JP2001174401A - Bonded/joined structure - Google Patents

Bonded/joined structure

Info

Publication number
JP2001174401A
JP2001174401A JP35548599A JP35548599A JP2001174401A JP 2001174401 A JP2001174401 A JP 2001174401A JP 35548599 A JP35548599 A JP 35548599A JP 35548599 A JP35548599 A JP 35548599A JP 2001174401 A JP2001174401 A JP 2001174401A
Authority
JP
Japan
Prior art keywords
bonding
strength
stress
index
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35548599A
Other languages
Japanese (ja)
Inventor
Toshio Hatsuda
俊雄 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP35548599A priority Critical patent/JP2001174401A/en
Publication of JP2001174401A publication Critical patent/JP2001174401A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an index for prescribing the strength of a bonded/joined structure excellent in versatility in order to facilitate the determination of a structure, the selection of a material and the determination and control of a process, and a method of determining the same. SOLUTION: More than two indexes for prescribing the relation between an imaginary opening displacement and stress in a bonded or joined interface are used not only to clear conditions to be satisfied in order to ensure the strength reliability of a product but also to facilitate the rational determination and control of a structure and a process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は接着あるいは接合部
を有する構造体に係わり、接着,接合強度の指標,表示
方法,掲載書面および接着,接合構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure having an adhesive or joint portion, and more particularly to an index of adhesion and joint strength, a display method, a written document, and an adhesive and joint structure.

【0002】[0002]

【従来の技術】接着,接合技術の発達と生産性の向上,
軽量化,小型化などの要求から半導体チップ,樹脂封止
半導体,配線基板などの電子機器,モーターや変圧器な
どの電機機器、さらには車両や宇宙機器まで広い範囲で
異種材料の接着,接合構造が用いられている。これらの
接着,接合構造では接着,接合体と被着体との熱膨張差
をはじめ機械的負荷などさまざまな要因で接着,接合面
に生じる応力に耐え得るために一定以上の接着,接合強
度を有することが要求される。このため、接着,接合構
造の設計,製造にあたっては必要な接着強度を確保し得
る接着接合体や被着体を選定する必要がある。
[Prior Art] Adhesion and joining technology development and productivity improvement,
Bonding and joining structures of dissimilar materials in a wide range from electronic devices such as semiconductor chips, resin-encapsulated semiconductors, wiring boards, electric devices such as motors and transformers, to vehicles and space devices, due to demands for weight reduction and miniaturization. Is used. In these bonding and bonding structures, bonding and bonding strength of a certain level or more are required to withstand the stress generated on the bonding surface due to various factors such as bonding, thermal expansion difference between the bonded body and adherend, and mechanical load. Required to have. For this reason, in designing and manufacturing the bonding and bonding structure, it is necessary to select an adhesive bonded body and an adherend that can secure the required bonding strength.

【0003】また、接着部や接合部の強度は接着体およ
び被着体の材料の他、その表面処理法をはじめ接着,接
合作業時の温度,湿度などの環境条件や、薄膜生成時の
電圧などの接合条件によって異なり、これらの条件も選
定,管理する必要がある。
[0003] The strength of the bonded portion and the bonded portion is determined not only by the material of the bonded body and the adherend, but also by the surface treatment method, the environmental conditions such as temperature and humidity during bonding and bonding, and the voltage at the time of forming a thin film. It is necessary to select and manage these conditions depending on the joining conditions such as.

【0004】しかし、接着,接合強度の影響因子が多い
ため、一般には製品と同じ接合体と被着材を、製品と同
じ工程で接合した試験片を用いて接合強度を求める場合
が多い。この場合、製造法からの制約により、製品と同
様の応力状態で試験ができる試験片や引張り試験のよう
に典型的な応力状態で試験ができる試験片を作ることが
困難な場合が多い。
[0004] However, since there are many factors affecting the adhesion and the bonding strength, generally, the bonding strength is often obtained using a test piece obtained by bonding the same bonded body and the adherend in the same process as the product. In this case, it is often difficult to produce a test piece that can be tested under a stress state similar to that of a product or a test piece that can be tested under a typical stress state such as a tensile test, due to restrictions from the manufacturing method.

【0005】このような場合でも接着,接合強度を規定
する汎用的な指標が明確であれば特に問題はない。例え
ば、通常の構造物のように応力が強度の指標として用い
ることができれば、試験片から得られた許容応力を用い
て材料選定,工程管理等が行える。
[0005] Even in such a case, there is no particular problem as long as a general-purpose index for defining the bonding and bonding strength is clear. For example, if stress can be used as an index of strength as in a normal structure, material selection, process control, and the like can be performed using allowable stress obtained from a test piece.

【0006】しかし、「応力特異場パラメターを用いた
接着界面強度評価法」:日本機械学会論文集(A編)5
4巻499号(昭63―3)P.597に示されているよ
うに、強度を支配する接着や接合の端部の応力は特異性
を示し、弾性解析では応力が無限大になるため応力だけ
を指標として接着,接合強度の評価を行うことは困難で
ある。さらにヤング率やポアソン比の異なる材料からな
る接着または接合構造体では、接合形状が平滑な場合で
も、接着や接合の端部の応力は特異性を示し、接着,接
合面の応力は一様ではない。
However, “Evaluation method of adhesive interface strength using stress singularity field parameter”: Transactions of the Japan Society of Mechanical Engineers (A) 5
As shown in Vol. 4, No. 499 (1988), p. 597, the stress at the end of the bond or joint that controls the strength shows a singularity. It is difficult to evaluate the bonding and bonding strength using only the index as an index. Furthermore, in the case of a bonded or bonded structure made of materials having different Young's moduli or Poisson's ratios, even when the bonded shape is smooth, the stress at the end of the bonded or bonded surface shows a peculiarity, and the stress at the bonded and bonded surfaces is not uniform Absent.

【0007】このため単純な引張り強度を得るのも困難
である。前記論文は評価指標を与えたものであるが、接
合角度等の形状が異なると評価指標が異なる上、弾性理
論に基づいているため適用範囲に限界がある。また、特
開平3−4521 号広報に真の接着強度を求める試験法およ
びこの試験法で得られた強度の値を被着材名と共に表記
する例が記載されている。しかし、この例でも接着部に
き裂が存在する場合にのみ強度が得られ、一般の接着,
接合構造のようにき裂を含まない場合には適用できな
い。
For this reason, it is difficult to obtain a simple tensile strength. Although the above-mentioned paper gives evaluation indices, the evaluation indices are different when the shape such as the joining angle is different, and the application range is limited because it is based on the theory of elasticity. Japanese Patent Application Laid-Open No. 3-4521 discloses a test method for determining the true adhesive strength, and an example in which the strength value obtained by this test method is indicated together with the adherend name. However, even in this example, the strength can be obtained only when a crack is present in the bonding portion, and the general bonding,
It cannot be applied to the case where no crack is included as in the case of a joint structure.

【0008】このように従来では接着,接合構造の強度
の汎用的な評価指標がなく、適切な評価指標がないこと
は問題を複雑にする。一般に製品の製造においてはあら
かじめその製品が被る負荷に対して評価量を計算などで
見積もり、この評価量に対して強度的な信頼性が確保で
きる接着,接合構造および工程を決定,管理する。評価
指標が明確でなければ合理的な構造,工程の決定,管理
ができない。このため、接着,接合構造の強度的信頼性
は実物の過酷試験に頼らざるを得ない。しかし、評価指
標が明確でなければ、この過酷試験が適正なものである
かすら明確にできない。
As described above, conventionally, there is no general-purpose evaluation index for the strength of the bonding and joining structures, and the lack of an appropriate evaluation index complicates the problem. In general, in the manufacture of a product, an evaluation amount is estimated in advance by calculation or the like with respect to a load applied to the product, and an adhesion, a bonding structure, and a process that can secure the strength reliability with respect to the evaluation amount are determined and managed. Unless the evaluation index is clear, it is not possible to determine and manage a reasonable structure and process. For this reason, the strength reliability of the bonding and joining structure must rely on a severe test of the actual product. However, if the evaluation index is not clear, it is not possible to clarify even if this severe test is appropriate.

【0009】[0009]

【発明が解決しようとする課題】従来のように、接着,
接合強度を表す適切な指標がない状態では次のような問
題を生じる。
SUMMARY OF THE INVENTION As in the past, bonding,
If there is no appropriate index indicating the bonding strength, the following problem occurs.

【0010】(1)製品の強度信頼性を確保する上で満
たすべき条件が明確でない。
(1) The conditions to be satisfied for ensuring the strength reliability of a product are not clear.

【0011】(2)接着・接合強度の影響因子が不明確
となり、合理的な構造,工程の決定,管理ができない。
(2) Factors affecting the bonding / joining strength become unclear, making it impossible to determine and manage a rational structure and process.

【0012】(3)被着体,接着,接合体の材料や接合
条件が同じ状態で得られた試験データがあっても、構造
や負荷条件が異なる場合には接着,接合強度を精度よく
予測することは困難である。
(3) Even if there is test data obtained under the same material and bonding conditions for the adherend, the adhesive, and the bonded body, if the structure and the load conditions are different, the bonding and bonding strength can be accurately predicted. It is difficult to do.

【0013】(4),(3)の結果、樹脂材料等に応力
などで接着性能を表示しても有効なデータにならない。
As a result of (4) and (3), even if the adhesive performance is displayed on the resin material or the like due to stress or the like, effective data is not obtained.

【0014】(5)影響因子の多い接着,接合強度に、
さらに構造や負荷条件が影響因子として加わるとデータ
ーベースが複雑になる。
(5) Adhesion and bonding strength, which have many influence factors,
Further, the database becomes complicated when the structure and the load condition are added as influential factors.

【0015】本発明の目的は、汎用性に優れた接着,接
合構造の強度を規定する指標およびその決定法を提供
し、これにより接着,接合構造,材料、および工程の決
定,管理を容易にするものである。
An object of the present invention is to provide an index for determining the strength of an adhesive or joint structure having excellent versatility and a method for determining the index, thereby facilitating the determination and management of the adhesive, joint structure, material and process. Is what you do.

【0016】[0016]

【課題を解決するための手段】「破壊力学入門」岡村弘
之著,培風館(昭和51―5),P.88に記されてい
るように、一般に、破壊はエネルギー開放率が一定値に
達したときに生じると考えられる。接着,接合部につい
ても同様である。したがって、上記課題は接着,接合界
面に剥離を生じるエネルギー開放率を規定する指標、お
よび、これを計算等で求める手法を与えることにより解
決できる。従来、エネルギー開放率はき裂を含む形状に
対して規定されてきたが、健全な状態の接着,接合構造
のようにき裂を含まない構造に対しては、エネルギー開
放率を規定することは困難であった。
[Means for Solving the Problems] "Introduction to Fracture Mechanics" by Hiroyuki Okamura, Baifukan (Showa 51-5), As noted at 88, it is generally believed that failure occurs when the energy release rate reaches a certain value. The same applies to the bonding and joining parts. Therefore, the above problem can be solved by providing an index for defining an energy release rate that causes peeling at the bonding and bonding interfaces, and a method of calculating the index by calculation or the like. Conventionally, the energy release rate has been specified for shapes containing cracks, but it is not possible to specify the energy release rate for structures that do not contain cracks, such as sound bonding and joining structures. It was difficult.

【0017】今回、接着,接合界面のエネルギー開放率
を、界面の仮想開口変位と応力の関係で表すことによ
り、剥離発生を評価できることを示した。従って、接
着,接合強度を規定する指標として、接着または接合界
面における仮想開口変位と応力の関係を規定することに
より上記目的を達成できる。
This time, it was shown that the occurrence of delamination can be evaluated by expressing the energy release rate of the bonding / joining interface by the relationship between the virtual opening displacement of the interface and the stress. Therefore, the above object can be achieved by defining the relationship between the virtual opening displacement and the stress at the bonding or bonding interface as an index for determining the bonding or bonding strength.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施例を図面に
より説明する。図1はプリント基板の一部を示す。エポ
キシと硝子クロスからなる基材1の両面に配線用銅箔2
が貼られている。銅箔の上にはレジスト3がライニング
されている。レジスト3をパターン化した後、銅箔をエ
ッチングにより配線パターン化する。その後絶縁用樹脂
膜が図1のレジスト3の位置に接着される。配線用銅箔
は基材およびパターン作成時のフォトレジストおよびパ
ターン作成後の絶縁層との接着強度を確保する必要があ
る。このため、銅箔と基材,銅箔とレジスト,銅箔と絶
縁用樹脂間の接着強度がそれぞれ規定されている。以下
に、この規定方法を、銅箔とレジストの接着強度を例に
して示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a part of a printed circuit board. Copper foil 2 for wiring on both sides of substrate 1 made of epoxy and glass cloth
Is affixed. A resist 3 is lined on the copper foil. After patterning the resist 3, the copper foil is patterned by etching. Thereafter, an insulating resin film is bonded to the position of the resist 3 in FIG. It is necessary to ensure the adhesive strength of the copper foil for wiring with the base material, the photoresist at the time of pattern formation, and the insulating layer after the pattern formation. Therefore, the adhesive strength between the copper foil and the base material, the copper foil and the resist, and the adhesive strength between the copper foil and the insulating resin are specified. Hereinafter, this defining method will be described by taking an example of the adhesive strength between the copper foil and the resist.

【0019】図2のように銅箔22の上にレジスト23
が接着されている場合を考える。レジスト23に熱応力
や機械的荷重が作用し、接着端24近傍の応力,ひずみ
が過大になると剥離が発生する。この剥離は純粋に界面
で生じるものではなく、界面近傍のレジストや銅のひず
みが増大して破断するために生じる。この破断面形成に
かかわる領域のひずみに伴う変位が界面で生じるとす
る。これを仮想開口変位と呼ぶ。界面の強度は仮想開口
変位と界面の応力の関係で規定される。仮想開口変位と
界面の応力の関係は種々考えられる。
As shown in FIG. 2, a resist 23 is formed on the copper foil 22.
Consider the case where is adhered. When a thermal stress or a mechanical load acts on the resist 23 and the stress or strain near the bonding end 24 becomes excessive, peeling occurs. This peeling does not occur purely at the interface, but occurs because the resist and copper near the interface increase in strain and break. It is assumed that displacement due to strain in a region involved in the formation of the fracture surface occurs at the interface. This is called virtual opening displacement. The interface strength is defined by the relationship between the virtual opening displacement and the interface stress. Various relationships can be considered between the virtual opening displacement and the stress at the interface.

【0020】しかし、実際の強度試験の精度を考慮し
て、ここでは単純に図3に示すように考える。この関係
は公称最大応力と最大開口変位の2つの指標で表現でき
る。図3の斜線部が剥離が生じるまでのエネルギー開放
率になる。
However, in consideration of the accuracy of the actual strength test, it is simply considered as shown in FIG. This relationship can be expressed by two indices, a nominal maximum stress and a maximum opening displacement. The hatched portion in FIG. 3 indicates the energy release rate until peeling occurs.

【0021】図2に示す構造の接着強度の要求仕様を決
めるには例えば有限要素法解析などを用いる。仮想開口
変位と界面の関係を表す要素をここではエネルギー開放
要素と呼ぶ。エネルギー開放要素25を、図2の銅箔2
2とレジスト23の界面に挿入して応力解析を行い、想
定される負荷に耐え得る公称最大応力と最大開口変位の
2つの指標を求め、これを接着強度の要求仕様とする。
エネルギー開放要素としては、例えば、普通の有限要素
において非線形の応力―ひずみ関係を与えたものを用い
ることができる。この場合、ひずみは仮想開口変位を要
素寸法で割ったものとなる。
In order to determine the required specification of the adhesive strength of the structure shown in FIG. 2, for example, a finite element analysis is used. An element representing the relationship between the virtual aperture displacement and the interface is referred to herein as an energy release element. The energy release element 25 is connected to the copper foil 2 of FIG.
A stress analysis is performed by inserting the stress into the interface between the resist 2 and the resist 23 to obtain two indices of a nominal maximum stress and a maximum opening displacement that can withstand an assumed load, and these are defined as required specifications of the adhesive strength.
As the energy release element, for example, an element that has a non-linear stress-strain relationship in a normal finite element can be used. In this case, the strain is obtained by dividing the virtual opening displacement by the element size.

【0022】想定される負荷に耐え得る公称最大応力と
最大開口変位の2つの指標は一組だけではない。公称最
大応力が大きい場合は最大開口変位は小さくてもよく、
公称最大応力が小さい場合は最大開口変位は大きくなく
てはならない。このため、接着強度の要求仕様は図4に
示すように公称最大応力と最大開口変位の関係として与
えている。
The two indices of the nominal maximum stress and the maximum opening displacement that can withstand the assumed load are not only one set. If the nominal maximum stress is large, the maximum opening displacement may be small,
If the nominal maximum stress is small, the maximum opening displacement must be large. Therefore, the required specification of the adhesive strength is given as a relationship between the nominal maximum stress and the maximum opening displacement as shown in FIG.

【0023】一方、実工程で作られた接着構造が要求仕
様を満たすことは次のようにして示す。
On the other hand, the fact that the adhesive structure produced in the actual process satisfies the required specifications is shown as follows.

【0024】プリント基板の製造工程ではフォトレジス
トパターンの解像度を調べるために、数種の線幅のパタ
ーンが試作される。これを用いてせん断剥離試験を行い
接着強度を調べることができる。シリコン上に作られた
配線用金属膜などでも類似のパターンが作られるため、
同様に接合強度を調べることができる。
In the process of manufacturing a printed circuit board, several types of patterns having a line width are experimentally manufactured in order to check the resolution of a photoresist pattern. Using this, a shear peel test can be performed to examine the adhesive strength. Since similar patterns are made even with wiring metal films made on silicon,
Similarly, the joining strength can be checked.

【0025】図5に示したように、銅箔2の上に作られ
たレジストパターン5の側面に負荷エッジ6を当てこれ
をロードセル7で押すことにより荷重をかけて剪断剥離
させる。この結果、図6のように、線幅と剥離荷重の関
係が得られる。図5の試験条件に対して接着強度の要求
仕様を求めた場合と同様の計算により、図6の結果が得
られる公称最大応力と最大開口変位を求める。求める指
標は2つであるから、線幅と剥離荷重の関係の2点を用
いればこれらの指標を決定できる。
As shown in FIG. 5, a load edge 6 is applied to the side surface of the resist pattern 5 formed on the copper foil 2 and is pressed by a load cell 7 to apply a load to cause shearing and peeling. As a result, a relationship between the line width and the peeling load is obtained as shown in FIG. By the same calculation as when the required specification of the adhesive strength is obtained for the test condition of FIG. 5, the nominal maximum stress and the maximum opening displacement that can obtain the result of FIG. 6 are obtained. Since there are two indices to be obtained, these indices can be determined by using two points of the relationship between the line width and the peeling load.

【0026】[0026]

【表1】 [Table 1]

【0027】このようにして得られた公称最大応力と最
大開口変位を表1にAで示した。すなわち、図6の試験
結果から得られる接着強度は公称最大応力57MPa、
最大開口変位0.94μm となる。この値は図4に黒丸
で示したように要求仕様を上回っており、この接着構
造、および接着工程は強度上の要求を満たすことにな
る。
The nominal maximum stress and the maximum opening displacement obtained in this way are shown by A in Table 1. That is, the bond strength obtained from the test results in FIG.
The maximum opening displacement is 0.94 μm. This value exceeds the required specifications as indicated by the black circles in FIG. 4, and this bonding structure and bonding process satisfy the requirements for strength.

【0028】ここで得られた公称最大応力と最大開口変
位を用いると線幅と剥離荷重の関係が図6のAのように
線幅の全領域で剥離試験結果と一致する計算値が得られ
る。このことは、ここで提案した評価指標が線幅によら
ず適用でき、汎用性を持つことを示している。参考とし
て表1にBで示した条件に対する線幅と剥離荷重の関係
を図6にBとして示した。
Using the nominal maximum stress and the maximum opening displacement obtained here, a calculated value is obtained in which the relationship between the line width and the peeling load coincides with the peeling test result over the entire line width as shown in FIG. 6A. . This indicates that the evaluation index proposed here can be applied irrespective of the line width and has versatility. For reference, the relationship between the line width and the peeling load with respect to the condition indicated by B in Table 1 is shown as B in FIG.

【0029】図3に示した公称最大応力と最大開口変位
の定義を考えるとAのエネルギー開放率はBの約7倍で
ある。今、Bの最大開口変位をそのままにし、エネルギ
ー開放率をAと同じにするには公称最大応力を約7倍に
する必要がある。この場合の線幅と剥離荷重の関係は図
6のBを7倍にしたものになる。これはAの曲線とは明
らかに異なる。このことはエネルギー開放率が同じであ
っても接着強度の特性は同じにならず、接着強度の特性
を表すには本発明のように2つ以上の指標が必要である
ことを示している。
Considering the definitions of the nominal maximum stress and the maximum opening displacement shown in FIG. 3, the energy release rate of A is about seven times that of B. Now, in order to keep the maximum opening displacement of B as it is and keep the energy release rate the same as that of A, it is necessary to increase the nominal maximum stress by about 7 times. In this case, the relationship between the line width and the peeling load is 7 times B in FIG. This is clearly different from the curve of A. This indicates that even if the energy release rate is the same, the characteristics of the adhesive strength are not the same, and two or more indices are required to express the characteristics of the adhesive strength as in the present invention.

【0030】また、「応力特異場パラメターを用いた接
着界面強度評価法」:日本機械学会論文集(A編)54
巻499号(昭63―3)P.597に示されている従来
法を用い、線幅が大きい場合に剥離荷重が試験結果と一
致するように指標を選ぶと、線幅と剥離荷重の関係は図
6に従来法として示したようになり、試験結果と食い違
う。このため、従来では接着強度は、寸法,形状の類似
したものの試験結果から類推したり,実績のあるものと
の相対比較で判断していた。
Further, "Evaluation method of adhesive interface strength using stress singularity field parameter": Transactions of the Japan Society of Mechanical Engineers (A) 54
Volume 499 (Showa 63-3), p. 597. When the index is selected so that the peeling load matches the test result when the line width is large, the relationship between the line width and the peeling load is obtained. Is as shown in FIG. 6 as the conventional method, which differs from the test result. For this reason, in the past, the adhesive strength was inferred from the test results of those having similar dimensions and shapes, or was determined by a relative comparison with those having proven results.

【0031】他の実施例を図7,図8によって説明す
る。図7は樹脂封止半導体の断面図である。封止樹脂1
1は半導体素子8,タブ9,リード10に接着してい
る。この接着は信頼性試験時の熱負荷により生じる応力
に耐える必要があり、樹脂封止半導体の設計においては
接着強度を確保できる樹脂や被着体の選定が重要であ
る。このため、樹脂やリード材の特性表に接着強度に係
わる指標が記載されていると樹脂や被着体の選定に有用
である。
Another embodiment will be described with reference to FIGS. FIG. 7 is a cross-sectional view of the resin-sealed semiconductor. Sealing resin 1
1 is bonded to the semiconductor element 8, the tab 9, and the lead 10. This bonding needs to withstand the stress generated by the heat load during the reliability test, and in designing a resin-sealed semiconductor, it is important to select a resin or an adherend that can ensure the bonding strength. Therefore, if an index relating to the adhesive strength is described in the characteristic table of the resin or the lead material, it is useful for selecting the resin or the adherend.

【0032】図8は本発明の接着強度の指標である公称
最大応力と最大開口変位を記載した樹脂材量の特性記載
書面の例である。この特性記載書面は被着材名と共に接
着強度の汎用的な指標が記載されているため、これを用
いた場合の製品が、設計仕様を満たすか否かを計算によ
って把握できる。このように、本発明の接着強度の指標
を用いることにより、一度求めた接着強度を構造の如何
にかかわらず幅広く用いることができる。
FIG. 8 is an example of a document describing the characteristics of the amount of resin material describing the nominal maximum stress and the maximum opening displacement, which are indicators of the adhesive strength according to the present invention. Since the general property index of the adhesive strength is described together with the name of the adherend in the characteristic description document, it is possible to determine by calculation whether or not the product using the index satisfies the design specifications. Thus, by using the index of the adhesive strength of the present invention, the adhesive strength once determined can be widely used regardless of the structure.

【0033】本発明の接着強度の指標は、解析が可能
で、2つ以上の条件で強度が得られる試験ならばどのよ
うな試験からでも得られる。例えば図9のように2つの
被着体12,13を接着体14で接合し、被着体12と
接着体14の接合部にき裂15を作った試験片により、
2つ以上のき裂長さと剥離強度の関係を得れば、2つの
指標を求めることができる。
The index of the adhesive strength of the present invention can be obtained from any test that can be analyzed and can obtain the strength under two or more conditions. For example, as shown in FIG. 9, a test piece in which two adherends 12 and 13 are joined by an adhesive 14 and a crack 15 is formed at a joint between the adherend 12 and the adhesive 14 is obtained.
By obtaining the relationship between two or more crack lengths and peel strength, two indices can be obtained.

【0034】[0034]

【発明の効果】本発明によれば、接着,接合強度を規定
する指標として、接着または接合界面における仮想開口
変位と応力の関係を規定する指標を用いることにより接
着,接合強度の汎用的な評価が可能になる。この結果、
製品の強度信頼性を確保する上で満たすべき条件が明確
になり、かつ、合理的な構造,工程の決定,管理が容易
になる。さらに、この指標は構造形状や負荷条件の因子
を含まないため、データーベースの構築も容易になる。
According to the present invention, a general-purpose evaluation of the bonding and bonding strength is achieved by using an index for defining the relationship between the virtual opening displacement and the stress at the bonding or bonding interface as an index for specifying the bonding and bonding strength. Becomes possible. As a result,
The conditions to be satisfied for ensuring the strength reliability of the product are clarified, and the rational structure and process can be easily determined and managed. Further, since this index does not include a factor of a structural shape or a load condition, it is easy to construct a database.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるプリント基板の一部の断
面図。
FIG. 1 is a sectional view of a part of a printed circuit board according to an embodiment of the present invention.

【図2】本発明の実施方法の説明図。FIG. 2 is an explanatory diagram of an implementation method of the present invention.

【図3】本発明の指標を説明する特性図。FIG. 3 is a characteristic diagram illustrating an index of the present invention.

【図4】本発明の指標を用いた要求仕様の一例を示す説
明する特性図。
FIG. 4 is a characteristic diagram illustrating an example of a required specification using an index of the present invention.

【図5】せん断剥離試験法の説明図。FIG. 5 is an explanatory view of a shear peel test method.

【図6】せん断剥離試験および本発明の指標により得ら
れる線幅と剥離荷重の関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between a line width and a peel load obtained by a shear peel test and an index of the present invention.

【図7】樹脂封止半導体の断面図。FIG. 7 is a sectional view of a resin-sealed semiconductor.

【図8】本発明の接着強度を表す指標である公称最大応
力と最大開口変位を記載した樹脂材料の特性記載書面の
例の説明図。
FIG. 8 is an explanatory diagram of an example of a characteristic description document of a resin material in which a nominal maximum stress and a maximum opening displacement, which are indexes representing the adhesive strength according to the present invention, are described.

【図9】本発明の指標を得るための試験法の例の説明
図。
FIG. 9 is an explanatory diagram of an example of a test method for obtaining an index of the present invention.

【符号の説明】[Explanation of symbols]

1…基材、2,22…銅箔、3,23…レジスト、5…
レジストパターン、6…負荷エッジ、7…ロードセル、
8…半導体素子、9…タブ、10…リード、11…封止
樹脂、12…被着体、13…接着体、14…き裂、24
…接着端、25…エネルギー開放要素。
DESCRIPTION OF SYMBOLS 1 ... Base material, 2, 22 ... Copper foil, 3, 23 ... Resist, 5 ...
Resist pattern, 6: load edge, 7: load cell,
8 semiconductor element, 9 tab, 10 lead, 11 sealing resin, 12 adherend, 13 adhesive body, 14 crack, 24
... adhesive end, 25 ... energy release element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ヤング率の異なる材料を接着または接合し
た構造体において、接着または接合面の強度特性とし
て、実質的に接着または接合面の応力が増加し再び0に
なるまでの仮想開口変位と、接着または接合面の応力の
関係を規定する2つ以上の指標を表記、または表記した
書面を添付したことを特徴とする接着または接合構造
体。
In a structure in which materials having different Young's moduli are bonded or bonded, as a strength characteristic of the bonding or bonding surface, a virtual opening displacement until stress of the bonding or bonding surface substantially increases and becomes zero again. An adhesive or bonding structure, characterized in that two or more indices defining the relationship between the stresses of the bonding or bonding surface are written, or a written document is attached thereto.
JP35548599A 1999-12-15 1999-12-15 Bonded/joined structure Pending JP2001174401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35548599A JP2001174401A (en) 1999-12-15 1999-12-15 Bonded/joined structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35548599A JP2001174401A (en) 1999-12-15 1999-12-15 Bonded/joined structure

Publications (1)

Publication Number Publication Date
JP2001174401A true JP2001174401A (en) 2001-06-29

Family

ID=18444227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35548599A Pending JP2001174401A (en) 1999-12-15 1999-12-15 Bonded/joined structure

Country Status (1)

Country Link
JP (1) JP2001174401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257514A (en) * 2004-03-12 2005-09-22 National Institute Of Advanced Industrial & Technology Coating film adhesion strength measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257514A (en) * 2004-03-12 2005-09-22 National Institute Of Advanced Industrial & Technology Coating film adhesion strength measuring method

Similar Documents

Publication Publication Date Title
US5537884A (en) Method for measuring adhesion strength of resin material
JP4686248B2 (en) Optical semiconductor device and optical semiconductor device manufacturing method
JP2004119465A (en) Electronic circuit device and method for manufacturing the same
JPH11288750A (en) Joint structure of flexible wiring board
EP0645812B1 (en) Resin-sealed semiconductor device
US4112196A (en) Beam lead arrangement for microelectronic devices
JP2001174401A (en) Bonded/joined structure
WO2023151234A1 (en) Preparation method for flexible electronic device
KR100866895B1 (en) Peel test sample manufacturing method of metal same and different kind cladding materials and peel testing method by the sample
JP2003302318A (en) Method for indicating resin material
US6180241B1 (en) Arrangement for reducing bending stress in an electronics package
JPH06281511A (en) Strain sensor
US7150199B2 (en) Foil strain gage for automated handling and packaging
CN105247397B (en) Opto-electronic hybrid integrated module
JP2002171063A (en) Multi-layered flexible wiring board
JP3656690B2 (en) Manufacturing method of electronic parts
JP3453784B2 (en) Display method of resin material
JPH03251704A (en) Manufacture of strain gauge
JP4060066B2 (en) Material design method for laminated structures
JP2008084928A (en) Method of manufacturing tab tape for semiconductor device
JP2637073B2 (en) Rectifier
JPH09324150A (en) Bonded structure and its production
JP3306939B2 (en) Semiconductor strain transducer
JPH01316966A (en) Integrated circuit lead member
JPH098091A (en) Teg for estimating electromigration