JP2007013513A - Mobile satellite communication system - Google Patents
Mobile satellite communication system Download PDFInfo
- Publication number
- JP2007013513A JP2007013513A JP2005190948A JP2005190948A JP2007013513A JP 2007013513 A JP2007013513 A JP 2007013513A JP 2005190948 A JP2005190948 A JP 2005190948A JP 2005190948 A JP2005190948 A JP 2005190948A JP 2007013513 A JP2007013513 A JP 2007013513A
- Authority
- JP
- Japan
- Prior art keywords
- communication
- satellite
- relay station
- mobile
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Relay Systems (AREA)
Abstract
Description
本発明は、地上数百キロ〜数千キロの低軌道に配備した複数の低軌道通信衛星を用いて、地上もしくは水上で移動し得る携帯通信端末の通信を実現する移動体衛星通信システムに関する。 The present invention relates to a mobile satellite communication system that realizes communication of a portable communication terminal that can move on the ground or on water using a plurality of low orbit communication satellites arranged in a low orbit of several hundred kilometers to several thousand kilometers on the ground.
複数の低軌道通信衛星を用いて実施、または計画されている全地球を網羅した移動体衛星通信システムは、図9に示すように、数百kmから数千km上空にある複数の低軌道通信衛星(例えばS1〜S5)と地上あるいは水上の携帯通信端末(例えばC1〜C10)とが電波による直接回線を設定し、低軌道通信衛星を介して遠方の携帯通信端末と通信を行えるようにしたものである(例えば、特許文献1参照)。 As shown in FIG. 9, a mobile satellite communication system that covers or covers the entire earth, which is implemented or planned using a plurality of low-orbit communication satellites, has a plurality of low-orbit communication over several hundred to several thousand kilometers. A satellite (for example, S1 to S5) and a portable communication terminal (for example, C1 to C10) on the ground or on the water set up a direct line by radio waves so that communication with a remote portable communication terminal can be performed via a low orbit communication satellite (For example, refer to Patent Document 1).
しかしながら、特許文献1に記載された如き従来の移動体衛星通信システムにおいては、地上もしくは水上の携帯通信端末が遠距離に位置する低軌道通信衛星との通信を実現できるように、多大なアンテナ利得や送信電力、及び電力供給のための大容量電源等が必要となり、携帯通信端末の小型、軽量、省電力化に限界がある。 However, the conventional mobile satellite communication system as described in Patent Document 1 has a large antenna gain so that a mobile communication terminal on the ground or water can communicate with a low-orbit communication satellite located at a long distance. In addition, transmission power, a large-capacity power supply for power supply, and the like are required, and there is a limit to miniaturization, light weight, and power saving of portable communication terminals.
なお、地上もしくは水上にある携帯通信端末と低軌道通信衛星との間に中継局を配置することで、中継局が低軌道通信衛星との通信を行うシステムとすれば、携帯通信端末には中継局との通信が可能な機能を持たせるだけで良いので、携帯通信端末の小型、軽量、省電力化を容易に実現できる可能性がある。例えば、地上の固定局と通信衛星とで直接通信を行う衛星通信システムの場合には、地上固定局の最大通信容量が定まっているため、その最大通信容量に対応できる程度の通信機能を中継局に持たせておけば良いため、地上固定局に対応した中継局を配備することは容易である。 If a relay station is placed between a mobile communication terminal on the ground or water and a low orbit communication satellite, the relay station can communicate with the low orbit communication satellite. Since it is only necessary to provide a function capable of communicating with a station, there is a possibility that the mobile communication terminal can be easily reduced in size, weight and power saving. For example, in the case of a satellite communication system that directly communicates with a fixed station on the ground and a communication satellite, the maximum communication capacity of the fixed land station is fixed. Therefore, the relay station has a communication function that can handle the maximum communication capacity. Therefore, it is easy to provide a relay station corresponding to a fixed land station.
しかしながら、移動体衛星通信システムにおいては、人口密集地と過疎地とでは必要とされる回線容量が大幅に異なる上、季節行事や突発的な災害発生等に起因して通信容量が一時的に増大する可能性もあるため、このような通信需要を見込んだ余裕のある通信容量を中継局に予め持たせておかないと、通信サービスに支障を来してしまう可能性がある。とはいえ、年に数回、数時間程度起こるか起こらないかといった最大通信需要に対応できる通信機能を予め中継局に持たせておくと、移動体衛星通信システム全体のコストに少なからぬ影響を与える可能性があり、実用的なシステム構築には問題がある。 However, in mobile satellite communication systems, the required line capacity differs greatly between densely populated and depopulated areas, and the communication capacity temporarily increases due to seasonal events and sudden disasters. Therefore, the communication service may be hindered unless the relay station has sufficient communication capacity that allows for such communication demand. However, if the relay station has a communication function that can cope with the maximum communication demand, whether it occurs several times a year or not for several hours, it will have a considerable impact on the cost of the entire mobile satellite communication system. There is a problem in building a practical system.
以上のような問題点に鑑み、本発明は、数十km上空に通信回線の中継機能を搭載した飛翔中継局を配置することで、携帯通信端末のさらなる小型、軽量、省電力化を図り、尚かつ、地域性等に起因する通信需要に応じた適正な通信容量の確保および一時的な通信需要の急増等に柔軟に対応できる移動体衛星通信システムの提供を目的とする。 In view of the problems as described above, the present invention aims to further reduce the size, weight, and power of mobile communication terminals by disposing a flight relay station equipped with a communication line relay function over several tens of kilometers. It is another object of the present invention to provide a mobile satellite communication system that can flexibly cope with securing an appropriate communication capacity according to communication demands caused by regional characteristics and the like, and a temporary increase in temporary communication demand.
上記課題を解決するために、請求項1に係る発明は、地上数百キロ〜数千キロの低軌道に配備された複数の低軌道通信衛星を介して、地上もしくは水上の携帯通信端末による通信を行う移動体衛星通信システムにおいて、前記低軌道通信衛星とその通信エリアとの間における地上数キロ〜数十キロの上空を飛翔し、低軌道通信衛星と携帯通信端末との間の通信を中継する飛翔中継局を設け、前記飛翔中継局は、電波による携帯通信端末との通信機能と、レーザ光による低軌道通信衛星との通信機能を備え、同一通信エリア内の複数の携帯通信端末からの通信容量の増大に対して、1つの飛翔中継局で対応できない場合には、同一通信エリア内の上空へ複数の飛翔中継局を配置することで、低軌道通信衛星と携帯通信端末との間の通信を複数の飛翔中継局により分担して中継することを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 is a communication by a mobile communication terminal on the ground or on the water via a plurality of low-orbit communication satellites arranged in a low orbit of several hundred kilometers to several thousand kilometers on the ground. In the mobile satellite communication system that performs the above, it flies over several kilometers to several tens of kilometers between the low orbit communication satellite and its communication area, and relays the communication between the low orbit communication satellite and the portable communication terminal. The flight relay station has a function of communicating with a portable communication terminal using radio waves and a function of communicating with a low-orbit communication satellite using a laser beam, from a plurality of portable communication terminals within the same communication area. If one flight relay station cannot cope with the increase in communication capacity, a plurality of flight relay stations can be arranged above the same communication area, so that the communication between the low-orbit communication satellite and the portable communication terminal is possible. Multiple communication Wherein the relaying shared by Sho relay station.
