JP2001177461A - Communication system - Google Patents

Communication system

Info

Publication number
JP2001177461A
JP2001177461A JP35656699A JP35656699A JP2001177461A JP 2001177461 A JP2001177461 A JP 2001177461A JP 35656699 A JP35656699 A JP 35656699A JP 35656699 A JP35656699 A JP 35656699A JP 2001177461 A JP2001177461 A JP 2001177461A
Authority
JP
Japan
Prior art keywords
platform
communication system
communication
base station
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35656699A
Other languages
Japanese (ja)
Inventor
Isamu Chiba
勇 千葉
Shuji Urasaki
修治 浦崎
Rumiko Yonezawa
ルミ子 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP35656699A priority Critical patent/JP2001177461A/en
Publication of JP2001177461A publication Critical patent/JP2001177461A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a simple communication system with a medium scale by using a few ground base stations. SOLUTION: This invention provides the communication system where platforms resident in a stratosphere and user stations on ground are connected for communication. Each platform 1 collects signals received from user stations 4 in each coverage 2, transmits the collected signal to a stationary satellite 3, the stationary satellite 3 collects the signals from each platform transmits them to one ground base station 5 and the ground base station distributes the signals from the stationary satellite 3 to user stations connected to the base station.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は成層圏に停留させ
たプラットフォームと地上のユーザ局とを結んで通信を
行う通信システムに関するもので、特に中規模の簡易な
通信システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a communication system for performing communication by connecting a platform stopped in a stratosphere and a user station on the ground, and more particularly to a medium-sized simple communication system.

【0002】[0002]

【従来の技術】従来、成層圏に停留させたプラットフォ
ームと地上のユーザ局とを結んで通信を行う通信システ
ムに関連して、下記の文献がある。文献1の、高沢金
吾,森弘隆:“成層圏無線中継システム”,電子情報通
信学会,Vol.73,No.1,pp.69-71(1990.1)では、高度
20 kmに無人航空機を滞留させて無線中継基地として移
動体通信のサービスエリアの拡大のの提案がある。ま
た、無人航空機のエネルギー源の研究課題を上げてい
る。文献2の、藤野義之:“マイクロ波駆動飛行船と利
用技術の展望”,電子情報通信学会誌,Vol.80,No.
5,pp.457-460(1997.5)では、文献1の研究課題に
ある無人航空機のエネルギー源としてマイクロ波電力送
電を取上げた無人飛行船の実験報告がある。文献3の、
“成層圏飛行船を用いた通信システム”,低軌道衛星通
信システム,電子情報通信学会,pp.7(1999.6.20)
では、成層圏飛行船を用いた通信システムの紹介とし
て、現時点で提案されたものは、地上マイクロ波回線と
同様の固定通信システムとされている。高度約20kmに
停留させた複数の大型飛行船からなる通信システムで、
各大型飛行船とそのサービスエリア内の固定ユーザ局と
は上り下り回線を有する。文献4の、特開平10−30
7179公報では、成層圏に停留させた各プラットフォ
ームに中継器を備え、プラットフォーム毎に地上基地局
が置かれている。
2. Description of the Related Art Conventionally, there are the following documents relating to a communication system for performing communication by connecting a platform stopped in a stratosphere and a user station on the ground. Kingo Takasawa and Hirotaka Mori in “Document 1”: “Stratospheric Wireless Relay System”, IEICE, Vol. 73, No. 1, pp.69-71 (1990.1)
There is a proposal to expand the mobile communication service area as a wireless relay station by holding unmanned aircraft at 20 km. He is also working on research on energy sources for unmanned aerial vehicles. Reference 2, Yoshiyuki Fujino: “Microwave-Driven Airship and Prospects of Utilization Technology”, IEICE Journal, Vol. 80, No.
5, pp. In 457-460 (1997.5), there is an experimental report on an unmanned airship that took up microwave power transmission as an energy source for an unmanned aerial vehicle, which is a research subject in Reference 1. Reference 3,
“Communication System Using Stratospheric Airship”, Low Earth Orbit Satellite Communication System, IEICE, pp. 7 (1999.6.20)
As an introduction of a communication system using a stratospheric airship, what has been proposed at the present time is a fixed communication system similar to a terrestrial microwave line. A communication system consisting of multiple large airships parked at an altitude of about 20 km.
Each large airship and a fixed user station in its service area have an uplink and a downlink. Reference 4, Japanese Patent Laid-Open No. 10-30
In the publication 7179, a repeater is provided for each platform stopped in the stratosphere, and a ground base station is provided for each platform.

