JP2001181054A - Ceramic substrate - Google Patents
Ceramic substrateInfo
- Publication number
- JP2001181054A JP2001181054A JP37151299A JP37151299A JP2001181054A JP 2001181054 A JP2001181054 A JP 2001181054A JP 37151299 A JP37151299 A JP 37151299A JP 37151299 A JP37151299 A JP 37151299A JP 2001181054 A JP2001181054 A JP 2001181054A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic substrate
- surface roughness
- substrate
- ceramic
- side direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はセラミックス基板に
係り、特に抗折強度を向上させアセンブリング時等にお
いて割れ等の不良を発生することが少なく、信頼性が高
いセラミックス回路基板やヒーター基板を形成すること
が可能なセラミックス基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate, and more particularly, to forming a highly reliable ceramic circuit substrate or a heater substrate which has improved bending strength and hardly causes defects such as cracks during assembly. The present invention relates to a ceramic substrate that can be used.
【0002】[0002]
【従来の技術】従来から、所定の配線パターン形状に形
成した配線金属板をセラミックス基板上に、直接接合し
たり、活性金属を含有するろう材層を介してセラミック
ス基板上に一体に接合したセラミックス回路基板または
発熱抵抗体から成る金属配線層をセラミックス基板表面
に一体に接合したヒーター基板が各種電子機器や半導体
装置に広く使用されている。2. Description of the Related Art Conventionally, ceramics in which a wiring metal plate formed in a predetermined wiring pattern shape is directly bonded to a ceramic substrate or integrally bonded to the ceramic substrate via a brazing material layer containing an active metal. 2. Description of the Related Art A heater substrate in which a circuit board or a metal wiring layer formed of a heating resistor is integrally joined to a ceramic substrate surface is widely used in various electronic devices and semiconductor devices.
【0003】上記セラミックス回路基板は、例えばAl
2O3やAlNなどのセラミックス焼結体基板表面に銅
などの金属から成る回路板等を直接配置した状態で加熱
し、加熱によって発生する金属と酸素との共晶化合物を
接合材としてセラミックス基板表面に銅などの金属板を
直接強固に接合するDBC(ダイレクトボンディングカ
ッパ法)やAg−Cu−Ti系ペーストなど活性金属を
含有した接合用ろう材を介してセラミックス基板と回路
板とを一体に接合する活性金属法などによって製造され
ていた。The above ceramic circuit board is made of, for example, Al
A circuit board made of metal such as copper is directly placed on the surface of a ceramic sintered body substrate such as 2 O 3 or AlN, and the substrate is heated. The eutectic compound of metal and oxygen generated by the heating is used as a bonding material for the ceramic substrate. The ceramic substrate and the circuit board are integrated via a brazing material containing an active metal such as DBC (direct bonding kappa method) or an Ag-Cu-Ti paste for directly and firmly joining a metal plate such as copper to the surface. It was manufactured by the active metal method of joining.
【0004】上記のように熱伝導性および電気伝導性に
優れた銅により回路板を形成しているため、回路動作の
遅延が減少するとともに回路配線の寿命も向上する。ま
た半田等の接合材料に対する濡れ性が向上し、セラミッ
クス焼結体表面に半導体素子(ICチップ)や電極板を
高い接合強度で接合することができ、その結果、半導体
素子からの発熱の放散性や素子の動作信頼性を良好に保
つことができる。As described above, since the circuit board is formed of copper having excellent heat conductivity and electric conductivity, the delay of circuit operation is reduced and the life of circuit wiring is also improved. In addition, the wettability to a bonding material such as solder is improved, and a semiconductor element (IC chip) or an electrode plate can be bonded to the surface of the ceramic sintered body with high bonding strength. As a result, heat dissipation from the semiconductor element can be achieved. And the operational reliability of the element can be kept good.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記セ
ラミックス回路基板のうち、Al2O3基板を使用した
回路基板においては、Al2O3の熱伝導率が低いため
に良好な放熱性が得られず、半導体素子の高密度集積化
および高出力化に伴う放熱対策に充分対応できない問題
点があった。[SUMMARY OF THE INVENTION However, among the ceramic circuit board, in the circuit board using the Al 2 O 3 substrate, good heat dissipation is obtained for the thermal conductivity of Al 2 O 3 is low However, there is a problem that it is not possible to sufficiently cope with heat radiation measures accompanying high-density integration and high output of semiconductor elements.
【0006】さらにAlN基板を使用した場合には、熱
伝導率が高く充分な放熱性が得られるが、AlN基板自
体の強度が低いため、繰り返して作用する熱負荷によっ
てクラックが生じ易く、いわゆる耐熱サイクル性が悪い
という問題点があった。その結果、使用中に繰り返し作
用する熱負荷によって銅回路板が剥離して放熱性が急減
し、電子機器の動作信頼性が低下する問題点があった。Further, when an AlN substrate is used, the heat conductivity is high and sufficient heat dissipation is obtained. However, since the strength of the AlN substrate itself is low, cracks are liable to occur due to a repeated thermal load, so-called heat resistance. There was a problem that the cycle property was poor. As a result, there has been a problem that the copper circuit board peels off due to a thermal load that repeatedly acts during use, the heat radiation property is rapidly reduced, and the operation reliability of the electronic device is reduced.