また、請求項2に係る発明は、前記請求項1に記載の移動体衛星通信システムにおいて、前記低軌道通信衛星は、他の低軌道通信衛星もしくは飛翔中継局から受信した情報を蓄積しておくサーバ機能を備えることを特徴とする。
The invention according to
また、請求項3に係る発明は、前記請求項1又は請求項2に記載の移動体衛星通信システムにおいて、前記飛翔中継局は、低軌道通信衛星もしくは他の飛翔中継局から受信した情報を蓄積しておくサーバ機能を備えることを特徴とする。
The invention according to
また、請求項4に係る発明は、前記請求項1〜請求項3の何れか1項に記載の移動体衛星通信システムにおいて、前記低軌道通信衛星と、その通信エリア内を飛翔する飛翔中継局とは、相互に電波で送受信できる通信機能を備えることを特徴とする。
The invention according to
また、請求項5に係る発明は、前記請求項1〜請求項4の何れか1項に記載の移動体衛星通信システムにおいて、前記低軌道通信衛星と、その通信エリア内に位置する携帯通信端末とは、相互に電波で送受信できる通信機能を備え、飛翔中継局を介さない直接通信への切換が可能であることを特徴とする。 According to a fifth aspect of the present invention, in the mobile satellite communication system according to any one of the first to fourth aspects, the low orbit communication satellite and a portable communication terminal located in the communication area Is characterized in that it has a communication function capable of mutually transmitting and receiving radio waves and can be switched to direct communication not via a flight relay station.
また、請求項6に係る発明は、前記請求項1〜請求項5の何れか1項に記載の移動体衛星通信システムにおいて、同一通信エリア内に配置された複数の飛翔中継局は、携帯通信端末からの通信を相互に中継できる通信中継機能を備え、低軌道通信衛星を介することなく、同一通信エリア内にある携帯通信端末同士の通信を中継することを特徴とする。 The invention according to claim 6 is the mobile satellite communication system according to any one of claims 1 to 5, wherein the plurality of flight relay stations arranged in the same communication area are mobile communication. A communication relay function capable of relaying communication from terminals to each other is provided, and communication between portable communication terminals in the same communication area is relayed without using a low-orbit communication satellite.
請求項1に係る発明によれば、低軌道通信衛星とその通信エリアとの間における地上数キロ〜数十キロの上空を飛翔する飛翔中継局を用いることにより、携帯通信端末は飛翔中継局までの電波による通信機能を備えていれば十分なので、携帯通信端末のさらなる小型、軽量、省電力化を図ることができる。また、低軌道通信衛星と飛翔中継局との間の通信は大容量化の容易なレーザ光による通信を採用することにより、1つの飛翔中継局が電波による携帯通信端末との通信で対応できる通信容量の上限よりも十分に大きな通信容量を低軌道通信衛星との通信に確保できるので、低軌道通信衛星と携帯通信端末との間の通信を複数の飛翔中継局により分担して中継することが可能となる。よって、飛翔中継局の配備数を適宜に設定することで、地域性等に起因する通信需要に応じた適正な通信容量を確保できるし、飛翔中継局を追加配備することで一時的な通信需要の急増等に柔軟に対応できる。 According to the first aspect of the present invention, by using the flight relay station that flies over several kilometers to several tens of kilometers between the low-orbit communication satellite and its communication area, the portable communication terminal can reach the flight relay station. Since it is sufficient to have a communication function using radio waves, the mobile communication terminal can be further reduced in size, weight, and power can be saved. In addition, communication between the low-orbit communication satellite and the flight relay station employs communication using laser light, which can easily increase the capacity, so that one flight relay station can respond by communication with a portable communication terminal using radio waves. Since communication capacity sufficiently larger than the upper limit of capacity can be secured for communication with low orbit communication satellites, communication between low orbit communication satellites and mobile communication terminals can be shared and relayed by multiple flight relay stations It becomes possible. Therefore, by appropriately setting the number of flight relay stations to be deployed, it is possible to secure an appropriate communication capacity according to the communication demand due to regional characteristics, etc. Can respond flexibly to the rapid increase in
また、請求項2に係る発明によれば、低軌道通信衛星が、他の低軌道通信衛星もしくは飛翔中継局から受信した情報を蓄積しておくサーバ機能を備えるので、既に送信した同一情報について携帯通信端末より再要求がなされた場合など、低軌道通信衛星のサーバ機能により蓄積された情報を参照すればよいため、衛星のネットワーク回線を経由して発信元から情報を取得する必要が無く、再要求に対する迅速な対応が出来ると共に、通信量の低減にも寄与できる。 According to the second aspect of the invention, the low-orbit communication satellite has a server function for storing information received from other low-orbit communication satellites or flight relay stations. Since it is only necessary to refer to the information accumulated by the server function of the low orbit communication satellite, such as when a re-request is made from the communication terminal, there is no need to acquire information from the source via the satellite network line. It can respond quickly to requests and contribute to a reduction in traffic.
また、請求項3に係る発明によれば、飛翔中継局が、低軌道通信衛星もしくは他の飛翔中継局から受信した情報を蓄積しておくサーバ機能を備えるので、既に送信した同一情報について携帯通信端末より再要求がなされた場合など、飛翔中継局のサーバ機能により蓄積された情報を参照すればよいため、衛星のネットワーク回線を経由して発信元から情報を取得する必要が無く、再要求に対する迅速な対応が出来ると共に、通信量の低減にも寄与できる。
According to the invention of
また、請求項4に係る発明によれば、低軌道通信衛星と、その通信エリア内を飛翔する飛翔中継局とは、相互に電波で送受信できる通信機能を備えるので、飛翔中継局と低軌道通信衛星とのレーザリンクが断たれて、再捕捉も困難な場合には、電波による通信に切り換えることで、低軌道通信衛星と飛翔中継局とが完全に通信途絶してしまうことを回避できる。
According to the invention of
また、請求項5に係る発明によれば、低軌道通信衛星と、その通信エリア内に位置する携帯通信端末とは、相互に電波で送受信できる通信機能を備え、飛翔中継局を介さない直接通信への切換が可能としたので、飛翔中継局に障害が発生した場合などの非常時にも、移動衛星通信が不能となることを回避できる。また、通信需要が非常に少ない通信エリアに対しては、飛翔中継局を配備しないでコストを削減する運用方法を採用することもできる。 According to the fifth aspect of the present invention, the low-orbit communication satellite and the mobile communication terminal located in the communication area have a communication function capable of transmitting and receiving radio waves to and from each other, and are directly communicated without using a flight relay station. Therefore, it is possible to prevent the mobile satellite communication from being disabled in an emergency such as when a failure occurs in the flight relay station. In addition, for a communication area where communication demand is very low, an operation method that reduces costs without deploying a flight relay station can be employed.
また、請求項6に係る発明によれば、同一通信エリア内に配置された複数の飛翔中継局が、携帯通信端末からの通信を相互に中継できる通信中継機能を備え、低軌道通信衛星を介することなく、同一通信エリア内にある携帯通信端末同士の通信を中継するので、効率の良い通信を期せる。 According to the invention of claim 6, a plurality of flight relay stations arranged in the same communication area have a communication relay function capable of relaying communication from the mobile communication terminal to each other via the low orbit communication satellite. Since the communication between the portable communication terminals in the same communication area is relayed, efficient communication can be expected.
次に、添付図面に基づいて、本発明に係る移動衛星通信システムの実施形態をいくつか説明する。 Next, several embodiments of the mobile satellite communication system according to the present invention will be described with reference to the accompanying drawings.
図1の概略構成図は、本発明に係る移動衛星通信システムの第1実施形態(通信容量適正時)を示し、図2の概略構成図は、本発明に係る移動衛星通信システムの第1実施形態(通信容量増大時)を示す。両図における低軌道通信衛星S1〜S5は、地上から距離L1(例えば、3千キロメートル)の低軌道に配備された静止衛星であり、これら低軌道通信衛星S1〜S5は相互にレーザ光(図中、太線にて示す)による通信が可能である。各低軌道通信衛星S1〜S5に各々設定された通信エリアの地上から距離L2(例えば、20キロメートル)の上空には、飛翔中継局Aを配備し、この飛翔中継局Aが通信エリア内の携帯通信端末Cと電波による通信(図中、細線にて示す)を行うと共に、低軌道通信衛星Sとレーザ光による通信(図中、太線にて示す)を行うことで、低軌道衛星Sとその通信エリア内に存在する携帯通信端末Cとの通信を中継する。 The schematic configuration diagram of FIG. 1 shows a first embodiment of the mobile satellite communication system according to the present invention (when the communication capacity is appropriate), and the schematic configuration diagram of FIG. 2 shows the first embodiment of the mobile satellite communication system according to the present invention. The form (when the communication capacity is increased) is shown. The low orbit communication satellites S1 to S5 in both figures are geostationary satellites deployed in a low orbit at a distance L1 (for example, 3,000 kilometers) from the ground, and these low orbit communication satellites S1 to S5 are mutually laser beams (see FIG. (Indicated by a thick line). A flight relay station A is provided above the distance L2 (for example, 20 kilometers) from the ground of the communication area set for each of the low-orbit communication satellites S1 to S5, and this flight relay station A is mobile in the communication area. By communicating with the communication terminal C by radio waves (indicated by a thin line in the figure) and by communicating with the low-orbit communication satellite S by a laser beam (indicated by a thick line in the figure), the low-orbit satellite S and its The communication with the mobile communication terminal C existing in the communication area is relayed.
このように、低軌道通信衛星Sとその通信エリアとの間における地上数キロ〜数十キロの上空を飛翔する飛翔中継局Aを用いることにより、携帯通信端末Cは飛翔中継局Aとの電波による通信機能を備えていれば十分なので、携帯通信端末Cのさらなる小型、軽量、省電力化を図ることができる。また、飛翔中継局Aが飛翔する高度においては、光通信を困難にする大気揺らぎの影響が軽減されるので、低軌道通信衛星Sと飛翔中継局Aとの間の通信として大容量化の容易なレーザ光による通信を採用することができ、1つの飛翔中継局Aが電波による携帯通信端末Cとの通信で対応できる通信容量の上限よりも十分に大きな通信容量を低軌道通信衛星Sとの通信に予め確保しておくことが可能である。 Thus, by using the flight relay station A that flies over several kilometers to several tens of kilometers between the low orbit communication satellite S and its communication area, the mobile communication terminal C can communicate with the flight relay station A. Since it is sufficient if the communication function is provided, the mobile communication terminal C can be further reduced in size, weight and power saving. Further, at the altitude at which the flight relay station A flies, the influence of atmospheric fluctuations that make optical communication difficult is reduced, so that it is easy to increase the capacity as communication between the low-orbit communication satellite S and the flight relay station A. Communication with a low-orbit communication satellite S can be adopted, and a communication capacity sufficiently larger than the upper limit of communication capacity that one flight relay station A can handle by communication with a portable communication terminal C by radio waves can be adopted. It is possible to secure in advance for communication.
なお、飛翔中継局Aは、中継のための通信機能(電波による携帯通信端末Cとの通信機能、およびレーザ光による低軌道通信衛星Sとの通信機能)を備えた飛翔体であり、衛星通信の中継を担当する通信エリア上空で常時待機している。その飛翔方法は特に限定されるものではなく、ジェット機のようにガス噴射による推進力で飛翔するものでも良いし、プロペラ機のように回転羽根による推進力で飛翔するものでも良いし、ヘリコプターのように回転羽根により浮力を得るものでも良いし、飛行船のように軽量ガスで浮遊するものでも良い。また、飛翔中継局Aの動作電源として、太陽電池や燃料電池、原子力電池等を用いれば、滞空時間を長期化することも可能である。 The flight relay station A is a flying body having a communication function for relaying (a communication function with a portable communication terminal C by radio waves and a communication function with a low-orbit communication satellite S by laser light). Is always on standby over the communication area in charge of relaying. The flight method is not particularly limited, and it may be one that flies with propulsion by gas injection like a jet aircraft, one that flies with propulsion by rotary blades like a propeller aircraft, or a helicopter In addition, a buoyancy can be obtained by rotating blades, or a float can be floated by a light gas like an airship. In addition, if a solar cell, a fuel cell, a nuclear battery, or the like is used as an operating power source for the flight relay station A, the flight time can be prolonged.
ここで、図1に示すように、低軌道通信衛星S2の通信エリア上空を飛翔する飛翔中継局A1が中継する携帯通信端末C1から、低軌道通信衛星S4の通信エリアに属する携帯通信端末C10への通信を実現する場合について説明する。携帯通信端末C1から電波による通信を受けた飛翔中継局A1は、この通信要求をレーザ光による通信で低軌道通信衛星S2へ送り、この低軌道通信衛星S2から低軌道通信衛星S3を経由して、携帯通信端末C10が自らの通信エリア内にいることを把握している低軌道通信衛星S4へ伝送される。 Here, as shown in FIG. 1, from the mobile communication terminal C1 relayed by the flight relay station A1 flying over the communication area of the low orbit communication satellite S2, to the mobile communication terminal C10 belonging to the communication area of the low orbit communication satellite S4. A case of realizing the communication will be described. The flight relay station A1 that has received radio wave communication from the portable communication terminal C1 sends this communication request to the low orbit communication satellite S2 by communication using laser light, and from this low orbit communication satellite S2 via the low orbit communication satellite S3. The data is transmitted to the low-orbit communication satellite S4 that knows that the mobile communication terminal C10 is in its own communication area.
しかしながら、低軌道通信衛星S4の通信エリア上空を飛翔している飛翔中継局A2の回線容量がフルに使用されているために、携帯通信端末C10へ呼出をかけて通信回線を開くことが出来ない場合、携帯通信端末C1から携帯通信端末C10への通信を実現できない。 However, since the line capacity of the flight relay station A2 flying over the communication area of the low orbit communication satellite S4 is fully used, it is not possible to call the mobile communication terminal C10 to open the communication line. In this case, communication from the mobile communication terminal C1 to the mobile communication terminal C10 cannot be realized.
そこで、飛翔中継局A2が中継を担当する通信容量が上限に近づき、更なる通信需要を満たすことが困難と想定される場合、図2に示すように、低軌道通信衛星S4の通信エリア上空へ飛翔中継局A3を追加配備し、低軌道通信衛星S4と携帯通信端末C5〜C10との間の通信を飛翔中継局A2,A3で相互に分担して中継できるようにして、通信容量の増大に対応できるように準備しておけば、携帯通信端末C1から受けた通信要求に対して、低軌道通信衛星S4は飛翔中継局A2,A3に携帯通信端末C10の呼出を指示すると、飛翔中継局A3が中継することで、携帯通信端末C10を呼び出すことができ、携帯通信端末C1と携帯通信端末C10との通信を実現可能となる。 Therefore, when it is assumed that the communication capacity that the flight relay station A2 is responsible for relaying approaches the upper limit and it is difficult to satisfy further communication demands, as shown in FIG. 2, the communication is over the communication area of the low orbit communication satellite S4. Additional flight relay station A3 is installed to enable communication between the low-orbit communication satellite S4 and the portable communication terminals C5 to C10 to be shared by the flight relay stations A2 and A3 to increase communication capacity. If prepared so that it can respond, when the low-orbit communication satellite S4 instructs the flight relay stations A2 and A3 to call the mobile communication terminal C10 in response to the communication request received from the mobile communication terminal C1, the flight relay station A3 , The mobile communication terminal C10 can be called, and communication between the mobile communication terminal C1 and the mobile communication terminal C10 can be realized.
このように、低軌道通信衛星S4と飛翔中継局Aとの間の通信としてレーザ光による通信を採用することで、予め大きな通信容量(例えば、1つの飛翔中継局Aが携帯通信端末Cとの通信で保持できる最大通信容量の数倍以上)を確保しておくことができるので、低軌道通信衛星Sと携帯通信端末Cとの間の通信を複数の飛翔中継局Aにより分担して中継することが可能となる。よって、低軌道通信衛星Sの通信エリア上空を飛翔させる飛翔中継局Aの配備数を適宜に設定することで、人口密集地あるいは過疎地といった地域性等に起因する通信需要に応じた適正な通信容量を確保できるし、事前予測できる季節行事などでの需要増に備えて飛翔中継局Aを追加配備しておけば、一時的な通信需要の急増等に柔軟に対応できる。また、災害発生などの突発的事情で通信需要が急激に増大した場合でも、速やかに飛翔中継局Aを追加配備すれば、遅滞なく十分な通信容量を確保することが可能である。 As described above, by adopting the laser beam communication as the communication between the low orbit communication satellite S4 and the flight relay station A, a large communication capacity (for example, one flight relay station A is connected to the mobile communication terminal C). A communication capacity between the low-orbit communication satellite S and the portable communication terminal C is shared and relayed by a plurality of flight relay stations A. It becomes possible. Therefore, by appropriately setting the number of flying relay stations A that fly over the communication area of the low-orbit communication satellite S, appropriate communication according to communication demand caused by regional characteristics such as densely populated areas or depopulated areas If the flight relay station A is additionally provided in preparation for an increase in demand due to seasonal events that can be predicted in advance, the capacity can be flexibly dealt with. Even if communication demand increases rapidly due to sudden circumstances such as the occurrence of a disaster, it is possible to ensure sufficient communication capacity without delay if the flight relay station A is additionally deployed promptly.
なお、同一通信エリアを複数の飛翔中継局Aが分担して携帯通信端末Cとの通信を中継する場合、各飛翔中継局Aが担当する携帯通信端末Cの分担手法は特に限定されるものではなく、同一通信エリア上空を飛翔する飛翔中継局A同士が相互に通信して、双方が同等の通信容量を分担するようにしても良いし、主となる飛翔中継局Aが通信容量一杯まで分担し、賄いきれない分を従となる飛翔中継局Aが補佐するようにしても良い。また、飛翔中継局Aは完全な自律制御により動作することで、追加配備の要・不要も自ら判断するものでも良いし、低軌道通信衛星Sの通信エリア毎に設けられた管理センタ等が統括管理するものでも良い。 In addition, when a plurality of flight relay stations A share the same communication area and relay communication with the mobile communication terminal C, the sharing method of the mobile communication terminal C in charge of each flight relay station A is not particularly limited. Alternatively, the flight relay stations A flying over the same communication area may communicate with each other so that both share the same communication capacity, or the main flight relay station A shares the communication capacity to the full. Then, the subordinate flight relay station A may assist the portion that cannot be covered. Further, the flight relay station A may operate by fully autonomous control, so that it can determine whether or not additional deployment is necessary, and a management center provided for each communication area of the low-orbit communication satellite S is in charge. It may be managed.
上述した移動体衛星通信システムに用いる携帯通信端末Cの概略構成を図3に示す。携帯通信端末Cは、飛翔中継局Aとの間で所定周波数での電波を送受信できる中継局通信用電波アンテナ11、受信信号の復調および送信信号の変調を行う中継局通信用送受信部12、送受信データを一時的に保持するバッファ部13、各部制御を統括的に行うコントローラ部14、種々の制御情報や受信データ等を記憶するメモリ部15、使用者が操作するインターフェース部16等を備える。
A schematic configuration of the mobile communication terminal C used in the mobile satellite communication system described above is shown in FIG. The mobile communication terminal C includes a relay station communication radio antenna 11 that can transmit and receive radio waves at a predetermined frequency with the flight relay station A, a relay
上述した移動体衛星通信システムに用いる飛翔中継局Aの概略構成を図4に示す。飛翔中継局Aは、低軌道通信衛星Sとの間でレーザ光を送受信できる衛星通信用光アンテナ21a、受信信号の復調および送信信号の変調を行う衛星通信用送受信部22a、送受信データを一時的に保持するバッファ部23a、同一通信エリアの上空を飛翔している他の飛翔中継局Aとの間で所定周波数の電波を送受信できる中継局間通信用電波アンテナ21b、受信信号の復調および送信信号の変調を行う中継局間通信用送受信部22b、送受信データを一時的に保持するバッファ部23b、通信エリア内に位置する携帯通信端末Cとの間で所定周波数の電波を送受信できる携帯端末通信用電波アンテナ21c、受信信号の復調および送信信号の変調を行う携帯端末通信用送受信部22c、送受信データを一時的に保持するバッファ部23c、各部制御を統括的に行うコントローラ部24、種々の制御情報や受信データ等を記憶するメモリ部25等を備える。
FIG. 4 shows a schematic configuration of the flight relay station A used in the mobile satellite communication system described above. The flight relay station A is a satellite communication
なお、メモリ部25として大きな記憶容量のものを用い、低軌道通信衛星Sもしくは他の飛翔中継局Aから受信した情報をメモリ部25に随時記憶し、必要に応じて取り出せるサーバ機能をコントローラ部24に持たせておけば、既に送信した同一情報について携帯通信端末Cより再要求がなされた場合など、飛翔中継局Aのサーバ機能により蓄積された情報を参照すればよいため、衛星のネットワーク回線を経由して発信元から情報を取得する必要が無く、再要求に対する迅速な対応が出来ると共に、通信量の低減にも寄与できる。
The
上述した移動体衛星通信システムに用いる低軌道通信衛星Sの概略構成を図5に示す。低軌道通信衛星Sは、他の低軌道通信衛星Aとの間でレーザ光を送受信できる衛星間通信用光アンテナ31a、受信信号の復調および送信信号の変調を行う衛星間通信用送受信部32a、送受信データを一時的に保持するバッファ部33a、通信エリアの上空を飛翔している飛翔中継局Aとの間でレーザ光を送受信できる中継局通信用光アンテナ31b、受信信号の復調および送信信号の変調を行う中継局通信用送受信部32b、送受信データを一時的に保持するバッファ部33b、各部制御を統括的に行うコントローラ部34、種々の制御情報や受信データ等を記憶するメモリ部35等を備える。
FIG. 5 shows a schematic configuration of the low orbit communication satellite S used in the mobile satellite communication system described above. The low-orbit communication satellite S includes an inter-satellite communication
なお、メモリ部35として大きな記憶容量のものを用い、他の低軌道通信衛星Sもしくは飛翔中継局Aから受信した情報をメモリ部25に随時記憶し、必要に応じて取り出せるサーバ機能をコントローラ部34に持たせておけば、既に送信した同一情報について携帯通信端末Cより再要求がなされた場合など、低軌道通信衛星Sのサーバ機能により蓄積された情報を参照すればよいため、衛星のネットワーク回線を経由して発信元から情報を取得する必要が無く、再要求に対する迅速な対応が出来ると共に、通信量の低減にも寄与できる。
The
また、低軌道通信衛星Sが、複数の飛翔中継局Aとの光通信を同時並行的に行えるよう、対応可能な飛翔中継局Aの数に応じて、予め複数の中継局通信用光アンテナ31bを備えるようにしても良い。このように、複数の中継局通信用光アンテナ31bを低軌道通信衛星Sが備えている場合、例えば、飛翔中継局A2の捕捉追尾と飛翔中継局A3の捕捉追尾を独立して行うことができるので、飛翔中継局A2の飛翔空域と飛翔中継局A3の飛翔空域とが離隔している場合でも、飛翔中継局A2および飛翔中継局A3とレーザリンクを個別に保持することが可能である。
Further, in order to enable the low-orbit communication satellite S to perform optical communication with the plurality of flight relay stations A simultaneously in parallel, a plurality of relay station communication
次に、図6に基づいて、移動衛星通信システムの第2実施形態に就き説明する。本実施形態は、低軌道通信衛星Sと、その通信エリア内を飛翔する飛翔中継局Aとが、相互に電波で送受信できる通信機能を備えるものである。斯くすれば、飛翔中継局A3と低軌道通信衛星S4とのレーザリンクが断たれて、再捕捉も困難な場合には、双方が電波による通信(図6中、細線で示す)に切り換えることで、低軌道通信衛星S4と飛翔中継局A3とが完全に通信途絶してしまうことを回避できる。 Next, a second embodiment of the mobile satellite communication system will be described with reference to FIG. In the present embodiment, the low orbit communication satellite S and the flight relay station A flying in the communication area are provided with a communication function capable of transmitting and receiving with radio waves. In this case, when the laser link between the flight relay station A3 and the low-orbit communication satellite S4 is cut off and re-acquisition is difficult, both are switched to radio communication (indicated by a thin line in FIG. 6). Thus, it is possible to avoid the communication interruption between the low orbit communication satellite S4 and the flight relay station A3.
例えば、低軌道通信衛星Sと飛翔中継局Aとのレーザリンク断が生じた原因が気象条件等の通信環境要因である場合には、ほどなく光通信が回復する可能性が高い。しかしながら、飛翔中継局Aの光通信機能が損壊したことが原因である場合には、地上の管理センタにて待機している予備の飛翔中継局Aと交代させなければ、低軌道通信衛星Sと飛翔中継局Aとの光通信を回復させることができない。このような飛翔中継局Aの交代が完了するまでの間、非常手段として、低軌道通信衛星Sと飛翔中継局Aとが電波による通信を行っていれば、低軌道通信衛星Sが受け持つ通信エリア内で通信サービスが完全にダウンしてしまうことを回避できる。 For example, if the cause of the laser link disconnection between the low-orbit communication satellite S and the flight relay station A is a communication environment factor such as weather conditions, there is a high possibility that optical communication will be restored soon. However, if the cause is that the optical communication function of the flight relay station A is damaged, it is necessary to replace the standby flight relay station A waiting at the ground management center with the low-orbit communication satellite S. The optical communication with the flight relay station A cannot be recovered. Until such a change of the flight relay station A is completed, as an emergency means, if the low-orbit communication satellite S and the flight relay station A are communicating by radio waves, the communication area that the low-orbit communication satellite S is responsible for It can be avoided that the communication service is completely down.
なお、本実施形態の移動通信システムに用いる飛翔中継局Aの構成としては、前述した第1実施形態の移動通信システムに用いる飛翔中継局Aのブロック構成を示した図4に対し、低軌道通信衛星Sとの間で電波を送受信できる衛星通信用電波アンテナ、受信信号の復調および送信信号の変調を行う衛星通信用送受信部、送受信データを一時的に保持するバッファ部を付加すれば良く、例えば、低軌道通信衛星Sとのレーザリンク断に基づく再捕捉の開始から再捕捉許容時間(予め定めた所定時間)を越えた場合に、コントローラ部24の制御により光通信から電波通信への変更制御が自動的に行われるようにしても良いし、管理センタ等からの指令によって光通信から電波通信への変更が行われるようにしても良い。
Note that the configuration of the flight relay station A used in the mobile communication system of the present embodiment is a low orbit communication compared to FIG. 4 showing the block configuration of the flight relay station A used in the mobile communication system of the first embodiment described above. A satellite communication radio antenna that can transmit and receive radio waves to and from the satellite S, a satellite communication transmission / reception unit that demodulates reception signals and modulates transmission signals, and a buffer unit that temporarily stores transmission / reception data may be added. When the re-acquisition allowable time (predetermined predetermined time) is exceeded from the start of re-acquisition based on the laser link disconnection with the low-orbit communication satellite S, the change control from optical communication to radio wave communication is controlled by the
また、本実施形態の移動通信システムに用いる低軌道通信衛星Sの構成としては、前述した第1実施形態の移動通信システムに用いる低軌道通信衛星Sのブロック構成を示した図5に対し、通信エリアの上空を飛翔している飛翔中継局Aとの間で電波を送受信できる中継局通信用電波アンテナ、受信信号の復調および送信信号の変調を行う中継局通信用送受信部、送受信データを一時的に保持するバッファ部を付加すれば良く、例えば、飛翔中継局Aとのレーザリンク断に基づく再捕捉の開始から再捕捉許容時間(予め定めた所定時間)を越えた場合に、コントローラ部34の制御により光通信から電波通信への変更制御が自動的に行われるようにしても良いし、管理センタ等からの指令によって光通信から電波通信への変更が行われるようにしても良い。
Further, the configuration of the low orbit communication satellite S used in the mobile communication system of the present embodiment is communication with respect to FIG. 5 showing the block configuration of the low orbit communication satellite S used in the mobile communication system of the first embodiment described above. Relay station communication radio antenna capable of transmitting / receiving radio waves to / from flying relay station A flying over the area, relay station communication transmitter / receiver for demodulating received signals and modulating transmitted signals, temporarily transmitting / receiving data For example, when the re-acquisition allowable time (predetermined predetermined time) is exceeded from the start of re-acquisition based on the disconnection of the laser link with the flight relay station A, the
次に、図7に基づいて、移動衛星通信システムの第3実施形態に就き説明する。本実施形態は、低軌道通信衛星Sと、その通信エリア内に位置する携帯通信端末Cとが、相互に電波で送受信できる通信機能を備えるものである。斯くすれば、飛翔中継局Aを介さずに、低軌道通信衛星Sと携帯通信端末Cとが直接通信を行うモードへ切り換えることが可能であるから、例えば、低軌道通信衛星S2の通信エリア上空を飛翔していた飛翔中継局A1に障害が発生して正常な中継動作が不能になるなどの非常事態が起きた場合(低軌道通信衛星S2と携帯通信端末C1,C3が共に飛翔中継局A1からの通信を受信できなくなった場合)には、低軌道通信衛星Sと携帯通信端末Cとが電波による直接通信を行うモードへ切り換え、低軌道通信衛星Sが受け持つ通信エリア内で通信サービスが完全にダウンしてしまうことを回避できる。 Next, a third embodiment of the mobile satellite communication system will be described with reference to FIG. In the present embodiment, the low orbit communication satellite S and the mobile communication terminal C located in the communication area have a communication function that allows mutual transmission and reception with radio waves. In this case, the mode can be switched to the mode in which the low-orbit communication satellite S and the mobile communication terminal C communicate directly without going through the flight relay station A. For example, over the communication area of the low-orbit communication satellite S2 In the event of an emergency such as a failure occurring in the flight relay station A1 that has been flying in the air and the normal relay operation becomes impossible (both the low-orbit communication satellite S2 and the mobile communication terminals C1 and C3 are in the flight relay station A1 Switch to a mode in which the low-orbit communication satellite S and the mobile communication terminal C perform direct communication using radio waves, and the communication service is completely within the communication area that the low-orbit communication satellite S is responsible for. Can be avoided.
また、通信需要が非常に少ない通信エリアに対しては、はじめから飛翔中継局Aを配備しないで、低軌道通信衛星Sと携帯通信端末Cとが直接通信を行うモードを標準とし、飛翔中継局Aの投入・維持コスト等を削減する運用方法を採用することもできる。 Also, for communication areas where communication demand is very low, the flight relay station A is not deployed from the beginning, and the mode in which the low-orbit communication satellite S and the mobile communication terminal C communicate directly is standard, and the flight relay station An operation method that reduces the input / maintenance cost of A can also be adopted.
なお、本実施形態の移動通信システムに用いる低軌道通信衛星Sの構成としては、前述した第1実施形態の移動通信システムに用いる低軌道通信衛星Sのブロック構成を示した図5に対し、地上の携帯端末Cとの間で直接電波を送受信できる通信用電波アンテナ、受信信号の復調および送信信号の変調を行う通信用送受信部、送受信データを一時的に保持するバッファ部を付加すれば良く、例えば、飛翔中継局Aとのレーザリンク断に基づく再捕捉の開始から再捕捉許容時間(予め定めた所定時間)を越えた場合に、コントローラ部34の制御により携帯端末Cとの直接通信(電波による通信)への変更制御が自動的に行われるようにしても良いし、管理センタ等からの指令によって携帯端末Cとの直接通信への変更が行われるようにしても良い。或いは、上述した第2実施形態にて説明した如く、飛翔中継局Aとの電波による通信への変更が可能な構成とした場合、飛翔中継局Aとの電波による通信への変更を試み、飛翔中継局Aとの電波による通信への変更も不能であった場合に、携帯端末Cとの直接通信へ変更するようにしても良い。
The configuration of the low orbit communication satellite S used in the mobile communication system of the present embodiment is the same as that of FIG. 5 showing the block configuration of the low orbit communication satellite S used in the mobile communication system of the first embodiment described above. A communication radio antenna that can directly transmit and receive radio waves to and from the mobile terminal C, a communication transmission / reception unit that demodulates reception signals and modulates transmission signals, and a buffer unit that temporarily holds transmission / reception data, For example, when the re-acquisition allowable time (predetermined predetermined time) is exceeded from the start of re-acquisition based on the laser link disconnection with the flight relay station A, direct communication (radio wave) with the mobile terminal C is controlled by the
また、本実施形態の移動通信システムに用いる携帯通信端末Cは、飛翔中継局Aと所定の周波数帯で通信を行う機能と、低軌道通信衛星Sと所定の周波数帯で通信を行う機能とを併せ持つハイブリッドアンテナシステム(例えば、飛翔中継局Aとの通信用周波数および低軌道通信衛星Sとの通信用周波数に両対応したハイブリッドアンテナ、2つの周波数に各々対応した2つの送受信部、送受信データを一時的に保持するバッファ部を有する構成)を備えるものとすれば良く、例えば、飛翔中継局Aとの通信断が所定時間を越えた場合に、コントローラ部14の制御により低軌道通信衛星Sとの直接通信(電波による通信)への変更制御が自動的に行われるようにしても良いし、通信不能の警告等を認識した使用者自らが操作することにより、携帯端末Cを直接通信モードへ切り換えるようにしても良い。
The mobile communication terminal C used in the mobile communication system of the present embodiment has a function of communicating with the flight relay station A in a predetermined frequency band and a function of communicating with the low-orbit communication satellite S in a predetermined frequency band. Hybrid antenna system (for example, a hybrid antenna that supports both the frequency for communication with the flight relay station A and the frequency for communication with the low-orbit communication satellite S, two transmission / reception units each corresponding to the two frequencies, and transmission / reception data temporarily For example, when the communication disconnection with the flight relay station A exceeds a predetermined time, the
次に、図8に基づいて、移動衛星通信システムの第4実施形態に就き説明する。本実施形態は、同一通信エリア内に配置された複数の飛翔中継局Aが、携帯通信端末Cからの通信を相互に中継できる通信中継機能(例えば、レーザ光による通信機能)を備えるものである。斯くすれば、飛翔中継局A2が中継している携帯通信端末C5からの通信要求が、飛翔中継局A3が中継を担当する携帯通信端末10であったような場合、S4低軌道通信衛星を介することなく、飛翔中継局A2と飛翔中継局A3との通信中継機能により、同一通信エリア内にある携帯通信端末C5と携帯通信端末C10との通信を実現できるので、効率の良い通信を期せる。 Next, a fourth embodiment of the mobile satellite communication system will be described with reference to FIG. In the present embodiment, a plurality of flight relay stations A arranged in the same communication area have a communication relay function (for example, a communication function using laser light) that can relay communication from the mobile communication terminal C to each other. . In this case, when the communication request from the mobile communication terminal C5 relayed by the flight relay station A2 is the mobile communication terminal 10 in charge of the relay by the flight relay station A3, the S4 low orbit communication satellite is used. Without any problem, the communication relay function between the flight relay station A2 and the flight relay station A3 can realize communication between the mobile communication terminal C5 and the mobile communication terminal C10 in the same communication area, so that efficient communication can be expected.
なお、本実施形態の移動通信システムに用いる飛翔中継局Aの構成としては、前述した第1実施形態の移動通信システムに用いる飛翔中継局Aのブロック構成を示した図4に対し、同一通信エリアの上空を飛翔している他の飛翔中継局Aとの間でレーザ光を送受信できる中継局間通信用光アンテナ、受信信号の復調および送信信号の変調を行う中継局間通信用送受信部、送受信データを一時的に保持するバッファ部を付加すれば良い。しかしながら、同一エリア内における飛翔中継局A同士の通信中継機能としては、大きな通信容量を確保できるレーザ光による通信に限定されるものではなく、電波による通信でも構わない。 The configuration of the flight relay station A used in the mobile communication system of the present embodiment is the same communication area as that of FIG. 4 showing the block configuration of the flight relay station A used in the mobile communication system of the first embodiment described above. Inter-relay station communication optical antenna capable of transmitting / receiving laser light to / from other flying relay stations A flying above, Inter-relay station communication transmitting / receiving section for demodulating received signals and modulating transmitted signals, transmitting / receiving A buffer unit for temporarily holding data may be added. However, the communication relay function between the flight relay stations A in the same area is not limited to the laser beam communication capable of securing a large communication capacity, and may be a radio wave communication.
S 低軌道通信衛星
A 飛翔中継局
C 携帯通信端末
L1 地上から低軌道通信衛星までの距離
L2 地上から飛翔中継局までの距離
S Low orbit communication satellite A Flight relay station C Mobile communication terminal L1 Distance from ground to low orbit communication satellite L2 Distance from ground to flight relay station
Claims (6)
前記低軌道通信衛星とその通信エリアとの間における地上数キロ〜数十キロの上空を飛翔し、低軌道通信衛星と携帯通信端末との間の通信を中継する飛翔中継局を設け、
前記飛翔中継局は、電波による携帯通信端末との通信機能と、レーザ光による低軌道通信衛星との通信機能を備え、
同一通信エリア内の複数の携帯通信端末からの通信容量の増大に対して、1つの飛翔中継局で対応できない場合には、同一通信エリア内の上空へ複数の飛翔中継局を配置することで、低軌道通信衛星と携帯通信端末との間の通信を複数の飛翔中継局により分担して中継することを特徴とする移動体衛星通信システム。 In a mobile satellite communication system that performs communication with a mobile communication terminal on the ground or water via a plurality of low orbit communication satellites deployed in a low orbit of several hundred kilometers to several thousand kilometers above the ground,
A flight relay station that flies over several kilometers to several tens of kilometers between the low orbit communication satellite and its communication area, and relays communication between the low orbit communication satellite and the portable communication terminal,
The flight relay station has a communication function with a portable communication terminal using radio waves and a communication function with a low-orbit communication satellite using a laser beam,
If one flight relay station cannot cope with an increase in communication capacity from a plurality of mobile communication terminals in the same communication area, by arranging a plurality of flight relay stations above the same communication area, A mobile satellite communication system characterized in that communication between a low-orbit communication satellite and a portable communication terminal is relayed by a plurality of flight relay stations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005190948A JP2007013513A (en) | 2005-06-30 | 2005-06-30 | Mobile satellite communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005190948A JP2007013513A (en) | 2005-06-30 | 2005-06-30 | Mobile satellite communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007013513A true JP2007013513A (en) | 2007-01-18 |
Family
ID=37751423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005190948A Pending JP2007013513A (en) | 2005-06-30 | 2005-06-30 | Mobile satellite communication system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007013513A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101055819B1 (en) | 2010-03-05 | 2011-08-09 | 한국전자통신연구원 | Wireless communication system and wireless communication method |
JP2018093478A (en) * | 2016-10-13 | 2018-06-14 | ザ・ボーイング・カンパニーThe Boeing Company | Wireless communications system and method for managing and optimizing wireless communications network |
WO2019012894A1 (en) * | 2017-07-14 | 2019-01-17 | ソフトバンク株式会社 | 3d-compatible directional optical antenna |
US10439109B2 (en) | 2013-08-05 | 2019-10-08 | Corning Incorporated | Luminescent coatings and devices |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10150401A (en) * | 1996-10-17 | 1998-06-02 | Boeing Co:The | System and method for radio communication |
JPH10256939A (en) * | 1997-03-14 | 1998-09-25 | Kyocera Corp | Dual mode type mobile radio terminal and satellite communication equipment of mobile object |
JPH11275019A (en) * | 1999-01-25 | 1999-10-08 | Toshihiro Tsumura | Relay station for communication system for mobile object |
JP2000357986A (en) * | 1999-06-16 | 2000-12-26 | Mitsubishi Electric Corp | Radio system |
JP2001177461A (en) * | 1999-12-15 | 2001-06-29 | Mitsubishi Electric Corp | Communication system |
JP2001308767A (en) * | 2000-04-20 | 2001-11-02 | Nec Corp | Electric power controlling method and communication equipment |
JP2002057609A (en) * | 2000-08-10 | 2002-02-22 | Honda Motor Co Ltd | Mobile satellite communication system |
-
2005
- 2005-06-30 JP JP2005190948A patent/JP2007013513A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10150401A (en) * | 1996-10-17 | 1998-06-02 | Boeing Co:The | System and method for radio communication |
JPH10256939A (en) * | 1997-03-14 | 1998-09-25 | Kyocera Corp | Dual mode type mobile radio terminal and satellite communication equipment of mobile object |
JPH11275019A (en) * | 1999-01-25 | 1999-10-08 | Toshihiro Tsumura | Relay station for communication system for mobile object |
JP2000357986A (en) * | 1999-06-16 | 2000-12-26 | Mitsubishi Electric Corp | Radio system |
JP2001177461A (en) * | 1999-12-15 | 2001-06-29 | Mitsubishi Electric Corp | Communication system |
JP2001308767A (en) * | 2000-04-20 | 2001-11-02 | Nec Corp | Electric power controlling method and communication equipment |
JP2002057609A (en) * | 2000-08-10 | 2002-02-22 | Honda Motor Co Ltd | Mobile satellite communication system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101055819B1 (en) | 2010-03-05 | 2011-08-09 | 한국전자통신연구원 | Wireless communication system and wireless communication method |
US10439109B2 (en) | 2013-08-05 | 2019-10-08 | Corning Incorporated | Luminescent coatings and devices |
JP2018093478A (en) * | 2016-10-13 | 2018-06-14 | ザ・ボーイング・カンパニーThe Boeing Company | Wireless communications system and method for managing and optimizing wireless communications network |
JP7076187B2 (en) | 2016-10-13 | 2022-05-27 | ザ・ボーイング・カンパニー | Wireless communication systems and methods for managing and optimizing wireless communication networks |
WO2019012894A1 (en) * | 2017-07-14 | 2019-01-17 | ソフトバンク株式会社 | 3d-compatible directional optical antenna |
JP2019022070A (en) * | 2017-07-14 | 2019-02-07 | ソフトバンク株式会社 | Three-dimensional directional optical antenna |
US10985839B2 (en) | 2017-07-14 | 2021-04-20 | Softbank Corp. | 3D-compatible directional optical antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9461806B2 (en) | Providing different transmit and/or receive modes in different sectors of a wireless base station | |
KR100878646B1 (en) | Communications system | |
US7751823B2 (en) | Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter | |
US6804515B1 (en) | Transportable infrastructure for airborne cellular system | |
EP2528248B1 (en) | Extensible high bandwidth global space communication network | |
WO2021014684A1 (en) | Dynamic site diversity in haps communication system | |
JP2023083465A (en) | Multi-feeder link configuration in haps communication system and control of the same | |
JP6928075B2 (en) | Wireless relay system | |
US20220094431A1 (en) | Secure global satellite network | |
JP2007013513A (en) | Mobile satellite communication system | |
WO2020225945A1 (en) | High-altitude platform system (haps) combining differing haps | |
RU2322760C2 (en) | Regional system for mobile satellite communications and servicing transportation corridors | |
KR20210064032A (en) | Marine communication system based on low orbit satellite and unmanned aerial vehicle | |
Jamshed et al. | Feasibility of Intelligent Reflecting Surfaces to Combine Terrestrial and Non‐terrestrial Networks | |
Ilčev et al. | Airborne satellite CNS systems and networks | |
CN118803679A (en) | Communication system and implementation method in rescue and relief scenes | |
Ilcev | Architecture of Orbcomm Space Segment for Global Mobile Satellite Communications (MSC) Networks | |
RU2118056C1 (en) | Satellite communication system for monitoring mobile and stationary objects, telephone voice and data exchange | |
Ilcev et al. | Non-GEO GMSC Systems | |
Sig et al. | SERVICE AND NETWORK OPERATION OF THE MULTIBEAM SWITCHING SATELLITE COMMUNICATIONS SYSTEM | |
JPH11127098A (en) | Space communicating method | |
Ilcev | Development of Airships Stratospheric Platform Systems (SPS) | |
Thorpe | Evolution of the Telesat Canada System into the mid-1980's | |
Turner | THE TELESAT CANADA TRACKING, TELEMETRY AND COMMAND SYSTEM | |
Weekley et al. | World-wide communications for the US Navy-Evolving capability from the UHF Follow-On Program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110405 |