記加熱手段による熱媒加熱量
Qbを調整する制御手段を構成する。
In short, in the first embodiment,
The branch circulation path 8 that guides a part L ′ of the circulating heat medium L to the heat medium heating condenser 6b passes the circulating heat medium L between the underground heat exchanger 1 and the evaporator 4 to the condenser 6 (6a). , 6b) (Qa
+ Qb) constitutes a heating means for heating using a part Qb, whereas the three-way valve 9, the temperature sensor 12 and the controller 13 control the circulation heat sent from the evaporator 4 to the underground heat exchanger 1. Control means for adjusting the heating medium heating amount Qb by the heating means based on the detection of the heating medium temperature ti so as to maintain the temperature ti of the medium L at the set temperature ts.

【0033】14は地中熱交換器1から送出される循環
熱媒Lの温度toを検出する温度センサ、15は熱媒循
環路7における熱媒流量fを検出する流量センサであ
る。
Reference numeral 14 denotes a temperature sensor for detecting the temperature to of the circulating heat medium L sent from the underground heat exchanger 1, and reference numeral 15 denotes a flow rate sensor for detecting the flow rate f of the heat medium in the heat medium circulation path 7.

【0034】〔第2実施形態〕図2は第1実施形態で示
した地熱採熱試験装置に改良を施した装置を示し、第1
実施形態の装置における分岐循環路8に代え、図2に示
す本第2実施形態の装置では、地中熱交換器1と蒸発器
4との間での循環熱媒Lを凝縮器6(6a,6b)での
発生熱量(Qa+Qb)の一部Qbを用いて加熱する加
熱手段を構成するのに、地中熱交換器1から蒸発器4に
戻る循環熱媒Lの一部L″を蒸発器4を迂回させる状態
に分流して、この分流熱媒L″を熱媒加熱用凝縮器6b
で加熱した上で蒸発器4からの送出熱媒Lに合流させる
迂回循環路16を設けてある。
[Second Embodiment] FIG. 2 shows an apparatus obtained by improving the geothermal heat sampling test apparatus shown in the first embodiment.
Instead of the branch circulation path 8 in the apparatus of the embodiment, in the apparatus of the second embodiment shown in FIG. 2, the circulating heat medium L between the underground heat exchanger 1 and the evaporator 4 is transferred to the condenser 6 (6a). , 6b), a part of the circulating heat medium L returning to the evaporator 4 from the underground heat exchanger 1 is evaporated to constitute a heating means for heating using a part Qb of the calorific value (Qa + Qb) generated at the part Qb. And the divided heat medium L ″ is diverted to a state in which the heat medium L ″ is bypassed.
A detour circuit 16 is provided which is heated in step S1 and then joins the heating medium L sent from the evaporator 4.

【0035】そして、地中熱交換器1に送る循環熱媒L
の温度tiを設定温度tsに保つように、熱媒温度検出
に基づき上記加熱手段による熱媒加熱量Qbを調整する
制御手段としては、迂回循環路16への熱媒分流量を調
整する三方弁17を、迂回循環路16の通過熱媒L″と
蒸発器4からの送出熱媒Lとの合流部側に装備するとと
もに、迂回循環路16の通過熱媒L″と蒸発器4からの
送出熱媒Lとの合流後における混合熱媒の温度tiを両
熱媒の合流箇所近傍(すなわち、三方弁17の下流側近
傍位置)で検出する温度センサ18、及び、この温度セ
ンサ18の検出温度tiに基づいて上記混合熱媒の温度
ti(すなわち、地中熱交換器1に送る循環熱媒Lの温
度ti)を設定温度tsに保つように三方弁17を調整
する弁制御器19を設けてある。
Then, the circulating heat medium L sent to the underground heat exchanger 1
The control means for adjusting the heating medium heating amount Qb by the heating means based on the detection of the heating medium temperature so as to maintain the temperature ti at the set temperature ts includes a three-way valve for adjusting the flow rate of the heating medium to the bypass circuit 16. 17 is provided on the confluence side of the passing heat medium L ″ of the bypass circuit 16 and the heat medium L sent from the evaporator 4, and the passing heat medium L ″ of the bypass circuit 16 and the delivery from the evaporator 4. A temperature sensor 18 for detecting the temperature ti of the mixed heating medium after the joining with the heating medium L in the vicinity of the junction of the two heating mediums (ie, in the vicinity of the downstream side of the three-way valve 17), and the temperature detected by the temperature sensor 18 A valve controller 19 that adjusts the three-way valve 17 based on ti to maintain the temperature ti of the mixed heat medium (that is, the temperature ti of the circulating heat medium L sent to the underground heat exchanger 1) at the set temperature ts is provided. It is.