【0007】また従来のセラミックス基板を使用した回
路基板においては、その構造強度をある程度確保するた
めにセラミックス基板の厚さを大きく設定する必要があ
り、高密度実装化に対する障害となっていた。また厚さ
が大きいセラミックス基板を使用した回路基板は靭性に
乏しく撓みにくいため、例えばこの回路基板にICチッ
プを接合しパッケージに収容してモジュール化した後
に、電子機器を実装用ボードにねじ止めする場合、ねじ
込み時にセラミックス基板に作用する曲げ応力によって
セラミックス回路基板に割れ等の不良が発生し易く、電
子機器の製造歩留りが低下し、回路基板の信頼性や耐久
性が低下してしまうという問題点もあった。In a conventional circuit board using a ceramic substrate, it is necessary to increase the thickness of the ceramic substrate in order to secure the structural strength thereof to some extent, which has been an obstacle to high-density mounting. In addition, since a circuit board using a ceramic substrate having a large thickness has poor toughness and is unlikely to bend, for example, after bonding an IC chip to the circuit board and housing it in a package to form a module, the electronic device is screwed to a mounting board. In this case, the bending stress acting on the ceramic substrate during screwing tends to cause cracks and other defects in the ceramic circuit substrate, lowering the production yield of electronic devices, and lowering the reliability and durability of the circuit substrate. There was also.
【0008】本発明は上記問題点を解決するためになさ
れたものであり、特に抗折強度を向上させ、アセンブリ
ング時等において、割れ等の不良を発生することが少な
く、信頼性が高いセラミックス回路基板やヒーター基板
を形成することが可能なセラミックス基板を提供するこ
とを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and in particular, has a high reliability in the form of a ceramic which is improved in bending strength, hardly causes defects such as cracks at the time of assembly and the like. An object is to provide a ceramic substrate on which a circuit substrate and a heater substrate can be formed.
【0009】[0009]
【課題を解決するための手段】本発明者らは上記目的を
達成するため、セラミックス回路基板およびヒーター基
板のアセンブリー時や使用時に割れや欠けが発生する原
因について調査し、その対応策を検討した。その結果、
回路基板を構成するセラミックス基板の表面粗さがその
抗折強度に大きな影響を及ぼすことが判明し、さらにセ
ラミックス基板表面の表面粗さに方向性をもたせること
により、セラミックス基板の抗折強度を向上させること
ができ、そのセラミックス基板を使用することにより割
れの発生が少なく、信頼性が高い回路基板やヒーター基
板が初めて実現するという知見を得た。本発明は、これ
らの知見に基づいて完成されたものである。Means for Solving the Problems In order to achieve the above object, the present inventors have investigated the causes of cracks and chipping during the assembly and use of ceramic circuit boards and heater boards, and studied countermeasures. . as a result,
It has been found that the surface roughness of the ceramic substrate that constitutes the circuit board has a significant effect on the bending strength, and that the surface roughness of the ceramic substrate surface has directionality to improve the bending strength of the ceramic substrate. It has been found that the use of such a ceramic substrate makes it possible to realize, for the first time, a circuit substrate and a heater substrate which are less likely to crack and have high reliability. The present invention has been completed based on these findings.
【0010】すなわち本発明に係るセラミックス基板
は、セラミックス基板の表裏両面のうち、少なくとも引
張り応力が作用する側の表面において、短辺方向の表面
粗さ(Ra)が長辺方向の表面粗さの1.5倍以上であ
ることを特徴とする。That is, in the ceramic substrate according to the present invention, the surface roughness (Ra) in the short side direction is smaller than the surface roughness in the long side direction at least on the surface on both sides of the ceramic substrate on which the tensile stress acts. It is characterized by being 1.5 times or more.
【0011】また、表面粗さが最大になる方向が、セラ
ミックス基板の表面と裏面とで異なるように構成しても
よい。この場合、上記方向が異なる状態は特に限定され
るものではないが、例えば図3に示すように、セラミッ
クス基板1の一方の表面の表面粗さの最大方向D1に対
して他方の表面の表面粗さの最大方向D2が45°〜1
25°の範囲にあることが好ましい。さらに、セラミッ
クス基板の主成分が窒化けい素であることが好ましい。
さらに、セラミックス基板の表面粗さ(Ra)が0.6
μm以下であることが好ましい。Further, the direction in which the surface roughness is maximum may be different between the front surface and the back surface of the ceramic substrate. In this case, the above directions are different states is not particularly limited, for example, as shown in FIG. 3, the surface of the other surface with respect to the maximum direction D 1 of the surface roughness of the one surface of the ceramic substrate 1 up direction D 2 of the roughness 45 ° to 1
It is preferably in the range of 25 °. Further, it is preferable that the main component of the ceramic substrate is silicon nitride.
Further, the surface roughness (Ra) of the ceramic substrate is 0.6.
It is preferably not more than μm.
【0012】本発明のセラミックス基板を構成する材料
は、特に限定されるものではなく、酸化アルミニウム
(アルミナ:Al2O3)等の酸化物系セラミックス焼
結体、窒化けい素(Si3N4),窒化アルミニウム
(AlN)などの窒化物系セラミックス焼結体、炭化け
い素(SiC)などの炭化物系セラミックス焼結体など
が使用できる。特に窒化けい素(Si3N4)は他のセ
ラミックス焼結体と比較して本来的に高い曲げ強度を有
しているため、本発明のセラミックス基板の構成材料と
して好適である。The material constituting the ceramic substrate of the present invention is not particularly limited, and an oxide ceramic sintered body such as aluminum oxide (alumina: Al 2 O 3 ), silicon nitride (Si 3 N 4) ), Nitride-based ceramics sintered bodies such as aluminum nitride (AlN), and carbide-based ceramics sintered bodies such as silicon carbide (SiC) can be used. In particular, silicon nitride (Si 3 N 4 ) is inherently higher in bending strength than other sintered ceramics, and thus is suitable as a constituent material of the ceramic substrate of the present invention.
【0013】従来、セラミックス基板表面の表面粗さに
ついては、基板に接合する金属回路板や発熱抵抗体の接
合強度の観点から研究されていた経緯はあるが、その表
面粗さについてはセラミックス基板の方向には関係なく
一律に規定されていた。Conventionally, the surface roughness of a ceramic substrate surface has been studied from the viewpoint of the bonding strength of a metal circuit board or a heating resistor to be bonded to the substrate, but the surface roughness of the ceramic substrate has not been studied. It was defined uniformly regardless of the direction.
【0014】これに対して本願発明では、セラミックス
基板の表面粗さに方向性をもたせることにより、顕著な
効果を得ている。具体的には、セラミックス基板の表裏
両面のうち、少なくとも引張り応力が作用する側の表面
において、短辺方向の表面粗さ(Ra)が長辺方向の表
面粗さの1.5倍以上にすることにより、その引張り応
力が作用する側の表面を基準にして抗折強度を実施した
場合にセラミックス基板の抗折強度を向上させる効果を
得ている。In contrast, in the present invention, a remarkable effect is obtained by giving directionality to the surface roughness of the ceramic substrate. Specifically, the surface roughness (Ra) in the short side direction is set to be at least 1.5 times the surface roughness in the long side direction on at least the surface on the side on which the tensile stress acts, of the front and back surfaces of the ceramic substrate. Thus, the effect of improving the bending strength of the ceramic substrate is obtained when the bending strength is performed with reference to the surface on which the tensile stress acts.
【0015】本願発明で規定する表面粗さ(Ra)は、
日本工業規格(JIS)のB0601に準拠する算術平
均粗さである。The surface roughness (Ra) defined in the present invention is:
Arithmetic average roughness based on B0601 of Japanese Industrial Standards (JIS).
【0016】上記短辺方向の表面粗さ(Ra)が長辺方
向の表面粗さの1.5倍未満の場合には、セラミックス
基板の抗折強度の改善効果が不十分であり、割れ等の不
良が発生し易くなる。したがって、上記表面粗さの倍率
は1.5倍以上とされるが、2.0倍以上がさら好まし
い。When the surface roughness (Ra) in the short side direction is less than 1.5 times the surface roughness in the long side direction, the effect of improving the transverse rupture strength of the ceramic substrate is insufficient, and cracks and the like occur. Defects easily occur. Therefore, the magnification of the surface roughness is set to 1.5 times or more, more preferably 2.0 times or more.
【0017】また、セラミックス基板の表面粗さ(R
a)が過度に大きい場合には、その粗面部を起点にして
ファインクラックを発生し易くなり、また粗面部の谷部
分が、いわゆる切欠きとして作用して割れを発生し易く
なる。そのため、セラミックス基板の表面粗さは、裏面
および表面ともに0.6μm以下とすることが好まし
い。The ceramic substrate has a surface roughness (R
When a) is excessively large, a fine crack is easily generated starting from the rough surface portion, and a valley portion of the rough surface portion acts as a so-called notch to easily generate a crack. Therefore, the surface roughness of the ceramic substrate is preferably 0.6 μm or less for both the back surface and the front surface.
【0018】さらにセラミックス基板の表面粗さに方向
性をもたせる加工方法については、特に限定されるもの
ではないが、例えば、焼結する前の段階のセラミックス
成形体を形成する際に、成形体表面に所定方向に延びる
筋や溝を形成する方法が採用できる。また、焼結後にお
いてセラミックス焼結体の表面を平面研削盤にて研磨加
工する方法などが採用できる。Further, there is no particular limitation on the processing method for imparting directionality to the surface roughness of the ceramic substrate. For example, when forming a ceramic molded body before sintering, A method of forming streaks or grooves extending in a predetermined direction can be adopted. Further, a method of polishing the surface of the ceramic sintered body with a surface grinder after sintering can be adopted.
【0019】図2は表面粗さに方向性をもたせるための
加工法の一例を示す斜視図である。図2において、セラ
ミックス基板1の長辺方向に沿って平面研削盤の回転砥
石2が移動するように、セラミックス基板1の表面が研
磨加工され、研磨面には筋状の研磨痕3が形成される。
この研磨加工により、セラミックス基板1の長辺方向の
表面粗さは小さくなる一方、長辺方向と直角な短辺方向
の表面粗さは大きくなり、セラミックス基板1のひとつ
の表面において方向によって表面粗さが異なるセラミッ
クス基板が得られる。FIG. 2 is a perspective view showing one example of a processing method for giving directionality to the surface roughness. In FIG. 2, the surface of the ceramic substrate 1 is polished so that the rotary grindstone 2 of the surface grinder moves along the long side direction of the ceramic substrate 1, and a streak-like polishing mark 3 is formed on the polished surface. You.
By this polishing, the surface roughness in the long side direction of the ceramic substrate 1 decreases, while the surface roughness in the short side direction perpendicular to the long side direction increases, and the surface roughness of one surface of the ceramic substrate 1 depends on the direction. Ceramic substrates having different sizes can be obtained.
【0020】上記平面研削盤の回転砥石2としては、例
えば、粒度が粗い#200から粒度が細かい#400程
度のダイヤモンド砥粒を含有し、外周研磨面の幅が10
mm程度のレジンボンド砥石が好適に使用できる。そし
て、上記砥粒の粒度を適宜選択し、所定方向に研磨する
ことにより、セラミックス基板1の各方向における表面
粗さを任意に調整することができる。このように、セラ
ミックス基板1の一定方向に沿って研磨する方法が好ま
しい。The rotary grindstone 2 of the above-mentioned surface grinding machine contains, for example, diamond abrasive grains of about # 200 to # 400 having a fine grain size and a width of the outer polished surface of about 10 mm.
A resin-bonded grindstone of about mm can be suitably used. Then, the surface roughness of the ceramic substrate 1 in each direction can be arbitrarily adjusted by appropriately selecting the particle size of the abrasive grains and polishing in a predetermined direction. Thus, a method of polishing the ceramic substrate 1 along a certain direction is preferable.
【0021】また、表面粗さが最大になる方向が、セラ
ミックス基板の表面と裏面とで異なるようにセラミック
ス基板を調製することにより、抗折強度がより低くなる
部位を低減することができる。すなわち、表面粗さが最
大となる方向がセラミックス基板の表面と裏面とで一致
した場合には、その一致した方向と直角な方向に曲げ応
力が作用したときに容易に破損してしまう脆弱な部位が
形成される。しかしながら、上記のようにセラミックス
基板の表面と裏面とにおける表面粗さの方向性を変える
ことにより、上記脆弱な部位が少なくなり、セラミック
ス基板全体の構造強度を高めることができる。例えば、
表面を横方向に沿って研磨し表面粗さに方向性を持たせ
たセラミックス基板に対し、表面側の表面粗さの方向性
を0°としたときに裏面の表面粗さを45°〜125°
の範囲において一定方向に研磨することが好ましい。裏
面の表面粗さの方向性が0°〜45°未満、125°を
超えて180°の範囲では、表面の表面粗さとの方向性
の違いが発現しにくいため前述のような脆弱な部位が形
成され易くなってしまう。Further, by preparing the ceramic substrate such that the direction in which the surface roughness becomes maximum is different between the front surface and the rear surface of the ceramic substrate, it is possible to reduce the portions where the bending strength becomes lower. In other words, if the direction in which the surface roughness is maximum coincides with the front and back surfaces of the ceramic substrate, a fragile portion that is easily damaged when bending stress is applied in a direction perpendicular to the coincident direction. Is formed. However, by changing the direction of the surface roughness between the front surface and the back surface of the ceramic substrate as described above, the number of the fragile portions is reduced, and the structural strength of the entire ceramic substrate can be increased. For example,
With respect to a ceramic substrate whose surface is polished along the lateral direction to give directionality to the surface roughness, when the direction of the surface roughness on the front side is 0 °, the surface roughness of the back side is 45 ° to 125 °. °
Is preferably polished in a certain direction. When the directionality of the surface roughness of the back surface is in the range of 0 ° to less than 45 ° and in the range of more than 125 ° to 180 °, the above-mentioned fragile portion is difficult to develop a difference in directionality from the surface roughness of the front surface. It is easy to form.
【0022】上記構成に係るセラミックス基板によれ
ば、セラミックス基板の表裏両面のうち、少なくとも引
張り応力が作用する側の表面において、短辺方向の表面
粗さ(Ra)が長辺方向の表面粗さの1.5倍以上であ
るため、セラミックス基板の抗折強度が向上し、アセン
ブリング時に割れが発生することが少なく、信頼性が高
い回路基板やヒーター基板を高い製造歩留りで形成する
ことができる。According to the ceramic substrate having the above structure, the surface roughness (Ra) in the short side direction is the surface roughness in the long side direction at least on the front and back surfaces of the ceramic substrate on the side where the tensile stress is applied. 1.5 times or more, the bending strength of the ceramic substrate is improved, cracks are less likely to occur during assembly, and a highly reliable circuit board or heater substrate can be formed with a high production yield. .
【0023】また、従来のように表面粗さの方向性を考
慮せずに一律に表面粗さを規定していた場合と比較し
て、本発明のセラミックス基板では、セラミックス基板
をモジュール化して回路基板等に形成し、その組立時お
よび使用時に作用する応力方向を考慮して表面粗さの方
向性を最適化することが可能になり、所定の表面粗さを
得るための研磨工数を低減することも可能になる。In the ceramic substrate of the present invention, as compared with the conventional case where the surface roughness is uniformly defined without considering the directionality of the surface roughness, the circuit of the ceramic substrate is modularized. It is possible to optimize the directionality of the surface roughness formed on a substrate or the like in consideration of the stress direction acting during its assembly and use, and reduce the number of polishing steps for obtaining a predetermined surface roughness. It becomes possible.
【0024】さらに、表面粗さが最大になる方向を、セ
ラミックス基板の表面と裏面とで異なるように構成する
ことにより、特に抗折強度が低くなる脆弱な部分が減少
し、セラミックス基板全体の構造強度を高めることがで
きる。Further, by configuring the direction in which the surface roughness is maximum to be different between the front surface and the rear surface of the ceramic substrate, the fragile portion where the bending strength is particularly low is reduced, and the structure of the entire ceramic substrate is reduced. Strength can be increased.
【0025】[0025]
【発明の実施の形態】次に本発明の実施形態について添
付図面を参照し、以下の実施例に基づいて、より具体的
に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described more specifically with reference to the accompanying drawings based on the following embodiments.
【0026】実施例1 酸素1.3重量%、陽イオン不純物0.15重量%以下
含有し、α相型窒化けい素97%を含む平均粒径0.5
5μmの窒化けい素原料粉末に対して、焼結助剤として
平均粒径0.7μmのY2O3(酸化イットリウム)粉
末5重量%、平均粒径0.5μmのAl2O3(アルミ
ナ)粉末1.5重量%を添加し、エチルアルコール中で
24時間湿式混合した後に乾燥して原料粉末混合体を調
整した。次に得られた原料粉末混合体に有機バインダを
所定量添加して均一に混合した後に、1000kg/c
m2の成形圧力でプレス成形し、多数の成形体を製作し
た。次に得られた成形体を700℃の雰囲気ガス中にお
いて2時間脱脂した後に、この脱脂体を窒素ガス雰囲気
中7.5気圧にて1900℃で6時間保持し、緻密化焼
結を実施した後に、焼結炉に付設した加熱装置への通電
量を制御して焼結炉内温度が1500℃まで降下するま
での間における焼結体の冷却速度が50℃/hrとなる
ように調整して焼結体を冷却し、長辺長さ60mm×短
辺長さ40mm×厚さ0.6mmの実施例1用の窒化け
い素基板を多数調製した。 Example 1 An average particle diameter of 0.5% containing 1.3% by weight of oxygen, 0.15% by weight or less of cationic impurities, and 97% of α-phase silicon nitride.
Against silicon nitride material powder of 5 [mu] m, average particle size 0.7μm in Y 2 O 3 (yttrium oxide) powder 5% by weight as a sintering aid, an average particle size of 0.5μm Al 2 O 3 (alumina) 1.5 wt% of powder was added, and the mixture was wet-mixed in ethyl alcohol for 24 hours and then dried to prepare a raw material powder mixture. Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture, and the mixture is uniformly mixed.