【0003】[0003]

【発明が解決しようとする課題】従来この種の通信シス
テムに関連する文献として先に示したものがある。近
年、特に移動ユーザ局の著しい増加がある一方で、既存
システムのサービスエリアは都市とその周辺に偏在して
いる。また通信インフラ未整備地区の固定通信回線の代
替手段、また災害時に強い通信システムとしても、既存
通信システムを補完する、または社会的インフラ整備と
して中規模の簡易な通信システムのニーズがある。これ
らのニーズに対し、空間利用の有利さから、静止衛星通
信システムを見ると、静止衛星と地球との間の物理的距
離による電波伝搬損失の大きさに難点がある。また、非
静止衛星通信システムとして低軌道衛星通信システムを
見ると、連続的な通信サービスに多数の衛星を必要と
し、それの運用、設備の規模の点からも、中規模の通信
システムには難点がある。
Conventionally, there is a document related to this type of communication system, which is described above. In recent years, in particular, there has been a remarkable increase in the number of mobile user stations, while service areas of existing systems are unevenly distributed in and around cities. In addition, there is a need for a medium-sized simple communication system to supplement an existing communication system or as a social infrastructure, even as an alternative to a fixed communication line in a communication infrastructure undeveloped area, or as a strong communication system in the event of a disaster. To meet these needs, geostationary satellite communication systems have a drawback in the magnitude of radio wave propagation loss due to the physical distance between the geostationary satellite and the earth due to the advantage of space utilization. Looking at low-Earth-orbit satellite communication systems as non-geostationary satellite communication systems, continuous communication services require a large number of satellites, and medium-sized communication systems have difficulties in terms of their operation and equipment scale. There is.

【0004】本発明は上記のような課題を解決するため
になされたもので、なるべく少ない地上基地局で簡易
な、中規模の通信システムを得ることを目的とする。
[0004] The present invention has been made to solve the above-mentioned problems, and has as its object to obtain a simple, medium-scale communication system with as few terrestrial base stations as possible.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係わる通信システムは、成層圏に停留
させたプラットフォームと地上のユーザ局とを結んで通
信を行う通信システムであって、各プラットフォームは
夫々のカバレッジ内のユーザ局からの受信信号を束ねて
静止衛星に信号を上げ、静止衛星は一つの地上基地局に
各プラットフォームからの信号を束ねて送信し、地上基
地局はこれに接続するユーザ局に静止衛星からの信号を
分配する構成を有することを特徴とする。
In order to achieve the above object, a communication system according to claim 1 is a communication system that connects a platform stopped in a stratosphere and a user station on the ground to perform communication. Each platform bundles the signals received from the user stations within its coverage area and raises the signal to a geostationary satellite.The geostationary satellite bundles and transmits the signals from each platform to one ground base station, and the ground base station Characterized by having a configuration for distributing a signal from a geostationary satellite to user stations connected to the satellite.

【0006】また,請求項2に係わる通信システムは、
成層圏に停留させたプラットフォームと地上のユーザ局
とを結んで通信を行う通信システムであって、一つの地
上基地局はこれに接続するユーザ局からの信号を束ねて
静止衛星に信号を上げ、静止衛星は各プラットフォーム
にこの信号を分配し、各プラットフォームは夫々のカバ
レッジ内のユーザ局に静止衛星からの信号を分配する構
成を有することを特徴とする。
[0006] A communication system according to claim 2 comprises:
A communication system that connects a platform stationed in the stratosphere and a user station on the ground to perform communication.One ground base station bundles signals from the user stations connected to the base station, raises the signal to a geostationary satellite, and transmits the signal to the geostationary satellite. The satellite distributes the signal to each platform, and each platform has a configuration for distributing the signal from the geostationary satellite to the user stations in the respective coverage.

【0007】また、請求項3に係わる通信システムは、
請求項1に係る通信システムにおけるプラットフォーム
のカバレッジ内に高速伝送を行うユーザ局を一部収容
し、上記高速伝送を行うユーザ局と上記プラットフォー
ムとの間の通信には、ペンシルビームを当てて通信を行
う構成を有することを特徴とする。
Further, a communication system according to claim 3 comprises:
A user station performing high-speed transmission is partially accommodated in the coverage of the platform in the communication system according to claim 1, and communication between the user station performing high-speed transmission and the platform is performed by applying a pencil beam. It is characterized by having a configuration for performing.

【0008】また,請求項4に係わる通信システムは、
請求項2に係る通信システムにおけるプラットフォーム
のカバレッジ内に高速伝送を行うユーザ局を一部収容
し、上記プラットフォームと上記高速伝送を行うユーザ
局との間の通信には、ペンシルビームを当てて通信を行
う構成を有することを特徴とする。
The communication system according to claim 4 is
In the communication system according to claim 2, a user station performing high-speed transmission is partially accommodated within the coverage of the platform, and communication between the platform and the user station performing high-speed transmission is performed by applying a pencil beam. It is characterized by having a configuration for performing.

【0009】[0009]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態1,2を示す構成概略図である。図1を参
照して、この発明の実施の形態1について説明する。図
1において、1は成層圏プラットフォーム(成層圏に停
留させたプラットフォームを成層圏プラットフォームと
呼び、明らかなときは単にプラットフォームと適宜呼
ぶ),2は成層圏プラットフォーム1のカバレッジ,3
は静止衛星,4は上記成層圏プラットフォーム1のカバ
レッジ2内のユーザ局,5は地上基地局,8は地上基地
局5に接続する通信網である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1. FIG. 1 is a schematic structural view showing Embodiments 1 and 2 of the present invention. Embodiment 1 of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a stratospheric platform (a platform stopped in the stratosphere is referred to as a stratospheric platform, and when it is clear, it is simply referred to as a platform); 2 is a coverage of the stratospheric platform 1;
Is a geostationary satellite, 4 is a user station in the coverage 2 of the stratospheric platform 1, 5 is a terrestrial base station, and 8 is a communication network connected to the terrestrial base station 5.

【0010】次に、図1を参照して、実施の形態1の動
作例について説明する。成層圏に停留させたプラットフ
ォームと地上のユーザ局とを結んで通信を行う通信シス
テムであって、各プラットフォーム1は夫々のカバレッ
ジ2内のユーザ局4からの受信信号を束ねて静止衛星3
に信号を上げ、静止衛星3は一つの地上基地局5にプラ
ットフォームからの信号を束ねて送信し、上記地上基地
局5はこれに接続する通信網8のユーザ局に静止衛星か
らの信号を分配する。地上基地局5にはこれに接続する
通信網8のユーザ局に分配する交換機を設けている。例
えば通信網8は公衆網又は専用線とすれば、プラットフ
ォーム1のカバレッジ2内の移動ユーザ局からこれら通
信網のユーザ局にアクセスすることができる。成層圏に
停留させたプラットフォームの距離は高度約20kmであ
るから、静止衛星の高度約36000kmに比べて電波伝
搬損失が小さく、端末の小型・軽量化が実現できる。
Next, an operation example of the first embodiment will be described with reference to FIG. A communication system for performing communication by connecting a platform stopped in the stratosphere and a user station on the ground, wherein each platform 1 bundles a signal received from a user station 4 in each coverage 2 to form a geostationary satellite 3
The geostationary satellite 3 bundles and transmits signals from the platform to one terrestrial base station 5, and the terrestrial base station 5 distributes the signal from the geostationary satellite to user stations of the communication network 8 connected thereto. I do. The terrestrial base station 5 is provided with an exchange for distribution to user stations of a communication network 8 connected thereto. For example, if the communication network 8 is a public network or a dedicated line, a mobile user station within the coverage 2 of the platform 1 can access the user stations of these communication networks. Since the distance of the platform stopped in the stratosphere is about 20 km, the radio wave propagation loss is smaller than that of the geostationary satellite at an altitude of about 36000 km, and the terminal can be reduced in size and weight.

【0011】この実施の形態1によれば、各プラットフ
ォームは夫々のカバレッジ2内のユーザ局4からの受信
信号を束ねて静止衛星3に信号を上げ、静止衛星3は一
つの地上基地局5にプラットフォームからの信号を束ね
て送信することにより、当該通信システムの地上基地局
を一つにすることができる。
According to the first embodiment, each platform bundles the received signals from the user stations 4 in the respective coverages 2 and raises the signal to the geostationary satellite 3, and the geostationary satellite 3 is transmitted to one terrestrial base station 5. By bundling and transmitting signals from the platform, the number of ground base stations in the communication system can be reduced to one.

【0012】実施の形態2.図1を参照して、この発明
の実施の形態2を説明する。図において、1は成層圏プ
ラットフォーム,2は成層圏プラットフォーム1のカバ
レッジ,3は静止衛星,4は上記成層圏プラットフォー
ム1のカバレッジ2内のユーザ局,5は地上基地局,8
は地上基地局5に接続する通信網である。
Embodiment 2 FIG. Embodiment 2 of the present invention will be described with reference to FIG. In the figure, 1 is a stratospheric platform, 2 is a coverage of the stratospheric platform 1, 3 is a geostationary satellite, 4 is a user station in the coverage 2 of the stratospheric platform 1, 5 is a terrestrial base station, and 8
Is a communication network connected to the ground base station 5.

【0013】次に、図1を参照して、実施の形態2の動
作例について説明する。成層圏に停留させたプラットフ
ォームと地上のユーザ局とを結んで通信を行う通信シス
テムであって、一つの地上基地局5はこれに接続する通
信網8のユーザ局からの信号を束ねて静止衛星3に信号
を上げ、静止衛星3は各プラットフォーム1にこの信号
を分配し、さらに各プラットフォーム1は夫々のカバレ
ッジ2内のユーザ局4に静止衛星3からの信号を分配す
る。静止衛星には、地上基地局からの信号を各プラット
フォームに分配する交換機を設けている。
Next, an operation example of the second embodiment will be described with reference to FIG. This is a communication system that performs communication by connecting a platform stopped in the stratosphere and a user station on the ground, and one ground base station 5 bundles signals from user stations of a communication network 8 connected to the ground base station 5 and The geostationary satellite 3 distributes this signal to each platform 1, and each platform 1 distributes the signal from the geostationary satellite 3 to the user stations 4 in the respective coverage 2. The geostationary satellite is provided with an exchange for distributing a signal from a ground base station to each platform.

【0014】この実施の形態2によれば、一つの地上基
地局5はこれに接続する通信網8のユーザ局からの信号
を束ねて静止衛星3に信号を上げ、静止衛星3は各プラ
ットフォーム1にこの信号を直接分配するので、各プラ
ットフォーム間を直接結ぶ回線を必要とせず、簡易であ
る。
According to the second embodiment, one terrestrial base station 5 bundles a signal from a user station of a communication network 8 connected thereto and sends the signal to the geostationary satellite 3. Since this signal is directly distributed to each other, there is no need for a line directly connecting each platform, which is simple.

【0015】実施の形態3.図2は、この発明の実施の
形態3,4を示す構成概略図である。図2において、1
は成層圏プラットフォーム,2は成層圏プラットフォー
ム1のカバレッジ,3は静止衛星,4は上記成層圏プラ
ットフォーム1のカバレッジ2内のユーザ局,5は地上
基地局,8は地上基地局5に接続する通信網である。6
は高速伝送を行うユーザ局,7は成層圏プラットフォー
ムが高速伝送を行うユーザ局に信号を伝送するために形
成するペンシルビームである。
Embodiment 3 FIG. 2 is a schematic configuration diagram showing Embodiments 3 and 4 of the present invention. In FIG. 2, 1
Is a stratospheric platform, 2 is a coverage of the stratospheric platform 1, 3 is a geostationary satellite, 4 is a user station in the coverage 2 of the stratospheric platform 1, 5 is a terrestrial base station, and 8 is a communication network connected to the terrestrial base station 5. . 6
Is a user station that performs high-speed transmission, and 7 is a pencil beam formed by the stratospheric platform to transmit signals to the user station that performs high-speed transmission.

【0016】次に、図2を参照して、この実施の形態3
の動作例について説明する。成層圏に停留させたプラッ
トフォームと地上のユーザ局とを結んで通信を行う通信
システムであって、本実施の形態3では、各プラットフ
ォームの夫々のカバレッジ内に高速伝送を行うユーザ局
6を一部収容している。各プラットフォーム1は夫々の
カバレッジ2内の高速伝送を行うユーザ局6への通信を
可能にするために、ペンシルビーム7を形成する。各プ
ラットフォームは高速伝送を行うユーザ局6からの受信
信号を、静止衛星に信号を上げ、静止衛星3は一つの地
上基地局5にプラットフォームからの信号を束ねて送信
し、地上基地局5はそれに接続するユーザ局に信号を分
配する。地上基地局5に接続するユーザ局に信号を分配
する交換機は地上基地局5に設置してある。ここで、ペ
ンシルビーム7はフェーズドアレーアンテナにより形成
される。
Next, referring to FIG. 2, the third embodiment will be described.
An operation example will be described. This is a communication system that performs communication by connecting a platform parked in the stratosphere and a user station on the ground. In the third embodiment, a user station 6 that performs high-speed transmission is partially accommodated in each coverage of each platform. are doing. Each platform 1 forms a pencil beam 7 to enable communication to a high-speed user station 6 within a respective coverage 2. Each platform raises the signal received from the user station 6 performing high-speed transmission to a geostationary satellite, and the geostationary satellite 3 bundles and transmits the signal from the platform to one terrestrial base station 5, and the terrestrial base station 5 Distribute signals to connected user stations. An exchange for distributing signals to user stations connected to the ground base station 5 is installed in the ground base station 5. Here, the pencil beam 7 is formed by a phased array antenna.

【0017】この実施の形態3によれば、実施の形態1
と同様の効果を得るとともに、ここで、プラットフォー
ムのカバレッジ内に高速伝送を行うユーザ局を一部収容
し、この高速ユーザ局とプラットフォームとの間の通信
には、ペンシルビームを当てて通信を行うことにより、
高速伝送に対応した処理が可能になる。
According to the third embodiment, the first embodiment
The same effect as described above is obtained, and here, a user station for high-speed transmission is partially accommodated in the coverage of the platform, and communication between the high-speed user station and the platform is performed by applying a pencil beam. By doing
Processing corresponding to high-speed transmission becomes possible.

【0018】実施の形態4.図2は、この発明の実施の
形態4を示す構成概略図である。図2において、1は成
層圏プラットフォーム,2は成層圏プラットフォーム1
のカバレッジ,3は静止衛星,4は上記成層圏プラット
フォーム1のカバレッジ2内のユーザ局,5は地上基地
局,8は地上基地局5に接続する通信網である。6は高
速伝送を行うユーザ局,7は成層圏プラットフォームが
高速伝送を行うユーザ局6に信号を伝送するために形成
するペンシルビームである。
Embodiment 4 FIG. 2 is a schematic configuration diagram showing Embodiment 4 of the present invention. In FIG. 2, 1 is a stratospheric platform, 2 is a stratospheric platform 1
, 3 is a geostationary satellite, 4 is a user station in the coverage 2 of the stratospheric platform 1, 5 is a terrestrial base station, and 8 is a communication network connected to the terrestrial base station 5. Reference numeral 6 denotes a user station that performs high-speed transmission, and reference numeral 7 denotes a pencil beam formed by the stratospheric platform to transmit a signal to the user station 6 that performs high-speed transmission.

【0019】次に、図2を参照して、この実施の形態4
の動作例について説明する。成層圏に停留させたプラッ
トフォームと地上のユーザ局とを結んで通信を行う通信
システムであって、一つの地上基地局5はこれに接続す
る通信網8のユーザ局からの信号を束ねて静止衛星3に
信号を上げ、静止衛星3は各プラットフォーム1にこの
信号を分配し、さらに各プラットフォーム1は夫々のカ
バレッジ2内のユーザ局4に静止衛星3からの信号を分
配する。この際、各プラットフォーム1は夫々のカバレ
ッジ2内に、高速伝送を行うユーザ局6を一部収容し、
プラットフォーム1と上記高速伝送を行うユーザ局6と
を結ぶ通信には、ペンシルビームを当てることにより高
速伝送に対応した処理が可能になる。
Next, referring to FIG. 2, the fourth embodiment will be described.
An operation example will be described. This is a communication system that performs communication by connecting a platform stopped in the stratosphere and a user station on the ground, and one ground base station 5 bundles signals from user stations of a communication network 8 connected to the ground base station 5 and The geostationary satellite 3 distributes this signal to each platform 1, and each platform 1 distributes the signal from the geostationary satellite 3 to the user stations 4 in the respective coverage 2. At this time, each platform 1 partially accommodates a user station 6 performing high-speed transmission in each coverage 2,
For communication between the platform 1 and the user station 6 that performs the high-speed transmission, a process corresponding to the high-speed transmission can be performed by applying a pencil beam.

【0020】この実施の形態4によれば、実施の形態2
と同様の効果を得るとともに、ここで、プラットフォー
ムのカバレッジ内に高速伝送を行う高速ユーザ局を一部
収容し、この高速ユーザ局とプラットフォームとの間の
通信には、ペンシルビームを当てて通信を行うことによ
り、高速伝送に対応した処理が可能になる。
According to the fourth embodiment, the second embodiment
The same effect as described above is obtained, and here, a high-speed user station that performs high-speed transmission is partially accommodated within the coverage of the platform, and communication between the high-speed user station and the platform is performed by applying a pencil beam. By doing so, processing corresponding to high-speed transmission becomes possible.

【0021】[0021]

【発明の効果】以上のように、請求項1に係る発明によ
れば、 各プラットフォームは夫々のカバレッジ内のユ
ーザ局からの受信信号を束ねて静止衛星に信号を上げ、
静止衛星は一つの地上基地局にプラットフォームからの
信号を束ねて送信することにより、当該通信システムの
地上基地局を一つにすることができ、中規模の簡易な通
信システムを得ることができる。
As described above, according to the first aspect of the present invention, each platform bundles the signals received from the user stations in each coverage and sends the signals to the geostationary satellite.
The geosynchronous satellites can bundle the signals from the platform to one ground base station and transmit them, so that the number of ground base stations in the communication system can be reduced to one, and a medium-sized simple communication system can be obtained.

【0022】また、請求項2に係わる発明によれば、一
つの地上基地局はこれに接続するユーザ局からの信号を
束ねて静止衛星に信号を上げ、静止衛星は各プラットフ
ォームにこの信号を分配し、さらに各プラットフォーム
は夫々のカバリッジ内のユーザ局に静止衛星からの信号
を分配するので、各プラットフォーム間を直接結ぶ回線
を必要とせず、地上基地局が少なく、中規模の簡易な通
信システムを得ることができる。
According to the second aspect of the present invention, one terrestrial base station bundles a signal from a user station connected thereto and sends the signal to a geostationary satellite, and the geostationary satellite distributes the signal to each platform. Furthermore, since each platform distributes signals from geostationary satellites to user stations in each coverage, there is no need for a line directly connecting each platform, and there are few ground base stations and a simple, medium-scale communication system. Obtainable.

【0023】また、請求項3に係わる発明によれば、請
求項1記載の通信システムの効果に加えて、成層圏プラ
ットフォームのカバリッジ内に高速伝送を行うユーザ局
を一部収容し、上記成層圏プラットフォームと上記高速
伝送を行うユーザ局との間の通信にペンシルビームを当
てて通信を行うことにより、高速伝送に対応した処理が
可能になる。
According to the third aspect of the present invention, in addition to the effects of the communication system according to the first aspect, a user station that performs high-speed transmission is partially accommodated in the coverage of the stratospheric platform, and By performing communication by applying a pencil beam to communication with the user station performing the high-speed transmission, processing corresponding to the high-speed transmission can be performed.

【0024】また、請求項4に係わる発明によれば、請
求項2記載の通信システムの効果に加えて、成層圏プラ
ットフォームのカバリッジ内に高速伝送を行うユーザ局
を一部収容し、上記成層圏プラットフォームと上記高速
伝送を行うユーザ局との間の通信にペンシルビームを当
てて通信を行うことにより、高速伝送に対応した処理が
可能になる。
According to the fourth aspect of the present invention, in addition to the effects of the communication system of the second aspect, a user station for high-speed transmission is partially accommodated in the coverage of the stratospheric platform, and By performing communication by applying a pencil beam to communication with the user station performing the high-speed transmission, processing corresponding to the high-speed transmission can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1,2を示す構成概略
図である。
FIG. 1 is a schematic configuration diagram showing Embodiments 1 and 2 of the present invention.

【図2】 この発明の実施の形態3,4を示す構成概略
図である。
FIG. 2 is a schematic configuration diagram showing Embodiments 3 and 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 成層圏プラットフォーム(略してプラットフォーム
と呼ぶ)、2 プラットフォームのカバレッジ、3 静
止衛星、4 プラットフォームのカバレッジ内のユーザ
局、5 地上基地局、6 高速伝送を行うユーザ局、7
ペンシルビーム、8 地上基地局5に接続する通信
網。
1 stratospheric platform (referred to as platform for short), 2 platform coverage, 3 geostationary satellites, 4 user stations within coverage, 5 ground base station, 6 user station for high-speed transmission, 7
Pencil beam, 8 A communication network connected to the ground base station 5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米澤 ルミ子 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5K067 AA42 BB02 EE02 EE07 EE10 EE16 GG01 5K072 AA19 BB22 BB25 DD02 DD13 DD16 DD17 DD20 EE02  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Rumiko Yonezawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation (reference) 5K067 AA42 BB02 EE02 EE07 EE10 EE16 GG01 5K072 AA19 BB22 BB25 DD02 DD13 DD16 DD17 DD20 EE02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 成層圏に停留させたプラットフォームと
地上のユーザ局とを結んで通信を行う通信システムであ
って、各プラットフォームは夫々のカバレッジ内のユー
ザ局からの受信信号を束ねて静止衛星に信号を上げ、静
止衛星は一つの地上基地局に各プラットフォームからの
信号を束ねて送信し、地上基地局はこれに接続するユー
ザ局に静止衛星からの信号を分配する構成を有すること
を特徴とする通信システム。
1. A communication system for performing communication by connecting a platform stopped in a stratosphere and a user station on the ground, wherein each platform bundles a signal received from a user station in each coverage and sends a signal to a geostationary satellite. , The geostationary satellite bundles and transmits signals from each platform to one terrestrial base station, and the terrestrial base station has a configuration to distribute signals from the geostationary satellite to user stations connected thereto. Communications system.
【請求項2】 成層圏に停留させたプラットフォームと
地上のユーザ局とを結んで通信を行う通信システムであ
って、一つの地上基地局はこれに接続するユーザ局から
の信号を束ねて静止衛星に信号を上げ、静止衛星は各プ
ラットフォームにこの信号を分配し、各プラットフォー
ムは夫々のカバレッジ内のユーザ局に静止衛星からの信
号を分配する構成を有することを特徴とする通信システ
ム。
2. A communication system for performing communication by connecting a platform stopped in the stratosphere and a user station on the ground, wherein one ground base station bundles signals from the user stations connected to the base station to form a geostationary satellite. A communication system having a configuration for raising a signal, wherein the geosynchronous satellite distributes the signal to each platform, and wherein each platform distributes the signal from the geosynchronous satellite to user stations within a respective coverage.
【請求項3】 プラットフォームのカバレッジ内に高速
伝送を行うユーザ局を一部収容し、上記高速伝送を行う
ユーザ局と上記プラットフォームとの間の通信には、ペ
ンシルビームを当てて通信を行う構成を有することを特
徴とする請求項1記載の通信システム。
3. A configuration in which a user station performing high-speed transmission is partially accommodated in the coverage of the platform, and communication between the user station performing high-speed transmission and the platform is performed by applying a pencil beam. 2. The communication system according to claim 1, comprising:
【請求項4】 プラットフォームのカバレッジ内に高速
伝送を行うユーザ局を一部収容し、上記プラットフォー
ムと上記高速伝送を行うユーザ局との間の通信には、ペ
ンシルビームを当てて通信を行う構成を有することを特
徴とする請求項2記載の通信システム。
4. A configuration in which a user station performing high-speed transmission is partially accommodated in the coverage of the platform, and communication between the platform and the user station performing high-speed transmission is performed by applying a pencil beam. The communication system according to claim 2, comprising:
JP35656699A 1999-12-15 1999-12-15 Communication system Pending JP2001177461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35656699A JP2001177461A (en) 1999-12-15 1999-12-15 Communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35656699A JP2001177461A (en) 1999-12-15 1999-12-15 Communication system

Publications (1)

Publication Number Publication Date
JP2001177461A true JP2001177461A (en) 2001-06-29

Family

ID=18449674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35656699A Pending JP2001177461A (en) 1999-12-15 1999-12-15 Communication system

Country Status (1)

Country Link
JP (1) JP2001177461A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311190A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Flying object communication equipment and flying object communication system
JP2007013513A (en) * 2005-06-30 2007-01-18 National Institute Of Information & Communication Technology Mobile satellite communication system
US7664189B2 (en) 2006-01-30 2010-02-16 Sony Corporation OFDM demodulator, receiver, and method
JP2018074253A (en) * 2016-10-25 2018-05-10 国立研究開発法人情報通信研究機構 Encryption key sharing system via unmanned aircraft, signal transmission system by unmanned aircraft, and unmanned aircraft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311190A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Flying object communication equipment and flying object communication system
JP2007013513A (en) * 2005-06-30 2007-01-18 National Institute Of Information & Communication Technology Mobile satellite communication system
US7664189B2 (en) 2006-01-30 2010-02-16 Sony Corporation OFDM demodulator, receiver, and method
JP2018074253A (en) * 2016-10-25 2018-05-10 国立研究開発法人情報通信研究機構 Encryption key sharing system via unmanned aircraft, signal transmission system by unmanned aircraft, and unmanned aircraft

Similar Documents

Publication Publication Date Title
RU2735236C2 (en) Satellite communication system
EP0887951B1 (en) Method and system for communicating high rate data in a satellite-based communications network
EP0290509B1 (en) Satellite communications system for mobile users
CA2414259C (en) Transportable infrastructure for airborne cellular system
EP1139583B1 (en) Geo stationary communications system with minimal delay
Gargione et al. Services, technologies, and systems at Ka band and beyond-A survey
JP2015092655A (en) Interference suppression in satellite communication system using onboard beamforming and ground-based processing
EP2026476B1 (en) Frequency reuse in a geosynchronous satellite communication system
Hokazono et al. Extreme coverage extension in 6G: Cooperative non-terrestrial network architecture integrating terrestrial networks
KAWAKAMI et al. S-band mobile satellite communications and multimedia broadcasting onboard equipment for ETS-VIII
JP2001177461A (en) Communication system
CN111541478A (en) Communication system for communication among bases on front side of moon
Golding Satellite communications systems move into the twenty‐first century
WO2019035113A1 (en) A system that integrates a communication satellite network with a cellular network
US8483120B2 (en) High efficiency sub-orbital high altitude telecommunications system
Agnew et al. The AMSC mobile satellite system
RU2714301C1 (en) Method for retransmitting radio signals from a geostationary orbit
ITRM960405A1 (en) HIGH-PERFORMANCE SUB-ORBITAL TELECOMMUNICATIONS SYSTEM AT HIGH ALTITUDE
Asai Research on NTN Technology for 5G evolution & 6G
Kawai et al. ETS-VI multibeam satellite communications systems
Freitag et al. Global EHF satellite network for delivering fibre optic capacity world wide
JPS6243229A (en) Space communication system
Thorpe Evolution of the Telesat Canada System into the mid-1980's
Iida Satellite communications application to Pacific countries above Ku band
Niessen MILSATCOM trends

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041228