【0036】つまり、本第2実施形態の試験装置におい
ても、第1実施形態の装置と同様、迂回循環路16への
熱媒分流量を調整して、その分流熱媒L″に対する熱媒
加熱用凝縮器6bの付与熱量Qb(換言すれば、地中熱
交換器1と蒸発器4との間の循環熱媒Lに対する熱媒加
熱用凝縮器6bの付与熱量)を調整することにより、地
中熱交換器1における地中Gから循環熱媒Lへの採熱量
Qgの変化に対し、その地中Gから循環熱媒Lへの採熱
量Qgと、熱媒加熱用凝縮器6bよる循環熱媒L
(L″)への付与熱量Qbと、蒸発器4による循環熱媒
Lからの採熱量Qeとの収支関係を調整して、地中熱交
換器1に送る循環熱媒Lの温度tiを設定温度tsに保
ち、この送り熱媒Lの温度調整下において、地中熱交換
器1から送出される循環熱媒Lの温度toや流量f、あ
るいはまた、三方弁17の調整状態などに基づき対象地
の採熱特性を判定するが、本第2実施形態の装置では、
迂回循環路16を用いた上記構成を採ることで、第1実
施形態の装置に比べ、熱媒温度tiの検出部と熱媒合流
部との間の熱媒流路長を短くして、熱媒温度検出に基づ
く熱媒分流量の調整上でその調整結果の熱媒温度が検出
温度として反映されるまでの遅れ時間を短くし、これに
より、地中熱交換器1へ送る循環熱媒Lの温度tiをよ
り精度良く安定的に設定温度tsに保てるようにしてあ
る。
That is, in the test apparatus according to the second embodiment, similarly to the apparatus according to the first embodiment, the flow rate of the heat medium to the bypass circulation path 16 is adjusted, and the heat medium heating for the divided heat medium L ″ is performed. By adjusting the amount of heat Qb provided by the condenser 6b for heating (in other words, the amount of heat provided by the condenser 6b for heating the heating medium to the circulating heat medium L between the underground heat exchanger 1 and the evaporator 4). In response to a change in the amount of heat Qg from the underground G to the circulating heat medium L in the intermediate heat exchanger 1, the amount of heat Qg from the underground G to the circulating heat medium L and the circulating heat by the heat medium heating condenser 6b. Medium L
By adjusting the balance between the amount of heat Qb applied to (L ″) and the amount of heat Qe collected from the circulating heat medium L by the evaporator 4, the temperature ti of the circulating heat medium L sent to the underground heat exchanger 1 is set. While maintaining the temperature ts, the temperature of the circulating heat medium L sent from the underground heat exchanger 1 is controlled based on the temperature to and the flow rate f of the circulating heat medium L or the adjustment state of the three-way valve 17 under the temperature adjustment of the sending heat medium L. The heat collection characteristics of the ground are determined.
By adopting the above-described configuration using the bypass circulation path 16, the heat medium flow path length between the heat medium temperature ti detection unit and the heat medium junction is shorter than that of the device of the first embodiment, and In adjusting the flow rate of the heat medium based on the detection of the medium temperature, the delay time until the heat medium temperature as a result of the adjustment is reflected as the detected temperature is shortened, whereby the circulation heat medium L sent to the underground heat exchanger 1 is reduced. The temperature ti can be more accurately and stably maintained at the set temperature ts.

【0037】なお、本第2実施形態では、迂回循環路1
6への熱媒分流量を調整する弁装置としての三方弁17
を、迂回循環路16の通過熱媒L″と蒸発器4からの送
出熱媒Lとの合流部に装備する例を示したが、場合によ
っては、この三方弁17を迂回循環路16への熱媒分流
部に装備してもよく、また、三方弁を用いるに代え、迂
回循環路16への熱媒分流量を調整する弁装置を二方弁
の組み合わせ等により構成するようにしてもよい。
In the second embodiment, the detour circuit 1
Three-way valve 17 as a valve device for adjusting the flow rate of the heat medium to 6
Is provided at the junction of the passing heat medium L ″ in the bypass circuit 16 and the heat medium L sent from the evaporator 4. However, in some cases, the three-way valve 17 is connected to the bypass circuit 16. The valve may be provided in the heat medium branching section, and instead of using the three-way valve, a valve device for adjusting the flow rate of the heat medium to the bypass circuit 16 may be configured by a combination of two-way valves or the like. .