Press molding was performed at a molding pressure of m 2 to produce a large number of molded bodies. Next, after the obtained molded body was degreased in an atmosphere gas at 700 ° C. for 2 hours, the degreased body was held in a nitrogen gas atmosphere at 7.5 atm at 1900 ° C. for 6 hours to perform densification sintering. Thereafter, the amount of electricity to the heating device attached to the sintering furnace was controlled to adjust the cooling rate of the sintered body to 50 ° C./hr until the temperature in the sintering furnace dropped to 1500 ° C. The sintered body was cooled by cooling to prepare a large number of silicon nitride substrates for Example 1 having a long side length of 60 mm × a short side length of 40 mm × a thickness of 0.6 mm.
【0027】次に得られた窒化けい素基板の裏面につい
て平面研削盤の回転砥石を基板の長辺方向に移動するよ
うに研磨し、表1に示す各方向の表面粗さを有する実施
例1に係る窒化けい素基板を調製した。Next, the back surface of the obtained silicon nitride substrate was polished so that a rotating grindstone of a surface grinder was moved in the long side direction of the substrate, and Example 1 having a surface roughness in each direction shown in Table 1 was obtained. Was prepared.
【0028】実施例2 実施例1において窒化けい素基板の表面についても研磨
処理を実施した点以外は実施例1と同様な手順で実施例
2に係る窒化けい素基板を調製した。但し、窒化けい素
基板の表面については、回転砥石が基板の短辺方向に移
動するように研磨した。 Example 2 A silicon nitride substrate according to Example 2 was prepared in the same procedure as in Example 1 except that the surface of the silicon nitride substrate was also polished. However, the surface of the silicon nitride substrate was polished so that the rotating grindstone moved in the short side direction of the substrate.
【0029】実施例3 実施例1において焼結後に窒化けい素基板の裏面を回転
砥石によって研磨せずに、窒化けい素成形体の段階で裏
面の長辺方向に幅が0.3μmで深さが0.3μmでピ
ッチが10μmの多数の筋状の溝を形成した点以外は実
施例1と同様な手順に従って実施例3に係る窒化けい素
基板を調製した。 Example 3 In Example 1, after the sintering, the back surface of the silicon nitride substrate was not polished by a rotating grindstone, and the width of the back surface was 0.3 μm and the depth was 0.3 μm in the stage of the silicon nitride molded body. A silicon nitride substrate according to Example 3 was prepared according to the same procedure as in Example 1 except that a number of stripe-like grooves having a pitch of 0.3 μm and a pitch of 10 μm were formed.
【0030】実施例4 不純物酸素含有量が1.5重量%で平均粒径が1.2μ
mである窒化アルミニウム(AlN)粉末に焼結補助剤
としてのイットリア(Y2O3)を5重量%配合し、得
られた原料混合体を100MPaの加圧力で成形して成
形体とし、この成形体を20vol.%の水素ガスを含
むAr雰囲気中で温度1800℃で4時間焼成すること
により、長辺長さ60mm×短辺長さ40mm×厚さ
0.6mmの実施例4用の窒化アルミニウム基板を多数
調製した。 Example 4 The content of impurity oxygen was 1.5% by weight and the average particle size was 1.2 μm.
5 wt% of yttria (Y 2 O 3 ) as a sintering aid was mixed with aluminum nitride (AlN) powder of m, and the obtained raw material mixture was molded at a pressure of 100 MPa to obtain a molded body. When the molded body is 20 vol. % Of hydrogen gas at a temperature of 1800 ° C. for 4 hours to prepare a number of aluminum nitride substrates for Example 4 having a long side length of 60 mm × a short side length of 40 mm × a thickness of 0.6 mm. did.
【0031】次に得られた窒化アルミニウム基板の裏面
について平面研削盤の回転砥石を基板の長辺方向に移動
するように研磨し、表1に示す各方向の表面粗さを有す
る実施例4に係る窒化アルミニウム基板を調製した。Next, the back surface of the obtained aluminum nitride substrate was polished with a rotating grindstone of a surface grinder so as to move in the longitudinal direction of the substrate. Such an aluminum nitride substrate was prepared.
【0032】実施例5 平均粒径1μmの酸化アルミニウム(Al2O3)粉末
96重量%、焼結助剤として酸化けい素粉末2重量%と
酸化マグネシウム粉末1.5重量%と酸化カルシウム粉
末0.5重量%とを十分に混合し、この混合粉末100
重量部に対してバインダ30重量部を加えて混練し、板
状に成形して脱脂後、酸化性雰囲気中で1500℃、2
時間の条件で焼成し、長辺長さ60mm×短辺長さ40
mm×厚さ0.6mmである実施例5用のアルミナ基板
を作製した。 Example 5 96% by weight of aluminum oxide (Al 2 O 3 ) powder having an average particle diameter of 1 μm, 2% by weight of silicon oxide powder, 1.5% by weight of magnesium oxide powder and 0% of calcium oxide powder as sintering aids And 0.5% by weight of the mixed powder.
30 parts by weight of a binder is added to the parts by weight, and the mixture is kneaded, formed into a plate shape, and degreased.
Baking under the condition of time, long side length 60mm × short side length 40
An alumina substrate for Example 5 having a size of mm × 0.6 mm in thickness was produced.
【0033】次に得られたアルミナ基板の裏面について
平面研削盤の回転砥石を基板の長辺方向に移動するよう
に研磨し、表1に示す各方向の表面粗さを有する実施例
5に係るアルミナ基板を調製した。Next, the back surface of the obtained alumina substrate was polished with a rotating grindstone of a surface grinder so as to move in the long side direction of the substrate, and the back surface of the alumina substrate according to Example 5 having surface roughness in each direction shown in Table 1 was obtained. An alumina substrate was prepared.
【0034】比較例1 実施例1において焼結した得た窒化けい素基板の裏面に
ついて平面研削盤の回転砥石を基板の短辺方向に移動す
るように研磨した点以外は実施例1と同様な手順に従っ
て比較例1に係る窒化けい素基板を調製した。 Comparative Example 1 The same procedure as in Example 1 was carried out except that the back surface of the silicon nitride substrate sintered in Example 1 was polished so that the rotating grindstone of the surface grinder was moved in the short side direction of the substrate. According to the procedure, a silicon nitride substrate according to Comparative Example 1 was prepared.
【0035】比較例2 実施例1において焼結した得た窒化けい素(Si
3N4)基板の裏面について回転砥石による研磨を実施
せずに、そのまま比較例2に係る窒化けい素基板とし
た。 Comparative Example 2 The silicon nitride (Si) obtained in Example 1 was sintered.
3 N 4) without performing polishing with the grinding wheel for the rear surface of the substrate, and a silicon nitride substrate as in Comparative Example 2.
【0036】比較例3 実施例4において焼結した得た窒化アルミニウム(Al
N)基板の裏面について回転砥石による研磨を実施せず
に、そのまま比較例3に係る窒化アルミニウム基板とし
た。 Comparative Example 3 The obtained aluminum nitride (Al) sintered in Example 4
N) The aluminum nitride substrate according to Comparative Example 3 was used without polishing the back surface of the substrate with a rotary grindstone.
【0037】比較例4 実施例5において焼結した得た酸化アルミニウム(Al
2O3)基板の裏面について回転砥石による研磨を実施
せずに、そのまま比較例4に係る酸化アルミニウム基板
とした。 Comparative Example 4 The obtained aluminum oxide (Al) sintered in Example 5
2 O 3 ) The aluminum oxide substrate according to Comparative Example 4 was used as it was without polishing the back surface of the substrate with a rotary grindstone.
【0038】上記のように調製した実施例1〜5および
比較例1〜4に係る各セラミックス基板について、表面
および裏面の長辺方向および短辺方向の表面粗さを測定
した後に、図1に示すように三点曲げ試験を実施して抗
折強度を測定した。すなわち、各セラミックス基板1の
裏面の長辺方向Lの両縁部を、一対の抗折試験用治具4
によって支持間隔が50mmとなるように支持した状態
で表面の中央部に配置した上部押圧治具5によってセラ
ミックス基板1に押圧力を作用させ、セラミックス基板
に破断を生じた時点での最大押圧力から抗折強度を算出
した。For each of the ceramic substrates according to Examples 1 to 5 and Comparative Examples 1 to 4 prepared as described above, the surface roughness of the front and back surfaces in the long side direction and the short side direction was measured. As shown, a three-point bending test was performed to measure the bending strength. That is, both edges of the back surface of each ceramic substrate 1 in the long side direction L are connected to a pair of bending test jigs 4.
The pressing force is applied to the ceramic substrate 1 by the upper pressing jig 5 disposed at the center of the surface in a state where the ceramic substrate 1 is supported so that the supporting interval becomes 50 mm, and the maximum pressing force at the time when the ceramic substrate is broken is determined. Flexural strength was calculated.
【0039】なお実施例1〜5および比較例2〜4にお
いては、抗折試験用治具と表面粗さが最大となる方向の
位置関係とは平行である一方、比較例1においては垂直
とした。抗折強度の測定・算出結果を下記表1に示す。In Examples 1 to 5 and Comparative Examples 2 to 4, the positional relationship between the bending test jig and the direction in which the surface roughness was maximized was parallel, whereas in Comparative Example 1, the position was perpendicular. did. Table 1 below shows the results of measurement and calculation of bending strength.
【0040】[0040]
【表1】 [Table 1]
【0041】上記表1に示す結果から明らかなように、
三点曲げ抗折試験において、引張り応力が作用する側の
面、すなわちセラミックス基板1の裏面において、短辺
方向Sの表面粗さRa(S)を長辺方向Lの表面粗さR
a(L)の1.5倍以上になるように研磨処理した各実
施例に係るセラミックス基板においては、研磨処理を実
施しない比較例2〜4に係るセラミックス基板と比較し
て抗折強度が大幅に増加しており、アセンブリング時に
割れが発生することも少なく信頼性が高い回路基板やヒ
ーター基板を高い歩留りで製造できることが判明した。As is clear from the results shown in Table 1 above,
In the three-point bending test, the surface roughness Ra (S) in the short side direction S is changed to the surface roughness R in the long side direction L on the surface on which the tensile stress acts, that is, the back surface of the ceramic substrate 1.
In the ceramic substrate according to each of the examples, which was polished so as to be 1.5 times or more of a (L), the transverse rupture strength was large as compared with the ceramic substrates according to Comparative Examples 2 to 4 in which the polishing was not performed. It has been found that a circuit board and a heater board having high reliability with little cracking during assembly can be manufactured with high yield.
【0042】一方、抗折試験用治具の方向と表面粗さの
最大方向とを垂直にし、曲げ応力が作用する方向に最大
の表面粗さが表われる比較例1に係る窒化けい素基板に
おいては、無研磨状態の比較例2に係る窒化けい素基板
よりも抗折強度が低下した。On the other hand, in the silicon nitride substrate according to Comparative Example 1, the direction of the bending test jig is perpendicular to the maximum direction of the surface roughness, and the maximum surface roughness appears in the direction in which the bending stress acts. Has a lower bending strength than the silicon nitride substrate according to Comparative Example 2 in an unpolished state.
【0043】また、所定の研磨処理を実施せず、セラミ
ックス基板の表面粗さの方向性を考慮しない比較例2〜
4に係るセラミックス基板においては、対応する各実施
例の基板と比較して抗折強度が低下することが確認でき
た。Comparative Examples 2 and 3 in which the predetermined polishing treatment was not performed and the directionality of the surface roughness of the ceramic substrate was not considered
In the ceramic substrate according to No. 4, it was confirmed that the transverse rupture strength was reduced as compared with the substrates of the corresponding examples.
【0044】実施例6〜11 実施例1の基板において、表面の研磨方向を0°とした
場合に、表2に示した角度方向に裏面側の研磨を行い、
実施例1と同様の抗折強度試験を行い、さらにその方向
に対し90°変えた方向からの抗折強度試験を行い、下
記表2に示す結果を得た。なお、裏面の研磨は表面側を
研磨したものと同様の砥石により実施した。 Examples 6 to 11 In the substrate of Example 1, when the polishing direction of the front surface was set to 0 °, the back surface was polished in the angular directions shown in Table 2.
A bending strength test was performed in the same manner as in Example 1, and a bending strength test was performed from a direction changed by 90 ° with respect to the direction. The results shown in Table 2 below were obtained. The back surface was polished with the same grindstone as the one polished on the front side.
【0045】[0045]
【表2】 [Table 2]
【0046】上記表2から明らかなように、表面と裏面
の表面粗さの最大になる方向を変えたものは、例えば実
施例6のように表面裏面の表面粗さの最大になる方向を
一致させたものに対して、抗折強度試験をどちらの方向
に試験治具を押し当てて測定した場合においても優れた
抗折強度が得られることが判明した。As is clear from Table 2, the direction in which the maximum surface roughness of the front and rear surfaces is changed corresponds to the direction in which the maximum surface roughness of the front and rear surfaces changes as in Example 6, for example. It was found that excellent flexural strength was obtained when the flexural strength test was performed by pressing the test jig in either direction.
【0047】この結果を踏まえると、引張り応力が作用
する方向がランダムである場合、表面粗さが最大になる
方向をセラミックス基板の表面裏面で変えることによ
り、どちらの方向から応力が作用した場合においても優
れた抗折強度を得ることが可能となる。Based on this result, when the direction in which the tensile stress acts is random, the direction in which the surface roughness is maximized is changed on the front and back surfaces of the ceramic substrate, so that the direction in which the stress acts from either direction This also makes it possible to obtain excellent bending strength.
【0048】言い換えると、引張り応力が作用する方向
が常に一定であるならば、実施例6に示したように表面
裏面ともに同じ方向に研磨することが好ましいことが判
明した。In other words, it has been found that if the direction in which the tensile stress acts is always constant, it is preferable to polish the front and back surfaces in the same direction as shown in the sixth embodiment.
【0049】[0049]
【発明の効果】以上説明の通り、本発明に係るセラミッ
クス基板によれば、セラミックス基板の表裏両面のう
ち、少なくとも引張り応力が作用する側の表面におい
て、短辺方向の表面粗さ(Ra)が長辺方向の表面粗さ
の1.5倍以上であるため、セラミックス基板の抗折強
度が向上し、アセンブリング時に割れが発生することが
少なく、信頼性が高い回路基板やヒーター基板を高い製
造歩留りで形成することができる。As described above, according to the ceramic substrate of the present invention, the surface roughness (Ra) in the short side direction of at least the surface of the front and back surfaces of the ceramic substrate on which the tensile stress acts is reduced. Since the surface roughness is 1.5 times or more the surface roughness in the long side direction, the bending strength of the ceramic substrate is improved, cracks are less likely to occur during assembly, and highly reliable circuit boards and heater substrates are manufactured at high cost. It can be formed with a yield.
【0050】また、従来のように表面粗さの方向性を考
慮せずに一律に表面粗さを規定していた場合と比較し
て、本発明のセラミックス基板では、セラミックス基板
をモジュール化して回路基板等に形成し、その組立時お
よび使用時に作用する応力方向を考慮して表面粗さの方
向性を最適化することが可能になり、所定の表面粗さを
得るための研磨工数を低減することも可能になる。Also, in comparison with the conventional case where the surface roughness is uniformly defined without considering the directionality of the surface roughness, the ceramic substrate of the present invention is a circuit It is possible to optimize the directionality of the surface roughness formed on a substrate or the like in consideration of the stress direction acting during its assembly and use, and reduce the number of polishing steps for obtaining a predetermined surface roughness. It becomes possible.
【0051】さらに、表面粗さが最大になる方向を、セ
ラミックス基板の表面と裏面とで異なるように構成する
ことにより、特に抗折強度が低くなる脆弱な部分が減少
し、セラミックス基板全体の構造強度を高めることがで
きる。Further, by arranging the direction in which the surface roughness is maximized on the front surface and the back surface of the ceramic substrate, the fragile portion where the transverse rupture strength is reduced is reduced, and the structure of the entire ceramic substrate is reduced. Strength can be increased.
【図1】本発明に係るセラミックス基板の一実施例につ
いて抗折試験を実施している状態を示す斜視図。FIG. 1 is a perspective view showing a state in which a bending test is performed on one embodiment of a ceramic substrate according to the present invention.
【図2】セラミックス基板の表面粗さに方向性をもたせ
るための研磨法の一例を示す斜視図。FIG. 2 is a perspective view showing an example of a polishing method for giving directionality to the surface roughness of a ceramic substrate.
【図3】セラミックス基板の表面および裏面の表面粗さ
の最大方向(D1,D2)の位置関係を示す平面図。FIG. 3 is a plan view showing the positional relationship of the surface roughness of the front and back surfaces of the ceramic substrate in the maximum direction (D 1 , D 2 ).
1 セラミックス基板 2 回転砥石 3 研磨痕 4 抗折試験用治具 5 上部押圧治具 DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Rotating grindstone 3 Polishing mark 4 Jig for bending test 5 Upper pressing jig
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA03 BA04 BA06 BA07 BA09 BA32 BA36 BA71 BA73 BA75 BB03 BB04 BB06 BB07 BB09 BB32 BB36 BC12 BC13 BC52 BC54 BC55 BC73 BD13 BD14 BE35 4G030 AA12 AA36 AA52 BA02 GA19 GA24 5E338 AA18 BB63 CC01 EE26 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA03 BA04 BA06 BA07 BA09 BA32 BA36 BA71 BA73 BA75 BB03 BB04 BB06 BB07 BB09 BB32 BB36 BC12 BC13 BC52 BC54 BC55 BC73 BD13 BD14 BE35 4G030 AA12 AA36 AA52 BA02 GA19 GA24 5E338A EE26
Claims (4)
なくとも引張り応力が作用する側の表面において、短辺
方向の表面粗さ(Ra)が長辺方向の表面粗さの1.5
倍以上であることを特徴とするセラミックス基板。1. A surface roughness (Ra) in a short side direction of at least 1.5 of a front side and a back side of a ceramic substrate on a side on which a tensile stress acts is smaller than a surface roughness in a long side direction.
A ceramic substrate characterized by being at least twice as large.
クス基板の表面と裏面とで異なることを特徴とする請求
項1記載のセラミックス基板。2. The ceramic substrate according to claim 1, wherein the direction in which the surface roughness is maximum differs between the front surface and the rear surface of the ceramic substrate.
であることを特徴とする請求項1記載のセラミックス基
板。3. The ceramic substrate according to claim 1, wherein the main component of the ceramic substrate is silicon nitride.
0.6μm以下であることを特徴とする請求項1記載の
セラミックス基板。4. The ceramic substrate according to claim 1, wherein the surface roughness (Ra) of the ceramic substrate is 0.6 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37151299A JP4559574B2 (en) | 1999-12-27 | 1999-12-27 | Ceramic substrate for circuit board and circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37151299A JP4559574B2 (en) | 1999-12-27 | 1999-12-27 | Ceramic substrate for circuit board and circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001181054A true JP2001181054A (en) | 2001-07-03 |
JP4559574B2 JP4559574B2 (en) | 2010-10-06 |
Family
ID=18498837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37151299A Expired - Lifetime JP4559574B2 (en) | 1999-12-27 | 1999-12-27 | Ceramic substrate for circuit board and circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4559574B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045160A (en) * | 2006-09-26 | 2007-02-22 | Toshiba Corp | Method of manufacturing ceramic circuit board |
JP2009023908A (en) * | 2000-12-04 | 2009-02-05 | Toshiba Corp | Manufacturing method of thin film substrate |
JP2016122091A (en) * | 2014-12-25 | 2016-07-07 | 日本特殊陶業株式会社 | Pellicle frame and manufacturing method of pellicle frame |
CN111278792A (en) * | 2017-10-27 | 2020-06-12 | 日本碍子株式会社 | Method for producing oriented ceramic sintered body and flat sheet |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11106272A (en) * | 1997-09-30 | 1999-04-20 | Ngk Spark Plug Co Ltd | Production of ceramic substrate |
JPH11335158A (en) * | 1998-03-24 | 1999-12-07 | Sumitomo Electric Ind Ltd | Ceramic substrate and its polishing |
-
1999
- 1999-12-27 JP JP37151299A patent/JP4559574B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009023908A (en) * | 2000-12-04 | 2009-02-05 | Toshiba Corp | Manufacturing method of thin film substrate |
JP2007045160A (en) * | 2006-09-26 | 2007-02-22 | Toshiba Corp | Method of manufacturing ceramic circuit board |
JP2016122091A (en) * | 2014-12-25 | 2016-07-07 | 日本特殊陶業株式会社 | Pellicle frame and manufacturing method of pellicle frame |
CN111278792A (en) * | 2017-10-27 | 2020-06-12 | 日本碍子株式会社 | Method for producing oriented ceramic sintered body and flat sheet |
CN111278792B (en) * | 2017-10-27 | 2022-07-19 | 日本碍子株式会社 | Method for producing oriented ceramic sintered body and flat sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4559574B2 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5038565B2 (en) | Ceramic circuit board and manufacturing method thereof | |
CN100472766C (en) | Aluminum-silicon carbide composite | |
JP3972944B2 (en) | Ceramic heater and semiconductor manufacturing apparatus having the same | |
JPH05347333A (en) | Bonding tool and its manufacture | |
KR101569421B1 (en) | Silicon nitride substrate method of manufacturing the same and silicon nitride circuit board and semiconductor module using the same | |
JP4387563B2 (en) | Susceptor and method of manufacturing susceptor | |
JP3539634B2 (en) | Silicon nitride substrate for circuit mounting and circuit substrate | |
JP2009218322A (en) | Silicon nitride substrate and method of manufacturing the same, and silicon nitride circuit substrate using the same, and semiconductor module | |
JP2698780B2 (en) | Silicon nitride circuit board | |
JP2000286038A (en) | Structure and method for bonding ceramic heater and electrode terminal | |
JPH11330308A (en) | Ceramic circuit board and manufacture thereof | |
JP4559574B2 (en) | Ceramic substrate for circuit board and circuit board | |
CN1613139A (en) | Ceramics heater for semiconductor production system | |
JP2004231513A (en) | Circuit board excellent in high strength/high heat conductivity | |
JP3798917B2 (en) | Press heating heater | |
JP3694607B2 (en) | Contact heating heater and contact heating apparatus using the same | |
JP4772187B2 (en) | AlN sintered body and AlN circuit board using the same | |
JP2677748B2 (en) | Ceramics copper circuit board | |
JP3186750B2 (en) | Ceramic plate for semiconductor manufacturing and inspection equipment | |
JP5073135B2 (en) | Aluminum nitride sintered body, production method and use thereof | |
JP4089966B2 (en) | Press heater and processing method thereof | |
JP4761617B2 (en) | Aluminum nitride sintered body, method for producing the same, and electronic component using the same | |
JP3749654B2 (en) | Ceramic heater | |
JP3898504B2 (en) | Heater for contact heating | |
JP2005089265A (en) | Method of manufacturing aluminum nitride-metal joint substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061211 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100723 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4559574 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |