JP2001179483A - Packaging structural body for electronic parts and producing method therefor - Google Patents

Packaging structural body for electronic parts and producing method therefor

Info

Publication number
JP2001179483A
JP2001179483A JP36768399A JP36768399A JP2001179483A JP 2001179483 A JP2001179483 A JP 2001179483A JP 36768399 A JP36768399 A JP 36768399A JP 36768399 A JP36768399 A JP 36768399A JP 2001179483 A JP2001179483 A JP 2001179483A
Authority
JP
Japan
Prior art keywords
solder
weight
mounting structure
joining
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36768399A
Other languages
Japanese (ja)
Other versions
JP4359983B2 (en
Inventor
Hisafumi Takao
尚史 高尾
Hideo Hasegawa
英雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP36768399A priority Critical patent/JP4359983B2/en
Publication of JP2001179483A publication Critical patent/JP2001179483A/en
Application granted granted Critical
Publication of JP4359983B2 publication Critical patent/JP4359983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a packaging structural body of electronic parts having solder joints having excellent ductility and thermal fatigue resistance and moreover to provide a producing method capable of easily producing the packaging structural body. SOLUTION: In the packaging structural body of electronic parts having joints at which two or more components are joined by solder, the composition of solder alloy forming the joints is composed of, by weight, 40 to <50% Bi, 0.01 to 0.4% Cu, and the balance Sn with inevitable impurities. Soldering materials for joining composed of only Bi, Sn and inevitable impurities are brought into contact with the components in a molten state, and Cu contained in the components is eluted into the soldering materials for joining.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品をはんだ
を用いて接合した実装構造体およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting structure in which electronic components are joined using solder and a method for manufacturing the same.

【0002】[0002]

【従来の技術】JIS Z 3282では電気・電子工
業関係用として、42重量%Sn−58重量%Bi共晶
はんだ(記号:H42Bi58A)が規定されている。
文献(Binary Alloy Phase Diagrams, Ed by B.T.Massa
lski et al, vol.2(1996))では、Sn−Bi二元系合
金の共晶組成は43重量%Sn−57重量%Bi(以
下、「Sn−57Bi」と記載)であることから、この
Sn−58Biの組成をもつはんだは、低融点(溶融温
度:139℃)であり、電子用はんだとして多く用いら
れているSn−37Pb共晶はんだ(溶融温度:183
℃)に比べて、より低温で電子部品を実装することが可
能である。
2. Description of the Related Art JIS Z 3282 specifies a 42% by weight Sn-58% by weight Bi eutectic solder (symbol: H42Bi58A) for use in the electric and electronic industries.
Literature (Binary Alloy Phase Diagrams, Ed by BTMassa
In lski et al, vol. 2 (1996), the eutectic composition of the Sn-Bi binary alloy is 43% by weight Sn-57% by weight Bi (hereinafter, referred to as "Sn-57Bi"). The solder having the composition of Sn-58Bi has a low melting point (melting temperature: 139 ° C.), and is a Sn-37Pb eutectic solder (melting temperature: 183) which is widely used as an electronic solder.
C), it is possible to mount electronic components at a lower temperature.

【0003】はんだ付け作業温度の低温化は、電子部品
への熱的負荷をより小さくすることができ、より信頼性
の高い回路基板の製造が可能となる。また、はんだ付け
作業をより低温で行うことは、溶融はんだの酸化による
ドロス生成量の低減を可能とし、作業性を改善できる利
点をも持ち合わせている。
[0003] Reducing the soldering operation temperature can reduce the thermal load on the electronic components, and can produce a more reliable circuit board. Performing the soldering operation at a lower temperature also has the advantage of reducing the amount of dross generated due to oxidation of the molten solder and improving the workability.

【0004】しかしながら、論文(たとえば、日本金属
学会誌,vol.57(1993),455−462)
等で報告されているように、Sn−Bi共晶はんだは延
性に乏しいという欠点がある。電子部品の発熱あるいは
使用環境の温度変化によって部品や基板が熱膨張・収縮
を繰り返すため、はんだ接合部には繰返し応力と歪みが
発生し、これによる熱疲労から、はんだにクラックが発
生することがある。熱疲労によるはんだ付け部の剥離
は、電気的な導通を阻害し、電子機器がその機能を果た
せなくなる一因となってしまう。
However, papers (for example, Journal of the Japan Institute of Metals, vol. 57 (1993), 455-462)
And the like, the Sn-Bi eutectic solder has a disadvantage of poor ductility. Due to the heat generated by the electronic components or the temperature change of the usage environment, the components and the board repeatedly undergo thermal expansion and contraction, so that repeated stress and distortion are generated at the solder joints, and solder fatigue may cause cracks in the solder due to thermal fatigue. is there. The peeling of the soldered portion due to thermal fatigue hinders electrical continuity and causes electronic devices to fail to perform their functions.

【0005】したがって、はんだには、その延性により
はんだ接合部に発生する応力と歪みを緩和し、クラック
等の発生を抑制するように機能することが求められる。
つまりはんだが良好な延性を有することは、接合部の熱
疲労特性を向上させる上で必要不可欠な特性となる。
[0005] Therefore, it is required that the solder functions to relieve the stress and strain generated in the solder joint due to its ductility and to suppress the occurrence of cracks and the like.
That is, the fact that the solder has good ductility is an indispensable property for improving the thermal fatigue property of the joint.