【0038】また、図2において地中熱交換器1はU字
管状のものを示すが、本発明の実施において地中熱交換
器1は、U字管状のものや図1に示す如き二重管状のも
のを初め、どのような構造のものであってもよい。
Although the underground heat exchanger 1 is shown in FIG. 2 as a U-shaped tube, in the practice of the present invention, the underground heat exchanger 1 is a U-shaped tube or a double-walled one as shown in FIG. It may be of any structure, including a tubular one.

【0039】〔別実施形態〕次に別実施形態を列記す
る。前述の実施形態では、分岐循環路8又は迂回循環路
16へ分流した熱媒L′,L″を熱媒加熱用の凝縮器6
bにより加熱する構成としたが、このような熱媒分流を
省略して、熱媒循環路7の循環熱媒Lに対し直接に熱媒
加熱用凝縮器6bを加熱作用させるようにしたり、ある
いはまた、凝縮器の分割を省略して、1つの凝縮器の発
生熱量の一部を用いて循環熱媒Lを加熱するようにする
など、地中熱交換器1と蒸発器4との間での循環熱媒L
を凝縮器での発生熱量の一部を用いて加熱する加熱手段
の具体的構成は種々の構成変更が可能である。
[Another Embodiment] Next, another embodiment will be described. In the above-described embodiment, the heat medium L ′, L ″ diverted to the branch circulation path 8 or the bypass circulation path 16 is supplied to the condenser 6 for heating the heat medium.
The heating medium b is used, but such a branching of the heating medium is omitted, and the heating medium heating condenser 6b is directly heated by the heating medium heating condenser L in the heating medium circulation path 7, or In addition, the division of the condenser is omitted, and the circulation heat medium L is heated using a part of the heat generated by one condenser. Circulating heat medium L
The specific configuration of the heating means for heating the heat using a part of the amount of heat generated in the condenser can be variously changed.

【0040】また、地中熱交換器1へ送る循環熱媒Lの
温度tiを設定温度tsに保つように、その熱媒温度t
iの検出に基づき加熱手段による熱媒加熱量Qbを調整
する制御手段の具体的加熱量調整方式も、加熱手段の具
体構成に応じ種々の方式変更が可能である。
In order to keep the temperature ti of the circulating heat medium L sent to the underground heat exchanger 1 at the set temperature ts, the heat medium temperature t
The specific heating amount adjustment method of the control unit that adjusts the heating medium heating amount Qb by the heating unit based on the detection of i can be variously changed according to the specific configuration of the heating unit.

【0041】前述の実施形態では、発生熱量を外部へ放
熱する放熱用凝縮器6aと、発生熱量を熱媒加熱源とす
る熱媒加熱用凝縮器6bとを直列接続する構成を示した
が、場合によっては、放熱用凝縮器6aと熱媒加熱用凝
縮器6bとを並列接続する構成を採用してもよい。
In the above-described embodiment, a configuration is shown in which the heat-dissipating condenser 6a for dissipating the generated heat to the outside and the heat-medium heating condenser 6b using the generated heat for the heat-medium heating source are connected in series. In some cases, a configuration in which the heat dissipation condenser 6a and the heat medium heating condenser 6b are connected in parallel may be employed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態を示す装置構成図FIG. 1 is a device configuration diagram showing an embodiment.

【図2】別実施形態を示す装置構成図FIG. 2 is a device configuration diagram showing another embodiment.

【符号の説明】[Explanation of symbols]

1 地中熱交換器 4 蒸発器 6 凝縮器 6a 放熱用凝縮器 6b 熱媒加熱用凝縮器 8 加熱手段 9,12,13 制御手段 16 迂回循環路 17 弁装置 18 温度センサ 19 弁制御器 L 熱媒 L″ 分流熱媒 ti 地中熱交換器への送り熱媒温度 ts 設定温度 Qb 熱媒加熱量 DESCRIPTION OF SYMBOLS 1 Underground heat exchanger 4 Evaporator 6 Condenser 6a Heat dissipation condenser 6b Heat medium heating condenser 8 Heating means 9, 12, 13 Control means 16 Detour circulation path 17 Valve device 18 Temperature sensor 19 Valve controller L Heat Medium L ″ Dividing heat medium ti Temperature of heat medium sent to underground heat exchanger ts Set temperature Qb Heating amount of heat medium

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱媒を対地熱交換させる地中熱交換器と
の間で前記熱媒を循環させて、その循環熱媒から採熱す
る蒸発器と、この蒸発器による採熱熱量を放熱する凝縮
器とを備えるヒートポンプ装置において、 前記地中熱交換器と前記蒸発器との間での循環熱媒を前
記凝縮器での発生熱量の一部を用いて加熱する加熱手段
と、 前記蒸発器から前記地中熱交換器へ送る循環熱媒の温度
を設定温度に保つように、その熱媒温度の検出に基づき
前記加熱手段による熱媒加熱量を調整する制御手段とを
設けてある地熱採熱試験装置。
1. An evaporator for circulating the heat medium between the heat medium and an underground heat exchanger for exchanging heat with the ground, and collecting heat from the circulated heat medium, and dissipating heat collected by the evaporator. A heat pump device comprising: a heating unit that heats a circulating heat medium between the underground heat exchanger and the evaporator by using a part of the amount of heat generated in the condenser; Control means for adjusting the heating medium heating amount by the heating means based on detection of the heating medium temperature so as to maintain the temperature of the circulating heating medium sent from the vessel to the underground heat exchanger at a set temperature. Heat sampling test equipment.
【請求項2】 前記凝縮器として、発生熱量を外部へ放
熱する放熱用凝縮器と、発生熱量を前記加熱手段の熱媒
加熱源とする熱媒加熱用凝縮器とを、それら凝縮器に対
し凝縮対象の冷媒を直列に通過させる直列接続状態で設
けてある請求項1記載の地熱採熱試験装置。
2. A condenser for radiating heat generated to the outside as a condenser, and a condenser for heating a heat medium which uses the generated heat as a heat medium heating source of the heating means, for the condensers. The geothermal sampling test device according to claim 1, wherein the geothermal heat sampling test device is provided in a series connection state in which a refrigerant to be condensed passes in series.
【請求項3】 前記加熱手段として、前記地中熱交換器
から前記蒸発器に戻る循環熱媒の一部を前記蒸発器を迂
回させる状態に分流して、この分流熱媒を前記凝縮器で
の発生熱量の一部を用いて加熱した上で前記蒸発器から
の送出熱媒に合流させる迂回循環路を設け、 前記制御手段として、前記迂回循環路への熱媒分流量を
調整する弁装置、前記迂回循環路の通過熱媒と前記蒸発
器からの送出熱媒との合流後における混合熱媒の温度を
両熱媒の合流箇所の近傍で検出する温度センサ、及び、
この温度センサの検出温度に基づいて前記混合熱媒の温
度を設定温度に保つように前記弁装置を調整する弁制御
器を設けてある請求項1又は2記載の地熱採熱試験装
置。
3. As the heating means, a part of the circulating heat medium returning from the underground heat exchanger to the evaporator is diverted to a state of bypassing the evaporator, and the divided heat medium is passed through the condenser. Providing a bypass circuit for heating using a part of the generated heat amount and joining the heat medium delivered from the evaporator; and as the control means, a valve device for adjusting a flow rate of the heat medium to the bypass circuit. A temperature sensor that detects the temperature of the mixed heat medium after the heat medium passing through the bypass circuit and the heat medium delivered from the evaporator are merged near the junction of the two heat media, and
The geothermal heat sampling test device according to claim 1 or 2, further comprising a valve controller that adjusts the valve device so as to maintain the temperature of the mixed heat medium at a set temperature based on the temperature detected by the temperature sensor.
JP2000157721A 1999-10-12 2000-05-29 Geothermal sampling testing device Pending JP2001183030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157721A JP2001183030A (en) 1999-10-12 2000-05-29 Geothermal sampling testing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-289773 1999-10-12
JP28977399 1999-10-12
JP2000157721A JP2001183030A (en) 1999-10-12 2000-05-29 Geothermal sampling testing device

Publications (1)

Publication Number Publication Date
JP2001183030A true JP2001183030A (en) 2001-07-06

Family

ID=26557741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157721A Pending JP2001183030A (en) 1999-10-12 2000-05-29 Geothermal sampling testing device

Country Status (1)

Country Link
JP (1) JP2001183030A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530573A (en) * 2006-03-16 2009-08-27 マテベ オサケ ユキチュア Low energy network systems and distribution tanks
JP2009236403A (en) * 2008-03-27 2009-10-15 Denso Corp Geothermal use heat pump device
KR100948337B1 (en) * 2009-10-28 2010-03-22 주식회사 케이티이엔지 Heat pump testing apparatus using geothermy and its testing method
KR100949888B1 (en) * 2009-05-27 2010-03-25 최승길 Geothermal heat pump system
JP2010243129A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation cooling/heating system
CN101984309A (en) * 2010-11-11 2011-03-09 芜湖市科华新型材料应用有限责任公司 Cold-heat exchange system for underground water source
KR101041718B1 (en) 2009-04-21 2011-06-14 한밭대학교 산학협력단 Heat pump system for supplying hot water and heating space
KR101054377B1 (en) 2009-08-27 2011-08-04 한국생산기술연구원 Heat pump system with heat exchanger for circulating water temperature rise
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
KR101151006B1 (en) * 2010-03-15 2012-06-01 한밭대학교 산학협력단 Heat pump system using ground heat source
JP2014047988A (en) * 2012-08-31 2014-03-17 Sunpot Co Ltd Heat pump system
JP2014081094A (en) * 2012-10-13 2014-05-08 Corona Corp Heat pump system
WO2014078438A3 (en) * 2012-11-13 2014-08-28 Braun Intertec Geothermal, Llc Equipment and methods for designing geothermal heat exchange systems
KR101446768B1 (en) 2014-05-27 2014-10-02 주식회사 선이앤씨 Geothermal Heat Pump System
KR101501441B1 (en) * 2013-07-16 2015-03-11 (주)삼미지오테크 a geothermal heat pump using sub condenser and cooling-heating complex geothermal heat pump including it
CN105066516A (en) * 2015-09-17 2015-11-18 国网天津市电力公司 Thermal balance ground-source heat pump and use method thereof
CN105352003A (en) * 2015-12-01 2016-02-24 邢培奇 Enhanced geothermal energy heat supply system
JP2016525669A (en) * 2013-07-30 2016-08-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft A method of thermotechnically connecting a geothermal source to a district heat supply network.
CN106091476A (en) * 2016-07-29 2016-11-09 北京华誉能源技术股份有限公司 Closed-loop ground source heat pump and the association system of electricity hot water storage tank
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
CN106940032A (en) * 2017-04-17 2017-07-11 中能服能源科技股份有限公司 A kind of single well type deep geothermal heat utilizes direct combustion type heat pump heat distribution system
CN107448367A (en) * 2017-08-08 2017-12-08 天津亿诺电气设备有限公司 Hot-water type geothermal power generation binary cycle system
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
KR20200022980A (en) * 2018-08-24 2020-03-04 조희남 Underwater heat exchanger system using water current and water heat and method for constructing this same
CN112254375A (en) * 2020-10-19 2021-01-22 内蒙古工业大学 Heat pump system for cooling in summer and heating in winter for Mongolian yurt
WO2021078306A1 (en) * 2019-10-25 2021-04-29 甘肃省建材科研设计院有限责任公司 Mid-depth underground petrothermal heat supply system, and heat supplying method
US11187212B1 (en) * 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530573A (en) * 2006-03-16 2009-08-27 マテベ オサケ ユキチュア Low energy network systems and distribution tanks
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
JP2009236403A (en) * 2008-03-27 2009-10-15 Denso Corp Geothermal use heat pump device
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
US9360236B2 (en) 2008-06-16 2016-06-07 Greenfield Master Ipco Limited Thermal energy system and method of operation
JP2010243129A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation cooling/heating system
KR101041718B1 (en) 2009-04-21 2011-06-14 한밭대학교 산학협력단 Heat pump system for supplying hot water and heating space
KR100949888B1 (en) * 2009-05-27 2010-03-25 최승길 Geothermal heat pump system
KR101054377B1 (en) 2009-08-27 2011-08-04 한국생산기술연구원 Heat pump system with heat exchanger for circulating water temperature rise
KR100948337B1 (en) * 2009-10-28 2010-03-22 주식회사 케이티이엔지 Heat pump testing apparatus using geothermy and its testing method
KR101151006B1 (en) * 2010-03-15 2012-06-01 한밭대학교 산학협력단 Heat pump system using ground heat source
CN101984309A (en) * 2010-11-11 2011-03-09 芜湖市科华新型材料应用有限责任公司 Cold-heat exchange system for underground water source
US10921030B2 (en) 2011-03-08 2021-02-16 Erda Master Ipco Limited Thermal energy system and method of operation
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
JP2014047988A (en) * 2012-08-31 2014-03-17 Sunpot Co Ltd Heat pump system
JP2014081094A (en) * 2012-10-13 2014-05-08 Corona Corp Heat pump system
WO2014078438A3 (en) * 2012-11-13 2014-08-28 Braun Intertec Geothermal, Llc Equipment and methods for designing geothermal heat exchange systems
KR101501441B1 (en) * 2013-07-16 2015-03-11 (주)삼미지오테크 a geothermal heat pump using sub condenser and cooling-heating complex geothermal heat pump including it
JP2016525669A (en) * 2013-07-30 2016-08-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft A method of thermotechnically connecting a geothermal source to a district heat supply network.
KR101446768B1 (en) 2014-05-27 2014-10-02 주식회사 선이앤씨 Geothermal Heat Pump System
CN105066516A (en) * 2015-09-17 2015-11-18 国网天津市电力公司 Thermal balance ground-source heat pump and use method thereof
CN105352003A (en) * 2015-12-01 2016-02-24 邢培奇 Enhanced geothermal energy heat supply system
CN106091476A (en) * 2016-07-29 2016-11-09 北京华誉能源技术股份有限公司 Closed-loop ground source heat pump and the association system of electricity hot water storage tank
CN106940032A (en) * 2017-04-17 2017-07-11 中能服能源科技股份有限公司 A kind of single well type deep geothermal heat utilizes direct combustion type heat pump heat distribution system
CN107448367A (en) * 2017-08-08 2017-12-08 天津亿诺电气设备有限公司 Hot-water type geothermal power generation binary cycle system
KR20200022980A (en) * 2018-08-24 2020-03-04 조희남 Underwater heat exchanger system using water current and water heat and method for constructing this same
KR102096582B1 (en) * 2018-08-24 2020-05-27 조희남 Underwater heat exchanger system using water current and water heat and method for constructing this same
WO2021078306A1 (en) * 2019-10-25 2021-04-29 甘肃省建材科研设计院有限责任公司 Mid-depth underground petrothermal heat supply system, and heat supplying method
CN112254375A (en) * 2020-10-19 2021-01-22 内蒙古工业大学 Heat pump system for cooling in summer and heating in winter for Mongolian yurt
CN112254375B (en) * 2020-10-19 2022-02-08 内蒙古工业大学 Heat pump system for cooling in summer and heating in winter for Mongolian yurt
US11274663B1 (en) 2021-04-02 2022-03-15 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic rankine cycle operation during hydrocarbon production
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11255315B1 (en) 2021-04-02 2022-02-22 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production
US11187212B1 (en) * 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11280322B1 (en) 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11359576B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11359612B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11421625B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11236735B1 (en) 2021-04-02 2022-02-01 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature

Similar Documents

Publication Publication Date Title
JP2001183030A (en) Geothermal sampling testing device
JP6111157B2 (en) Gas vaporizer with cold energy recovery function and cold energy recovery device
KR101203579B1 (en) Speed heating apparatus with air conditioner and Control process of the same
US20030070445A1 (en) Gas heat pump type air conditioning device, engine-coolant-water heating device, and operating method for gas heat pump type air conditioning device
KR20150000449A (en) Feed water heating system
KR101775024B1 (en) Fusion energy system of geothermal, solar and water heat energy
US20200214173A1 (en) Phase-change cooling apparatus and phase-change cooling method
KR101845300B1 (en) Fusion energy system of geothermal, solar and water heat energy
US6748762B2 (en) Absorption-refrigerator
JP2005069554A (en) Water heat source air conditioning system
JP2823297B2 (en) Air conditioner
US6487874B2 (en) Absorption refrigerator
JP2007303806A (en) Refrigerating cycle device and its operation method
JP4258241B2 (en) Heat pump system, heat pump water heater
JP2009052880A (en) Heat pump water heater
JP2015145744A (en) Refrigeration device
JP6718786B2 (en) Heat pump water heater with heating function
JP5319502B2 (en) Heat pump heating system
JP4468888B2 (en) Air conditioner
JP2001349637A (en) Heat capture test device
JP6679461B2 (en) Heat pump water heater with heating function
JPH1144462A (en) Refrigerating circuit equipped with heat exchanger unit for controlling refrigerating capacity
JPS6210349B2 (en)
JP2014145514A (en) Secondary refrigerant air conditioning system
JP3046994B2 (en) Engine driven refrigeration system