【0006】Sn−Bi系のはんだの延性を改善させる
ための技術として、従来から第3成分を添加するものが
あった。たとえば、特開平8−252688号公報、特
開平10−52791号公報およびJ.Electro
n.Mater.,vol.26(1997),954
−958に示すAgの添加によって組織の微細化を図る
もの、特開平7−40079号公報に示すSbの添加に
よってSnのβ相からα相への変態抑制を図るもの、特
開平8−150493号公報に示すInを添加するもの
等である。
[0006] As a technique for improving the ductility of Sn-Bi based solder, there has been a technique in which a third component is conventionally added. For example, JP-A-8-252688, JP-A-10-52791 and J.P. Electro
n. Mater. , Vol. 26 (1997), 954
Japanese Patent Application Laid-Open No. 8-150493 discloses a method of miniaturizing the structure by adding Ag shown in -958, a method of suppressing the transformation of Sn from β phase to α phase by adding Sb shown in JP-A-7-40079, and JP-A-8-150493. It is the one to which In shown in the gazette is added.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開平8−2
52688号公報、特開平8−150493号公報等の
ようにAgやInを添加する場合、AgやInは高価な
金属であることから、その添加量が多いときには、はん
だ合金のコスト上昇が避けられず、さらにInの場合は
希少金属であるためその供給性にも問題がある。特に、
特開平8−150493号公報に示す技術では、数重量
%以上のInの添加によりSn−Bi−In三元系合金
を目指すものであり、そのコスト上昇は著しいものとな
る。また、特開平8−252688号公報、特開平10
−52791号公報等に示すようなAgの添加を本発明
者が追試したが、Agの添加による延性の改善効果は見
られず、場合によっては逆に延性を損なう結果となっ
た。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open No. Hei 8-2
When Ag or In is added as in JP-A-52688 and JP-A-8-150493, an increase in the cost of the solder alloy can be avoided when the amount of addition is large because Ag and In are expensive metals. In addition, since In is a rare metal, there is a problem in its supply property. In particular,
The technique disclosed in Japanese Patent Application Laid-Open No. 8-150493 aims at a Sn-Bi-In ternary alloy by adding In of several weight% or more, and the cost increase becomes remarkable. Also, JP-A-8-252688,
The inventor of the present invention has repeated the addition of Ag as disclosed in JP-A-527991, but no effect of improving the ductility due to the addition of Ag was found, and in some cases, the ductility was impaired.

【0008】Sbによる変態抑制は、特開平7−400
79号公報に係る出願前からの公知技術であり(たとえ
ば、高信頼度マイクロソルダリング技術,(199
1),p44に記述あり)、またSbは、環境基本法に
基づく水質汚濁に係わる環境基準の中で要監視項目とな
っており、その点ではんだ合金の添加元素として用いる
のは好ましくない。さらに特開平7−40079号公報
ではGaを必須の第4成分元素としているが、発明者ら
はGaがたとえ少量であっても大幅にはんだ付け性を損
なうという実験結果を得ており、Gaの添加自体に問題
がある。
[0008] Transformation suppression by Sb is disclosed in JP-A-7-400.
No. 79, which is a well-known technique before the filing of the application (for example, a highly reliable micro soldering technique, (199)
1), p44), and Sb is an item to be monitored in the environmental standards for water pollution based on the Basic Environmental Law, and it is not preferable to use it as an additional element in the solder alloy in that respect. Further, in Japanese Patent Application Laid-Open No. 7-40079, Ga is used as an essential fourth component element. However, the inventors have obtained an experimental result that even if the amount of Ga is small, the solderability is greatly impaired. There is a problem with the addition itself.

【0009】本発明は、上記実状を鑑み、また溶融温度
が低いというSn−Bi二元系はんだ合金の特性を活か
しつつ、これに他元素であるCuを微量含有させること
で、優れた延性および耐熱疲労特性を有するはんだ接合
部を持つ電子部品の実装構造体を提供することを課題と
している。また、本発明は、上記電子部品の実装構造体
を簡便に製造することができる製造方法を提供すること
を課題としている。
The present invention has been made in view of the above-mentioned circumstances, and while taking advantage of the characteristics of a Sn-Bi binary solder alloy having a low melting temperature, by adding a small amount of Cu, which is another element, to this, excellent ductility and It is an object of the present invention to provide a mounting structure of an electronic component having a solder joint having thermal fatigue resistance. Another object of the present invention is to provide a manufacturing method capable of easily manufacturing the mounting structure of the electronic component.

【0010】[0010]

【課題を解決するための手段】本発明の電子部品の実装
構造体は、2以上の構成部品をはんだで接合した接合部
を有する電子部品の実装構造体であって、前記接合部を
形成するはんだ合金の組成はBiが40重量%以上50
重量%未満、Cuが0.01重量%以上0.4重量%以
下、残部がSnおよび不可避の不純物であることを特徴
とする。つまり本発明の実装構造体は、Sn−Bi系合
金にCuを微量含有させたはんだ合金ではんだ接合部を
形成することで、そのはんだ接合部の延性および耐熱疲
労特性を改善したものである。
An electronic component mounting structure according to the present invention is an electronic component mounting structure having a joint portion in which two or more components are joined by solder, wherein the joint portion is formed. The composition of the solder alloy is such that Bi is 40% by weight or more and 50% or more.
It is characterized in that Cu is less than 0.01% by weight and 0.4% by weight or less, with the balance being Sn and unavoidable impurities. That is, the mounting structure of the present invention has improved ductility and thermal fatigue resistance of the solder joint by forming the solder joint with a solder alloy containing a small amount of Cu in the Sn-Bi alloy.

【0011】本発明の実装構造体のはんだ接合部が延性
および耐熱疲労特性に優れているのは、以下の理由によ
るものと考えられる。含有させた微量のCuは、Cu−
Sn系金属間化合物の形でSn−Bi共晶中に微細に分
散する。この共晶中の微細な金属間化合物は、初晶Sn
とSn−Bi共晶との境界ですべりを生じ易くする。こ
の結果、本発明の実装構造体のはんだ接合部は優れた延
性を有することになる。電子部品の発熱あるいは使用環
境の温度変化によって部品や基板が熱膨張・収縮を繰り
返すため、はんだ接合部には繰返し応力と歪みが発生
し、これによる熱疲労から、はんだ接合部にクラックが
発生および進展することがある。これに対し、本発明の
実装構造体のはんだ接合部は、その優れた延性により、
上述したようなはんだ接合部のクラックの発生および進
展を抑制することができ、耐熱疲労特性が向上するので
ある。
It is considered that the solder joints of the mounting structure of the present invention are excellent in ductility and thermal fatigue resistance for the following reasons. The trace amount of Cu contained is Cu-
Finely dispersed in the Sn-Bi eutectic in the form of Sn-based intermetallic compound. The fine intermetallic compound in this eutectic is primary Sn
At the boundary between Sn and Sn-Bi eutectic. As a result, the solder joint of the mounting structure of the present invention has excellent ductility. Due to the heat generated by the electronic components or the temperature changes in the operating environment, the components and the board repeatedly undergo thermal expansion and contraction, so that repeated stresses and strains are generated in the solder joints, and cracks occur in the solder joints due to thermal fatigue due to this. May evolve. In contrast, the solder joints of the mounting structure of the present invention, due to their excellent ductility,
The generation and propagation of cracks in the solder joint as described above can be suppressed, and the heat-resistant fatigue characteristics are improved.

【0012】上記本発明の実装構造体は、その製造方法
を特に限定するものではない。したがって、上記適正範
囲の組成を持つはんだ材料を用いる従来から公知のはん
だ接合方法により上記実装構造体を製造することができ
る。しかし、あらかじめ微量のCuを含有させた接合用
はんだ材料を製造し、これを用いて構成部品を接合する
場合は、接合用はんだ材料の組成が複雑となるので、組
成管理が困難である。したがって、以下に述べる方法を
用いて本発明の実装構造体を製造するのが望ましい。
The method for manufacturing the mounting structure of the present invention is not particularly limited. Therefore, the mounting structure can be manufactured by a conventionally known solder bonding method using a solder material having a composition in the above-described appropriate range. However, when a joining solder material containing a small amount of Cu is manufactured in advance and components are joined using the same, the composition of the joining solder material becomes complicated, so that composition management is difficult. Therefore, it is desirable to manufacture the mounting structure of the present invention using the method described below.

【0013】本発明の製造方法は上記実装構造体の製造
方法であって、前記構成部品の少なくともいずれか1つ
は接合される部位の少なくとも一部がCuあるいはCu
合金からなり、前記構成部品にBi、Snおよび不可避
の不純物のみからなる接合用はんだ材料を溶融状態で接
触させ、該構成部品の含有するCuを該接合用はんだ材
料中に溶出させる工程と、前記接合用はんだ材料を凝固
させて接合部を形成する工程とを含んでなることを特徴
とする。
A manufacturing method according to the present invention is a method for manufacturing a mounting structure as described above, wherein at least one of the components has at least a part of a portion to be joined to Cu or Cu.
A step of contacting a joining solder material comprising only Bi, Sn and unavoidable impurities with the component in a molten state, comprising an alloy, and eluted Cu contained in the component into the joining solder material; Solidifying the joining solder material to form a joint.

【0014】つまり、本発明の製造方法は、接合用はん
だ材料にBiおよびSnからなる合金を用い、接合工程
においてこの合金中に前記構成部品からCuが溶出して
くるのを利用し、その結果、接合部を形成するはんだ合
金の組成を上記適正範囲となるBiが40重量%以上5
0重量%未満、Cuが0.01重量%以上0.4重量%
以下、残部がSnおよび不可避の不純物とするものであ
る。
In other words, the manufacturing method of the present invention uses an alloy composed of Bi and Sn as a solder material for joining, and utilizes the elution of Cu from the component into the alloy in the joining step. When the composition of the solder alloy forming the joint is in the above-mentioned appropriate range, Bi is 40% by weight or more.
Less than 0 wt%, Cu is 0.01 wt% or more and 0.4 wt%
Hereinafter, the remainder is Sn and unavoidable impurities.

【0015】したがって、本発明の製造方法を用いれ
ば、接合用はんだ材料にSn−Bi−Cu系はんだ合金
を用いる場合と比較して、接合用はんだ材料の組成を単
純化できるのではんだ材料の製造工程を簡略化でき、総
合的に見ると本発明の実装構造体の製造が簡単になる。
Therefore, when the manufacturing method of the present invention is used, the composition of the joining solder material can be simplified as compared with the case of using an Sn—Bi—Cu-based solder alloy as the joining solder material. The steps can be simplified, and the production of the mounting structure of the present invention is simplified when viewed comprehensively.

【0016】[0016]

【発明の実施の形態】〈電子部品の実装構造体〉本発明
の実装構造体は2以上の構成部品をはんだで接合した接
合部を有する電子部品の実装構造体である。この実装構
造体に該当するものとしては、たとえば、プリント基板
にコンデンサ、ダイオード、ICパッケージ等をはんだ
付けした実装基板等がある。
BEST MODE FOR CARRYING OUT THE INVENTION <Mounting Structure of Electronic Component> The mounting structure of the present invention is a mounting structure of an electronic component having a joint portion formed by joining two or more components with solder. Examples of the mounting structure include a mounting board in which a capacitor, a diode, an IC package, and the like are soldered to a printed board.

【0017】前記接合部を形成するはんだ合金には、B
iを40重量%以上50重量%未満含有させる。Sn−
Bi二元系合金は、Bi量が10〜50重量%で良好な
濡れ性を有する。また、無鉛はんだによる部品実装で問
題になっているリフトオフ等は、Bi量を40重量%以
上にすることによりその発生を制御することができる。
このことから、Sn−Bi系はんだ合金におけるBi量
は40重量%以上50重量%未満にすることが望まし
い。一方、Sn−Bi二元系合金は、Bi量が30〜4
5重量%でもっとも良好な機械的特性(強さ、伸び)を
有する。そこで、機械的特性をも考慮すると、Bi量を
40重量%〜45重量%とすることがより望ましい。
[0017] The solder alloy forming the joint portion includes B
i is contained in an amount of 40% by weight or more and less than 50% by weight. Sn-
The Bi binary alloy has good wettability when the Bi amount is 10 to 50% by weight. Further, the occurrence of the lift-off or the like, which is a problem in mounting components using lead-free solder, can be controlled by setting the Bi amount to 40% by weight or more.
For this reason, it is desirable that the Bi content in the Sn—Bi-based solder alloy be 40% by weight or more and less than 50% by weight. On the other hand, the Sn—Bi binary alloy has a Bi amount of 30 to 4%.
5% by weight has the best mechanical properties (strength, elongation). Therefore, in consideration of the mechanical properties, it is more preferable to set the Bi amount to 40% by weight to 45% by weight.

【0018】本発明の実装構造体では、延性を改善する
ために、はんだ接合部に微量のCuを含有させている。
Cuを微量含有させた場合、含有させたCuは、Cu−
Sn系金属間化合物の形でSn−Bi共晶中に微細に分
散する。この共晶中の微細な金属間化合物は、上述した
ように、初晶SnとSn−Bi共晶との境界ですべりを
生じ易くする。このことから、Cuを微量含有させたは
んだ接合部は、延性がより向上する。
In the mounting structure of the present invention, a small amount of Cu is contained in the solder joint in order to improve the ductility.
When a small amount of Cu is contained, the contained Cu is Cu-
Finely dispersed in the Sn-Bi eutectic in the form of Sn-based intermetallic compound. As described above, the fine intermetallic compound in the eutectic tends to cause slip at the boundary between the primary crystal Sn and the Sn-Bi eutectic. For this reason, the ductility of the solder joint containing a small amount of Cu is further improved.

【0019】Cuを微量含有させることによる延性向上
効果は極微量から発生するが、実質的な延性向上効果を
得るためには、0.01重量%以上のCuを含有させる
ことが望ましい。逆に0.5重量%以上Cuを含有させ
る場合、Cuは初晶として晶出し、粗大粒子となって合
金中に分散することで、かえってはんだ接合部の延性が
失われることとなる。実施例として後述する実験結果か
ら明らかになったことであるが、はんだ接合部中のCu
含有割合が0.1重量%程度のときをピークとして延性
の改善効果が最も大きくなる。したがって、より大きな
延性向上効果を得るためにはCuの含有割合は0.05
重量%以上0.2重量%以下とするのがより望ましい。
The effect of improving the ductility by containing a trace amount of Cu is generated from a very small amount. However, in order to obtain a substantial effect of improving the ductility, it is desirable to contain 0.01% by weight or more of Cu. Conversely, when Cu is contained in an amount of 0.5% by weight or more, Cu is crystallized as a primary crystal and becomes coarse particles and is dispersed in the alloy, so that the ductility of the solder joint is lost. As will be apparent from the experimental results described later as an example, Cu
The effect of improving ductility is greatest when the content ratio is about 0.1% by weight. Therefore, in order to obtain a greater ductility improving effect, the content ratio of Cu is 0.05%.
It is more preferable that the content be not less than 0.2% by weight and not more than 0.2% by weight.

【0020】〈実装構造体の製造方法〉前述したよう
に、上記本発明の実装構造体は、その製造方法を特に限
定するものではないが、あらかじめ微量のCuを含有さ
せた接合用はんだ合金を製造し、これを用いて構成部品
を接合する場合、接合用はんだ合金の組成が複雑で、組
成管理が困難である。そこで、以下に本発明の実装構造
体の簡便な製造方法を述べる。
<Method of Manufacturing Mounting Structure> As described above, the manufacturing method of the mounting structure of the present invention is not particularly limited, but a bonding solder alloy containing a small amount of Cu in advance is used. When manufacturing and joining constituent parts using the same, the composition of the solder alloy for joining is complicated and composition management is difficult. Therefore, a simple manufacturing method of the mounting structure of the present invention will be described below.

【0021】本発明の製造方法は、本発明の実装構造体
の製造方法であって、前記構成部品の少なくともいずれ
か1つは接合される部位の少なくとも一部がCuあるい
はCu合金からなり、前記構成部品にBiおよびSnか
らなる接合用はんだ材料を溶融状態で接触させ、前記構
成部品の含有するCuを該接合用はんだ材料中に溶出さ
せる工程と、前記接合用はんだ材料を凝固させて接合部
を形成する工程とを含んでなることを特徴とする。
The manufacturing method according to the present invention is the method for manufacturing a mounting structure according to the present invention, wherein at least one of the components has at least a part of a portion to be joined made of Cu or a Cu alloy; A step of bringing a joining solder material made of Bi and Sn into contact with the component in a molten state to elute Cu contained in the component into the joining solder material; and solidifying the joining solder material to form a joining portion And forming a.

【0022】接合される構成部品のうち、いずれか1つ
の構成部品の接合される部位にCuを含んでさえすれ
ば、それも、溶融したはんだ材料に接触する表面の部分
にCuを含んでさえすれば、本発明の製造方法を適用で
きる。例えば、エッチングにより表面にCuまたはCu
合金からなる電流通路を形成したプリント基板に電子部
品をはんだ付けする場合には基板側からCuが溶出する
ことになる。また、リードにCuを含む電子部品をプリ
ント基板にはんだ付けする場合には電子部品側からCu
が溶出することになる。さらに、いずれの構成部品本体
にもCuを含んでいない場合であっても、接合される部
位の表面にCuあるいはCuを含むはんだ等が被覆され
ていれば本発明の製造方法を適用できる。
As long as any one of the components to be joined contains Cu at a portion to be joined, even a portion of the surface that contacts the molten solder material contains Cu. Then, the manufacturing method of the present invention can be applied. For example, Cu or Cu
When an electronic component is soldered to a printed board having a current path made of an alloy, Cu elutes from the board side. Also, when soldering an electronic component containing Cu to the lead to the printed circuit board, Cu
Will elute. Further, even when any of the component parts does not contain Cu, the manufacturing method of the present invention can be applied as long as Cu or a solder containing Cu is coated on the surface of the portion to be joined.

【0023】なお、本製造方法では、構成部品の接合さ
れる部位にCu以外の元素を含む場合、その元素も溶融
状態の接合用はんだ材料中に溶出し得る。本発明の実装
構造体およびその製造方法では、接合部を形成するはん
だ合金中にCuを微量含有させることを目的としている
ことから、上記Cu以外の元素が溶出した場合、その元
素の存在がはんだ接合部の延性等に影響を与えない限
り、本発明の実装構造体およびその製造方法において
は、当該Cu以外の微量含有元素は不可避の不純物とし
て取り扱う。
In the present manufacturing method, when an element other than Cu is contained in a part to be joined of a component, the element can also be eluted into the joining solder material in a molten state. Since the mounting structure of the present invention and the method of manufacturing the same aim at including a trace amount of Cu in the solder alloy forming the joint, when an element other than Cu is eluted, the presence of the element is determined by the presence of the solder. In the mounting structure and the method of manufacturing the same according to the present invention, trace elements other than Cu are treated as unavoidable impurities as long as they do not affect the ductility of the joint.

【0024】構成部品にBiおよびSnからなる接合用
はんだ材料を溶融状態で接触させ、構成部品の含有する
Cuをその接合用はんだ材料中に溶出させ、その後その
接合用はんだ材料を凝固させて接合部を形成するという
工法には、通常行われるはんだ接合工法を用いればよ
い。この工法には、フローはんだ付けやリフローはんだ
付け、手はんだ付け、BGA接合等があり、これらの工
法においては、線状、棒状、リボン、ワイヤ、粉末、球
状等、用途に応じ様々な形状のはんだ材料を用いること
ができる。
A joining solder material made of Bi and Sn is brought into contact with the component in a molten state, Cu contained in the component is eluted into the joining solder material, and then the joining solder material is solidified and joined. The method of forming the portion may be a conventional soldering method. This method includes flow soldering, reflow soldering, manual soldering, and BGA bonding. In these methods, various shapes such as linear, rod, ribbon, wire, powder, and spherical are used depending on the application. Solder materials can be used.

【0025】BiおよびSnからなる接合用はんだ材料
は、当該分野における通常の溶融手段により調製するこ
とが可能である。たとえば、重量で秤取ったSnおよび
Biを加熱中の容器に入れて溶融させればよい。この場
合、部分的に合金を用いてもよい。これらの金属は従来
のいずれの溶融技術を用いても溶融でき、当該金属をす
べて液体になるまで加熱した後、適当な型に流し込んで
冷却し製造される。
The joining solder material comprising Bi and Sn can be prepared by a usual melting means in the art. For example, Sn and Bi weighed by weight may be put in a container being heated and melted. In this case, an alloy may be partially used. These metals can be melted using any conventional melting technique, and are manufactured by heating all of the metals until they become liquid and then pouring them into a suitable mold and cooling.

【0026】はんだ付けの際は、接合用はんだを溶融状
態とし、Cuを一定量接合用はんだに溶出させ、接合部
のはんだ組成を、前述の適正範囲にする必要がある。つ
まり、接合部において、構成部品から接合用はんだ材料
中にCuを溶出させ、接合部のはんだ組成が、適切な組
成であるBiが40重量%以上50重量%未満、Cuが
0.01重量%以上0.4重量%以下、残部がSnとな
るようにするために、はんだ付けの際の温度、時間、接
合用はんだ量等を管理すればよい。なお、本製造方法に
おいては、はんだ付けの際の温度を接合用はんだ材料で
あるSn−Bi系合金の固相線温度+20℃以上280
℃以下とすればよい。
At the time of soldering, it is necessary that the solder for joining is in a molten state, Cu is eluted into the solder for joining in a certain amount, and the solder composition at the joint is required to be in the above-mentioned appropriate range. That is, at the joint, Cu is eluted from the component into the joint solder material, and the solder composition at the joint is 40% by weight or more and less than 50% by weight, and 0.01% by weight of Cu, which is an appropriate composition. The temperature, time, amount of solder for joining, and the like at the time of soldering may be controlled so that the content is 0.4% by weight or less and the balance is Sn. In the present manufacturing method, the temperature at the time of soldering is set to a value equal to or higher than the solidus temperature of the Sn—Bi-based alloy as a joining solder material + 20 ° C.
The temperature may be lower than or equal to ° C.

【0027】以上、電子部品の実装構造体およびその製
造方法の実施形態について説明したが、上述した実施形
態は一実施形態にすぎず、本発明の電子部品の実装構造
体およびその製造方法は、上記実施形態を始めとして、
当業者の知識に基づいて種々の変更、改良を施した種々
の形態で実施することができる。
The embodiment of the electronic component mounting structure and the method of manufacturing the same have been described above. However, the above-described embodiment is merely an embodiment, and the electronic component mounting structure and the method of manufacturing the same according to the present invention are as follows. Starting with the above embodiment,
The present invention can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art.

【0028】[0028]

【実施例】本発明の実装構造体の接合部を形成するはん
だ合金の特性を評価するために、種々の組成のSn−B
i系はんだ合金にCuを含有させたはんだ合金を調製
し、種々の試験を行い、それらの特性の評価を行った。
以下に、実施例として示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to evaluate the characteristics of a solder alloy forming a joint of a mounting structure of the present invention, various compositions of Sn-B
A solder alloy containing Cu in an i-based solder alloy was prepared, various tests were performed, and their properties were evaluated.
The following is an example.

【0029】〈機械的特性の評価〉純度99.9%以上
のSn、BiおよびCuを用いて、これらを種々の割合
で混合し、各種組成のSn−Bi−Cu系はんだ合金を
調製した。Biを40重量%含有し、Cuをそれぞれ
0.05重量%、0.1重量%、0.2重量%、0.3
重量%含有するものを、それぞれ実施例1−1、実施例
1−2、実施例1−3、実施例1−4とした。また同時
に、上記実施例のはんだ合金との性能比較を行うため、
それらと異なる組成の合金をも調製した。そして、Bi
を40重量%含有しCuを含有しないもの、およびCu
を0.5重量%、1.0重量%、2.0重量%含有する
ものを、それぞれ比較例1−1、比較例1−2、比較例
1−3、比較例1−4とした。下記表1に、これらの合
金の組成を示す。
<Evaluation of Mechanical Properties> Sn, Bi and Cu having a purity of 99.9% or more were mixed at various ratios to prepare Sn—Bi—Cu based solder alloys having various compositions. Bi in an amount of 40% by weight and Cu in an amount of 0.05% by weight, 0.1% by weight, 0.2% by weight and 0.3% by weight, respectively.
Those containing 1% by weight were referred to as Example 1-1, Example 1-2, Example 1-3, and Example 1-4, respectively. At the same time, in order to compare the performance with the solder alloy of the above embodiment,
Alloys with different compositions were also prepared. And Bi
Containing 40% by weight and containing no Cu, and Cu
Containing 0.5% by weight, 1.0% by weight, and 2.0% by weight of Comparative Example 1-1, Comparative Example 1-2, Comparative Example 1-3, and Comparative Example 1-4, respectively. Table 1 below shows the compositions of these alloys.

【0030】[0030]

【表1】 [Table 1]

【0031】これら実施例および比較例の機械的特性
は、引張試験を行ない強さ(最大引張強さ)と伸び(破
断伸び)を求めて評価した。引張試験片は、金型鋳造し
た20×15×60(mm)のインゴットから、機械加
工により図1示す形状に成形した。試験片は、1つのイ
ンゴットから3本採取した。機械加工後、加工による歪
みを除去するために、50℃で24時間の熱処理を行
い、その後1週間以上室温にて放置してから、引張試験
に供した。引張試験における歪み速度は、はんだ接合部
での状態を再現するため1×10-4-1とし、試験温度
は室温(25℃)で、それぞれn数を3としてこれらの
平均を求めた。
The mechanical properties of these Examples and Comparative Examples were evaluated by performing a tensile test to determine the strength (maximum tensile strength) and elongation (elongation at break). The tensile test piece was formed into a shape shown in FIG. 1 by machining from a 20 × 15 × 60 (mm) ingot cast by a mold. Three test pieces were collected from one ingot. After the mechanical processing, a heat treatment was performed at 50 ° C. for 24 hours in order to remove distortion due to the processing, and then left at room temperature for one week or more, and then subjected to a tensile test. The strain rate in the tensile test was set to 1 × 10 −4 s −1 in order to reproduce the state at the solder joint, the test temperature was room temperature (25 ° C.), the number of n was 3, and the average was calculated.

【0032】この試験の結果として、Biを40重量%
含有した場合におけるCuの含有量と引張強さおよび伸
びとの関係を図2に示す。図2から明らかなように、S
n−Bi二元系合金に対するCu含有量を制御すること
により、Cuを含有しない場合に比べて、機械的強度に
影響を与えず、延性が改善されることが判る。たとえ
ば、Biを40重量%含有した合金においては、Cu含
有割合は0.1重量%程度にした場合に最も延性が改善
され、室温での伸びはCuを含有しない場合の約1.4
倍に達することが明らかとなった。しかし、Cu含有割
合が大きすぎると、逆に延性改善効果は失われることが
判る。たとえば、Cu含有割合を0.5重量%以上にす
ると、Cuを含有しない場合よりも伸びが小さくなり、
延性が損なわれている。
As a result of this test, Bi was 40% by weight.
FIG. 2 shows the relationship between the content of Cu and the tensile strength and elongation when Cu is contained. As is apparent from FIG.
It can be seen that by controlling the Cu content in the n-Bi binary alloy, the ductility is improved without affecting the mechanical strength as compared with the case where Cu is not contained. For example, in an alloy containing 40% by weight of Bi, the ductility is most improved when the Cu content is about 0.1% by weight, and the elongation at room temperature is about 1.4 in the case of not containing Cu.
It is clear that the number is doubled. However, when the Cu content is too large, it is understood that the ductility improving effect is lost. For example, when the Cu content ratio is 0.5% by weight or more, the elongation becomes smaller than when Cu is not contained,
Ductility is impaired.

【0033】上記結果を総合的に判断すれば、Sn−B
i二元系はんだ合金において、Cuを0.4重量%以下
の割合で含有することで、延性改善の効果が得られるこ
とが確認できる。また、より改善効果の大きいCuの含
有割合は、0.05重量%以上0.2重量%以下である
ことも確認できる。
If the above results are comprehensively determined, Sn-B
It can be confirmed that the effect of improving ductility can be obtained by containing Cu in a ratio of 0.4% by weight or less in the binary solder alloy. Also, it can be confirmed that the content ratio of Cu having a greater improvement effect is 0.05% by weight or more and 0.2% by weight or less.

【0034】〈熱疲労特性の評価〉Sn−40Biおよ
びSn−45Bi合金を接合用はんだ材料として用い、
接合される部位がCuからなる基板と、接合される部位
にNiメッキを施したチップ部品(形状4532)とを
接合し、接合部のはんだ組成がSn−40Bi−0.1
CuおよびSn−45Bi−0.1Cuからなる実装構
造体を作成した。これと比較すべく、Sn−37Pb合
金を接合用はんだ材料として用いた試料をも作成した。
例として、Sn−40Bi合金およびSn−37Pb合
金を接合用はんだ材料として用いて接合した際の温度プ
ロファイルを図3に示す。
<Evaluation of Thermal Fatigue Properties> Sn-40Bi and Sn-45Bi alloys were used as joining solder materials,
A substrate whose joining portion is made of Cu and a chip component (shape 4532) in which the joining portion is plated with Ni are joined, and the solder composition of the joining portion is Sn-40Bi-0.1.
A mounting structure made of Cu and Sn-45Bi-0.1Cu was prepared. For comparison, a sample using an Sn-37Pb alloy as a joining solder material was also prepared.
As an example, FIG. 3 shows a temperature profile when joining is performed using a Sn-40Bi alloy and a Sn-37Pb alloy as joining solder materials.

【0035】評価したチップ部品点数は各はんだにつき
5点であり、温度サイクル試験は−30℃〜80℃で3
000サイクルまで行った。1サイクルは1時間とし、
その内訳は、−30℃から80℃に昇温する時間を約5
分、80℃にて実装構造体を保持する時間を約25分、
80℃から−30℃に降温する時間を約5分、−30℃
にて実装構造体を保持する時間を約25分とした。なお
接合後のはんだ中のCu含有量の分析はEPMA(El
ectronprobemicroanalysis)
により行った。
The number of chip components evaluated was 5 for each solder, and the temperature cycle test was performed at -30 ° C to 80 ° C.
Up to 000 cycles were performed. One cycle is one hour,
The breakdown is that the time required to raise the temperature from -30 ° C to 80 ° C is about 5
Minutes, the time to hold the mounting structure at 80 ° C. is about 25 minutes,
Approximately 5 minutes to cool from 80 ° C to -30 ° C, -30 ° C
The holding time of the mounting structure was set to about 25 minutes. The analysis of the Cu content in the solder after joining was performed by EPMA (El
electronprobemicroanalysis)
Was performed.

【0036】接合部のはんだ組成がSn−40Bi−
0.1Cuからなる実装構造体を実施例2−1とし、接
合部のはんだ組成がSn−45Bi−0.1Cuからな
る実装構造体を実施例2−2とした。また、同時に上記
実装構造体との比較を行うため、それらと異なる組成の
接合部を有する実装構造体をも作成した。そして、接合
用はんだ材料がSn−37Pbからなる実装構造体を比
較例2−1とした。
When the solder composition at the joint is Sn-40Bi-
A mounting structure made of 0.1 Cu was used as Example 2-1 and a mounting structure having a solder composition of a joint portion made of Sn-45Bi-0.1Cu was used as Example 2-2. At the same time, in order to make a comparison with the above-mentioned mounting structure, a mounting structure having a bonding portion having a different composition from those was also prepared. The mounting structure in which the bonding solder material was Sn-37Pb was used as Comparative Example 2-1.

【0037】この実験の結果として図4に、実施例2−
1の実装構造体および比較例2−1の実装構造体のはん
だ接合部の温度サイクル試験後の外観および断面組織を
示す。なお、図4(a)は実施例2−1のはんだ接合部
の外観を示しており、図4(b)は実施例2−1のはん
だ接合部の断面組織を示している。また、図4(c)は
比較例2−1のはんだ接合部の外観を示しており、図4
(d)は比較例2−1のはんだ接合部の断面組織を示し
ている。さらに、図4(e)は比較例2−1のクラック
の拡大図である。下記表2に、実施例2−1、実施例2
−2および比較例2−1のはんだ接合部のクラック進展
率を示す。クラック進展率は、断面においてそのクラッ
クがはんだ接合部を貫通すると仮定した状態を100%
とするものとする。
As a result of this experiment, FIG.
1 shows an appearance and a cross-sectional structure of a solder joint portion of a mounting structure of Example 1 and a mounting structure of Comparative Example 2-1 after a temperature cycle test. 4A shows the appearance of the solder joint of Example 2-1 and FIG. 4B shows the cross-sectional structure of the solder joint of Example 2-1. FIG. 4C shows the appearance of the solder joint of Comparative Example 2-1.
(D) shows the cross-sectional structure of the solder joint of Comparative Example 2-1. FIG. 4E is an enlarged view of a crack in Comparative Example 2-1. In Table 2 below, Example 2-1 and Example 2 are shown.
2 shows crack growth rates of solder joints of Comparative Example 2-1 and Comparative Example 2-1. The crack growth rate is 100% based on the assumption that the crack penetrates the solder joint in the cross section.
It is assumed that

【0038】[0038]

【表2】 [Table 2]

【0039】図4および表2から明らかなように、はん
だ組成がSn−40Bi−0.1Cuである実施例2−
1と、、はんだ組成がSn−45Bi−0.1Cuであ
る実施例2−2の接合部のクラック進展率は−30℃〜
80℃、3000サイクル後においても5%以下であ
る。一方、接合用はんだ材料がSn−37Pbである比
較例2−1の接合部のクラック進展率は50%以上であ
る。これより、本発明の実装方法によるはんだ接合部は
優れた耐熱疲労特性を有することがわかる。
As is clear from FIG. 4 and Table 2, Example 2 in which the solder composition was Sn-40Bi-0.1Cu
1, and the crack growth rate of the joint portion of Example 2-2 in which the solder composition is Sn-45Bi-0.1Cu is −30 ° C. or more.
It is 5% or less even after 3000 cycles at 80 ° C. On the other hand, the crack growth rate of the joint in Comparative Example 2-1 in which the joining solder material is Sn-37Pb is 50% or more. This indicates that the solder joints according to the mounting method of the present invention have excellent thermal fatigue resistance.

【0040】[0040]

【発明の効果】本発明は、実装構造体のはんだ接合部を
Sn−Bi系はんだ合金にCuを含有させたはんだ合金
とし、Biを40重量%以上50重量%未満、Cuを
0.01重量%以上0.4重量%以下の組成割合となる
ように構成したものである。このような構成としたこと
により、本発明の実装構造体のはんだ接合部は、Sn−
Bi共晶はんだ合金と同等レベルの機械的強度を有しな
がら、延性が大幅に向上しており、優れた耐熱疲労特性
を有している。
According to the present invention, the solder joint of the mounting structure is made of a Sn-Bi-based solder alloy containing Cu, and the Bi content is 40% by weight or more and less than 50% by weight, and the Cu content is 0.01% by weight. % Or more and 0.4% by weight or less. With such a configuration, the solder joints of the mounting structure of the present invention are Sn-
While having the same level of mechanical strength as the Bi eutectic solder alloy, the ductility is greatly improved, and it has excellent thermal fatigue resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 引張試験に供した試験片の形状を示す図。FIG. 1 is a view showing the shape of a test piece subjected to a tensile test.

【図2】 Cuを含有させたSn−Bi系はんだ合金の
Cu含有量と引張特性との関係を示す図。
FIG. 2 is a diagram showing the relationship between Cu content and tensile properties of a Cu-containing Sn—Bi-based solder alloy.

【図3】 接合用はんだ材料にSn−40Bi、Sn−
37Pbを使用して基板とチップ部品を接合する際の温
度プロファイルを示す図。
FIG. 3 Sn-40Bi, Sn-
The figure which shows the temperature profile at the time of joining a board | substrate and a chip component using 37Pb.

【図4】 基板とチップ部品を接合した実装構造体の温
度サイクル試験後におけるはんだ接合部の外観および断
面組織を示す写真。
FIG. 4 is a photograph showing the appearance and cross-sectional structure of a solder joint after a temperature cycle test of a mounting structure in which a substrate and a chip component are joined.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月19日(2000.5.1
9)
[Submission date] May 19, 2000 (2005.1.
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 101:36 B23K 101:36 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 101: 36 B23K 101: 36

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2以上の構成部品をはんだで接合した接
合部を有する電子部品の実装構造体であって、 前記接合部を形成するはんだ合金の組成は、Biが40
重量%以上50重量%未満、Cuが0.01重量%以上
0.4重量%以下、残部がSnおよび不可避の不純物で
あることを特徴とする電子部品の実装構造体。
1. A mounting structure for an electronic component having a joint formed by joining two or more components with solder, wherein the composition of a solder alloy forming the joint is 40% Bi.
A mounting structure for an electronic component, characterized in that the content is not less than 50% by weight, less than 0.01% by weight and not more than 0.4% by weight of Cu, and the balance is Sn and inevitable impurities.
【請求項2】 前記Cuは0.05重量%以上0.2重
量%以下である請求項1に記載の電子部品の実装構造
体。
2. The electronic component mounting structure according to claim 1, wherein the Cu content is 0.05% by weight or more and 0.2% by weight or less.
【請求項3】 2以上の構成部品をはんだで接合した接
合部を有し、該接合部を形成するはんだ合金の組成は、
Biが40重量%以上50重量%未満、Cuが0.01
重量%以上0.4重量%以下、残部がSnおよび不可避
の不純物となる電子部品の実装構造体の製造方法であっ
て、 前記構成部品の少なくともいずれか1つは、接合される
部位の少なくとも一部がCuあるいはCu合金からな
り、 前記構成部品にBi、Snおよび不可避の不純物のみか
らなる接合用はんだ材料を溶融状態で接触させ、該構成
部品の含有するCuを該接合用はんだ材料中に溶出させ
る工程と、 前記接合用はんだ材料を凝固させて接合部を形成する工
程とを含んでなることを特徴とする電子部品の実装構造
体の製造方法。
3. A solder joint comprising two or more component parts joined by solder, and the composition of the solder alloy forming the joint is:
Bi is 40% by weight or more and less than 50% by weight, and Cu is 0.01% by weight.
A method for manufacturing a mounting structure of an electronic component, which is not less than 0.4% by weight and not more than 0.4% by weight, with the balance being Sn and unavoidable impurities, wherein at least one of the component parts has at least one The part is made of Cu or Cu alloy, and a soldering material for joining consisting only of Bi, Sn and unavoidable impurities is brought into contact with the component in a molten state, and Cu contained in the component is eluted into the soldering material for joining. And a step of solidifying the bonding solder material to form a bonding portion. A method for manufacturing a mounting structure for an electronic component, comprising:
JP36768399A 1999-12-24 1999-12-24 Electronic component mounting structure and manufacturing method thereof Expired - Fee Related JP4359983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36768399A JP4359983B2 (en) 1999-12-24 1999-12-24 Electronic component mounting structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36768399A JP4359983B2 (en) 1999-12-24 1999-12-24 Electronic component mounting structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001179483A true JP2001179483A (en) 2001-07-03
JP4359983B2 JP4359983B2 (en) 2009-11-11

Family

ID=18489937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36768399A Expired - Fee Related JP4359983B2 (en) 1999-12-24 1999-12-24 Electronic component mounting structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4359983B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294600A (en) * 2005-03-15 2006-10-26 Matsushita Electric Ind Co Ltd Conductive adhesive
CN101767253A (en) * 2008-12-26 2010-07-07 Nec照明株式会社 Solder for lead wire of cold-cathode fluorescent lamp, lead wire of cold-cathode fluorescent lamp and connection thereof
WO2011049128A1 (en) * 2009-10-20 2011-04-28 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2013017883A1 (en) * 2011-08-02 2013-02-07 Fry's Metals, Inc. High impact toughness solder alloy
EP3292943A1 (en) * 2016-09-12 2018-03-14 Interflux Electronics N.V. Lead-free solder alloy comprising sn, bi and at least one of p, mn, cu, zn, sb and its use for soldering an electronic component to a substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294600A (en) * 2005-03-15 2006-10-26 Matsushita Electric Ind Co Ltd Conductive adhesive
CN101767253A (en) * 2008-12-26 2010-07-07 Nec照明株式会社 Solder for lead wire of cold-cathode fluorescent lamp, lead wire of cold-cathode fluorescent lamp and connection thereof
WO2011049128A1 (en) * 2009-10-20 2011-04-28 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
TWI480993B (en) * 2009-10-20 2015-04-11 Rohm Co Ltd Semiconductor device and method for manufacturing semiconductor device
US9666501B2 (en) 2009-10-20 2017-05-30 Rohm Co., Ltd. Semiconductor device including a lead frame
US9847280B2 (en) 2009-10-20 2017-12-19 Rohm Co., Ltd. Method for manufacturing semiconductor device
WO2013017883A1 (en) * 2011-08-02 2013-02-07 Fry's Metals, Inc. High impact toughness solder alloy
JP2014524354A (en) * 2011-08-02 2014-09-22 アルファ・メタルズ・インコーポレイテッド High impact toughness solder alloy
EP3292943A1 (en) * 2016-09-12 2018-03-14 Interflux Electronics N.V. Lead-free solder alloy comprising sn, bi and at least one of p, mn, cu, zn, sb and its use for soldering an electronic component to a substrate
WO2018046763A1 (en) * 2016-09-12 2018-03-15 Interflux Electronics N.V. Lead-free solder alloy comprising sn, bi and at least one of mn, sb, cu and its use for soldering an electronic component to a substrate
CN109789518A (en) * 2016-09-12 2019-05-21 英特福莱电子有限公司 Leadless welding alloy including at least one of Sn, Bi and Mn, Sb, Cu and its purposes for electronic component to be soldered to substrate

Also Published As

Publication number Publication date
JP4359983B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
KR102447392B1 (en) Lead Free Solder Alloys for Electronic Applications
JP3199674B2 (en) Solder alloy
JP2001504760A (en) Lead free solder
JP4770733B2 (en) Solder and mounted products using it
GB2421030A (en) Solder alloy
TW201615854A (en) Low temperature high reliability alloy for solder hierarchy
JPH0970687A (en) Leadless solder alloy
JP4135268B2 (en) Lead-free solder alloy
JP5614507B2 (en) Sn-Cu lead-free solder alloy
JP3736819B2 (en) Lead-free solder alloy
WO2020067307A1 (en) Lead-free solder alloy
JP6688417B2 (en) Solder joining method
JP2001179483A (en) Packaging structural body for electronic parts and producing method therefor
CN114227057B (en) Lead-free solder alloy and preparation method and application thereof
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
JP6887183B1 (en) Solder alloys and molded solders
JP2008221330A (en) Solder alloy
JPWO2009075314A1 (en) Solder alloy and manufacturing method thereof
CN111511494B (en) Cost-effective lead-free solder alloys for electronic applications
EP3707286B1 (en) High reliability lead-free solder alloy for electronic applications in extreme environments
JPH0422595A (en) Cream solder
JP2910527B2 (en) High temperature solder
JP2006000925A (en) Lead-free solder alloy and producing method thereof
JP2783981B2 (en) Solder alloy
JPH1177369A (en) Solder for electronic parts and joining method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees